PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (877014)

Clipboard (0)
None

Related Articles

1.  NICOTINIC ACETYLCHOLINE RECEPTOR β2 SUBUNIT (CHRNB2) GENE AND SHORT-TERM ABILITY TO QUIT SMOKING IN RESPONSE TO NICOTINE PATCH 
Genes coding for nicotinic acetylcholine receptors (nAChRs) may influence response to nicotine replacement therapy (NRT) for smoking cessation. We examined the association of a 3’ UTR polymorphism (rs2072661) in the nAChR β2 subunit (CHRNB2) gene with quitting success in response to nicotine vs. placebo patch during a short-term test of patch effects. In a within-subjects cross-over design, smokers of European descent (n = 156) received 21 mg nicotine and placebo patch, in counter-balanced order, during two separate 5-day simulated quit attempts, each preceded by a week of ad lib smoking. Abstinence was assessed daily by carbon monoxide (CO) < 5 ppm. Smokers with the CHRNB2 GG genotype had more days of abstinence during the nicotine versus placebo patch week, compared to those with the AG or AA genotypes (p<.01). Moreover, nicotine patch increased the probability of quitting on the target quit day, quitting anytime during the patch week, and avoiding relapse among those with the GG genotype but not the AA/AG genotypes, although the nicotine x genotype interaction was significant only for quitting on the target quit day (p<.05). Regardless of patch condition, quitting on the target quit day was more likely in those with the GG genotype vs. AA/AG genotypes (p<.05). Genetic associations were not observed for craving or withdrawal responses to nicotine versus placebo patch. These findings are consistent with prior evidence of association of this variant with smoking cessation and suggest that polymorphisms in the nAChR β2 subunit gene may influence therapeutic responsiveness to cessation medications.
doi:10.1158/1055-9965.EPI-09-0166
PMCID: PMC2759850  PMID: 19755656
CHRNB2; pharmacogenetics; nicotine replacement; smoking cessation
2.  Multiple Distinct Risk Loci for Nicotine Dependence Identified by Dense Coverage of the Complete Family of Nicotinic Receptor Subunit (CHRN) Genes 
Tobacco smoking continues to be a leading cause of preventable death. Recent research has underscored the important role of specific cholinergic nicotinic receptor subunit (CHRN) genes in risk for nicotine dependence and smoking. To detect and characterize the influence of genetic variation on vulnerability to nicotine dependence, we analyzed 226 SNPs covering the complete family of 16 CHRN genes, which encode the nicotinic acetylcholine receptor (nAChR) subunits, in a sample of 1050 nicotine-dependent cases and 879 non-dependent controls of European descent. This expanded SNP coverage has extended and refined the findings of our previous large scale genome-wide association and candidate gene study. After correcting for the multiple tests across this gene family, we found significant association for two distinct loci in the CHRNA5-CHRNA3-CHRNB4 gene cluster, one locus in the CHRNB3-CHRNA6 gene cluster, and a fourth, novel locus in the CHRND-CHRNG gene cluster. The two distinct loci in CHRNA5-CHRNA3-CHRNB4 are represented by the non-synonymous SNP rs16969968 in CHRNA5 and by rs578776 in CHRNA3, respectively, and joint analyses show that the associations at these two SNPs are statistically independent. Nominally significant single-SNP association was detected in CHRNA4 and CHRNB1. In summary, this is the most comprehensive study of the CHRN genes for involvement with nicotine dependence to date. Our analysis reveals significant evidence for at least four distinct loci in the nicotinic receptor subunit genes that each influence the transition from smoking to nicotine dependence and may inform the development of improved smoking cessation treatments and prevention initiatives.
doi:10.1002/ajmg.b.30828
PMCID: PMC2693307  PMID: 19259974
cholinergic nicotinic receptors; nicotinic acetylcholine receptors; smoking; genetic association
3.  DRD1 Associations with Smoking Abstinence Across Slow and Normal Nicotine Metabolizers 
Pharmacogenetics and Genomics  2012;22(7):551-554.
Nicotine metabolism and genetic variation have an impact on nicotine addiction and smoking abstinence, but further research is required. The nicotine metabolite ratio (NMR) is a robust biomarker of nicotine metabolism used to categorize slow and normal nicotine metabolizers (lower 25th quartile cutoff). In two randomized clinical trials of smoking abstinence treatments, we conducted NMR-stratified analyses on smoking abstinence across 13 regions coding for nicotinic acetylcholine receptors and proteins involved in the dopamine reward system. Gene × NMR interaction P-values were adjusted for multiple correlated tests, and we used a Bonferroni-corrected α-level of 0.004 to determine system-wide significance. Three SNPs in DRD1 (rs11746641, rs2168631, rs11749035) had significant interactions (0.001 ≤ adjusted P-values ≤ 0.004), with increased odds of abstinence within slow metabolizers (ORs=3.1–3.5, 95% CI 1.7–6.7). Our findings support the role of DRD1 in nicotine dependence, and identify genetic and nicotine metabolism profiles that may interact to impact nicotine dependence.
doi:10.1097/FPC.0b013e3283539062
PMCID: PMC3376177  PMID: 22495174
Genetic association studies; heterogeneity; smoking abstinence; nicotine metabolism; nicotine metabolite ratio; DRD1
4.  Bupropion inhibits the cellular effects of nicotine in the ventral tegmental area 
Biochemical pharmacology  2007;74(8):1283-1291.
Each year, tobacco use causes over 4 million deaths worldwide and billions of dollars are spent on treatment for tobacco-related illness. Bupropion, an atypical antidepressant, improves the rates of successful smoking cessation, however, the mechanisms by which bupropion reduces cigarette smoking and depression are unknown. Here we show that clinical concentrations of bupropion inhibit nicotine’s stimulatory effects on brain reward areas. Many drugs of abuse, including nicotine, stimulate dopamine (DA) release in the mesoaccumbens reward system. Nicotinic acetylcholine receptors in the ventral tegmental area (VTA) mediate nicotine’s stimulation of DA release, as well as its rewarding effects. Nicotinic receptors are expressed by excitatory and inhibitory neurons that control DA neuron excitability, and by the DA neurons themselves. Bupropion is a broad-spectrum non-competitive nicotinic receptor antagonist. Here we report that pre-treatment of brain slices with a clinically relevant concentration of bupropion dramatically reduces the effects of nicotine on DA neuron excitability. Nicotinic receptors on VTA DA neurons and their synaptic inputs are inhibited by 75 – 95% after bupropion treatment. We also find that bupropion alone reduces GABAergic transmission to DA neurons, thereby diminishing tonic inhibition of these neurons. This increases DA neuron excitability during bupropion treatment in the absence of nicotine, and may contribute to bupropion’s antidepressant actions.
doi:10.1016/j.bcp.2007.07.034
PMCID: PMC2067251  PMID: 17868653
Acetylcholine; Dopamine; Glutamate; GABA; Synaptic Transmission; Nicotinic
5.  Resequencing of Nicotinic Acetylcholine Receptor Genes and Association of Common and Rare Variants with the Fagerström Test for Nicotine Dependence 
Neuropsychopharmacology  2010;35(12):2392-2402.
Common single-nucleotide polymorphisms (SNPs) at nicotinic acetylcholine receptor (nAChR) subunit genes have previously been associated with measures of nicotine dependence. We investigated the contribution of common SNPs and rare single-nucleotide variants (SNVs) in nAChR genes to Fagerström test for nicotine dependence (FTND) scores in treatment-seeking smokers. Exons of 10 genes were resequenced with next-generation sequencing technology in 448 European-American participants of a smoking cessation trial, and CHRNB2 and CHRNA4 were resequenced by Sanger technology to improve sequence coverage. A total of 214 SNP/SNVs were identified, of which 19.2% were excluded from analyses because of reduced completion rate, 73.9% had minor allele frequencies <5%, and 48.1% were novel relative to dbSNP build 129. We tested associations of 173 SNP/SNVs with the FTND score using data obtained from 430 individuals (18 were excluded because of reduced completion rate) using linear regression for common, the cohort allelic sum test and the weighted sum statistic for rare, and the multivariate distance matrix regression method for both common and rare SNP/SNVs. Association testing with common SNPs with adjustment for correlated tests within each gene identified a significant association with two CHRNB2 SNPs, eg, the minor allele of rs2072660 increased the mean FTND score by 0.6 Units (P=0.01). We observed a significant evidence for association with the FTND score of common and rare SNP/SNVs at CHRNA5 and CHRNB2, and of rare SNVs at CHRNA4. Both common and/or rare SNP/SNVs from multiple nAChR subunit genes are associated with the FTND score in this sample of treatment-seeking smokers.
doi:10.1038/npp.2010.120
PMCID: PMC3055324  PMID: 20736995
Fagerström test for nicotine dependence; single-nucleotide polymorphism; candidate gene association scan; treatment-seeking smokers; addiction & substance abuse; clinical pharmacology; clinical trials; neurogenetics; acetylcholine
6.  Gender Stratified Gene and Gene–Treatment Interactions in Smoking Cessation 
The pharmacogenomics journal  2011;12(6):521-532.
We conducted gender-stratified analyses on a systems-based candidate gene study of 53 regions involved in nicotinic response and the brain-reward pathway in two randomized clinical trials of smoking cessation treatments (placebo, bupropion, transdermal and nasal spray nicotine replacement therapy). We adjusted P-values for multiple correlated tests, and used a Bonferroni corrected α-level of 5 × 10−4 to determine system-wide significance. Four SNPs (rs12021667, rs12027267, rs6702335, rs12039988; r2>0.98) in erythrocyte membrane protein band 4.1 (EPB41) had a significant male-specific marginal association with smoking abstinence (OR=0.5; 95% CI 0.3–0.6) at end of treatment (adjusted P<6 × 10−5). rs806365 in cannabinoid receptor 1 (CNR1) had a significant male-specific gene-treatment interaction at 6-month follow-up (adjusted P=3.9 × 10−5); within males using nasal spray, rs806365 was associated with a decrease in odds of abstinence (OR=0.04; 95% CI 0.01–0.2). While the role of CNR1 in substance abuse has been well studied, we report EPB41 for the first time in the nicotine literature.
doi:10.1038/tpj.2011.30
PMCID: PMC3208134  PMID: 21808284
Genetic association studies; heterogeneity; smoking cessation
7.  Nicotinic Acetylcholine Receptor Variation and Response to Smoking Cessation Therapies 
Pharmacogenetics and genomics  2013;23(2):94-103.
Objective
Evaluate nicotinic acetycholine receptor (nAChR) single nucleotide polymorphism (SNP) association with seven day point prevalence abstinence (abstinence) in randomized clinical trials of smoking cessation therapies (RCTs) in individuals grouped by pharmacotherapy randomization to inform the development of personalized smoking cessation therapy.
Methods
We quantified association of four SNPs at three nAChRs with abstinence in eight RCTs. Participants were 2,633 outpatient treatment-seeking, self-identified European ancestry individuals smoking ≥10 cigarettes per day, recruited via advertisement, prescribed pharmacotherapy, and provided with behavioral therapy. Interventions included nicotine replacement therapy (NRT), bupropion, varenicline, placebo or combined NRT and bupropion, and five modes of group and individual behavioral therapy. Outcome measures tested in multivariate logistic regression were end of treatment (EOT) and six month (6MO) abstinence, with demographic, behavioral and genetic covariates.
Results
“Risk” alleles previously associated with smoking heaviness were significantly (P<0.05) associated with reduced abstinence in the placebo pharmacotherapy group (PG) at 6MO [for rs588765 OR (95%CI) 0.41 (0.17–0.99)], and at EOT and at 6MO [for rs1051730, 0.42 (0.19–0.93) and 0.31 (0.12–0.80)], and with increased abstinence in the NRT PG at 6MO [for rs588765 2.07 (1.11–3.87) and for rs1051730 2.54 (1.29–4.99)]. We observed significant heterogeneity in rs1051730 effects (F=2.48, P=0.021) between PGs.
Conclusions
chr15q25.1 nAChR SNP risk alleles for smoking heaviness significantly increase relapse with placebo treatment and significantly increase abstinence with NRT. These SNP-PG associations require replication in independent samples for validation, and testing in larger sample sizes to evaluate whether similar effects occur in other PGs.
doi:10.1097/FPC.0b013e32835cdabd
PMCID: PMC3563676  PMID: 23249876
logistic regression; mediation analysis; nAChR variation; nicotine dependence; pharmacotherapy; randomized clinical trials
8.  Convergent Evidence that Choline Acetyltransferase Gene Variation is Associated with Prospective Smoking Cessation and Nicotine Dependence 
The ability to quit smoking is heritable, yet few genetic studies have investigated prospective smoking cessation. We conducted a systems-based genetic association analysis in a sample of 472 treatment-seeking smokers of European ancestry following eight weeks of transdermal nicotine therapy for smoking cessation. The genotyping panel included 169 SNPs in 7 nicotinic acetylcholine receptor subunit genes and 4 genes in the endogenous cholinergic system. The primary outcome was smoking cessation (biochemically confirmed) at the end of treatment. SNPs clustered in the choline acetyltransferase (ChAT) gene were individually identified as nominally significant, and a 5-SNP haplotype (block 6) in ChAT was found to be significantly associated with quitting success. Single SNPs in ChAT haplotype block 2 were also associated with pre-treatment levels of nicotine dependence in this cohort. To replicate associations of SNPs in haplotype blocks 2 and 6 of ChAT with nicotine dependence in a non treatment-seeking cohort, we utilized data from an independent community-based sample of 629 smokers representing 200 families of European ancestry. Significant SNP and haplotype associations were identified for multiple measures of nicotine dependence. Although the effect sizes in both cohorts are modest, converging data across cohorts and phenotypes suggest that ChAT may be involved in nicotine dependence and ability to quit smoking. Additional sequencing and characterization of ChAT may reveal functional variants that contribute to nicotine dependence and smoking cessation.
doi:10.1038/npp.2010.7
PMCID: PMC2855736  PMID: 20147892
nicotine; smoking cessation; choline acetyltransferase ChAT; pharmacogenetics; addiction
9.  Convergent Evidence that Choline Acetyltransferase Gene Variation is Associated with Prospective Smoking Cessation and Nicotine Dependence 
Neuropsychopharmacology  2010;35(6):1374-1382.
The ability to quit smoking is heritable, yet few genetic studies have investigated prospective smoking cessation. We conducted a systems-based genetic association analysis in a sample of 472 treatment-seeking smokers of European ancestry after 8 weeks of transdermal nicotine therapy for smoking cessation. The genotyping panel included 169 single-nucleotide polymorphisms (SNPs) in 7 nicotinic acetylcholine receptor subunit genes and 4 genes in the endogenous cholinergic system. The primary outcome was smoking cessation (biochemically confirmed) at the end of treatment. SNPs clustered in the choline acetyltransferase (ChAT) gene were individually identified as nominally significant, and a 5-SNP haplotype (block 6) in ChAT was found to be significantly associated with quitting success. Single SNPs in ChAT haplotype block 2 were also associated with pretreatment levels of nicotine dependence in this cohort. To replicate associations of SNPs in haplotype blocks 2 and 6 of ChAT with nicotine dependence in a non-treatment-seeking cohort, we used data from an independent community-based sample of 629 smokers representing 200 families of European ancestry. Significant SNP and haplotype associations were identified for multiple measures of nicotine dependence. Although the effect sizes in both cohorts are modest, converging data across cohorts and phenotypes suggest that ChAT may be involved in nicotine dependence and ability to quit smoking. Additional sequencing and characterization of ChAT may reveal functional variants that contribute to nicotine dependence and smoking cessation.
doi:10.1038/npp.2010.7
PMCID: PMC2855736  PMID: 20147892
nicotine; smoking cessation; choline acetyltransferase ChAT; pharmacogenetics; addiction; Pharmacogenetics/Pharmacogenomics; Addiction & Substance Abuse; Clinical Pharmacology/Trials; Psychiatry & Behavioral Sciences; Nicotine; Smoking Cessation; choline acetyltransferase ChAT
10.  Varenicline in the treatment of tobacco dependence 
Varenicline, a partial agonist of α4β2 nicotinic acetylcholine receptors, is the most recently approved drug for smoking cessation. This paper reviews the outcomes of Phase 2 and Phase 3 clinical trials that assess the efficacy of varenicline in comparison to placebo and other smoking cessation pharmacotherapies, ie, sustained-release bupropion (bupropion SR) and nicotine transdermal patch. Varenicline has higher abstinence rates than placebo and the alternative active treatments at the end of standard regimen treatment periods. Significantly higher abstinence rates were also found with varenicline in comparison to both placebo and bupropion SR at the end of a 40-week non-treatment follow-up period. Varenicline typically tripled the abstinence rates compared with placebo. In addition, varenicline reduced craving and withdrawal symptoms as well as some of the positive experiences associated with smoking to a greater extent than placebo, bupropion SR, and nicotine replacement therapy (NRT). These findings are consistent with the proposed agonist/antagonist effects of varenicline. Preliminary studies assessing individual variables such as smoking dependency level and smoking reinforcement types provide justification to examine further the effects of varenicline according to these individual factors. Outcomes from such research could improve our understanding of varenicline’s mechanism of action and could ultimately help clinicians to develop individualized smoking cessation programs. Also, given varenicline’s ability to reduce the reward from smoking, it might be helpful to use it before cessation to motivate or prepare smokers for a quit attempt.
PMCID: PMC2518383  PMID: 18728741
varenicline; smoking cessation; nicotinic partial agonist
11.  Varenicline for Smoking Cessation: Nausea Severity and Variation in Nicotinic Receptor Genes 
The Pharmacogenomics Journal  2011;12(4):349-358.
This study evaluated association between common and rare sequence variants in 10 nicotinic acetylcholine receptor subunit genes and the severity of nausea 21 days after initiating the standard, FDA-approved varenicline regimen for smoking cessation. Included in the analysis were 397 participants from a randomized clinical effectiveness trial with complete clinical and DNA resequencing data (mean age = 49.2 years; 68.0% female). Evidence for significant association between common sequence variants in CHRNB2 and nausea severity was obtained after adjusting for age, gender, and correlated tests (all PACT<.05). Individuals with the minor allele of CHRNB2 variants experienced less nausea than did those without the minor allele, consistent with previously reported findings for CHRNB2 and the occurrence of nausea and dizziness as a consequence of first smoking attempt in adolescents, and with the known neurophysiology of nausea. As nausea is the most common reason for discontinuance of varenicline, further pharmacogenetic investigations are warranted.
doi:10.1038/tpj.2011.19
PMCID: PMC3405554  PMID: 21606948
varenicline; nausea; smoking cessation; adherence
12.  Dopamine genes and nicotine dependence in treatment seeking and community smokers 
We utilized a cohort of 828 treatment seeking self-identified white cigarette smokers (50% female) to rank candidate gene single nucleotide polymorphisms (SNPs) associated with the Fagerström Test for Nicotine Dependence (FTND), a measure of nicotine dependence which assesses quantity of cigarettes smoked and time- and place-dependent characteristics of the respondent’s smoking behavior. 1123 SNPs at 55 autosomal candidate genes, nicotinic acetylcholine receptors and genes involved in dopaminergic function, were tested for association to baseline FTND scores adjusted for age, depression, education, sex and study site. SNP P values were adjusted for the number of transmission models, the number of SNPs tested per candidate gene, and their intragenic correlation. DRD2, SLC6A3 and NR4A2 SNPs with adjusted P values < 0.10 were considered sufficiently noteworthy to justify further genetic, bioinformatic and literature analyses. Each independent signal among the top-ranked SNPs accounted for ~1% of the FTND variance in this sample. The DRD2 SNP appears to represent a novel association with nicotine dependence. The SLC6A3 SNPs have previously been shown to be associated with SLC6A3 transcription or dopamine transporter density in vitro, in vivo and ex vivo. Analysis of SLC6A3 and NR4A2 SNPs identified a statistically significant gene-gene interaction (P=0.001), consistent with in vitro evidence that the NR4A2 protein product (NURR1) regulates SLC6A3 transcription. A community cohort of N=175 multiplex ever smoking pedigrees (N=423 ever smokers) provided nominal evidence for association with the FTND at these top ranked SNPs, uncorrected for multiple comparisons.
doi:10.1038/npp.2009.52
PMCID: PMC3558036  PMID: 19494806
dopamine transporter; Fagerström Test for Nicotine Dependence; single nucleotide polymorphism; candidate gene association scan; gene-gene interaction
13.  Interplay of Genetic Risk Factors (CHRNA5-CHRNA3-CHRNB4) and Cessation Treatments in Smoking Cessation Success 
The American journal of psychiatry  2012;169(7):735-742.
Objective
Smoking is highly intractable and the genetic influences on cessation are unclear. Identifying the genetic factors affecting smoking cessation could elucidate the nature of tobacco dependence, enhance risk assessment, and support treatment algorithm development. This study tests whether variants in the nicotinic receptor gene cluster (CHRNA5-CHRNA3-CHRNB4) predict age of smoking cessation and relapse to smoking after a quit attempt.
Method
In a community-based, cross-sectional study (N=5,216) and a randomized comparative effectiveness smoking cessation trial (N=1,073), we used survival analyses and logistic regression to model relations between smoking cessation (self-reported quit age in a community study and point-prevalence abstinence at end-of-treatment in a clinical trial) and three common haplotypes in the CHRNA5-CHRNA3-CHRNB4 region defined by rs16969968 and rs680244.
Results
The genetic variants in the CHRNA5-CHRNA3-CHRNB4 region that predict nicotine dependence also predict a later age of smoking cessation in a community-based sample (X2=8.46, df=2, p=0.015). In the smoking cessation trial, these variants predict abstinence at end-of-treatment in individuals receiving placebo medication, but not amongst individuals receiving active medication. Genetic variants interact with treatment in affecting cessation success (X2=8.97, df=2, p=0.011).
Conclusions
Smokers with the high risk genetic variants have a three-fold increased likelihood of responding to pharmacologic cessation treatments, compared to smokers with the low risk genetic variants. The high-risk variants increase the risk of cessation failure, and this increased risk can be ameliorated by cessation pharmacotherapy. By identifying a high-risk genetic group with heightened response to smoking cessation pharmacotherapy, this work may support the development of personalized cessation treatments.
doi:10.1176/appi.ajp.2012.11101545
PMCID: PMC3433845  PMID: 22648373
14.  Association between CHRNA5 genetic variation at rs16969968 and brain reactivity to smoking images in nicotine dependent women 
Drug and alcohol dependence  2011;120(1-3):7-13.
Background
Tobacco smoking is the leading preventable cause of death in the developed world. Identifying risk factors for smoking may lead to more effective treatments. Genome wide association studies revealed a relationship between development of nicotine dependence and a single-nucleotide polymorphism (SNP, rs16969968) of the nicotine acetylcholine receptor (nAChR) alpha-5 subunit gene (CHRNA5). The relationship between this SNP and other factors contributing to smoking behavior such as smoking cue reactivity is unclear.
Methods
We assessed the role of rs16969968 on brain functional MRI (fMRI) reactivity to smoking cues by studying nicotine dependent women with the nicotine dependence ‘risk’ allele (A allele, N=14) and without the ‘risk’ allele (G/G smokers, N=10). Nicotine dependence severity, as assessed with the Fagerstrom test for nicotine dependence, smoking pack-years, and expired carbon monoxide levels, were equivalent in these groups.
Results
We observed a group difference in fMRI reactivity; women without the A allele (G/G smokers) showed greater fMRI reactivity to smoking images in brain areas related to memory and habitual behavior such as the hippocampus and dorsal striatum.
Conclusions
Our finding suggests that nicotine-dependent smokers lacking the rs16969968 A allele are more likely to recall smoking-related memories and engage in habitual responding to smoking cues than A allele smokers. Although more studies are necessary to determine the mechanism underlying and significance of this cue reactivity difference, these data suggest that smokers may develop and remain nicotine dependent due to different factors including genetics and cue reactivity. This finding may have implications for personalizing smoking treatment.
doi:10.1016/j.drugalcdep.2011.06.009
PMCID: PMC3203995  PMID: 21764527
Tobacco smoking; fMRI; CHRNA5; nicotine dependence; dorsal striatum
15.  A Candidate Gene Approach Identifies the CHRNA5-A3-B4 Region as a Risk Factor for Age-Dependent Nicotine Addiction 
PLoS Genetics  2008;4(7):e1000125.
People who begin daily smoking at an early age are at greater risk of long-term nicotine addiction. We tested the hypothesis that associations between nicotinic acetylcholine receptor (nAChR) genetic variants and nicotine dependence assessed in adulthood will be stronger among smokers who began daily nicotine exposure during adolescence. We compared nicotine addiction—measured by the Fagerstrom Test of Nicotine Dependence—in three cohorts of long-term smokers recruited in Utah, Wisconsin, and by the NHLBI Lung Health Study, using a candidate-gene approach with the neuronal nAChR subunit genes. This SNP panel included common coding variants and haplotypes detected in eight α and three β nAChR subunit genes found in European American populations. In the 2,827 long-term smokers examined, common susceptibility and protective haplotypes at the CHRNA5-A3-B4 locus were associated with nicotine dependence severity (p = 2.0×10−5; odds ratio = 1.82; 95% confidence interval 1.39–2.39) in subjects who began daily smoking at or before the age of 16, an exposure period that results in a more severe form of adult nicotine dependence. A substantial shift in susceptibility versus protective diplotype frequency (AA versus BC = 17%, AA versus CC = 27%) was observed in the group that began smoking by age 16. This genetic effect was not observed in subjects who began daily nicotine use after the age of 16. These results establish a strong mechanistic link among early nicotine exposure, common CHRNA5-A3-B4 haplotypes, and adult nicotine addiction in three independent populations of European origins. The identification of an age-dependent susceptibility haplotype reinforces the importance of preventing early exposure to tobacco through public health policies.
Author Summary
Tobacco use is a global health care problem, and persistent smoking takes an enormous toll on individual health. The onset of daily smoking in adolescence is related to chronic use and severe nicotine dependence in adulthood. Since nicotine is the key addictive chemical in tobacco, we tested the hypothesis that genetic variants within nicotinic acetylcholine receptors will influence the severity of addiction measured in adulthood. Using genomic resequencing to define the patterns of variation found in these candidate genes, we observed that common haplotypes in the CHRNA5-A3-B4 gene cluster are associated with adult nicotine addiction, specifically among those who began daily smoking before age 17. We show that in populations of European origins, one haplotype is a risk factor for dependence, one is protective, and one is neutral. These observations suggest that genetic determinants expressed during human adolescence contribute to the risk of lifetime addiction severity produced from early onset of cigarette use. Because disease risk from the adverse health effects of tobacco smoke is related to lifetime tobacco exposure, the finding that an age-dependent effect of these haplotypes has a strong influence on lifetime smoking behavior reinforces the public health significance of delaying smoking onset.
doi:10.1371/journal.pgen.1000125
PMCID: PMC2442220  PMID: 18618000
16.  Analysis of Detailed Phenotype Profiles Reveals CHRNA5-CHRNA3-CHRNB4 Gene Cluster Association With Several Nicotine Dependence Traits 
Nicotine & Tobacco Research  2012;14(6):720-733.
Introduction:
The role of the nicotinic acetylcholine receptor gene cluster on chromosome 15q24-25 in the etiology of nicotine dependence (ND) is still being defined. In this study, we included all 15 tagging single nucleotide polymorphisms (SNPs) within the CHRNA5-CHRNA3-CHRNB4 cluster and tested associations with 30 smoking-related phenotypes.
Methods:
The study sample was ascertained from the Finnish Twin Cohort study. Twin pairs born 1938–1957 and concordant for a history of cigarette smoking were recruited along with their family members (mainly siblings), as part of the Nicotine Addiction Genetics consortium. The study sample consisted of 1,428 individuals (59% males) from 735 families, with mean age 55.6 years.
Results:
We detected multiple novel associations for ND. DSM-IV ND symptoms associated significantly with the proxy SNP Locus 1 (rs2036527, p = .000009) and Locus 2 (rs578776, p = .0001) and tolerance factor of the Nicotine Dependence Syndrome Scale (NDSS) showed suggestive association to rs11636753 (p = .0059), rs11634351 (p = .0069), and rs1948 (p = .0071) in CHRNB4. Furthermore, we report significant association with DSM-IV ND diagnosis (rs2036527, p = .0003) for the first time in a Caucasian population. Several SNPs indicated suggestive association for traits related to ages at smoking initiation. Also, rs11636753 in CHRNB4 showed suggestive association with regular drinking (p = .0029) and the comorbidity of depression and ND (p = .0034).
Conclusions:
We demonstrate novel associations of DSM-IV ND symptoms and the NDSS tolerance subscale. Our results confirm and extend association findings for other ND measures. We show pleiotropic effects of this gene cluster on multiple measures of ND and also regular drinking and the comorbidity of ND and depression.
doi:10.1093/ntr/ntr283
PMCID: PMC3356294  PMID: 22241830
17.  Massive Withdrawal Symptoms and Affective Vulnerability Are Associated with Variants of the CHRNA4 Gene in a Subgroup of Smokers 
PLoS ONE  2014;9(1):e87141.
Heterogeneous phenotypes of complex disorders pose a great challenge for genetic association studies and for the development of personalized treatment strategies. Cluster analysis of phenotypic data has been recently proposed as a reliable auxiliary method for such studies. A cohort of 236 treatment-seeking smokers was investigated after overnight nicotine abstinence. Alpha4 nicotinic acetylcholine receptor (nAChR) subunit-related phenotypes were assessed by the Fagerström Test for Nicotine Dependence (FTND), exhaled carbon monoxide (CO) measurements, the Minnesota Nicotine Withdrawal Scale (MNWS) and the Zung Self-Rating Depression Scale (ZSDS). Seven tag SNPs (single-nucleotide polymorphisms) across CHRNA4 (the gene encoding alpha4 subunit of the nicotinic acetylcholine receptor) were genotyped and two-step cluster analysis was used for phenotypic cluster characterization. Haplotype estimation was determined by HapStat module of R 2.0 software. Three different phenotypic clusters were identified and the C3 cluster was characterized by the highest ZSDS and MNWS scores compared to others. Furthermore, lifetime prevalence of major depression was significantly higher in the C3 cluster (p = 0.019). In genetic association tests, this cluster was also significantly associated with rs3787138 genotypes (p = 0.004) while haplotype analyses of three SNPs (rs3787138, rs1044396, rs3787140) revealed that the risk for C3 phenotype was almost three times higher in GCC haplotype carriers compared to others (pperm = 0.013). This is the first report on a significant association between CHRNA4 variants and a subgroup of smokers characterized by massive withdrawal symptoms and affective vulnerability. Identification of such a phenotypic cluster can be a pivotal step for further pharmacogenetic studies on ligands of the alpha4 nAChR subunit. Our results suggest that performing cluster analysis in genetic association studies can be proposed for complex disorders.
doi:10.1371/journal.pone.0087141
PMCID: PMC3907445  PMID: 24498031
18.  Cholinergic nicotinic receptor genes implicated in a nicotine dependence association study targeting 348 candidate genes with 3713 SNPs 
Human molecular genetics  2006;16(1):36-49.
Nicotine dependence is one of the world’s leading causes of preventable death. To discover genetic variants that influence risk for nicotine dependence, we targeted over 300 candidate genes and analyzed 3713 single nucleotide polymorphisms (SNPs) in 1050 cases and 879 controls. The Fagerström test for nicotine dependence (FTND) was used to assess dependence, in which cases were required to have an FTND of 4 or more. The control criterion was strict: control subjects must have smoked at least 100 cigarettes in their lifetimes and had an FTND of 0 during the heaviest period of smoking. After correcting for multiple testing by controlling the false discovery rate, several cholinergic nicotinic receptor genes dominated the top signals. The strongest association was from an SNP representing CHRNB3, the β3 nicotinic receptor subunit gene (P = 9.4 × 10−5). Biologically, the most compelling evidence for a risk variant came from a non-synonymous SNP in the α5 nicotinic receptor subunit gene CHRNA5 (P = 6.4 × 10−4). This SNP exhibited evidence of a recessive mode of inheritance, resulting in individuals having a 2-fold increase in risk of developing nicotine dependence once exposed to cigarette smoking. Other genes among the top signals were KCNJ6 and GABRA4. This study represents one of the most powerful and extensive studies of nicotine dependence to date and has found novel risk loci that require confirmation by replication studies.
doi:10.1093/hmg/ddl438
PMCID: PMC2270437  PMID: 17135278
19.  Preclinical Pharmacology, Efficacy and Safety of Varenicline in Smoking Cessation and Clinical Utility in High Risk Patients 
Smoking is still the most prominent cause of preventable premature death in the United States and an increasing cause of morbidity and mortality throughout the world. Although the current treatments such as nicotine replacement therapy (NRT) and bupropion are effective, long-term abstinence rates are low. Mechanism studies suggest that the pleasurable effects of smoking are mediated predominantly by nicotine, which activates the brain reward system by activation of brain α4β2 nicotinic acetylcholine receptors (nAChRs). Varenicline is a novel α4β2 nAChR partial agonist and has been found to be even more effective than NRT or bupropion in attenuating smoking satisfaction and in relieving craving and withdrawal symptoms after abstinence. Thus, varenicline has been recently approved to be a first-line medication for smoking cessation in the United States and European countries. Varenicline is generally well tolerated in healthy adult smokers, with the most commonly reported adverse effects being nausea, insomnia, and headache. However, growing post-marketing data has linked varenicline to an increase in neuropsychiatric symptoms such as seizures, suicidal attempts, and depression, psychosis, as well as serious injuries potentially relating to unconsciousness, dizziness, visual disturbances, or movement disorders. Therefore, new safety warnings are issued to certain high risk populations, such as patients with mental illness and operators of commercial vehicles or heavy machinery. In particular, pilots, air traffic controllers, truck and bus drivers have been banned from taking varenicline.
doi:10.2147/DHPS.S6299
PMCID: PMC3028205  PMID: 21278851
Nicotine; Varenicline; α4β2 Nicotinic acetylcholine receptor; nAChRs; Partial agonist; Smoking cessation
20.  Preclinical pharmacology, efficacy, and safety of varenicline in smoking cessation and clinical utility in high risk patients 
Smoking is still the most prominent cause of preventable premature death in the United States and an increasing cause of morbidity and mortality throughout the world. Although the current treatments such as nicotine replacement therapy (NRT) and bupropion are effective, long-term abstinence rates are low. Mechanism studies suggest that the pleasurable effects of smoking are mediated predominantly by nicotine, which activates the brain reward system by activation of brain α4β2 nicotinic acetylcholine receptors (nAChRs). Varenicline is a novel α4β2 nAChR partial agonist and has been found to be even more effective than NRT or bupropion in attenuating smoking satisfaction and in relieving craving and withdrawal symptoms after abstinence. Thus, varenicline has been recently approved to be a first-line medication for smoking cessation in the United States and European countries. Varenicline is generally well tolerated in healthy adult smokers, with the most commonly reported adverse effects being nausea, insomnia, and headache. However, growing postmarketing data has linked varenicline to an increase in neuropsychiatric symptoms such as seizures, suicidal attempts, depression, and psychosis as well as serious injuries potentially relating to unconsciousness, dizziness, visual disturbances, or movement disorders. Therefore, new safety warnings are issued to certain high risk populations, such as patients with mental illness and operators of commercial vehicles and heavy machinery. In particular, pilots, air traffic controllers, truck and bus drivers have been banned from taking varenicline.
PMCID: PMC3028205  PMID: 21278851
nicotine; varenicline; α4β2 nicotinic acetylcholine receptor; nAChRs; partial agonist; smoking cessation
21.  Pharmacogenetics of smoking cessation: role of nicotine target and metabolism genes 
Human genetics  2012;10.1007/s00439-012-1143-9.
Many smokers attempt to quit smoking but few are successful in the long term. The heritability of nicotine addiction and smoking relapse have been documented, and research is focused on identifying specific genetic influences on the ability to quit smoking and response to specific medications. Research in genetically modified cell lines and mice has identified nicotine acetylcholine receptor subtypes that mediate the pharmacological and behavioral effects of nicotine sensitivity and withdrawal. Human genetic association studies have identified single nucleotide polymorphisms (SNPs) in genes encoding nicotine acetylcholine receptor subunits and nicotine metabolizing enzymes that influence smoking cessation phenotypes. There is initial promising evidence for a role in smoking cessation for SNPs in the β2 and α5/α3/β4 nAChR subunit genes; however, effects are small and not consistently replicated. There are reproducible and clinically significant associations of genotypic and phenotypic measures of CYP2A6 enzyme activity and nicotine metabolic rate with smoking cessation as well as response to nicotine replacement therapies and bupropion. Prospective clinical trials to identify associations of genetic variants and gene–gene interactions on smoking cessation are needed to generate the evidence base for both medication development and targeted therapy approaches based on genotype.
doi:10.1007/s00439-012-1143-9
PMCID: PMC3864572  PMID: 22290489
22.  Pharmacogenetic Association of the Galanin Receptor (GALR1) SNP rs2717162 with Smoking Cessation 
Neuropsychopharmacology  2012;37(7):1683-1688.
Galanin modulates dopaminergic neurotransmission in the mesolimbic dopamine system, thereby influencing the rewarding effects of nicotine. Variants in the galanin receptor 1 (GALR1) gene have been associated with retrospective craving severity and heaviness of smoking in prior research. We investigated pharmacogenetic associations of the previously studied GALR1 polymorphism, rs2717162, in 1217 smokers of European ancestry who participated in one of three pharmacogenetic smoking cessation clinical trials and were treated with nicotine patch (n=623), nicotine nasal spray (n=189), bupropion (n=213), or placebo (n=192). The primary endpoint was abstinence (7-day point prevalence, biochemically confirmed) at the end of treatment. Cravings to smoke were assessed on the target quit day (TQD). The longitudinal regression model revealed a significant genotype by treatment interaction (P=0.03). There was a reduced odds of quitting success with the presence of at least one minor (C) allele in the bupropion-treated group (OR=0.43; 95% CI=0.22–0.77; P=0.005) but equivalent quit rates by genotype in the nicotine-replacement therapy groups. This genotype by treatment interaction was reproduced in a Cox regression model of time to relapse (P=0.04). In the bupropion trial, smokers carrying the C allele also reported more severe TQD cravings. Further research to identify functional variants in GALR1 and to replicate pharmacogenetic associations is warranted.
doi:10.1038/npp.2012.13
PMCID: PMC3358736  PMID: 22373943
nicotine; addiction; craving; pharmacogenetics; galanin receptor; behavioral science; neurogenetics; pharmacogenetics / pharmacogenomics; psychiatry & behavioral sciences; nicotine; addiction; craving; pharmacogenetics; galanin receptor 1
23.  Alternative CHRNB4 3′-UTRs Mediate the Allelic Effects of SNP rs1948 on Gene Expression 
PLoS ONE  2013;8(5):e63699.
Common genetic factors strongly contribute to both nicotine, the main addictive component of tobacco, and alcohol use. Several lines of evidence suggest nicotinic acetylcholine receptors as common sites of action for nicotine and alcohol. Specifically, rs1948, a single-nucleotide polymorphism (SNP) located in the CHRNB4 3′-untranslated region (UTR), has been associated to early age of initiation for both alcohol and tobacco use. To determine the allelic effects of rs1948 on gene expression, two rs1948-containing sequences of different lengths corresponding to the CHRNB4 3′-UTR were cloned into pGL3-promoter luciferase reporter vectors. Data obtained showed that the allelic effects of SNP rs1948 on luciferase expression are mediated by the length and species of transcripts generated. In addition, it was found that miR-3157 increased the overall luciferase expression while miR-138, a microRNA known to play a role in neuroadaptation to drug abuse, decreased luciferase expression when compared to basal conditions. These findings demonstrate the importance of SNP rs1948 on the regulation of CHRNB4 expression and provide the first evidence of CHRNB4 down-regulation by miR-138.
doi:10.1371/journal.pone.0063699
PMCID: PMC3653846  PMID: 23691088
24.  Genetic association of the CHRNA6 and CHRNB3 genes with tobacco dependence in a nationally representative sample 
Neuronal nicotinic acetylcholine receptors are activated by both endogenous acetylcholine and exogenous nicotine, making sequence variations in these receptors likely candidates for association with tobacco phenotypes. Previous studies have found evidence for significant association between SNPs in the genomic region containing the CHRNA6 and CHRNB3 genes and tobacco behaviors (Bierut et al, 2007; Greenbaum et al, 2006; Saccone et al, 2007; Zeiger et al, 2008). In this study, we provide support for an association between these genes and tobacco dependence in the National Youth Survey Family Study wave 10, a nationally representative sample of households. Eight single nucleotide polymorphisms (SNPs) in the CHRNA6 and CHRNB3 genomic region were genotyped in 1051 subjects, approximately half of whom are members of sibling pairs. Genetic association with DSM-IV dependence was assessed using a family-based approach as implemented in the statistical package PBAT. Individual SNPs were tested for association with quit attempts and overall dependence. Variation in CHRNA6 was found to be associated with tobacco dependence (p=0.007 in Caucasians). SNPs in CHRNB3 were found to be associated with the number of quit attempts (p=0.0024). Together these results further implicate the region downstream of CHRNA6 and the region upstream of CHRNB3 in risk of nicotine dependence.
doi:10.1038/npp.2008.122
PMCID: PMC2915837  PMID: 18704094
Nicotinic receptors; SNP; Genetic association; Tobacco use; Nicotine Dependence
25.  A cost-effectiveness analysis of genetic testing of the DRD2 Taq1A polymorphism to aid treatment choice for smoking cessation 
We conducted a cost-effectiveness analysis of genetic testing for smoking cessation, based on data available from the published pharmacogenetic studies of nicotine replacement therapy and bupropion, and a previous cost-effectiveness analysis of smoking cessation treatments. We use multiparameter evidence synthesis methods to combine evidence on cessation by genotype with evidence on cessation irrespective of genotype (which can be written as a function of genotype-specific parameters). Our intention was to explore the most cost-effective approach to prescribing smoking cessation pharmacotherapy, given the hypothetical availability of a test based on a single-gene variant that has been reported to predict treatment response. We considered four types of treatment: nicotine replacement therapy (NRT) pharmacotherapy, bupropion SR pharmacotherapy, combination NRT and bupropion, and standard care as the control. Two scenarios were investigated, one in which the control represented brief advice and the other in which the control represented individual counseling. Strategies that either do not test for dopamine D2 receptor (DRD2) genotype (each individual receives the same treatment), or do test for DRD2 genotype (treatment allocated according to genotype), were evaluated. Our results indicated that the most cost-effective strategy in our hypothetical example of a single-gene test to aid prescription of smoking cessation pharmacotherapy is to prescribe both NRT and bupropion regardless of genotype, as a first-line treatment for smoking cessation. We conclude that it should not be assumed that genetic tailoring will necessarily be more cost-effective than applying the current “one-size-fits-all” model of pharmacotherapy for smoking cessation. In addition, single-gene tests are unlikely to be cost-effective, partly because the predictive value of these tests is likely to be modest.
doi:10.1080/14622200701767761
PMCID: PMC2257987  PMID: 18188764

Results 1-25 (877014)