PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (971875)

Clipboard (0)
None

Related Articles

1.  Identification of Arx targets unveils new candidates for controlling cortical interneuron migration and differentiation 
Mutations in the homeobox transcription factor ARX have been found to be responsible for a wide spectrum of disorders extending from phenotypes with severe neuronal migration defects, such as lissencephaly, to mild forms of intellectual disabilities without apparent brain abnormalities, but with associated features of dystonia and epilepsy. Arx expression is mainly restricted to populations of GABA-containing neurons. Studies of the effects of ARX loss of function, either in humans or mutant mice, revealed varying defects, suggesting multiple roles of this gene in brain patterning, neuronal proliferation and migration, cell maturation and differentiation, as well as axonal outgrowth and connectivity. However, to date, little is known about how Arx functions as a transcription factor or which genes it binds and regulates. Recently, we combined chromatin immunoprecipitation and mRNA expression with microarray analysis and identified approximately 1000 gene promoters bound by Arx in transfected neuroblastoma N2a cells and mouse embryonic brain. To narrow the analysis of Arx targets to those most likely to control cortical interneuron migration and/or differentiation, we compare here our data to previously published studies searching for genes enriched or down-regulated in cortical interneurons between E13.5 and E15.5. We thus identified 14 Arx-target genes enriched (Cxcr7, Meis1, Ppap2a, Slc 12a5, Ets2, Phlda1, Egr1, Igf1, Lmo3, Sema6, Lgi1, Alk, Tgfb3, and Napb) and 5 genes specifically down-regulated (Hmgn3, Lmo1, Ebf3, Rasgef1b, and Slit2) in cortical migrating neurons. In this review, we present these genes and discuss how their possible regulation by Arx may lead to the dysfunction of GABAergic neurons, resulting in mental retardation and epilepsy.
doi:10.3389/fncel.2011.00028
PMCID: PMC3280452  PMID: 22355284
ARX; GABA; epilepsy; interneurons; neuronal migration; basal ganglia
2.  High-Throughput Analysis of Promoter Occupancy Reveals New Targets for Arx, a Gene Mutated in Mental Retardation and Interneuronopathies 
PLoS ONE  2011;6(9):e25181.
Genetic investigations of X-linked intellectual disabilities have implicated the ARX (Aristaless-related homeobox) gene in a wide spectrum of disorders extending from phenotypes characterised by severe neuronal migration defects such as lissencephaly, to mild or moderate forms of mental retardation without apparent brain abnormalities but with associated features of dystonia and epilepsy. Analysis of Arx spatio-temporal localisation profile in mouse revealed expression in telencephalic structures, mainly restricted to populations of GABAergic neurons at all stages of development. Furthermore, studies of the effects of ARX loss of function in humans and animal models revealed varying defects, suggesting multiple roles of this gene during brain development. However, to date, little is known about how ARX functions as a transcription factor and the nature of its targets. To better understand its role, we combined chromatin immunoprecipitation and mRNA expression with microarray analysis and identified a total of 1006 gene promoters bound by Arx in transfected neuroblastoma (N2a) cells and in mouse embryonic brain. Approximately 24% of Arx-bound genes were found to show expression changes following Arx overexpression or knock-down. Several of the Arx target genes we identified are known to be important for a variety of functions in brain development and some of them suggest new functions for Arx. Overall, these results identified multiple new candidate targets for Arx and should help to better understand the pathophysiological mechanisms of intellectual disability and epilepsy associated with ARX mutations.
doi:10.1371/journal.pone.0025181
PMCID: PMC3178625  PMID: 21966449
3.  Arx Is a Direct Target of Dlx2 and Thereby Contributes to the Tangential Migration of GABAergic Interneurons 
The Journal of Neuroscience  2008;28(42):10674-10686.
The Arx transcription factor is expressed in the developing ventral telencephalon and subsets of its derivatives. Mutation of human ARX ortholog causes neurological disorders including epilepsy, lissencephaly, and mental retardation. We have isolated the mouse Arx endogenous enhancer modules that control its tightly compartmentalized forebrain expression. Interestingly, they are scattered downstream of its coding region and partially included within the introns of the downstream PolA1 gene. These enhancers are ultraconserved noncoding sequences that are highly conserved throughout the vertebrate phylum. Functional characterization of the Arx GABAergic enhancer element revealed its strict dependence on the activity of Dlx transcription factors. Dlx overexpression induces ectopic expression of endogenous Arx and its isolated enhancer, whereas loss of Dlx expression results in reduced Arx expression, suggesting that Arx is a key mediator of Dlx function. To further elucidate the mechanisms involved, a combination of gain-of-function studies in mutant Arx or Dlx tissues was pursued. This analysis provided evidence that, although Arx is necessary for the Dlx-dependent promotion of interneuron migration, it is not required for the GABAergic cell fate commitment mediated by Dlx factors. Although Arx has additional functions independent of the Dlx pathway, we have established a direct genetic relationship that controls critical steps in the development of telencephalic GABAergic neurons. These findings contribute elucidating the genetic hierarchy that likely underlies the etiology of a variety of human neurodevelopmental disorders.
doi:10.1523/JNEUROSCI.1283-08.2008
PMCID: PMC3844830  PMID: 18923043
basal forebrain; development; epilepsy; GABAergic neuron; neuronal progenitor cell; basal ganglia
4.  Targeted loss of Arx results in a developmental epilepsy mouse model and recapitulates the human phenotype in heterozygous females 
Brain  2009;132(6):1563-1576.
Mutations in the X-linked aristaless-related homeobox gene (ARX) have been linked to structural brain anomalies as well as multiple neurocognitive deficits. The generation of Arx-deficient mice revealed several morphological anomalies, resembling those observed in patients and an interneuron migration defect but perinatal lethality precluded analyses of later phenotypes. Interestingly, many of the neurological phenotypes observed in patients with various ARX mutations can be attributed, in part, to interneuron dysfunction. To directly test this possibility, mice carrying a floxed Arx allele were generated and crossed to Dlx5/6CRE-IRES-GFP(Dlx5/6CIG) mice, conditionally deleting Arx from ganglionic eminence derived neurons including cortical interneurons. We now report that Arx−/y;Dlx5/6CIG (male) mice exhibit a variety of seizure types beginning in early-life, including seizures that behaviourally and electroencephalographically resembles infantile spasms, and show evolution through development. Thus, this represents a new genetic model of a malignant form of paediatric epilepsy, with some characteristics resembling infantile spasms, caused by mutations in a known infantile spasms gene. Unexpectedly, approximately half of the female mice carrying a single mutant Arx allele (Arx−/+;Dlx5/6CIG) also developed seizures. We also found that a subset of human female carriers have seizures and neurocognitive deficits. In summary, we have identified a previously unrecognized patient population with neurological deficits attributed to ARX mutations that are recapitulated in our mouse model. Furthermore, we show that perturbation of interneuron subpopulations is an important mechanism underling the pathogenesis of developmental epilepsy in both hemizygous males and carrier females. Given the frequency of ARX mutations in patients with infantile spasms and related disorders, our data unveil a new model for further understanding the pathogenesis of these disorders.
doi:10.1093/brain/awp107
PMCID: PMC2685924  PMID: 19439424
Epilepsy; development; conditional knockout; genetic model; interneurons
5.  A Triplet Repeat Expansion Genetic Mouse Model of Infantile Spasms Syndrome, Arx(GCG)10+7, with Interneuronopathy, Spasms in Infancy, Persistent Seizures, and Adult Cognitive and Behavioral Impairment 
Infantile spasms syndrome (ISS) is a catastrophic pediatric epilepsy with motor spasms, persistent seizures, mental retardation, and in some cases, autism. One of its monogenic causes is an insertion mutation (c.304ins (GCG)7) on the X chromosome, expanding the first polyalanine tract of the interneuron-specific transcription factor ARX from 16 to 23 alanine codons. Null mutation of the Arx gene impairs GABA- and cholinergic interneuronal migration but results in a neonatal lethal phenotype. We developed the first viable genetic mouse model of ISS that spontaneously recapitulates salient phenotypic features of the human triplet-repeat expansion mutation. Arx (GCG)10+7 (“Arx Plus7”) pups display abnormal spasm-like myoclonus and other key EEG features, including multifocal spikes, electrodecremental episodes, and spontaneous seizures persisting into maturity. The neurobehavioral profile of Arx mutants was remarkable for lowered anxiety, impaired associative learning, and abnormal social interaction. Laminar decreases of Arx+ cortical interneurons and a selective reduction of calbindin-, but not parvalbumin- or calretinin-expressing interneurons in neocortical layers and hippocampus indicate that specific classes of synaptic inhibition are missing from the adult forebrain, providing a basis for the seizures and cognitive disorder. A significant reduction of calbindin, NPY-expressing and cholinergic interneurons in the mutant striatum suggest that dysinhibition within this network may contribute to the dyskinetic motor spasms. This mouse model narrows the range of critical pathogenic elements within brain inhibitory networks essential to recreate this complex neurodevelopmental syndrome.
doi:10.1523/JNEUROSCI.0915-09.2009
PMCID: PMC2782569  PMID: 19587282
migration; interneuron; GCG repeat mutation; epilepsy; autism; transcription factor
6.  Mutations in the nuclear localization sequence of the Aristaless related homeobox; sequestration of mutant ARX with IPO13 disrupts normal subcellular distribution of the transcription factor and retards cell division 
PathoGenetics  2010;3:1.
Background
Aristaless related homeobox (ARX) is a paired-type homeobox gene. ARX function is frequently affected by naturally occurring mutations. Nonsense mutations, polyalanine tract expansions and missense mutations in ARX cause a range of intellectual disability and epilepsy phenotypes with or without additional features including hand dystonia, lissencephaly, autism or dysarthria. Severe malformation phenotypes, such as X-linked lissencephaly with ambiguous genitalia (XLAG), are frequently observed in individuals with protein truncating or missense mutations clustered in the highly conserved paired-type homeodomain.
Results
We have identified two novel point mutations in the R379 residue of the ARX homeodomain; c.1135C>A, p.R379S in a patient with infantile spasms and intellectual disability and c.1136G>T, p.R379L in a patient with XLAG. We investigated these and other missense mutations (R332P, R332H, R332C, T333N: associated with XLAG and Proud syndrome) predicted to affect the nuclear localisation sequences (NLS) flanking either end of the ARX homeodomain. The NLS regions are required for correct nuclear import facilitated by Importin 13 (IPO13). We demonstrate that missense mutations in either the N- or C-terminal NLS regions of the homeodomain cause significant disruption to nuclear localisation of the ARX protein in vitro. Surprisingly, none of these mutations abolished the binding of ARX to IPO13. This was confirmed by co-immunoprecipitation and immmuno fluorescence studies. Instead, tagged and endogenous IPO13 remained bound to the mutant ARX proteins, even in the RanGTP rich nuclear environment. We also identify the microtubule protein TUBA1A as a novel interacting protein for ARX and show cells expressing mutant ARX protein accumulate in mitosis, indicating normal cell division may be disrupted.
Conclusions
We show that the most likely, common pathogenic mechanism of the missense mutations in NLS regions of the ARX homeodomain is inadequate accumulation and distribution of the ARX transcription factor within the nucleus due to sequestration of ARX with IPO13.
doi:10.1186/1755-8417-3-1
PMCID: PMC2819251  PMID: 20148114
7.  Aristaless-Related Homeobox Plays a Key Role in Hyperplasia of the Pancreas Islet α–Like Cells in Mice Deficient in Proglucagon-Derived Peptides 
PLoS ONE  2013;8(5):e64415.
Defects in glucagon action can cause hyperplasia of islet α-cells, however, the underlying mechanisms remain largely to be elucidated. Mice homozygous for a glucagon-GFP knock-in allele (Gcggfp/gfp) completely lack proglucagon-derived peptides and exhibit hyperplasia of GFP-positive α-like cells. Expression of the transcription factor, aristaless-related homeobox (ARX), is also increased in the Gcggfp/gfp pancreas. Here, we sought to elucidate the role of ARX in the hyperplasia of α-like cells through analyses of two Arx mutant alleles (ArxP355L/Y and Arx [330insGCG]7/Y) that have different levels of impairment of their function. Expression of Gfp and Arx genes was higher and the size and number of islets increased in the Gcggfp/gfp pancreas compared to and Gcggfp/+ pancreas at 2 weeks of age. In male Gcggfp/gfp mice that are hemizygous for the ArxP355L/Y mutation that results in a protein with a P355L amino acid substitution, expression of Gfp mRNA in the pancreas was comparable to that in control Gcggfp/+Arx+/Y mice. The increases in islet size and number were also reduced in these mice. Immunohistochemical analysis showed that the number of GFP-positive cells was comparable in Gcggfp/gfp ArxP355L/Y and Gcggfp/+Arx+/Y mice. These results indicate that the hyperplasia is reduced by introduction of an Arx mutation. ArxP355L/Y mice appeared to be phenotypically normal; however, Arx [330insGCG]7/Y mice that have a mutant ARX protein with expansion of the polyalanine tract had a reduced body size and shortened life span. The number of GFP positive cells was further reduced in the Gcggfp/gfp Arx [330insGCG]7/Y mice. Taken together, our findings show that the function of ARX is one of the key modifiers for hyperplasia of islet α-like cells in the absence of proglucagon-derived peptides.
doi:10.1371/journal.pone.0064415
PMCID: PMC3650067  PMID: 23671715
8.  Ohtahara syndrome in a family with an ARX protein truncation mutation (c.81C>G/p.Y27X) 
Aristaless-related homeobox (ARX) gene mutations cause a diverse spectrum of disorders of the human brain, including lissencephaly, various forms of epilepsy and non-syndromic mental retardation. We have identified a novel mutation, c.81C>G (p.Y27X), within the ARX gene in a family with two affected male cousins. One of the boys was diagnosed with an early infantile epileptic encephalopathy also known as Ohtahara syndrome, whereas his cousin had been diagnosed with West syndrome (WS). Both patients have normal genitalia and neither have lissencephaly. The ARX mutation identified is predicted to yield a severely truncated protein of only 26 amino acids and can be considered as a null mutation. Somewhat surprisingly, however, it does not yield the X-linked lissencephaly with ambiguous genitalia (XLAG) syndrome. We proposed that the ARX mRNA translation re-initiated at the next AUG codon at position c.121–123 (aa 41) and, thus, partly rescued these patients from XLAG. Our in vitro studies show that this N-terminally truncated ARX protein (p.M41_C562) is detected by western immunoblot in lysates from cells transiently transfected with an ARX over-expression construct containing the c.81C>G mutation. Although these findings widen the spectrum of clinical phenotypes because of mutations in the ARX gene, they also emphasize the molecular pathogenetic effect of individual mutations as well as the effect of genetic background resulting in intrafamilial clinical heterogeneity for these mutations.
doi:10.1038/ejhg.2009.139
PMCID: PMC2987188  PMID: 19738637
Ohtahara syndrome; burst suppression; ARX gene; West syndrome
9.  Distinct DNA binding and transcriptional repression characteristics related to different ARX mutations 
Neurogenetics  2012;13(1):23-29.
Mutations in the Aristaless-related homeobox gene (ARX) are associated with a wide variety of neurologic disorders including lissencephaly, hydrocephaly, West syndrome, Partington syndrome, and X-linked intellectual disability with or without epilepsy. A genotype-phenotype correlation exists for ARX mutations, however the molecular basis for this association has not been investigated. To begin understanding the molecular basis for ARX mutations, we tested the DNA binding sequence preference and transcriptional repression activity for Arx, deletion mutants and mutants associated with various neurologic disorders. We found DNA binding preferences of Arx are influenced by the amino acid sequences adjacent to the homeodomain. Mutations in the homeodomain show a loss DNA binding activity, while the T333N and P353R homeodomain mutants still possess DNA binding activities, although less than wild type. Transcription repression activity, the primary function of ARX, is reduced in all mutants except the L343Q, which has no DNA binding activity and does not functionally repress Arx targets. These data indicate that mutations in the homeodomain result in not only a loss of DNA binding activity but also loss of transcriptional repression activity. Our results provide novel insights into the pathogenesis of ARX related disorders and possible directions to pursue potential therapeutic interventions.
doi:10.1007/s10048-011-0304-7
PMCID: PMC3279587  PMID: 22252899
ARX; lissencephaly; X-linked intellectual disability and Homeodomain
10.  Dysgenesis of Enteroendocrine Cells in Aristaless-Related Homeobox Polyalanine Expansion Mutations 
ABSTRACT
Objectives:
Severe congenital diarrhea occurs in approximately half of patients with Aristaless-Related Homeobox (ARX) null mutations. The cause of this diarrhea is unknown. In a mouse model of intestinal Arx deficiency, the prevalence of a subset of enteroendocrine cells is altered, leading to diarrhea. Because polyalanine expansions within the ARX protein are the most common mutations found in ARX-related disorders, we sought to characterize the enteroendocrine population in human tissue of an ARX(GGC)7 mutation and in a mouse model of the corresponding polyalanine expansion (Arx(GCG)7).
Methods:
Immunohistochemistry and quantitative real-time polymerase chain reaction were the primary modalities used to characterize the enteroendocrine populations. Daily weights were determined for the growth curves, and Oil-Red-O staining on stool and tissue identified neutral fats.
Results:
An expansion of 7 alanines in the first polyalanine tract of both human ARX and mouse Arx altered enteroendocrine differentiation. In human tissue, cholecystokinin, glucagon-like peptide 1, and somatostatin populations were reduced, whereas the chromogranin A population was unchanged. In the mouse model, cholecystokinin and glucagon-like peptide 1 populations were also lost, although the somatostatin-expressing population was increased. The ARX(GGC)7 protein was present in human tissue, whereas the Arx(GCG)7 protein was degraded in the mouse intestine.
Conclusions:
ARX/Arx is required for the specification of a subset of enteroendocrine cells in both humans and mice. Owing to protein degradation, the Arx(GCG)7 mouse recapitulates findings of the intestinal Arx null model, but is not able to further the study of the differential effects of the ARX(GCG)7 protein on its transcriptional targets in the intestine.
doi:10.1097/MPG.0000000000000542
PMCID: PMC4308495  PMID: 25171319
Arx; enteroendocrine dysgenesis; polyalanine
11.  Nkx2.2 and Arx genetically interact to regulate pancreatic endocrine cell development and endocrine hormone expression 
Developmental biology  2011;359(1):1-11.
Nkx2.2 and Arx are essential pancreatic transcription factors. Nkx2.2 is necessary for the appropriate specification of the islet alpha, beta, PP and epsilon cell lineages, whereas Arx is required to form the correct ratio of alpha, beta, delta and PP cells. To begin to understand the cooperative functions of Nkx2.2 and Arx in the development of endocrine cell lineages, we generated progenitor cell-specific deletions of Arx on the Nkx2.2 null background. The analysis of these mutants demonstrates that expansion of the ghrelin cell population in the Nkx2.2 null pancreas is not dependent on Arx; however, Arx is necessary for the upregulation of ghrelin mRNA levels in Nkx2.2 mutant epsilon cells. Alternatively, in the absence of Arx, delta cell numbers are increased and Nkx2.2 becomes essential for the repression of somatostatin gene expression. Interestingly, the dysregulation of ghrelin and somatostatin expression in the Nkx2.2/Arx compound mutant (Nkx2.2null;ArxΔpanc) results in the appearance of ghrelin+/somatostatin+ co-expressing cells. These compound mutants also revealed a genetic interaction between Nkx2.2 and Arx in the regulation of the PP cell lineage; the PP cell population is reduced when Nkx2.2 is deleted but is restored back to wildtype numbers in the Nkx2.2null;ArxΔpanc mutant. Moreover, conditional deletion of Arx in specific pancreatic cell populations established that the functions of Arx are necessary in the Neurog3+ endocrine progenitors. Together, these experiments identify novel genetic interactions between Nkx2.2 and Arx within the endocrine progenitor cells that ensure the correct specification and regulation of endocrine hormone-producing cells.
doi:10.1016/j.ydbio.2011.08.001
PMCID: PMC3192309  PMID: 21856296
Nkx2.2; Arx; transcriptional regulation; endocrine cell fate; ghrelin; PP; somatostatin
12.  Interneuron, Interrupted: Molecular Pathogenesis of ARX Mutations and X-linked Infantile Spasms 
Current opinion in neurobiology  2012;22(5):859-865.
X-linked Infantile Spasms Syndrome (ISSX) is a catastrophic epilepsy of early childhood with intractable seizures, intellectual disability, and poor prognosis. A spectrum of mutations in the Aristaless-Related Homeobox gene (ARX) has been linked to ISSX, and downstream targets of this interneuron-expressed transcription factor are being defined. Recent advances combining in vitro and in vivo methods have unveiled complex interactions between Arx and its binding partners and their effects on cell migration and maturation that can help explain the diversity of ARX phenotypes. New mutant mouse models of Arx-induced pathology, including a recent human triplet-repeat expansion mutation with a phenotype of infantile spasms and electrographic seizures, provide valuable tools for exploring the pathophysiology of Arx and substrates for testing novel therapies.
doi:10.1016/j.conb.2012.04.006
PMCID: PMC3437236  PMID: 22565167
13.  MRX87 family with Aristaless X dup24bp mutation and implication for polyAlanine expansions 
BMC Medical Genetics  2007;8:25.
Background
Cognitive impairments are heterogeneous conditions, and it is estimated that 10% may be caused by a defect of mental function genes on the X chromosome. One of those genes is Aristaless related homeobox (ARX) encoding a polyA-rich homeobox transcription factor essential for cerebral patterning and its mutations cause different neurologic disorders. We reported on the clinical and genetic analysis of an Italian family with X-linked mental retardation (XLMR) and intra-familial heterogeneity, and provided insight into its molecular defect.
Methods
We carried out on linkage-candidate gene studies in a new MRX family (MRX87). All coding regions and exon-intron boundaries of ARX gene were analysed by direct sequencing.
Results
MRX87 patients had moderate to profound cognition impairment and a combination of minor congenital anomalies. The disease locus, MRX87, was mapped between DXS7104 and DXS1214, placing it in Xp22-p21 interval, a hot spot region for mental handicap. An in frame duplication of 24 bp (ARXdup24) in the second polyAlanine tract (polyA_II) in ARX was identified.
Conclusion
Our study underlines the role of ARXdup24 as a critical mutational site causing mental retardation linked to Xp22. Phenotypic heterogeneity of MRX87 patients represents a new observation relevant to the functional consequences of polyAlanine expansions enriching the puzzling complexity of ARXdup24-linked diseases.
doi:10.1186/1471-2350-8-25
PMCID: PMC1868705  PMID: 17480217
14.  Mutations in ARX Result in Several Defects Involving GABAergic Neurons 
Genetic investigations of X-linked mental retardation have demonstrated the implication of ARX in a wide spectrum of disorders extending from phenotypes with severe neuronal migration defects, such as lissencephaly, to mild or moderate forms of mental retardation without apparent brain abnormalities, but with associated features of dystonia and epilepsy. These investigations have in recent years directed attention to the role of this gene in brain development. Analysis of its spatio-temporal localization profile revealed expression in telencephalic structures at all stages of development, mainly restricted to populations of GABA-containing neurons. Furthermore, studies of the effects of ARX loss of function either in humans or in lines of mutant mice revealed varying defects, suggesting multiple roles of this gene during development. In particular, Arx has been shown to contribute to almost all fundamental processes of brain development: patterning, neuronal proliferation and migration, cell maturation and differentiation, as well as axonal outgrowth and connectivity. In this review, we will present and discuss recent findings concerning the role of ARX in brain development and how this information will be useful to better understand the pathophysiological mechanisms of mental retardation and epilepsy associated with ARX mutations.
doi:10.3389/fncel.2010.00004
PMCID: PMC2841486  PMID: 20300201
ARX; GABA; lissencephaly; epilepsy; interneurons; neuronal migration; basal ganglia
15.  A polyalanine tract expansion in Arx forms intranuclear inclusions and results in increased cell death 
The Journal of Cell Biology  2004;167(3):411-416.
A growing number of human disorders have been associated with expansions of a tract of a single amino acid. Recently, polyalanine (polyA) tract expansions in the Aristaless-related homeobox (ARX) protein have been identified in a subset of patients with infantile spasms and mental retardation. How alanine expansions in ARX, or any other transcription factor, cause disease have not been determined. We generated a series of polyA expansions in Arx and expressed these in cell culture and brain slices. Transfection of these constructs results in nuclear protein aggregation, filamentous nuclear inclusions, and an increase in cell death. These inclusions are ubiquitinated and recruit Hsp70. Coexpressing Hsp70 decreases the percentage of cells with nuclear inclusions. Finally, we show that expressing mutant Arx in mouse brains results in neuronal nuclear inclusion formation. Our data suggest expansions in one of the ARX polyA tracts results in nuclear protein aggregation and an increase in cell death; likely underlying the pathogenesis of the associated infantile spasms and mental retardation.
doi:10.1083/jcb.200408091
PMCID: PMC2172475  PMID: 15533998
16.  Neonatal Estradiol Stimulation Prevents Epilepsy in Arx Model of X-Linked Infantile Spasms Syndrome 
Science translational medicine  2014;6(220):220ra12.
Infantile spasms are a catastrophic form of pediatric epilepsy with inadequate treatment. In patients, mutation of ARX, a transcription factor selectively expressed in neuronal precursors and adult inhibitory interneurons, impairs cell migration and causes a major inherited subtype of the disease X-linked infantile spasms syndrome. Using an animal model, the Arx(GCG)10+7 mouse, we determined that brief estradiol (E2) administration during early postnatal development prevented spasms in infancy and seizures in adult mutants. E2 was ineffective when delivered after puberty or 30 days after birth. Early E2 treatment altered mRNA levels of three downstream targets of Arx (Shox2, Ebf3, and Lgi1) and restored depleted interneuron populations without increasing GABAergic synaptic density. Postnatal E2 treatment may induce lasting transcriptional changes that lead to enduring disease modification and could potentially serve as a therapy for inherited interneuronopathies.
doi:10.1126/scitranslmed.3007231
PMCID: PMC4034383  PMID: 24452264
17.  XLMR in MRX families 29, 32, 33 and 38 results from the dup24 mutation in the ARX (Aristaless related homeobox) gene 
BMC Medical Genetics  2005;6:16.
Background
X-linked mental retardation (XLMR) is the leading cause of mental retardation in males. Mutations in the ARX gene in Xp22.1 have been found in numerous families with both nonsyndromic and syndromic XLMR. The most frequent mutation in this gene is a 24 bp duplication in exon 2. Based on this fact, a panel of XLMR families linked to Xp22 was tested for this particular ARX mutation.
Methods
Genomic DNA from XLMR families linked to Xp22.1 was amplified for exon 2 in ARX using a Cy5 labeled primer pair. The resulting amplicons were sized using the ALFexpress automated sequencer.
Results
A panel of 11 families with X-linked mental retardation was screened for the ARX 24dup mutation. Four nonsyndromic XLMR families – MRX29, MRX32, MRX33 and MRX38 – were found to have this particular gene mutation.
Conclusion
We have identified 4 additional XLMR families with the ARX dup24 mutation from a panel of 11 XLMR families linked to Xp22.1. This finding makes the ARX dup24 mutation the most common mutation in nonsyndromic XLMR families linked to Xp22.1. As this mutation can be readily tested for using an automated sequencer, screening should be considered for any male with nonsyndromic MR of unknown etiology.
doi:10.1186/1471-2350-6-16
PMCID: PMC1142315  PMID: 15850492
18.  Pancreatic α-Cell Specific Deletion of Mouse Arx Leads to α-Cell Identity Loss 
PLoS ONE  2013;8(6):e66214.
The specification and differentiation of pancreatic endocrine cell populations (α-, β-, δ, PP- and ε-cells) is orchestrated by a combination of transcriptional regulators. In the pancreas, Aristaless-related homeobox gene (Arx) is expressed first in the endocrine progenitors and then restricted to glucagon-producing α-cells. While the functional requirement of Arx in early α-cell specification has been investigated, its role in maintaining α-cell identity has yet to be explored. To study this later role of Arx, we have generated mice in which the Arx gene has been ablated specifically in glucagon-producing α-cells. Lineage-tracing studies and immunostaining analysis for endocrine hormones demonstrate that ablation of Arx in neonatal α-cells results in an α-to-β-like conversion through an intermediate bihormonal state. Furthermore, these Arx-deficient converted cells express β-cell markers including Pdx1, MafA, and Glut2. Surprisingly, short-term ablation of Arx in adult mice does not result in a similar α-to-β-like conversion. Taken together, these findings reveal a potential temporal requirement for Arx in maintaining α-cell identity.
doi:10.1371/journal.pone.0066214
PMCID: PMC3681972  PMID: 23785486
19.  Arx Polyalanine Expansion in Mice Leads to Reduced Pancreatic α-Cell Specification and Increased α-Cell Death 
PLoS ONE  2013;8(11):e78741.
ARX/Arx is a homeodomain-containing transcription factor necessary for the specification and early maintenance of pancreatic endocrine α-cells. Many transcription factors important to pancreas development, including ARX/Arx, are also crucial for proper brain development. Although null mutations of ARX in human patients result in the severe neurologic syndrome XLAG (X-linked lissencephaly associated with abnormal genitalia), the most common mutation is the expansion of the first polyalanine tract of ARX, which results primarily in the clinical syndrome ISSX (infantile spasms). Mouse models of XLAG, ISSX and other human ARX mutations demonstrate a direct genotype-phenotype correlation in ARX-related neurologic disorders. Furthermore, mouse models utilizing a polyalanine tract expansion mutation have illustrated critical developmental differences between null mutations and expansion mutations in the brain, revealing context-specific defects. Although Arx is known to be required for the specification and early maintenance of pancreatic glucagon-producing α-cells, the consequences of the Arx polyalanine expansion on pancreas development remain unknown. Here we report that mice with an expansion mutation in the first polyalanine tract of Arx exhibit impaired α-cell specification and maintenance, with gradual α-cell loss due to apoptosis. This is in contrast to the re-specification of α-cells into β- and δ-cells that occurs in mice null for Arx. Overall, our analysis of an Arx polyalanine expansion mutation on pancreatic development suggests that impaired α-cell function might also occur in ISSX patients.
doi:10.1371/journal.pone.0078741
PMCID: PMC3827280  PMID: 24236044
20.  Aristaless Related Homeobox Gene, Arx, Is Implicated in Mouse Fetal Leydig Cell Differentiation Possibly through Expressing in the Progenitor Cells 
PLoS ONE  2013;8(6):e68050.
Development of the testis begins with the expression of the SRY gene in pre-Sertoli cells. Soon after, testis cords containing Sertoli and germ cells are formed and fetal Leydig cells subsequently develop in the interstitial space. Studies using knockout mice have indicated that multiple genes encoding growth factors and transcription factors are implicated in fetal Leydig cell differentiation. Previously, we demonstrated that the Arx gene is implicated in this process. However, how ARX regulates Leydig cell differentiation remained unknown. In this study, we examined Arx KO testes and revealed that fetal Leydig cell numbers largely decrease throughout the fetal life. Since our study shows that fetal Leydig cells rarely proliferate, this decrease in the KO testes is thought to be due to defects of fetal Leydig progenitor cells. In sexually indifferent fetal gonads of wild type, ARX was expressed in the coelomic epithelial cells and cells underneath the epithelium as well as cells at the gonad-mesonephros border, both of which have been described to contain progenitors of fetal Leydig cells. After testis differentiation, ARX was expressed in a large population of the interstitial cells but not in fetal Leydig cells, raising the possibility that ARX-positive cells contain fetal Leydig progenitor cells. When examining marker gene expression, we observed cells as if they were differentiating into fetal Leydig cells from the progenitor cells. Based on these results, we propose that ARX acts as a positive factor for differentiation of fetal Leydig cells through functioning at the progenitor stage.
doi:10.1371/journal.pone.0068050
PMCID: PMC3695952  PMID: 23840809
21.  Arx and Nkx2.2 compound deficiency redirects pancreatic alpha- and beta-cell differentiation to a somatostatin/ghrelin co-expressing cell lineage 
Background
Nkx2.2 and Arx represent key transcription factors implicated in the specification of islet cell subtypes during pancreas development. Mice deficient for Arx do not develop any alpha-cells whereas beta- and delta-cells are found in considerably higher numbers. In Nkx2.2 mutant animals, alpha- and beta-cell development is severely impaired whereas a ghrelin-expressing cell population is found augmented.
Notably, Arx transcription is clearly enhanced in Nkx2.2-deficient pancreata. Hence in order to precise the functional link between both factors we performed a comparative analysis of Nkx2.2/Arx single- and double-mutants but also of Pax6-deficient animals.
Results
We show that most of the ghrelin+ cells emerging in pancreata of Nkx2.2- and Pax6-deficient mice, express the alpha-cell specifier Arx, but also additional beta-cell related genes. In Nkx2.2-deficient mice, Arx directly co-localizes with iAPP, PC1/3 and Pdx1 suggesting an Nkx2.2-dependent control of Arx in committed beta-cells. The combined loss of Nkx2.2 and Arx likewise results in the formation of a hyperplastic ghrelin+ cell population at the expense of mature alpha- and beta-cells. Surprisingly, such Nkx2.2-/-Arx- ghrelin+ cells also express the somatostatin hormone.
Conclusions
Our data indicate that Nkx2.2 acts by reinforcing the transcriptional networks initiated by Pax4 and Arx in early committed beta- and alpha-cell, respectively. Our analysis also suggests that one of the coupled functions of Nkx2.2 and Pax4 is to counteract Arx gene activity in early committed beta-cells.
doi:10.1186/1471-213X-11-52
PMCID: PMC3179930  PMID: 21880149
Arx; Nkx2.2; somatostatin; ghrelin; Pax6; Pax4
22.  Development and validation of a multiplex-PCR assay for X-linked intellectual disability 
BMC Medical Genetics  2013;14:80.
Background
X-linked intellectual disability is a common cause of inherited cognitive deficit affecting mostly males. There are several genetic causes implicated in this condition, which has hampered the establishment of an accurate diagnosis. We developed a multiplex-PCR assay for the mutational hotspot regions of the FMR1, AFF2 and ARX genes.
Methods
The multiplex-PCR was validated in a cohort of 100 males selected to include known alleles for the FMR1 repetitive region: five full mutations (250–650 CGGs), ten premutations (70–165 CGGs) and eighty-five in the normal range (19–42 CGGs). Sequencing or Southern blotting was used to confirm the results, depending on the allele class. In this cohort, with the exception of one sample showing an AFF2 intermediate-sized allele, all other samples were normal (8–34 CCGs). No ARX variant was found besides the c.429_452dup. The validated assay was applied to 5000 samples (64.4% males and 35.6% females).
Results
The normal-allelic range of both FMR1 and AFF2 genes as well as the nature of ARX variants identified was similar in both genders. The rate of homozygosity observed in female samples, 27.5% for FMR1 and 17.8% for AFF2 alleles, is comparable to that published by others. Two FMR1 premutations were identified, in a male (58 CGGs) and a female case [(CGG)47/(CGG)61], as well as several FMR1 or AFF2 intermediate-sized alleles. One AFF2 premutation (68 CCGs) and two putative full expansions were picked up in male subjects, which seems relevant considering the rarity of reported AFF2 mutations found in the absence of a family history.
Conclusions
We developed a robust multiplex-PCR that can be used to screen the mutational hotspot regions of FMR1, AFF2 and ARX genes. Moreover, this strategy led to the identification of variants in all three genes, representing not only an improvement in allele-sizing but also in achieving a differential diagnosis. Although the distinction between females who are truly homozygous and those with a second pre- or full mutation sized allele, as well as a definitive diagnosis, requires a specific downstream technique, the use of this multiplex-PCR for initial screening is a cost-effective approach which widens the scope of detection.
doi:10.1186/1471-2350-14-80
PMCID: PMC3751858  PMID: 23914978
X-linked intellectual disability (XLID); FMR1; AFF2; ARX; Multiplex-PCR
23.  Differential effects of a polyalanine tract expansion in Arx on neural development and gene expression 
Human Molecular Genetics  2011;21(5):1090-1098.
Polyalanine (poly-A) tracts exist in 494 annotated proteins; to date, expansions in these tracts have been associated with nine human diseases. The pathogenetic mechanism by which a poly-A tract results in these various human disorders remains uncertain. To understand the role of this mutation type, we investigated the change in functional properties of the transcription factor Arx when it has an expanded poly-A tract (ArxE), a mutation associated with infantile spasms and intellectual disabilities in humans. We found that although ArxE functions normally in the dorsal brain, its function in subpallial-derived populations of neurons is compromised. These contrasting functions are associated with the misregulation of Arx targets through the loss of the ability of ArxE to interact with the Arx cofactor Tle1. Our data demonstrate a novel mechanism for poly-A expansion diseases: the misregulation of a subset of target genes normally regulated by a transcription factor.
doi:10.1093/hmg/ddr538
PMCID: PMC3277309  PMID: 22108177
24.  Embryonic endocrine pancreas and mature β cells acquire α and PP cell phenotypes upon Arx misexpression  
Journal of Clinical Investigation  2007;117(4):961-970.
Aristaless-related homeobox (Arx) was recently demonstrated to be involved in pancreatic α cell fate specification while simultaneously repressing the β and δ cell lineages. To establish whether Arx is not only necessary, but also sufficient to instruct the α cell fate in endocrine progenitors, we used a gain-of-function approach to generate mice conditionally misexpressing this factor. Mice with forced Arx expression in the embryonic pancreas or in developing islet cells developed a dramatic hyperglycemia and eventually died. Further analysis demonstrated a drastic loss of β and δ cells. Concurrently, a remarkable increase in the number of cells displaying α cell or, strikingly, pancreatic polypeptide (PP) cell features was observed. Notably, the ectopic expression of Arx induced in embryonic or adult β cells led to a loss of the β cell phenotype and a concomitant increase in a number of cells with α or PP cell characteristics. Combining quantitative real-time PCR and lineage-tracing experiments, we demonstrate that, in adult mice, the misexpression of Arx, rather than its overexpression, promotes a conversion of β cells into glucagon- or PP-producing cells in vivo. These results provide important insights into the complex mechanisms underlying proper pancreatic endocrine cell allocation and cell identity acquisition.
doi:10.1172/JCI29115
PMCID: PMC1839241  PMID: 17404619
25.  The c.429_452 duplication of the ARX gene: a unique developmental-model of limb kinetic apraxia 
Background
The c.429_452dup24 of the ARX gene is a rare genetic anomaly, leading to X-Linked Intellectual Disability without brain malformation. While in certain cases c.429_452dup24 has been associated with specific clinical patterns such as Partington syndrome, the consequence of this mutation has been also often classified as “non-specific Intellectual Disability”. The present work aims at a more precise description of the clinical features linked to the c.429_452dup24 mutation.
Methods
We clinically reviewed all affected patients identified in France over a five-year period, i.e. 27 patients from 12 different families. Detailed cognitive, behavioural, and motor evaluation, as well as standardized videotaped assessments of oro-lingual and gestural praxis, were performed. In a sub-group of 13 ARX patients, kinematic and MRI studies were further accomplished to better characterize the motor impairment prevalent in the ARX patients group. To ensure that data were specific to the ARX gene mutation and did not result from low-cognitive functioning per se, a group of 27 age- and IQ-matched Down syndrome patients served as control.
Results
Neuropsychological and motor assessment indicated that the c.429_452dup24 mutation constitutes a recognizable clinical syndrome: ARX patients exhibiting Intellectual Disability, without primary motor impairment, but with a very specific upper limb distal motor apraxia associated with a pathognomonic hand-grip. Patients affected with the so-called Partington syndrome, which involves major hand dystonia and orolingual apraxia, exhibit the most severe symptoms of the disorder. The particular “reach and grip” impairment which was observed in all ARX patients, but not in Down syndrome patients, was further characterized by the kinematic data: (i) loss of preference for the index finger when gripping an object, (ii) major impairment of fourth finger deftness, and (iii) a lack of pronation movements. This lack of distal movement coordination exhibited by ARX patients is associated with the loss of independent digital dexterity and is similar to the distortion of individual finger movements and posture observed in Limb Kinetic Apraxia.
Conclusion
These findings suggest that the ARX c.429_452dup24 mutation may be a developmental model for Limb Kinetic Apraxia.
doi:10.1186/1750-1172-9-25
PMCID: PMC4016261  PMID: 24528893
ARX gene mutation; Kinematic study; Limb-kinetic apraxia; X-linked intellectual disability; Partington syndrome

Results 1-25 (971875)