Search tips
Search criteria

Results 1-25 (921681)

Clipboard (0)

Related Articles

1.  Utilization of DXA Bone Mineral Densitometry in Ontario 
Executive Summary
Systematic reviews and analyses of administrative data were performed to determine the appropriate use of bone mineral density (BMD) assessments using dual energy x-ray absorptiometry (DXA), and the associated trends in wrist and hip fractures in Ontario.
Dual Energy X-ray Absorptiometry Bone Mineral Density Assessment
Dual energy x-ray absorptiometry bone densitometers measure bone density based on differential absorption of 2 x-ray beams by bone and soft tissues. It is the gold standard for detecting and diagnosing osteoporosis, a systemic disease characterized by low bone density and altered bone structure, resulting in low bone strength and increased risk of fractures. The test is fast (approximately 10 minutes) and accurate (exceeds 90% at the hip), with low radiation (1/3 to 1/5 of that from a chest x-ray). DXA densitometers are licensed as Class 3 medical devices in Canada. The World Health Organization has established criteria for osteoporosis and osteopenia based on DXA BMD measurements: osteoporosis is defined as a BMD that is >2.5 standard deviations below the mean BMD for normal young adults (i.e. T-score <–2.5), while osteopenia is defined as BMD that is more than 1 standard deviation but less than 2.5 standard deviation below the mean for normal young adults (i.e. T-score< –1 & ≥–2.5). DXA densitometry is presently an insured health service in Ontario.
Clinical Need
Burden of Disease
The Canadian Multicenter Osteoporosis Study (CaMos) found that 16% of Canadian women and 6.6% of Canadian men have osteoporosis based on the WHO criteria, with prevalence increasing with age. Osteopenia was found in 49.6% of Canadian women and 39% of Canadian men. In Ontario, it is estimated that nearly 530,000 Ontarians have some degrees of osteoporosis. Osteoporosis-related fragility fractures occur most often in the wrist, femur and pelvis. These fractures, particularly those in the hip, are associated with increased mortality, and decreased functional capacity and quality of life. A Canadian study showed that at 1 year after a hip fracture, the mortality rate was 20%. Another 20% required institutional care, 40% were unable to walk independently, and there was lower health-related quality of life due to attributes such as pain, decreased mobility and decreased ability to self-care. The cost of osteoporosis and osteoporotic fractures in Canada was estimated to be $1.3 billion in 1993.
Guidelines for Bone Mineral Density Testing
With 2 exceptions, almost all guidelines address only women. None of the guidelines recommend blanket population-based BMD testing. Instead, all guidelines recommend BMD testing in people at risk of osteoporosis, predominantly women aged 65 years or older. For women under 65 years of age, BMD testing is recommended only if one major or two minor risk factors for osteoporosis exist. Osteoporosis Canada did not restrict its recommendations to women, and thus their guidelines apply to both sexes. Major risk factors are age greater than or equal to 65 years, a history of previous fractures, family history (especially parental history) of fracture, and medication or disease conditions that affect bone metabolism (such as long-term glucocorticoid therapy). Minor risk factors include low body mass index, low calcium intake, alcohol consumption, and smoking.
Current Funding for Bone Mineral Density Testing
The Ontario Health Insurance Program (OHIP) Schedule presently reimburses DXA BMD at the hip and spine. Measurements at both sites are required if feasible. Patients at low risk of accelerated bone loss are limited to one BMD test within any 24-month period, but there are no restrictions on people at high risk. The total fee including the professional and technical components for a test involving 2 or more sites is $106.00 (Cdn).
Method of Review
This review consisted of 2 parts. The first part was an analysis of Ontario administrative data relating to DXA BMD, wrist and hip fractures, and use of antiresorptive drugs in people aged 65 years and older. The Institute for Clinical Evaluative Sciences extracted data from the OHIP claims database, the Canadian Institute for Health Information hospital discharge abstract database, the National Ambulatory Care Reporting System, and the Ontario Drug Benefit database using OHIP and ICD-10 codes. The data was analyzed to examine the trends in DXA BMD use from 1992 to 2005, and to identify areas requiring improvement.
The second part included systematic reviews and analyses of evidence relating to issues identified in the analyses of utilization data. Altogether, 8 reviews and qualitative syntheses were performed, consisting of 28 published systematic reviews and/or meta-analyses, 34 randomized controlled trials, and 63 observational studies.
Findings of Utilization Analysis
Analysis of administrative data showed a 10-fold increase in the number of BMD tests in Ontario between 1993 and 2005.
OHIP claims for BMD tests are presently increasing at a rate of 6 to 7% per year. Approximately 500,000 tests were performed in 2005/06 with an age-adjusted rate of 8,600 tests per 100,000 population.
Women accounted for 90 % of all BMD tests performed in the province.
In 2005/06, there was a 2-fold variation in the rate of DXA BMD tests across local integrated health networks, but a 10-fold variation between the county with the highest rate (Toronto) and that with the lowest rate (Kenora). The analysis also showed that:
With the increased use of BMD, there was a concomitant increase in the use of antiresorptive drugs (as shown in people 65 years and older) and a decrease in the rate of hip fractures in people age 50 years and older.
Repeat BMD made up approximately 41% of all tests. Most of the people (>90%) who had annual BMD tests in a 2-year or 3-year period were coded as being at high risk for osteoporosis.
18% (20,865) of the people who had a repeat BMD within a 24-month period and 34% (98,058) of the people who had one BMD test in a 3-year period were under 65 years, had no fracture in the year, and coded as low-risk.
Only 19% of people age greater than 65 years underwent BMD testing and 41% received osteoporosis treatment during the year following a fracture.
Men accounted for 24% of all hip fractures and 21 % of all wrist fractures, but only 10% of BMD tests. The rates of BMD tests and treatment in men after a fracture were only half of those in women.
In both men and women, the rate of hip and wrist fractures mainly increased after age 65 with the sharpest increase occurring after age 80 years.
Findings of Systematic Review and Analysis
Serial Bone Mineral Density Testing for People Not Receiving Osteoporosis Treatment
A systematic review showed that the mean rate of bone loss in people not receiving osteoporosis treatment (including postmenopausal women) is generally less than 1% per year. Higher rates of bone loss were reported for people with disease conditions or on medications that affect bone metabolism. In order to be considered a genuine biological change, the change in BMD between serial measurements must exceed the least significant change (variability) of the testing, ranging from 2.77% to 8% for precisions ranging from 1% to 3% respectively. Progression in BMD was analyzed, using different rates of baseline BMD values, rates of bone loss, precision, and BMD value for initiating treatment. The analyses showed that serial BMD measurements every 24 months (as per OHIP policy for low-risk individuals) is not necessary for people with no major risk factors for osteoporosis, provided that the baseline BMD is normal (T-score ≥ –1), and the rate of bone loss is less than or equal to 1% per year. The analyses showed that for someone with a normal baseline BMD and a rate of bone loss of less than 1% per year, the change in BMD is not likely to exceed least significant change (even for a 1% precision) in less than 3 years after the baseline test, and is not likely to drop to a BMD level that requires initiation of treatment in less than 16 years after the baseline test.
Serial Bone Mineral Density Testing in People Receiving Osteoporosis Therapy
Seven published meta-analysis of randomized controlled trials (RCTs) and 2 recent RCTs on BMD monitoring during osteoporosis therapy showed that although higher increases in BMD were generally associated with reduced risk of fracture, the change in BMD only explained a small percentage of the fracture risk reduction.
Studies showed that some people with small or no increase in BMD during treatment experienced significant fracture risk reduction, indicating that other factors such as improved bone microarchitecture might have contributed to fracture risk reduction.
There is conflicting evidence relating to the role of BMD testing in improving patient compliance with osteoporosis therapy.
Even though BMD may not be a perfect surrogate for reduction in fracture risk when monitoring responses to osteoporosis therapy, experts advised that it is still the only reliable test available for this purpose.
A systematic review conducted by the Medical Advisory Secretariat showed that the magnitude of increases in BMD during osteoporosis drug therapy varied among medications. Although most of the studies yielded mean percentage increases in BMD from baseline that did not exceed the least significant change for a 2% precision after 1 year of treatment, there were some exceptions.
Bone Mineral Density Testing and Treatment After a Fragility Fracture
A review of 3 published pooled analyses of observational studies and 12 prospective population-based observational studies showed that the presence of any prevalent fracture increases the relative risk for future fractures by approximately 2-fold or more. A review of 10 systematic reviews of RCTs and 3 additional RCTs showed that therapy with antiresorptive drugs significantly reduced the risk of vertebral fractures by 40 to 50% in postmenopausal osteoporotic women and osteoporotic men, and 2 antiresorptive drugs also reduced the risk of nonvertebral fractures by 30 to 50%. Evidence from observational studies in Canada and other jurisdictions suggests that patients who had undergone BMD measurements, particularly if a diagnosis of osteoporosis is made, were more likely to be given pharmacologic bone-sparing therapy. Despite these findings, the rate of BMD investigation and osteoporosis treatment after a fracture remained low (<20%) in Ontario as well as in other jurisdictions.
Bone Mineral Density Testing in Men
There are presently no specific Canadian guidelines for BMD screening in men. A review of the literature suggests that risk factors for fracture and the rate of vertebral deformity are similar for men and women, but the mortality rate after a hip fracture is higher in men compared with women. Two bisphosphonates had been shown to reduce the risk of vertebral and hip fractures in men. However, BMD testing and osteoporosis treatment were proportionately low in Ontario men in general, and particularly after a fracture, even though men accounted for 25% of the hip and wrist fractures. The Ontario data also showed that the rates of wrist fracture and hip fracture in men rose sharply in the 75- to 80-year age group.
Ontario-Based Economic Analysis
The economic analysis focused on analyzing the economic impact of decreasing future hip fractures by increasing the rate of BMD testing in men and women age greater than or equal to 65 years following a hip or wrist fracture. A decision analysis showed the above strategy, especially when enhanced by improved reporting of BMD tests, to be cost-effective, resulting in a cost-effectiveness ratio ranging from $2,285 (Cdn) per fracture avoided (worst-case scenario) to $1,981 (Cdn) per fracture avoided (best-case scenario). A budget impact analysis estimated that shifting utilization of BMD testing from the low risk population to high risk populations within Ontario would result in a saving of $0.85 million to $1.5 million (Cdn) to the health system. The potential net saving was estimated at $1.2 million to $5 million (Cdn) when the downstream cost-avoidance due to prevention of future hip fractures was factored into the analysis.
Other Factors for Consideration
There is a lack of standardization for BMD testing in Ontario. Two different standards are presently being used and experts suggest that variability in results from different facilities may lead to unnecessary testing. There is also no requirement for standardized equipment, procedure or reporting format. The current reimbursement policy for BMD testing encourages serial testing in people at low risk of accelerated bone loss. This review showed that biannual testing is not necessary for all cases. The lack of a database to collect clinical data on BMD testing makes it difficult to evaluate the clinical profiles of patients tested and outcomes of the BMD tests. There are ministry initiatives in progress under the Osteoporosis Program to address the development of a mandatory standardized requisition form for BMD tests to facilitate data collection and clinical decision-making. Work is also underway for developing guidelines for BMD testing in men and in perimenopausal women.
Increased use of BMD in Ontario since 1996 appears to be associated with increased use of antiresorptive medication and a decrease in hip and wrist fractures.
Data suggest that as many as 20% (98,000) of the DXA BMD tests in Ontario in 2005/06 were performed in people aged less than 65 years, with no fracture in the current year, and coded as being at low risk for accelerated bone loss; this is not consistent with current guidelines. Even though some of these people might have been incorrectly coded as low-risk, the number of tests in people truly at low risk could still be substantial.
Approximately 4% (21,000) of the DXA BMD tests in 2005/06 were repeat BMDs in low-risk individuals within a 24-month period. Even though this is in compliance with current OHIP reimbursement policies, evidence showed that biannual serial BMD testing is not necessary in individuals without major risk factors for fractures, provided that the baseline BMD is normal (T-score < –1). In this population, BMD measurements may be repeated in 3 to 5 years after the baseline test to establish the rate of bone loss, and further serial BMD tests may not be necessary for another 7 to 10 years if the rate of bone loss is no more than 1% per year. Precision of the test needs to be considered when interpreting serial BMD results.
Although changes in BMD may not be the perfect surrogate for reduction in fracture risk as a measure of response to osteoporosis treatment, experts advised that it is presently the only reliable test for monitoring response to treatment and to help motivate patients to continue treatment. Patients should not discontinue treatment if there is no increase in BMD after the first year of treatment. Lack of response or bone loss during treatment should prompt the physician to examine whether the patient is taking the medication appropriately.
Men and women who have had a fragility fracture at the hip, spine, wrist or shoulder are at increased risk of having a future fracture, but this population is presently under investigated and under treated. Additional efforts have to be made to communicate to physicians (particularly orthopaedic surgeons and family physicians) and the public about the need for a BMD test after fracture, and for initiating treatment if low BMD is found.
Men had a disproportionately low rate of BMD tests and osteoporosis treatment, especially after a fracture. Evidence and fracture data showed that the risk of hip and wrist fractures in men rises sharply at age 70 years.
Some counties had BMD utilization rates that were only 10% of that of the county with the highest utilization. The reasons for low utilization need to be explored and addressed.
Initiatives such as aligning reimbursement policy with current guidelines, developing specific guidelines for BMD testing in men and perimenopausal women, improving BMD reports to assist in clinical decision making, developing a registry to track BMD tests, improving access to BMD tests in remote/rural counties, establishing mechanisms to alert family physicians of fractures, and educating physicians and the public, will improve the appropriate utilization of BMD tests, and further decrease the rate of fractures in Ontario. Some of these initiatives such as developing guidelines for perimenopausal women and men, and developing a standardized requisition form for BMD testing, are currently in progress under the Ontario Osteoporosis Strategy.
PMCID: PMC3379167  PMID: 23074491
2.  Decreased Bone Mineral Density in Adults Born with Very Low Birth Weight: A Cohort Study 
PLoS Medicine  2009;6(8):e1000135.
Petteri Hovi and colleagues evaluate skeletal health in 144 adults born preterm with very low birth weight and show that as adults these individuals have significantly lower bone mineral density than do their term-born peers.
Very-low-birth-weight (VLBW, <1,500 g) infants have compromised bone mass accrual during childhood, but it is unclear whether this results in subnormal peak bone mass and increased risk of impaired skeletal health in adulthood. We hypothesized that VLBW is associated with reduced bone mineral density (BMD) in adulthood.
Methods and Findings
The Helsinki Study of Very Low Birth Weight Adults is a multidisciplinary cohort study representative of all VLBW births within the larger Helsinki area from 1978 to 1985. This study evaluated skeletal health in 144 such participants (all born preterm, mean gestational age 29.3 wk, birth weight 1,127 g, birth weight Z score 1.3), and in 139 comparison participants born at term, matched for sex, age, and birth hospital. BMD was measured by dual energy X-ray absorptiometry at age 18.5 to 27.1 y. Adults born with VLBW had, in comparison to participants born at term, a 0.51-unit (95% confidence interval [CI] 0.28–0.75) lower lumbar spine Z score and a 0.56-unit (95% CI 0.34–0.78) lower femoral neck Z score for areal BMD. These differences remained statistically significant after adjustment for the VLBW adults' shorter height and lower self-reported exercise intensity.
Young adults born with VLBW, when studied close to the age of peak bone mass, have significantly lower BMD than do their term-born peers. This suggests that compromised childhood bone mass accrual in preterm VLBW children translates into increased risk for osteoporosis in adulthood, warranting vigilance in osteoporosis prevention.
Please see later in the article for the Editors' Summary
Editors' Summary
Most pregnancies last 40 weeks but some babies arrive earlier than expected. Sadly, babies born before 37 weeks of pregnancy—premature babies—are more likely to die than full-term babies, although recent improvements in neonatal care have increased their chances of survival. Premature babies also often have serious long-term health problems, particularly those born before 32 weeks of pregnancy. Such extremely premature babies have poorly developed internal organs and are usually very small—babies whose birth weight is less than 1,500 g are called very-low-birth-weight (VLBW) babies; the average full-term birth weight is about 3,500 g. Furthermore, their bones are not as well developed as those of full-term babies. The human skeleton initially consists of a soft fibrous material called cartilage. This is gradually transformed into bone by a process called bone mineralization. The last third of pregnancy is a crucial period for bone mineralization although the process continues throughout infancy and childhood. Thus, VLBW babies often have subnormal skeletal mineralization and their accrual of bone mass during childhood is frequently compromised.
Why Was This Study Done?
It is not known whether the childhood bone deficits of VLBW babies persist into adulthood because the first generation of these infants not to die soon after birth is only just reaching adulthood. Peak bone mass is reached in early adulthood (bone mass begins to decrease from the age of 35 years onward) and is an important indicator of whether an individual will develop osteoporosis (thinning of the bones) and be susceptible to bone fractures later in life. If adults with VLBW (about 1% of live births in high-income countries are now VLBW births) do have a subnormal peak bone mass and reduced bone mineral density (BMD), they may be able reduce their risk of developing osteoporosis by eating a healthy diet and exercising regularly. In this study (part of the Helsinki Study of Very Low Birth Weight Adults), the researchers investigate the skeletal health of people who were born with VLBW in the Helsinki area between 1978 and 1985.
What Did the Researchers Do and Find?
The researchers compared the skeletal health of 144 young adults who were born prematurely with VLBW and subnormal BMD with that of 139 age- and sex-matched individuals who were born at term. They measured the BMD of the participants (average age 22.6 years) using “dual energy X-ray absorptiometry” and determined a “Z score” for the spine in the lower back (the lower lumbar spine) and the hip (two sites that are routinely examined in assessments of skeletal health). Z scores indicate whether an individual's BMD is significantly different from the average BMD of healthy age- and sex-matched people; in this study, reduced BMD was defined as a Z score of −1.0 or less. The researchers found that adults born with VLBW had an average Z score of −0.51 at the lower lumbar spine and −0.56 at the hip when compared with the adults born at term. Furthermore, 44% of the VLBW participants but only 26% of the term-born participants had a lumbar spine Z score of −1.0 or less. Adjustment for the shorter height of the VLBW participants slightly reduced these differences in BMD but the differences remained statistically significant.
What Do These Findings Mean?
These findings show that, when studied close to the age of peak bone mass, young adults born with VLBW have a significantly lower BMD than their term-born peers and a 2-fold greater risk of having a lumbar spine Z score of below −1.0; a unit decrease in Z score approximately doubles the risk of bone fractures. Because BMD measurements were only taken at one age, it remains possible, however, that the BMD of the VLBW adults might eventually match that of their full-term peers. Recently born VLBW babies still have a lower than average BMD during their childhood, note the researchers, even though their care has changed since the people included in this study were born. Thus, these findings suggest that people who were VLBW infants should be encouraged to eat food rich in vitamin D and calcium and to do regular weight-bearing exercise throughout their lives to improve their bone health and reduce their risk of developing osteoporosis.
Additional Information
Please access these Web sites via the online version of this summary at
The March of Dimes, a nonprofit organization for pregnancy and baby health, provides information on preterm birth (in English and Spanish)
The Nemours Foundation, another nonprofit organization for child health, also provides information on premature babies (in English and Spanish)
MedlinePlus provides links to other information on premature babies and to information on osteoporosis (in English and Spanish)
The US National Institute of Arthritis and Musculoskeletal and Skin Diseases and the UK National Health Service also provide detailed information on all aspects of osteoporosis
Further details about the Helsinki Study of Very Low Birth Weight Adults are available
PMCID: PMC2722726  PMID: 19707270
3.  Characterization of Low Bone Mass in Young Patients with Thalassemia by DXA, pQCT and Markers of Bone Turnover 
Bone  2011;48(6):1305-1312.
Previous reports using dual x-ray absorptiometry (DXA) suggest that up to 70% of adults with thalassemia major (Thal) have low bone mass. However, few studies have controlled for body size and pubertal delay, variables known to affect bone mass in this population. In this study, bone mineral content and areal density (BMC, aBMD) of the spine and whole body were assessed by DXA, and volumetric BMD and cortical geometries of the distal tibia by peripheral quantitative computed tomography (pQCT) in subjects with Thal (n=25, 11 male, 10 to 30 yrs) and local controls (n=34, 15 male, 7 to 30 yrs). Z-scores for bone outcomes were calculated from reference data from a large sample of healthy children and young adults. Fasting blood and urine were collected, pubertal status determined by self-assessment and dietary intake and physical activity assessed by written questionnaires. Subjects with Thal were similar in age, but had lower height, weight and lean mass index Z-scores (all p<0.001) compared to controls. DXA aBMD was significantly lower in Thal compared to controls at all sites. Adult Thal subjects (>18 yrs, n=11) had lower tibial trabecular vBMD (p=0.03), cortical area, cortical BMC, cortical thickness, periosteal circumference and section modulus Z-scores (all p<0.01) compared to controls. Cortical area, cortical BMC, cortical thickness, and periosteal circumference Z-scores (p=0.02) were significantly lower in young Thal (≤18 yrs, n=14) compared to controls. In separate multivariate models, tibial cortical area, BMC, and thickness and spine aBMD and whole body BMC Z-scores remained lower in Thal compared to controls after adjustment for gender, lean mass and/or growth deficits (all p<0.01). Tanner stage was not predictive in these models. Osteocalcin, a marker of bone formation, was significantly reduced in Thal compared to controls after adjusting for age, puberty and whole body BMC (p=0.029). In summary, we have found evidence of skeletal deficits that cannot be dismissed as an artifact of small bone size or delayed maturity alone. Given that reduced bone density and strength are associated with increased risk of fracture, therapies focused on increasing bone formation and bone size in younger patients are worthy of further evaluation.
PMCID: PMC3095710  PMID: 21443975
4.  Bone Density in Post-Pubertal Adolescent Survivors of Childhood Brain Tumors 
Pediatric blood & cancer  2011;58(6):959-963.
Childhood cancer survivors are at high risk for reduced bone mineral density (BMD). Our objective was to determine whether post-pubertal adolescent survivors of brain tumors, whose tumor or treatments placed them at risk for pituitary hormone deficiencies, have low BMD near time of peak bone mass accrual, and to assess risk factors for decreased BMD.
Chart review of 36 post-pubertal adolescents with history of tumor or radiation therapy (RT) of the hypothalamic-pituitary area who had undergone BMD screening via dual-energy x-ray absorptiometry (DXA).
Age at DXA was 16.9 ±1.9 years (mean ± SD). Time since diagnosis was 8.5 ±3.6 years. Median BMD Z-scores were −0.95 (range −2.7 to 1.7) at the femoral neck, −1.20 (−3.6 to 1.8) at the hip, and −0.90 (−3.7 to 1.8) at the spine. Bone mineral apparent density (BMAD) Z-scores were −0.23 (−2.7 to 1.9) at the femoral neck and −0.45 (−3.0 to 2.3) at the spine. Those with history of ≥1 fracture had lower BMD Z-scores of the femoral neck, total hip and spine (P<0.05). Those with treated GH deficiency had a higher BMD Z-score at the femoral neck, total hip and spine (P<0.05) than those not treated. There was no difference in BMD with respect to treatment with chemotherapy, cranial or spinal RT, or hypogonadism. Spontaneous menarche and regular periods did not correlate with BMD.
In post-pubertal adolescent survivors of childhood brain tumors, fracture history and untreated GH deficiency are risk factors for decreased BMD.
PMCID: PMC3313076  PMID: 22431246
Bone mineral density; brain tumors; growth hormone deficiency; fracture
5.  A hospital based study of biochemical markers of bone turnovers & bone mineral density in north Indian women 
Background & objectives:
The osteoporotic risk for women increases soon after menopause. Bone turnover markers are known to be associated with bone loss and fracture risk. This study was aimed to assess bone turnover using bone markers and their correlation with bone mineral density (BMD) in pre- and post-menopausal women.
A total of 255 healthy women (160 pre- and 95 post-menopausal) were enrolled. Serum bone alkaline phosphatase (sBAP) and serum N-terminal telopeptide of type I collagen (NTX) were measured to evaluate the bone formation and resorption, respectively. Bone mineral density was determined at lumbar spine (L2-L4) anteroposteriorly, femoral neck and Ward's triangle using Prodigy dual-energy X-ray absorptiometry (DXA) system. The comparison of years since menopause with respect to BMD and bone markers was also evaluated.
NTX and sBAP showed significant negative correlation with BMD of femur neck and Ward's triangle in postmenopausal women. BMD of all three sides were significant variables for NTX and BMD of femur neck and Ward's triangle for sBAP in postmenopausal women. BMD lumbar spine was a significant variable for sBAP in premenopausal women. The mean values of NTX increased significantly with increase in the duration of years since menopause. The BMD of all three sides decreased significantly with increase in the duration of years since menopause.
Interpretation & conclusions:
Serum NTX and sBAP were inversely correlated to BMD of femur neck and Ward's triangle in post-menopausal women. Simultaneous measurements of NTX and BMD in the north Indian women, suggest that bone resorption in women with low BMD remains high after menopause.
PMCID: PMC3657898  PMID: 23481051
Bone mineral density (BMD); bone turnover; postmenopause; premenopause; serum bone alkaline phosphatase (sBAP); serum N; terminal telopeptide of type I collagen (NTX)
6.  Large-Scale Analysis of Association Between LRP5 and LRP6 Variants and Osteoporosis 
Jama  2008;299(11):1277-1290.
Mutations in the low-density lipoprotein receptor-related protein 5 (LRP5) gene cause rare syndromes characterized by altered bone mineral density (BMD). More common LRP5 variants may affect osteoporosis risk in the general population.
To generate large-scale evidence on whether 2 common variants of LRP5 (Val667Met, Ala1330Val) and 1 variant of LRP6 (Ile1062Val) are associated with BMD and fracture risk.
Design and Setting
Prospective, multicenter, collaborative study of individual-level data on 37 534 individuals from 18 participating teams in Europe and North America. Data were collected between September 2004 and January 2007; analysis of the collected data was performed between February and May 2007. Bone mineral density was assessed by dual-energy x-ray absorptiometry. Fractures were identified via questionnaire, medical records, or radiographic documentation; incident fracture data were available for some cohorts, ascertained via routine surveillance methods, including radiographic examination for vertebral fractures.
Main Outcome Measures
Bone mineral density of the lumbar spine and femoral neck; prevalence of all fractures and vertebral fractures.
The Met667 allele of LRP5 was associated with reduced lumbar spine BMD (n =25 052 [number of participants with available data]; 20-mg/cm2 lower BMD per Met667 allele copy; P=3.3 × 10−8), as was the Val1330 allele (n = 24 812; 14-mg/cm2 lower BMD per Val1330 copy; P=2.6 × 10−9). Similar effects were observed for femoral neck BMD, with a decrease of 11 mg/cm2 (P =3.8 × 10−5) and 8 mg/cm2 (P=5.0×10−6) for the Met667 and Val1330 alleles, respectively (n=25 193). Findings were consistent across studies for both LRP5 alleles. Both alleles were associated with vertebral fractures (odds ratio [OR], 1.26; 95% confidence interval [CI], 1.08–1.47 for Met667 [2001 fractures among 20 488 individuals] and OR, 1.12; 95% CI, 1.01–1.24 for Val1330 [1988 fractures among 20 096 individuals]). Risk of all fractures was also increased with Met667 (OR, 1.14; 95% CI, 1.05–1.24 per allele [7876 fractures among 31 435 individuals)]) and Val1330 (OR, 1.06; 95% CI, 1.01–1.12 per allele [7802 fractures among 31 199 individuals]). Effects were similar when adjustments were made for age, weight, height, menopausal status, and use of hormone therapy. Fracture risks were partly attenuated by adjustment for BMD. Haplotype analysis indicated that Met667 and Val1330 variants both independently affected BMD. The LRP6 Ile1062Val polymorphism was not associated with any osteoporosis phenotype. All aforementioned associations except that between Val1330 and all fractures and vertebral fractures remained significant after multiple-comparison adjustments.
Common LRP5 variants are consistently associated with BMD and fracture risk across different white populations. The magnitude of the effect is modest. LRP5 may be the first gene to reach a genome-wide significance level (a conservative level of significance [herein, unadjusted P<10−7] that accounts for the many possible comparisons in the human genome) for a phenotype related to osteoporosis.
PMCID: PMC3282142  PMID: 18349089
7.  Vitamin K Supplementation in Postmenopausal Women with Osteopenia (ECKO Trial): A Randomized Controlled Trial 
PLoS Medicine  2008;5(10):1-12.
Vitamin K has been widely promoted as a supplement for decreasing bone loss in postmenopausal women, but the long-term benefits and potential harms are unknown. This study was conducted to determine whether daily high-dose vitamin K1 supplementation safely reduces bone loss, bone turnover, and fractures.
Methods and Findings
This single-center study was designed as a 2-y randomized, placebo-controlled, double-blind trial, extended for earlier participants for up to an additional 2 y because of interest in long-term safety and fractures. A total of 440 postmenopausal women with osteopenia were randomized to either 5 mg of vitamin K1 or placebo daily. Primary outcomes were changes in BMD at the lumbar spine and total hip at 2 y. Secondary outcomes included changes in BMD at other sites and other time points, bone turnover markers, height, fractures, adverse effects, and health-related quality of life. This study has a power of 90% to detect 3% differences in BMD between the two groups. The women in this study were vitamin D replete, with a mean serum 25-hydroxyvitamin D level of 77 nmol/l at baseline. Over 2 y, BMD decreased by −1.28% and −1.22% (p = 0.84) (difference of −0.06%; 95% confidence interval [CI] −0.67% to 0.54%) at the lumbar spine and −0.69% and −0.88% (p = 0.51) (difference of 0.19%; 95% CI −0.37% to 0.75%) at the total hip in the vitamin K and placebo groups, respectively. There were no significant differences in changes in BMD at any site between the two groups over the 2- to 4-y period. Daily vitamin K1 supplementation increased serum vitamin K1 levels by 10-fold, and decreased the percentage of undercarboxylated osteocalcin and total osteocalcin levels (bone formation marker). However, C-telopeptide levels (bone resorption marker) were not significantly different between the two groups. Fewer women in the vitamin K group had clinical fractures (nine versus 20, p = 0.04) and fewer had cancers (three versus 12, p = 0.02). Vitamin K supplements were well-tolerated over the 4-y period. There were no significant differences in adverse effects or health-related quality of life between the two groups. The study was not powered to examine fractures or cancers, and their numbers were small.
Daily 5 mg of vitamin K1 supplementation for 2 to 4 y does not protect against age-related decline in BMD, but may protect against fractures and cancers in postmenopausal women with osteopenia. More studies are needed to further examine the effect of vitamin K on fractures and cancers.
Trial registration: (#NCT00150969) and Current Controlled Trials (#ISRCTN61708241)
Angela Cheung and colleagues investigate whether vitamin K1 can prevent bone loss among postmenopausal women with osteopenia.
Editors' Summary
Osteoporosis is a bone disease in which the bones gradually become less dense and more likely to break. In the US, 10 million people have osteoporosis and 18 million have osteopenia, a milder condition that precedes osteoporosis. In both conditions, insufficient new bone is made and/or too much old bone is absorbed. Although bone appears solid and unchanging, very little bone in the human body is more than 10 y old. Old bone is continually absorbed and new bone built using calcium, phosphorous, and proteins. Because the sex hormones control calcium and phosphorous deposition in the bones and thus bone strength, the leading cause of osteoporosis in women is reduced estrogen levels after menopause. In men, an age-related decline in testosterone levels can cause osteoporosis. Most people discover they have osteoporosis only when they break a bone, but the condition can be diagnosed and monitored using bone mineral density (BMD) scans. Treatments can slow down or reverse bone loss (antiresorptive therapies) and some (bone formation therapies) can even make bone and build bone tissue.
Why Was This Study Done?
Although regular exercise and a healthy diet can help to keep bones strong, other ways of preventing osteoporosis are badly needed. Recently, the lay media has promoted vitamin K supplements as a way to reduce bone loss in postmenopausal women. Vitamin K (which is found mainly in leafy green vegetables) is required for a chemical modification of proteins called carboxylation. This modification is essential for the activity of three bone-building proteins. In addition, there is some evidence that low bone density and fractures are associated with a low vitamin K intake. However, little is known about the long-term benefits or harms of vitamin K supplements. In this study, the researchers investigate whether a high-dose daily vitamin K supplement can safely reduce bone loss, bone turnover, and fractures in postmenopausal women with osteopenia in a randomized controlled trial called the “Evaluation of the Clinical Use of Vitamin K Supplementation in Post-Menopausal Women With Osteopenia” (ECKO) trial.
What Did the Researchers Do and Find?
In the study, 440 postmenopausal women with osteopenia were randomized to receive 5mg of vitamin K1 (the type of vitamin K in North American food; the recommended daily adult intake of vitamin K1 is about 0.1 mg) or an inactive tablet (placebo) daily for 2 y; 261 of the women continued their treatment for 2 y to gather information about the long-term effects of vitamin K1 supplementation. All the women had regular bone density scans of their lower back and hips and were examined for fractures and for changes in bone turnover. After 2 y and after 4 y, lower back and hip bone density measurements had decreased by similar amounts in both treatment groups. The women who took vitamin K1 had 10-fold higher amounts of vitamin K1 in their blood than the women who took placebo and lower amounts of a bone formation marker; the levels of a bone resorption marker were similar in both groups. Over the 4-y period, fewer women in the vitamin K group had fractures (nine versus 20 women in the placebo group), and fewer had cancer (three versus 12). Finally, vitamin K supplementation was well tolerated over the 4-y period and adverse health effects were similar in the two treatment groups.
What Do These Findings Mean?
These findings indicate that a high daily dose of vitamin K1 provides no protection against the age-related decline in bone density in postmenopausal women with osteopenia, but that vitamin K1 supplementation may protect against fractures and cancers in these women. The apparent contradiction between the effects of vitamin K1 on bone density and on fractures could mean that vitamin K1 supplements strengthen bone by changing factors other than bone density, e.g., by changing its fine structure rather than making it denser. However, because so few study participants had fractures, the difference in the fracture rate between the two treatment groups might have occurred by chance. Larger studies are therefore needed to examine the effect of vitamin K1 on fractures (and on cancer) and, until these are done, high-dose vitamin K1 supplementation should not be recommended for the prevention of osteoporosis.
Additional Information.
Please access these Web sites via the online version of this summary at
The US National Institute of Arthritis and Musculoskeletal and Skin Diseases provides detailed information about osteoporosis (in English and Spanish) and links to other resources, including an interactive web tool called Check Up On Your Bones
MedlinePlus provides links to additional information about osteoporosis (in English and Spanish)
The MedlinePlus Encyclopedia has a page about vitamin K
The UK Food Standards Agency provides information about vitamin K
Full details about the ECKO trial are available on the Web site
The Canadian Task Force for Preventive Health Care provides recommendations on the prevention of osteoporosis and osteoporotic fractures in postmenopausal women
Osteoporosis Canada provides information on current topics related to osteoporosis
PMCID: PMC2566998  PMID: 18922041
8.  Effects of the anti-receptor activator of nuclear factor kappa B ligand denusomab on beta thalassemia major-induced osteoporosis 
Osteoporosis represents the second most common cause of endocrinopathy in patients with beta thalassemia major (BTM). Some drugs proved effective to reduce vertebral and non-vertebral fracture risk. Denosumab is a fully human monoclonal antibody to the receptor activator of nuclear factor kappa B ligand (RANKL), a member of the tumor necrosis factor receptor superfamily essential for osteoclastogenesis. The efficacy and safety of denosumab in BTM-induced osteoporosis has not been tested.
To evaluate the efficacy and safety of anti-RANKL on the biochemical and radiological parameters of bone mineralization in patients with BTM-induced osteoporosis.
The study population was selected using the random sampling method from the patient's database of our thalassemia clinic. Transfusion-dependent BTM patients above 18 years with no history of treatment with bisphosphonates were randomly selected. Bone mineral density (BMD) of the lumbar spine (LS) and right femoral neck (FN) were measured by dual energy X-ray absorption (DEXA) scan using a calibrated method. Independent factors likely to be associated with low bone mass were determined and included in the analysis to ascertain possible associations.
Patients and Methods:
We studied 30 patients with BTM-induced osteoporosis as per World Health Organization criteria (T Score of less than − 1.0 being defined as osteopenic and a T Score of less than − 2.5 being referred as osteoporotic). 19 males and 11 females aged between 18 and 32 years, with full pubertal development (Tanner's stage 5) at the time of the study. Their mean serum ferritin concentration was 3557 ng ± 1488 ng/ml. Every patient underwent DEXA scan as a baseline and after 12 months of denosumab therapy. Biochemical evaluation including serum concentrations of creatinine, Na, K, calcium, phosphorus, parathormone, bone specific alkaline phosphatase and type 1 collagen carboxy telopetide (ICCT) using enzyme-linked immunosorbent assay (Nordic Bioscience Diagnostics A/S) was done at baseline, after a month and then every 3 months for 12 months after starting denosumab. 60 mg of denosumab was administered subcutaneously twice yearly for a year. The mean BMD T Scores at baseline were −2.7 at the LS and −2.1 at the FN.
Denosumab therapy for a year was associated with a significant increase in BMD of 9.2% (95% confidence interval [CI], 8.2-10.1) at the LS and 6.0% (95% CI, 5.2-6.7) at the FN. Denosumab treatment decreased serum ICCT levels by 56% at 1 month and normalized them in all patients at 1 year. Significant correlations were found between BMD T Score before and 1 year after denosumab in LS (r = 0.752, P < 0.001) and FN (r = 0.758 P < 0.001), respectively. The most common side effects were pain in the back and extremities (12%) and nausea (10%). Asymptomatic hypocalcaemia occurred in two patients.
Denosumab therapy for a year significantly increased BMD density at LS and FN of patients with BTM and was associated with a rapid and sustained reduction in ICCT levels. Further studies are required to confirm long-term effects of this therapy.
PMCID: PMC4138914  PMID: 25143915
Bone alkaline phosphatase; bone mineral density; denosumab; osteoporosis; thalassemia; type 1 collagen carboxy telopetide
9.  Bone density in transfusion dependent thalassemia patients in Urmia, Iran 
Patients with thalassemia major and intermedia are susceptible to osteopenia and osteoporosis. The mechanism of osteoporosis in these patients is multifactorial. Transfusion related iron overload in endocrine organs leads to impaired growth hormone secretion, diabetes mellitus, hypothyroidism, hypoparathyroidism, lack of sex steroids and vitamin D deficiency that contribute to impairment in achieving an adequate bone mass .The aim of this study was assessment of frequency of bone loss in patients with thalassemia major and intermedia in Urmia City of West Azerbaijan, Iran
Materials and Methods
In this cross sectional descriptive study,10 patients (lower than 18 y/o)with transfusion dependent thalassemia attending to Motahari and Emam Khomeini hospitals in Urmia city of Iran were enrolled and scanned for Bone Mineral Density (BMD) starting at around 10 years old.
Tenatients (6 male and 4 female) with transfusion dependent thalassemia (β-thalassemia major and intermedia) aged 13to 17 years in Urmia city of Iran were enrolled. Mean age of patients was 15.1±.37year old. Among them, 8 patients (80%)had low BMD and2 of them (20%) had normal BMD in lumbar spine. Only 30% of patients had low BMD in the neck of femur.
We should perform annual BMD in patients with thalassemia major and intermedia and hemoglobin H disease in age of higher than 8 year old and treat low BMD with administration of bisphosphonate, calcium and vitamin D supplements. Medical consultation with a rheumatologist and /or an endocrinologist should be performed in these patients. Changing lifestyle with mild daily exercise, adequate calcium containing foods, avoiding heavy activities, stop smoking, iron chelation therapy in adequate dosage, early diagnosis and treatment of endocrine insufficiency and regular blood transfusions can help to achieve an optimal bone density in these patients.
PMCID: PMC4083203  PMID: 25002928
Thalassemia; Bone mineral density; Osteoporosis; Bone Loss
10.  Bone mass, bone markers and prevalence of fractures in adults with osteogenesis imperfecta 
Archives of Osteoporosis  2011;6(1-2):31-38.
Still little is known about the manifestations of osteogenesis imperfecta (OI) in adults. We therefore initiated this study of bone mass, bone turnover and prevalence of fractures in a large cohort of adult patients. We found a surprising low prevalence (10%) of osteoporosis. These patients, however, expressed the most severe disease.
To characterize bone mineral density, bone turnover, calcium metabolism and prevalence of fractures in a large cohort of adults with osteogenesis imperfecta.
One hundred fifty-four patients with adult OI participated and 90 (age range 25–83) provided dual X-ray absorptiometry (DXA) measurements. According to Sillence classification criteria, 68 persons were classified as OI type I, 9 as type III, 11 type IV and 2 were unclassified. Fracture numbers were based on self-reporting. Biochemical markers of bone turnover were measured and bone mineral density (BMD) of the spine, femoral neck and total body were determined by DXA.
Only 10% of adults with OI exhibited osteoporotic T scores (T ≤ −2.5) but compared to patients with normal T scores this subgroup had a threefold higher fracture risk (22 vs. 69). s-PTH, s-Ca and 25[OH] vitamin D were all normal. Bone markers did not display major deviations from normal, but patients with OI type III displayed higher resorption marker levels than type I and IV. Multivariate regression analysis showed that only gender and total body BMD were significant determinants of fracture susceptibility, and the differences for total body BMC, BMD and Z scores were significant between the OI subtypes.
In adult OI, DXA measurements only identified few patients as osteoporotic. These patients, however, exhibited a much higher fracture propensity. Due to deformities, low body height and pre-existing fractures, DXA assessment is complicated in this disease, and further studies are needed to work out how to minimize the impact of these confounders.
PMCID: PMC3235275  PMID: 22207876
Osteogenesis imperfecta; Adult; Bone mineral density; Osteoporosis; Bone marker
11.  The Relationship Between Fractures and DXA Measures of BMD in the Distal Femur of Children and Adolescents With Cerebral Palsy or Muscular Dystrophy 
Children with limited or no ability to ambulate frequently sustain fragility fractures. Joint contractures, scoliosis, hip dysplasia, and metallic implants often prevent reliable measures of bone mineral density (BMD) in the proximal femur and lumbar spine, where BMD is commonly measured. Further, the relevance of lumbar spine BMD to fracture risk in this population is questionable. In an effort to obtain bone density measures that are both technically feasible and clinically relevant, a technique was developed involving dual-energy X-ray absorptiometry (DXA) measures of the distal femur projected in the lateral plane. The purpose of this study is to test the hypothesis that these new measures of BMD correlate with fractures in children with limited or no ability to ambulate. The relationship between distal femur BMD Z-scores and fracture history was assessed in a cross-sectional study of 619 children aged 6 to 18 years with muscular dystrophy or moderate to severe cerebral palsy compiled from eight centers. There was a strong correlation between fracture history and BMD Z-scores in the distal femur; 35% to 42% of those with BMD Z-scores less than −5 had fractured compared with 13% to 15% of those with BMD Z-scores greater than −1. Risk ratios were 1.06 to 1.15 (95% confidence interval 1.04–1.22), meaning a 6% to 15% increased risk of fracture with each 1.0 decrease in BMD Z-score. In clinical practice, DXA measure of BMD in the distal femur is the technique of choice for the assessment of children with impaired mobility. © 2010 American Society for Bone and Mineral Research
PMCID: PMC3153393  PMID: 19821773
Fractures; Osteopenia; Children; Bone Density; Disabilities
12.  The Clinical Utility of Spine Bone Density in Elderly Women 
It is common clinical practice to obtain bone mass measurement at both the hip and spine to evaluate for osteoporosis. With aging, degenerative changes in the lumbar spine may elevate the bone mineral density (BMD) results giving false assurances that the fracture risk at the spine is low. We examined the association of spine osteoarthritis and bone mineral density in 1082 community-dwelling ambulatory older women aged 50–96 years who participated in a 1992–1996 osteoporosis research clinic visit. Bone mineral density (BMD) was measured at the hip, PA and lateral lumbar spine using dual energy x-ray absorptiometry (DXA). Spine osteoarthritis was identified on the PA lumbar spine DXA images by a musculoskeletal radiologist. Forty percent of women had evidence of spine osteoarthritis (OA). Women with spine OA had mean age of 77.4 years (95% CI, 76.5–78.2), were significantly older than women without (mean age 66.8; 95% CI, 65.9–67.7), and were more likely to have prevalent radiographic fractures (14.2% vs. 9.5%, p< 0.05). Age-adjusted BMD at the femoral neck, total hip, PA spine, and lateral spine was significantly higher in women with spine OA. Women with spine OA were more likely to have osteoporosis by WHO classification at the femoral neck and total hip than those without spine OA, but less likely based on the PA spine site (14.4% vs 24.5%). Despite higher BMD levels, women with OA of the lumbar spine had higher prevalence of osteoporosis at the hip and radiographic vertebral fractures. In elderly women 65 years and older who are likely to have spine OA, DXA measurement of the spine may be not useful in assessing fracture risk and DXA of the hip is recommended for identification of osteoporosis.
PMCID: PMC2642644  PMID: 16931341
Spine osteoarthritis; bone mineral density; osteoporosis; elderly
13.  Dairy calcium intake and lifestyle risk factors for bone loss in hiv-infected and uninfected mediterranean subjects 
BMC Infectious Diseases  2012;12:192.
Despite the reported high prevalence of osteoporosis in the human immunodeficiency virus (HIV)-population, there have been no previous studies examining dairy calcium intake and bone mineral density (BMD) in HIV-subjects.
We assessed the prevalence of low BMD in HIV-infected and uninfected subjects and analyzed the effects of calcium intake, lifestyle and HIV-related risk factors on BMD.
One hundred and twelve HIV-infected subjects were consecutively enrolled. Seventy- six HIV-uninfected subjects matched for age and sex were enrolled as the control group. The HIV-subjects were interviewed about lifestyle habits and completed a weekly food-frequency questionnaire to estimate calcium intake. HIV-RNA, CD4+ T-cell count and data on antiretroviral therapy were also recorded. Both biochemical bone turnover markers and BMD, assessed by dual-energy radiographic absorptiometry (DXA) were recorded in the HIV-cases and controls. We also calculated the 10-year fracture risks using the WHO FRAX equation.
Osteoporosis prevalence was significantly higher in the HIV-cases than controls (p < 0.05). BMI values were positively correlated with BMD (p < 0.05). Vitamin D levels were lower in the HIV-subjects (p < 0.02). No correlation was found with daily calcium intake.
BMI values were significantly correlated with dairy intake quartiles (p < 0.003). In HIV-subjects, the mean of FRAX score was 1.2 % for hip and 4.7 % for major osteoporotic fractures. On multivariate analysis of the lumbar spine DXA T-score, age (p < 0.005) and HIV/hepatitis C virus co-infection (p < 0.0001) were negatively correlated with BMD, while yogurt intake was a protective predictor of BMD (p < 0.05). In the femur DXA T-score, age (p < 0.01), nadir CD4 + T-cell count < 200 cells/μL (p < 0.05) and drug addiction ( p < 0.0001) were negatively correlated with BMD.
Among the foods rich in calcium, yogurt was a protective predictor of BMD in HIV-subjects. HIV/HCV co-infection, nadir CD4 + T-cell count < 200 cells/μL and drug addiction were independent predictors of severe BMD. Promoting behavioral changes in food intake and lifestyle, aimed at the primary prevention of bone disease in the chronically-infected subjects seems to be essential for implementing medical intervention in these cases.
PMCID: PMC3447655  PMID: 22894751
HIV; Osteopenia; Osteoporosis; Dairy intake; Bone mineral density
14.  Assessment of Bone Mineral Status in Children With Marfan Syndrome 
Marfan syndrome (MFS) is an autosomal dominant connective tissue disorder with skeletal involvement. It is caused by mutations in fibrillin1 (FBN1) gene resulting in activation of TGF-β, which developmentally regulates bone mass and matrix properties. There is no consensus regarding bone mineralization in children with MFS. Using dual-energy X-ray absorptiometry (DXA), we evaluated bone mineralization in 20 children with MFS unselected for bone problems. z-Scores were calculated based on age, gender, height, and ethnicity matched controls. Mean whole body bone mineral content (BMC) z-score was 0.26 ± 1.42 (P = 0.41). Mean bone mineral density (BMD) z-score for whole body was −0.34 ± 1.4 (P = 0.29) and lumbar spine was reduced at −0.55 ± 1.34 (P = 0.017). On further adjusting for stature, which is usually higher in MFS, mean BMC z-score was reduced at −0.677 ± 1.37 (P = 0.04), mean BMD z-score for whole body was −0.82 ± 1.55 (P = 0.002) and for lumbar spine was −0.83 ± 1.32 (P = 0.001). An increased risk of osteoporosis in MFS is controversial. DXA has limitations in large skeletons because it tends to overestimate BMD and BMC. By adjusting results for height, age, gender, and ethnicity, we found that MFS patients have significantly lower BMC and BMD in whole body and lumbar spine. Evaluation of diet, exercise, vitamin D status, and bone turnover markers will help gain insight into pathogenesis of the reduced bone mass. Further, larger longitudinal studies are required to evaluate the natural history, incidence of fractures, and effects of pharmacological therapy. © 2012 Wiley Periodicals, Inc.
PMCID: PMC3429634  PMID: 22887731
Marfan syndrome; bone mineral density; TGF-β
15.  Assessment of Bone Mineral Status in Children with Marfan syndrome 
Marfan syndrome (MFS) is an autosomal dominant connective tissue disorder with skeletal involvement. It is caused by mutations in fibrillin1 (FBN1) gene resulting in activation of TGF-β, which developmentally regulates bone mass and matrix properties. There is no consensus regarding bone mineralization in children with MFS. Using dual-energy X-ray absorptiometry (DXA) we evaluated bone mineralization in 20 children with MFS unselected for bone problems. Z-scores were calculated based on age, gender, height, and ethnicity matched controls. Mean whole body bone mineral content (BMC) z-score was 0.26 ± 1.42 (p=0.41). Mean bone mineral density (BMD) z-score for whole body was −0.34 ± 1.4 (p=0.29) and lumbar spine was reduced at −0.55 ± 1.34 (p=0.017). On further adjusting for stature, which is usually higher in MFS, mean BMC z-score was reduced at −0.677 ± 1.37 (p=0.04), mean BMD z-score for whole body was −0.82 ± 1.55 (p=0.002) and for lumbar spine was −0.83 ± 1.32 (p=0.001). An increased risk of osteoporosis in MFS is controversial. DXA has limitations in large skeletons because it tends to overestimate BMD and BMC. By adjusting results for height, age, gender, and ethnicity, we found that MFS patients have significantly lower BMC and BMD in whole body and lumbar spine. Evaluation of diet, exercise, vitamin D status, and bone turnover markers will help gain insight into pathogenesis of the reduced bone mass. Further, larger longitudinal studies are required to evaluate the natural history, incidence of fractures and effects of pharmacological therapy.
PMCID: PMC3429634  PMID: 22887731
Marfan syndrome; Bone mineral density; TGF-β
16.  Three-dimensional Structural Analysis of the Proximal Femur in an Age-Stratified Sample of Women 
Bone  2013;55(1):179-188.
Aging is associated with worsening bone structure and increasing risk of hip fracture. However, the commonly used clinical tool, dual-energy x-ray absorptiometry, does not provide information on changes with age or disease separately in trabecular versus cortical bone or in bone geometry. Here we used 3D quantitative computed tomography (QCT) to analyze age-related changes in femoral volumetric bone mineral density (vBMD) and structure in a well characterized, population-based cohort of Rochester, Minnesota women.
MIAF-Femur (MIAF: medical image analysis framework) was used for the analysis of CT datasets from 358 women age 20 to 97 years. Integral, “apparent” cortical (rather than true cortical vBMD, due to volume averaging effects) and trabecular vBMD, volume, and bone mineral content (BMC) as well as cortical thickness of the femur head, neck, trochanter, inter-trochanteric, and proximal shaft VOIs were measured. In addition, changes in vBMD in the superior, inferior, posterior and anterior quadrants of the femur neck were assessed.
Cross-sectional percent decreases in vBMD across life were 2- to 5-fold higher in trabecular versus cortical bone at all sites in the femur, although absolute changes in trabecular and cortical bone were fairly similar. In addition, the slopes of the relationships of trabecular vBMD with age were generally similar in pre- and post-menopausal women, whereas apparent cortical vBMD in the femur neck, trochanter, inter-trochanteric region, and proximal shaft remained relatively stable in premenopausal women but decreased significantly with age following the menopause. Bone volume increased at all sites, more so in pre- compared to postmenopausal women. Age-related BMC changes were not significant in premenopausal women, but BMC losses were highly significant in postmenopausal women. Detailed analyses of femur neck cortical bone showed that percent apparent vBMD decreases in the superior quadrants were 2- to 3-fold greater than in the inferior quadrants; changes in absolute values were most different (~2-fold) between the superior-posterior and inferior-posterior quadrants.
These data demonstrate that patterns of changes with age within the femur differ in trabecular versus cortical bone. In the cortical compartment which, due to limitations in spatial resolution, contains some subcortical bone and should be regarded as an “apparent” cortical VOI, the superior quadrants in the femur neck undergo the greatest decreases. These findings may have important implications for understanding the structural basis for increased hip fracture risk with aging.
PMCID: PMC3650123  PMID: 23486182
osteoporosis; femur; aging
17.  Effect of body composition on bone mineral density in Moroccan patients with juvenile idiopathic arthritis 
The link between bone mass and body composition is widely recognized, but only few works were selectively performed on subjects with juvenile idiopathic arthritis. The aim of our study was to investigate the effect of body composition on bone mineral density (BMD) in Moroccan patients with juvenile idiopathic arthritis.
Thirty three children with juvenile idiopathic arthritis (JIA) were included in a cross-sectional study. The diagnosis of JIA was made according to the criteria of the International League of Association of Rheumatology (ILAR). Body mass index (BMI) was calculated from the ratio of weight/height2(kg/m2). Pubertal status was determined according to the Tanner criteria. Bone status, body composition and bone mineral content (BMC) were analyzed by using dual-energy X-ray absorptiometry (DXA). BMD was assessed at the lumbar spine (L1-L4) and at total body in (g/cm2). Total body fat tissue mass (FTM) and lean tissue mass (LTM) were also analyzed by DXA and expressed in kilograms. In children, low BMD was defined as a Z-score less than -2 and osteoporosis was defined as a Z-score less than -2 with a fracture history.
A cross-sectional study was conducted in 33 Moroccan patients with JIA aged between 4 and 16 years, Fat mass was not related to bone density; in contrast, BMD was positively associated to LTM in total body(r = =0.41, p= 0.04) but not in lumbar spine (r = 0.29, p= 0.17). There exist significant correlation between BMC and BMD in total body (r = 0.51, p = 0.01).
This study suggests that the LTM is a determining factor of the BMD during adolescence. Other studies with a broader sample would be useful to confirm this relation.
PMCID: PMC4119437  PMID: 25120859
Body composition; lean mass; fat mass; juvenile idiopathic arthritis
18.  Is long-term glucocorticoid therapy associated with a high prevalence of asymptomatic vertebral fractures? 
Chronic administration of glucocorticoids is associated with bone loss and increased fracture risk, particularly in the trabecular bone of the vertebrae.
To assess the prevalence of asymptomatic vertebral fractures in postmenopausal women undergoing long-term glucocorticoid therapy.
This was a multicenter, cross-sectional outpatient study of postmenopausal women. Inclusion criteria included age >45 years, glucocorticoid therapy for ≥6 months with a cumulative dose ≥1.35 g of a prednisone equivalent, and diagnosis of rheumatoid arthritis, systemic lupus erythematosus, polymyalgia rheumatica, other vasculitides or connective tissue diseases, asthma, or chronic obstructive pulmonary disease. Patients with back pain, previous vertebral fracture, Paget’s disease, or using antiosteoporotic medication were excluded; however, calcium and vitamin D supplements were permitted. Participants underwent a medical interview that assessed socio-demographic factors, details of glucocorticoid therapy, and risk factors for osteoporosis. Health-related quality of life was evaluated with the European Foundation for Osteoporosis questionnaire. A back-function questionnaire rated the participants’ ability to perform activities of daily living. Vertebral fractures were identified from lateral and antero-posterior thoracolumbar radiographs. Hip and lumbar spine BMD were assessed by dual energy X-ray absorptiometry and quantitative ultrasound.
The primary outcome measure was the prevalence of asymptomatic vertebral fractures.
The study enrolled a total of 551 women (median age 65.2 years). Rheumatoid arthritis was the most common reason for glucocorticoid therapy (53.2%). One or more asymptomatic vertebral fractures were present in 37.02% of participants, whereas 14.42% had two or more fractures. A bimodal distribution of these fractures was observed, with peaks at the T7 and T11 thoracic vertebrae. The prevalence of asymptomatic vertebral fractures increased with age; 47.98% of participants ≥70 years of age presented with at least one fracture (P = 0.006). There was a strong association between polymyalgia rheumatica and fracture prevalence; 51.09% of affected patients had one or more fracture (P=0.012). When the data were adjusted for age, cumulative glucocorticoid dose, therapy duration, and fracture history, however, this association became weaker (43.20%), and was similar to the fracture prevalence of 43.36% observed in patients with other vasculitides or connective-tissue diseases. There was no correlation between fracture prevalence and cumulative glucocorticoid dose or therapy duration. Additionally, lumbar spine and hip BMD, calcaneal bone stiffness, and health-related quality of life were not associated with the number or severity of vertebral fractures. Time since menopause and history of nonvertebral fractures both showed a significant association with asymptomatic vertebral fracture (P<0.001 and P = 0.002, respectively). Back function score showed a modest association with the number of asymptomatic vertebral fractures.
A high prevalence of asymptomatic vertebral fractures was observed in postmenopausal women undergoing long-term glucocorticoid therapy, which suggests a need for careful evaluation of this patient subgroup.
PMCID: PMC2040103  PMID: 17237833
glucocorticoid; osteoporosis; postmenopausal; vertebral fracture
19.  Diffuse idiopathic skeletal hyperostosis (DISH): relation to vertebral fractures and bone density 
Osteoporosis International  2010;22(6):1789-1797.
Radiographs and spinal bone mineral density (BMD) were evaluated from 342 elderly men regarding possible effects of diffuse idiopathic skeletal hyperostosis (DISH) on vertebral fractures and densitometry measurements. Prevalent vertebral fractures were more frequent among men with DISH compared to men with no DISH even after fracture prevalence was adjusted for BMD. Paravertebral calcifications should be considered in patients with DISH when interpreting BMD measurements because both dual X-ray absorptiometry (DXA) and quantitative CT (QCT) densitometry may not be reliable.
The purpose of this study is to evaluate the prevalence of DISH in older men and its association with vertebral fractures and with BMD determined by DXA and QCT.
Lateral radiographs of the spine were analyzed in a sample of 342 men aged ≥65 years participating in the MrOS Study concerning the presence and grade of DISH and vertebral fractures. Lumbar BMD was measured by both DXA (areal, grams per square centimeter) and QCT (volumetric, grams per cubic centimeter). The association between DISH, BMD, and presence of fractures was studied using χ2 and t tests.
DISH was present in 52% (178/342) of the men. Men with DISH were older (mean, 75.1 vs 73.3, p < 0.05) and more likely to have prevalent fractures (28% vs 20%, p < p = 0.09). BMD assessed with DXA (1.08 vs 1.00 g/cm2, p ≤ 0.0001), but not with QCT (0.11 vs 0.11 g/cm3, p = 0.65), was significantly higher in men with DISH compared to men without DISH. Significantly lower BMD of men with both DISH and fractures compared to men with DISH but without fractures was only detected by QCT (−25%, 0.09 vs 0.12, p < 0.05). Both DXA BMD and QCT BMD were significantly higher in severe lumbar DISH (+22% and +31%, p < 0.0001), respectively.
DISH was associated with a higher prevalence of vertebral fractures in elderly men. Lumbar ossifications related to DISH should be considered when interpreting BMD measurements to predict their fracture risk.
PMCID: PMC3092929  PMID: 20882271
DISH; DXA; MrOS; QCT; Vertebral fracture
20.  Fracture risk in children with a forearm injury is associated with volumetric bone density and cortical area (by peripheral QCT) and areal bone density (by DXA) 
Osteoporosis International  2010;22(2):607-616.
Children who sustain a forearm fracture when injured have lower bone density throughout their skeleton, and have a smaller cortical area and a lower strength index in their radius. Odds ratios per SD decrease in bone characteristics measured by peripheral quantitative computed tomography (pQCT) and dual-energy X-ray absorptiometry (DXA) were similar (1.28 to 1.41).
Forearm fractures are common in children. Bone strength is affected by bone mineral density (BMD) and bone geometry, including cross-sectional dimensions and distribution of mineral. Our objective was to identify bone characteristics that differed between children who sustained a forearm fracture compared to those who did not fracture when injured.
Children (5–16 years) with a forearm fracture (cases, n=224) and injured controls without fracture (n=200) were enrolled 28±8 days following injury. Peripheral QCT scans of the radius (4% and 20% sites) were obtained to measure volumetric BMD (vBMD) of total, trabecular and cortical bone compartments, and bone geometry (area, cortical thickness, and strength strain index [SSI]). DXA scans (forearm, spine, and hip) were obtained to measure areal BMD (aBMD) and bone area. Receiver operating characteristic (ROC) analyses were used to assess screening performance of bone measurements.
At the 4% pQCT site, total vBMD, but not trabecular vBMD or bone area, was lower (−3.4%; p= 0.02) in cases than controls. At the 20% site, cases had lower cortical vBMD (−0.9%), cortical area (−2.8%), and SSI (−4.6%) (p<0.05). aBMD, but not bone area, at the 1/3 radius, spine, and hip were 2.7–3.3% lower for cases (p< 0.01). Odds ratios per 1 SD decrease in bone measures (1.28–1.41) and areas under the ROC curves (0.56–0.59) were similar for all bone measures.
Low vBMD, aBMD, cortical area, and SSI of the distal radius were associated with an increased fracture risk. Interventions to increase these characteristics are needed to help reduce forearm fracture occurrence.
PMCID: PMC3298088  PMID: 20571770
Bone densitometry; Epidemiology; Fracture; Orthopedics; Pediatrics; QCT
21.  Lower Trabecular Volumetric BMD at Metaphyseal Regions of Weight-Bearing Bones is Associated With Prior Fracture in Young Girls 
Understanding the etiology of skeletal fragility during growth is critical for the development of treatments and prevention strategies aimed at reducing the burden of childhood fractures. Thus we evaluated the relationship between prior fracture and bone parameters in young girls. Data from 465 girls aged 8 to 13 years from the Jump-In: Building Better Bones study were analyzed. Bone parameters were assessed at metaphyseal and diaphyseal sites of the nondominant femur and tibia using peripheral quantitative computed tomography (pQCT). Dual-energy X-ray absorptiometry (DXA) was used to assess femur, tibia, lumbar spine, and total body less head bone mineral content. Binary logistic regression was used to evaluate the relationship between prior fracture and bone parameters, controlling for maturity, body mass, leg length, ethnicity, and physical activity. Associations between prior fracture and all DXA and pQCT bone parameters at diaphyseal sites were nonsignificant. In contrast, lower trabecular volumetric BMD (vBMD) at distal metaphyseal sites of the femur and tibia was significantly associated with prior fracture. After adjustment for covariates, every SD decrease in trabecular vBMD at metaphyseal sites of the distal femur and tibia was associated with 1.4 (1.1–1.9) and 1.3 (1.0–1.7) times higher fracture prevalence, respectively. Prior fracture was not associated with metaphyseal bone size (ie, periosteal circumference). In conclusion, fractures in girls are associated with lower trabecular vBMD, but not bone size, at metaphyseal sites of the femur and tibia. Lower trabecular vBMD at metaphyseal sites of long bones may be an early marker of skeletal fragility in girls. © 2011 American Society for Bone and Mineral Research.
PMCID: PMC3179352  PMID: 20721933
22.  Vertebral fractures and bone mineral density in idiopathic, secondary and corticosteroid associated osteoporosis in men 
Annals of the Rheumatic Diseases  2000;59(4):269-275.
OBJECTIVE—To investigate bone mineral density (BMD) in men with symptomatic osteoporosis and compare BMD in patients with idiopathic, secondary and corticosteroid associated osteoporosis.
METHODS—Age, number of vertebral fractures at presentation and BMD were investigated in men presenting to a bone metabolism clinic with idiopathic (n=105; group 1), secondary (n=67; group 2) and corticosteroid osteoporosis (n=48; group 3). BMD was measured in 176 healthy men (controls). Osteoporosis was diagnosed if there was ⩾20% vertebral deformity.
RESULTS—Age at peak BMD in controls was 20-29 years at spine (LS-BMD) and femoral neck (FN-BMD). LS-BMD did not change with age but FN-BMD decreased in controls and groups 1 and 2. Mean (SD) age was similar in groups 1 (62.8 (11.5) years, 2 (60.2 (11.0)) years and 3 (62.7 (10.4) years with 45%, 51% and 40% of patients respectively presenting before 60 years. Back pain, present for up to 12 months, was the commonest cause of referral. Vertebral fractures at presentation averaged mean (SD) 2.51 (1.9) in group 1, 2.76 (2.2) in group 2 and 2.48 (1.8) in group 3. LS-BMD Z scores and T scores were more negative in group 1 patients with ⩽3 vertebral fractures compared with FN-BMD suggesting a greater trabecular bone deficit. LS-BMD Z score in group 1 is −1.71, lower than in population studies. LS T score associated with fracture was about −2.4 in all groups. T8, T12 and L1 were the most frequent levels for fracture.
CONCLUSIONS—Men with symptomatic osteoporosis present in middle age, have low BMD with similar T scores irrespective of aetiology and sustain ⩾ 1 fracture.

PMCID: PMC1753105  PMID: 10733473
23.  Evaluation of Trabecular Micro-Architecture in Non-Osteoporotic Post-Menopausal Women With and Without Fracture 
Journal of Bone and Mineral Research  2012;27(7):1494-1500.
To compare microscopic magnetic resonance imaging (μMRI) parameters of trabecular micro-architecture between postmenopausal women with and without fracture who have normal or osteopenic bone mineral density (BMD) on dual-energy x-ray absorptiometry (DXA).
The study included 36 post-menopausal Caucasian women 50 years of age and older with normal or osteopenic BMD (T-scores better than −2.5 at the lumbar spine, proximal femur, and one-third radius on DXA). Eighteen women had a history of low-energy fracture, while 18 women had no history of fracture and served as an age, race, and ultra-distal radius BMD-matched control group. A three-dimensional fast large-angle spin-echo (FLASE) sequence with 137 μm × 137 μm × 400 μm resolution was performed through the non-dominant wrist of all 36 women using the same 1.5T scanner. The high resolution images were used to measure trabecular bone volume fraction, trabecular thickness, surface-to-curve ratio, and erosion index. Wilcoxon signed rank tests were used to compare differences in BMD and μMRI parameters between post-menopausal women with and without fracture.
Post-menopausal women with fracture had significantly lower (p<0.05) trabecular bone volume fraction and surface-to-curve ratio and significantly higher (p<0.05) erosion index than post-menopausal women without fracture. There was no significant difference between post-menopausal women with and without fracture in trabecular thickness (p=0.80) and BMD of the spine (p=0.21), proximal femur (p=0.19), one-third radius (p=0.47), and ultra-distal radius (p=0.90).
Post-menopausal women with normal or osteopenic BMD who had a history of low energy fracture had significantly different (p<0.05) μMRI parameters than an age, race, and ultra-distal radius BMD-matched control group of postmenopausal women with no history of fracture. Our study suggests that μMRI can be used to identify individuals without a DXA-based diagnosis of osteoporosis who have impaired trabecular micro-architecture and thus a heretofore-unappreciated elevated fracture risk.
PMCID: PMC3377771  PMID: 22407970
Osteoporosis; Trabecular Micro-Architecture; Magnetic Resonance Imaging; Fracture
24.  Bone mineral density and body composition in postmenopausal women with psoriasis and psoriatic arthritis 
The aim of the present study was to compare bone mineral density (BMD) and body composition (BC) measurements as well as identify risk factors for low BMD and osteoporotic fractures in postmenopausal women with psoriasis (Ps) and psoriatic arthritis (PsA).
A cross-sectional study was carried out in 45 PsA women, 52 Ps women and 98 healthy female controls (HC). Clinical risk factors for low bone density and osteoporotic fracture were evaluated by a specific questionnaire. An X-ray absorptiometry (DXA) at the lumbar spine, total femur and total body was performed on all patients. Skin and joint outcomes were measured by specific tools (PASI, HAQ and DAS28). Morphometric vertebral fractures were evaluated by lumbar and thoracic spine X-ray, according to Genant's method.
There were no significant differences in age, body mass index (BMI), total lean mass and bone mineral density among the groups. However, the PsA group had a significantly higher body fat percentage (BF%) than the Ps and HC groups. Osteoporotic fractures were more frequently observed in PsA and Ps groups than in the HC group (P = 0.01). Recurrent falls and a longer duration of disease increased the risk of fracture (odds ratio (OR) = 18.3 and 1.08, respectively) in the PsA group (P = 0.02). Disability was the main factor related to osteoporotic fracture in the Ps group (odds ratio (OR) = 11.1) (P = 0.02).
Ps and PsA patients did not present lower BMD. However, they had a higher prevalence of osteoporotic fractures and higher risk of metabolic syndrome. Patients with a longer duration of disease, disability and recurrent falls need preventive measures.
PMCID: PMC3241360  PMID: 21299865
25.  Children with Spina Bifida are at Risk for Low Bone Density 
Patients with spina bifida frequently sustain lower extremity fractures which may be difficult to diagnose because they feel little or no pain, although the relative contributions of low bone density to pain insensitivity are unclear. Routine dual-energy xray absorptiometry (DXA) scanning is unreliable because these patients lack bony elements in the spine, and many have joint contractures and/or implanted hardware.
We asked (1) if the lateral distal femoral scan is useful in spina bifida; (2) whether nonambulatory children with spina bifida exhibit differences in bone mineral density (BMD) compared with an age-and-sex-matched population; and (3) whether Z-scores were related to extremity fracture incidence.
We retrospectively reviewed 37 patients with spina bifida who had DXA scans and sufficient data. Z-scores were correlated with functional level, ambulatory status, body mass index, and fracture history.
The distal femoral scan could be performed in subjects for whom total body and/or lumbar scans could not be performed accurately. Twenty-four of 37 had Z-scores below −2 SD, defined as “low bone density for age.” Ten of 35 patients (29%) with fracture information had experienced one or more fractures. Our sample size was too small to correlate Z-score with fracture.
We believe BMD should be monitored in patients with spina bifida; nonambulatory patients with spina bifida and those with other risk factors are more likely to have low bone density for age than unaffected individuals. The LDF scan was useful in this population in whom lumbar and total body scans are often invalidated by contracture or artifact. Although lower extremity fractures occur regardless of ambulation or bone density, knowing an individual’s bone health status may lead to interventions to improve bone health.
PMCID: PMC3069300  PMID: 21042897

Results 1-25 (921681)