PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (923648)

Clipboard (0)
None

Related Articles

1.  Comprehensive analysis of DNA polymerase III α subunits and their homologs in bacterial genomes 
Nucleic Acids Research  2013;42(3):1393-1413.
The analysis of ∼2000 bacterial genomes revealed that they all, without a single exception, encode one or more DNA polymerase III α-subunit (PolIIIα) homologs. Classified into C-family of DNA polymerases they come in two major forms, PolC and DnaE, related by ancient duplication. While PolC represents an evolutionary compact group, DnaE can be further subdivided into at least three groups (DnaE1-3). We performed an extensive analysis of various sequence, structure and surface properties of all four polymerase groups. Our analysis suggests a specific evolutionary pathway leading to PolC and DnaE from the last common ancestor and reveals important differences between extant polymerase groups. Among them, DnaE1 and PolC show the highest conservation of the analyzed properties. DnaE3 polymerases apparently represent an ‘impaired’ version of DnaE1. Nonessential DnaE2 polymerases, typical for oxygen-using bacteria with large GC-rich genomes, have a number of features in common with DnaE3 polymerases. The analysis of polymerase distribution in genomes revealed three major combinations: DnaE1 either alone or accompanied by one or more DnaE2s, PolC + DnaE3 and PolC + DnaE1. The first two combinations are present in Escherichia coli and Bacillus subtilis, respectively. The third one (PolC + DnaE1), found in Clostridia, represents a novel, so far experimentally uncharacterized, set.
doi:10.1093/nar/gkt900
PMCID: PMC3919608  PMID: 24106089
2.  Relevance of GC content to the conservation of DNA polymerase III/mismatch repair system in Gram-positive bacteria 
The mechanism of DNA replication is one of the driving forces of genome evolution. Bacterial DNA polymerase III, the primary complex of DNA replication, consists of PolC and DnaE. PolC is conserved in Gram-positive bacteria, especially in the Firmicutes with low GC content, whereas DnaE is widely conserved in most Gram-negative and Gram-positive bacteria. PolC contains two domains, the 3′-5′exonuclease domain and the polymerase domain, while DnaE only possesses the polymerase domain. Accordingly, DnaE does not have the proofreading function; in Escherichia coli, another enzyme DnaQ performs this function. In most bacteria, the fidelity of DNA replication is maintained by 3′-5′ exonuclease and a mismatch repair (MMR) system. However, we found that most Actinobacteria (a group of Gram-positive bacteria with high GC content) appear to have lost the MMR system and chromosomes may be replicated by DnaE-type DNA polymerase III with DnaQ-like 3′-5′ exonuclease. We tested the mutation bias of Bacillus subtilis, which belongs to the Firmicutes and found that the wild type strain is AT-biased while the mutS-deletant strain is remarkably GC-biased. If we presume that DnaE tends to make mistakes that increase GC content, these results can be explained by the mutS deletion (i.e., deletion of the MMR system). Thus, we propose that GC content is regulated by DNA polymerase and MMR system, and the absence of polC genes, which participate in the MMR system, may be the reason for the increase of GC content in Gram-positive bacteria such as Actinobacteria.
doi:10.3389/fmicb.2013.00266
PMCID: PMC3774996  PMID: 24062730
DNA polymerase III; GC content; mismatch repair; Gram-positive; Actinobacteria
3.  DNA Polymerases of Low-GC Gram-Positive Eubacteria: Identification of the Replication-Specific Enzyme Encoded by dnaE 
Journal of Bacteriology  2002;184(14):3834-3838.
dnaE, the gene encoding one of the two replication-specific DNA polymerases (Pols) of low-GC-content gram-positive bacteria (E. Dervyn et al., Science 294:1716-1719, 2001; R. Inoue et al., Mol. Genet. Genomics 266:564-571, 2001), was cloned from Bacillus subtilis, a model low-GC gram-positive organism. The gene was overexpressed in Escherichia coli. The purified recombinant product displayed inhibitor responses and physical, catalytic, and antigenic properties indistinguishable from those of the low-GC gram-positive-organism-specific enzyme previously named DNA Pol II after the polB-encoded DNA Pol II of E. coli. Whereas a polB-like gene is absent from low-GC gram-positive genomes and whereas the low-GC gram-positive DNA Pol II strongly conserves a dnaE-like, Pol III primary structure, it is proposed that it be renamed DNA polymerase III E (Pol III E) to accurately reflect its replicative function and its origin from dnaE. It is also proposed that DNA Pol III, the other replication-specific Pol of low-GC gram-positive organisms, be renamed DNA polymerase III C (Pol III C) to denote its origin from polC. By this revised nomenclature, the DNA Pols that are expressed constitutively in low-GC gram-positive bacteria would include DNA Pol I, the dispensable repair enzyme encoded by polA, and the two essential, replication-specific enzymes Pol III C and Pol III E, encoded, respectively, by polC and dnaE.
doi:10.1128/JB.184.14.3834-3838.2002
PMCID: PMC135168  PMID: 12081953
4.  Identification of Escherichia coli dnaE (polC) Mutants with Altered Sensitivity to 2′,3′-Dideoxyadenosine 
Journal of Bacteriology  2000;182(14):3942-3947.
Bacteria with reduced DNA polymerase I activity have increased sensitivity to killing by chain-terminating nucleotides (S. A. Rashbaum and N. R. Cozzarelli, Nature 264:679–680, 1976). We have used this observation as the basis of a genetic strategy to identify mutations in the dnaE (polC) gene of Escherichia coli that alter sensitivity to 2′,3′-dideoxyadenosine (ddA). Two dnaE (polC) mutant strains with increased sensitivity to ddA and one strain with increased resistance were isolated and characterized. The mutant phenotypes are due to single amino acid substitutions in the α subunit, the protein product of the dnaE (polC) gene. Increased sensitivity to ddA is produced by the L329F and H417Y substitutions, and increased resistance is produced by the G365S substitution. The L329F and H417Y substitutions also reduce the accuracy of DNA replication (the mutator phenotype), while the G365S substitution increases accuracy (the antimutator phenotype). All of the amino acid substitutions are in conserved regions near essential aspartate residues. These results prove the effectiveness of the genetic strategy in identifying informative dnaE (polC) mutations that can be used to elucidate the molecular basis of nucleotide interactions in the α subunit of the DNA polymerase III holoenzyme.
PMCID: PMC94578  PMID: 10869071
5.  Distinct co-evolution patterns of genes associated to DNA polymerase III DnaE and PolC 
BMC Genomics  2012;13:69.
Background
Bacterial genomes displaying a strong bias between the leading and the lagging strand of DNA replication encode two DNA polymerases III, DnaE and PolC, rather than a single one. Replication is a highly unsymmetrical process, and the presence of two polymerases is therefore not unexpected. Using comparative genomics, we explored whether other processes have evolved in parallel with each polymerase.
Results
Extending previous in silico heuristics for the analysis of gene co-evolution, we analyzed the function of genes clustering with dnaE and polC. Clusters were highly informative. DnaE co-evolves with the ribosome, the transcription machinery, the core of intermediary metabolism enzymes. It is also connected to the energy-saving enzyme necessary for RNA degradation, polynucleotide phosphorylase. Most of the proteins of this co-evolving set belong to the persistent set in bacterial proteomes, that is fairly ubiquitously distributed. In contrast, PolC co-evolves with RNA degradation enzymes that are present only in the A+T-rich Firmicutes clade, suggesting at least two origins for the degradosome.
Conclusion
DNA replication involves two machineries, DnaE and PolC. DnaE co-evolves with the core functions of bacterial life. In contrast PolC co-evolves with a set of RNA degradation enzymes that does not derive from the degradosome identified in gamma-Proteobacteria. This suggests that at least two independent RNA degradation pathways existed in the progenote community at the end of the RNA genome world.
doi:10.1186/1471-2164-13-69
PMCID: PMC3814617  PMID: 22333191
replication; degradosome; LUCA; phylogenetic profiling; nanoRNase
6.  Association of purine asymmetry, strand-biased gene distribution and PolC within Firmicutes and beyond: a new appraisal 
BMC Genomics  2014;15(1):430.
Background
The Firmicutes often possess three conspicuous genome features: marked Purine Asymmetry (PAS) across two strands of replication, Strand-biased Gene Distribution (SGD) and presence of two isoforms of DNA polymerase III alpha subunit, PolC and DnaE. Despite considerable research efforts, it is not clear whether the co-existence of PAS, PolC and/or SGD is an essential and exclusive characteristic of the Firmicutes. The nature of correlations, if any, between these three features within and beyond the lineages of Firmicutes has also remained elusive. The present study has been designed to address these issues.
Results
A large-scale analysis of diverse bacterial genomes indicates that PAS, PolC and SGD are neither essential nor exclusive features of the Firmicutes. PolC prevails in four bacterial phyla: Firmicutes, Fusobacteria, Tenericutes and Thermotogae, while PAS occurs only in subsets of Firmicutes, Fusobacteria and Tenericutes. There are five major compositional trends in Firmicutes: (I) an explicit PAS or G + A-dominance along the entire leading strand (II) only G-dominance in the leading strand, (III) alternate stretches of purine-rich and pyrimidine-rich sequences, (IV) G + T dominance along the leading strand, and (V) no identifiable patterns in base usage. Presence of strong SGD has been observed not only in genomes having PAS, but also in genomes with G-dominance along their leading strands – an observation that defies the notion of co-occurrence of PAS and SGD in Firmicutes. The PolC-containing non-Firmicutes organisms often have alternate stretches of R-dominant and Y-dominant sequences along their genomes and most of them show relatively weak, but significant SGD. Firmicutes having G + A-dominance or G-dominance along LeS usually show distinct base usage patterns in three codon sites of genes. Probable molecular mechanisms that might have incurred such usage patterns have been proposed.
Conclusion
Co-occurrence of PAS, strong SGD and PolC should not be regarded as a genome signature of the Firmicutes. Presence of PAS in a species may warrant PolC and strong SGD, but PolC and/or SGD not necessarily implies PAS.
Electronic supplementary material
The online version of this article (doi:10.1186/1471-2164-15-430) contains supplementary material, which is available to authorized users.
doi:10.1186/1471-2164-15-430
PMCID: PMC4070872  PMID: 24899249
Fusobacteria; Tenericutes; Thermotogae; G-dominance; Leading strand; Lagging strand; Mutational bias; Cytosine methylation; Codon sites; Base usage
7.  Selection of dinB Alleles Suppressing Survival Loss upon dinB Overexpression in Escherichia coli 
Journal of Bacteriology  2014;196(16):3023-3035.
Escherichia coli strains overproducing DinB undergo survival loss; however, the mechanisms regulating this phenotype are poorly understood. Here we report a genetic selection revealing DinB residues essential to effect this loss-of-survival phenotype. The selection uses strains carrying both an antimutator allele of DNA polymerase III (Pol III) α-subunit (dnaE915) and either chromosomal or plasmid-borne dinB alleles. We hypothesized that dnaE915 cells would respond to DinB overproduction differently from dnaE+ cells because the dnaE915 allele is known to have an altered genetic interaction with dinB+ compared to its interaction with dnaE+. Notably, we observe a loss-of-survival phenotype in dnaE915 strains with either a chromosomal catalytically inactive dinB(D103N) allele or a low-copy-number plasmid-borne dinB+ upon DNA damage treatment. Furthermore, we find that the loss-of-survival phenotype occurs independently of DNA damage treatment in a dnaE915 strain expressing the catalytically inactive dinB(D103N) allele from a low-copy-number plasmid. The selective pressure imposed resulted in suppressor mutations that eliminated growth defects. The dinB intragenic mutations examined were either base pair substitutions or those that we inferred to be loss of function (i.e., deletions and insertions). Further analyses of selected novel dinB alleles, generated by single-base-pair substitutions in the dnaE915 strain, indicated that these no longer effect loss of survival upon overproduction in dnaE+ strains. These mutations are mapped to specific areas of DinB; this permits us to gain insights into the mechanisms underlying the DinB-mediated overproduction loss-of-survival phenotype.
doi:10.1128/JB.01782-14
PMCID: PMC4135642  PMID: 24914188
8.  Role of the dinB Gene Product in Spontaneous Mutation in Escherichia coli with an Impaired Replicative Polymerase 
Journal of Bacteriology  2000;182(23):6742-6750.
We isolated several new mutator mutations of the Escherichia coli replicative polymerase dnaE subunit alpha and used them and a previously reported dnaE mutation to study spontaneous frameshift and base substitution mutations. Two of these dnaE strains produce many more mutants when grown on rich (Luria-Bertani) than on minimal medium. A differential effect of the medium was not observed when these dnaE mutations were combined with a mismatch repair mutation. The selection scheme for the dnaE mutations required that they be able to complement a temperature-sensitive strain. However, the ability to complement is not related to the mutator effect for at least one of the mutants. Comparison of the mutation rates for frameshift and base substitution mutations in mutS and dnaE mutS strains suggests that the mismatch repair proteins respond differently to the two types of change. Deletion of dinB from both chromosome and plasmid resulted in a four- to fivefold decrease in the rate of frameshift and base substitution mutations in a dnaE mutS double mutant background. This reduction indicates that most mistakes in replication occur as a result of the action of the auxiliary rather than the replicative polymerase in this dnaE mutant. Deletion of dinB from strains carrying a wild-type dnaE had a measurable effect, suggesting that a fraction of spontaneous mutations occur as a result of dinB polymerase action even in cells with a normal replicative polymerase.
PMCID: PMC111418  PMID: 11073920
9.  Mismatch repair causes the dynamic release of an essential DNA polymerase from the replication fork 
Molecular microbiology  2011;82(3):648-663.
SUMMARY
Mismatch repair (MMR) corrects DNA polymerase errors occurring during genome replication. MMR is critical for genome maintenance, and its loss increases mutation rates several hundredfold. Recent work has shown that the interaction between the mismatch recognition protein MutS and the replication processivity clamp is important for MMR in Bacillus subtilis. To further understand how MMR is coupled to DNA replication, we examined the subcellular localization of MMR and DNA replication proteins fused to green fluorescent protein (GFP) in live cells, following an increase in DNA replication errors. We demonstrate that foci of the essential DNA polymerase DnaE-GFP decreases following mismatch incorporation and that loss of DnaE-GFP foci requires MutS. Furthermore, we show that MutS and MutL bind DnaE in vitro, suggesting that DnaE is coupled to repair. We also found that DnaE-GFP foci decrease in vivo following a DNA damage-independent arrest of DNA synthesis showing that loss of DnaE-GFP foci is caused by perturbations to DNA replication. We propose that MutS directly contacts the DNA replication machinery, causing a dynamic change in the organization of DnaE at the replication fork during MMR. Our results establish a striking and intimate connection between MMR and the replicating DNA polymerase complex in vivo.
doi:10.1111/j.1365-2958.2011.07841.x
PMCID: PMC4260453  PMID: 21958350
fluorescence; localization; mismatch repair; MutS; MutL; DnaE
10.  Effects of Escherichia coli dnaE antimutator alleles in a proofreading-deficient mutD5 strain. 
Journal of Bacteriology  1995;177(20):5979-5986.
We have previously isolated seven mutants of Escherichia coli which replicate their DNA with increased fidelity. These mutants were isolated as suppressors of the elevated mutability of a mismatch-repair-defective mutL strain. Each mutant was shown to contain a single amino acid substitution in the dnaE gene product, the alpha (i.e., polymerase) subunit of DNA polymerase III holoenzyme responsible for replicating the E. coli chromosome. The mechanism(s) by which these antimutators exert their effect is of interest. Here, we have examined the effects of the antimutator alleles in a mutD5 mutator strain. This strain carries a mutation in the dnaQ gene, which results in defective exonucleolytic proofreading. Our results show that dnaE mutations also confer a strong antimutator phenotype in this background, the effects being generally much greater than those observed previously in the mutL background. The results suggest that the dnaE antimutator alleles can exert their effect independently of exonucleolytic proofreading activity. The large magnitude of the antimutator effects in the mutD5 background can be ascribed, at least in part, to the (additional) restoration of DNA mismatch repair, which is generally impaired in mutD5 strains because of error saturation. The high mutability of mutD5 strains was exploited to isolate a strong new dnaE antimutator allele on the basis of its ability to suppress the high reversion rate of an A.T-->T.A transversion in this background. A model suggesting how the dnaE antimutator alleles might exert their effects in proofreading-proficient and -deficient backgrounds is presented.
PMCID: PMC177427  PMID: 7592352
11.  Cloning and identification of the product of the dnaE gene of Escherichia coli. 
Journal of Bacteriology  1982;152(1):351-356.
We successively subcloned the dnaE gene of Escherichia coli into pBR322, resulting in a plasmid that contains 4.6 kilobases of E. coli DNA. This plasmid can complement a dnaE temperature-sensitive mutation. A restriction map of the dnaE gene and the surrounding 10.7-kilobase region of the E. coli chromosome was determined. A unique HindIII restriction endonuclease site within the cloned segment of DNA was identified as a site required for expression of the dnaE gene. By using the maxicell plasmid-directed protein synthesizing system, we demonstrated that dnaE codes for the alpha subunit of DNA polymerase III.
Images
PMCID: PMC221416  PMID: 6288664
12.  An SOS-regulated operon involved in damage-inducible mutagenesis in Caulobacter crescentus 
Nucleic Acids Research  2005;33(8):2603-2614.
DNA polymerases of the Y-family, such as Escherichia coli UmuC and DinB, are specialized enzymes induced by the SOS response, which bypass lesions allowing the continuation of DNA replication. umuDC orthologs are absent in Caulobacter crescentus and other bacteria, raising the question about the existence of SOS mutagenesis in these organisms. Here, we report that the C.crescentus dinB ortholog is not involved in damage-induced mutagenesis. However, an operon composed of two hypothetical genes and dnaE2, encoding a second copy of the catalytic subunit of Pol III, is damage inducible in a recA-dependent manner, and is responsible for most ultraviolet (UV) and mitomycin C-induced mutations in C.crescentus. The results demonstrate that the three genes are required for the error-prone processing of DNA lesions. The two hypothetical genes were named imuA and imuB, after inducible mutagenesis. ImuB is similar to proteins of the Y-family of polymerases, and possibly cooperates with DnaE2 in lesion bypass. The mutations arising as a consequence of the activity of the imuAB dnaE2 operon are rather unusual for UV irradiation, including G:C to C:G transversions.
doi:10.1093/nar/gki551
PMCID: PMC1092274  PMID: 15886391
13.  Cell Death in Escherichia coli dnaE(Ts) Mutants Incubated at a Nonpermissive Temperature Is Prevented by Mutation in the cydA Gene 
Journal of Bacteriology  2004;186(7):2147-2155.
Cells of the Escherichia coli dnaE(Ts) dnaE74 and dnaE486 mutants die after 4 h of incubation at 40°C in Luria-Bertani medium. Cell death is preceded by elongation, is inhibited by chloramphenicol, tetracycline, or rifampin, and is dependent on cell density. Cells survive at 40°C when they are incubated at a high population density or at a low density in conditioned medium, but they die when the medium is supplemented with glucose and amino acids. Deletion of recA or sulA has no effect. We isolated suppressors which survived for long periods at 40°C but did not form colonies. The suppressors protected against hydroxyurea-induced killing. Sequence and complementation analysis indicated that suppression was due to mutation in the cydA gene. The DNA content of dnaE mutants increased about eightfold in 4 h at 40°C, as did the DNA content of the suppressed strains. The amount of plasmid pBR322 in a dnaE74 strain increased about fourfold, as measured on gels, and the electrophoretic pattern appeared to be normal even though the viability of the parent cells decreased 2 logs. Transformation activity also increased. 4′,6′-Diamidino-2-phenylindole staining demonstrated that there were nucleoids distributed throughout the dnaE filaments formed at 40°C, indicating that there was segregation of the newly formed DNA. We concluded that the DNA synthesized was physiologically competent, particularly since the number of viable cells of the suppressed strain increased during the first few hours of incubation. These observations support the view that E. coli senses the rate of DNA synthesis and inhibits septation when the rate of DNA synthesis falls below a critical level relative to the level of RNA and protein synthesis.
doi:10.1128/JB.186.7.2147-2155.2004
PMCID: PMC374420  PMID: 15028700
14.  An Escherichia coli dnaE mutation with suppressor activity toward mutator mutD5. 
Journal of Bacteriology  1992;174(6):1974-1982.
The Escherichia coli mutator mutD5 is a conditional mutator whose strength is moderate when the strain is growing in minimal medium but very strong when it is growing in rich medium. The primary defect of this strain resides in the dnaQ gene, which encodes the epsilon (exonucleolytic proofreading) subunit of the DNA polymerase III holoenzyme. In one of our mutD5 strains we discovered a mutation that suppressed the mutability of mutD5. Interestingly, the level of suppression was strong in minimal medium but weak in rich medium. The mutation was localized to the dnaE gene, which encodes the alpha (polymerase) subunit of the DNA polymerase III holoenzyme. This mutation, termed dnaE910, also conferred improved growth of the mutD5 strain and caused increased temperature sensitivity in both wild-type and dnaQ49 backgrounds. The reduction in mutator strength by dnaE910 was also observed when this allele was placed in a mutL, a mutT, or a dnaQ49 background. The results suggest that dnaE910 encodes an antimutator DNA polymerase whose effect might be mediated by improved insertion fidelity or by increased proofreading via its effect on the exonuclease activity.
Images
PMCID: PMC205804  PMID: 1548237
15.  Suppression of dnaE nonsense mutations by pcbA1. 
Journal of Bacteriology  1989;171(6):3139-3143.
DNA polymerase III has been recognized as the required replication enzyme in Escherichia coli. The synthesis subunit of DNA polymerase III holoenzyme (alpha subunit) is encoded by the dnaE gene. We have reported that E. coli cells can survive and grow in the absence of a functional dnaE gene product if DNA polymerase I and the pcbA1 mutation are present. Existing mutations in the dnaE gene have been conditionally defective thermolabile mutations. We report here construction of nonsense mutations in the dnaE gene by use of a temperature-sensitive suppressor mutation to permit survival at the permissive temperature (32 degrees C). Introduction of the pcbA1 mutation eliminated the temperature-sensitive phenotype. We confirmed by immunoblotting the lack of detectable alpha subunit at 43 degrees C.
Images
PMCID: PMC210027  PMID: 2542217
16.  In Vivo Protein Interactions within the Escherichia coli DNA Polymerase III Core 
Journal of Bacteriology  1998;180(6):1563-1566.
The mechanisms that control the fidelity of DNA replication are being investigated by a number of approaches, including detailed kinetic and structural studies. Important tools in these studies are mutant versions of DNA polymerases that affect the fidelity of DNA replication. It has been suggested that proper interactions within the core of DNA polymerase III (Pol III) of Escherichia coli could be essential for maintaining the optimal fidelity of DNA replication (H. Maki and A. Kornberg, Proc. Natl. Acad. Sci. USA 84:4389–4392, 1987). We have been particularly interested in elucidating the physiological role of the interactions between the DnaE (α subunit [possessing DNA polymerase activity]) and DnaQ (ɛ subunit [possessing 3′→5′ exonucleolytic proofreading activity]) proteins. In an attempt to achieve this goal, we have used the Saccharomyces cerevisiae two-hybrid system to analyze specific in vivo protein interactions. In this report, we demonstrate interactions between the DnaE and DnaQ proteins and between the DnaQ and HolE (θ subunit) proteins. We also tested the interactions of the wild-type DnaE and HolE proteins with three well-known mutant forms of DnaQ (MutD5, DnaQ926, and DnaQ49), each of which leads to a strong mutator phenotype. Our results show that the mutD5 and dnaQ926 mutations do not affect the ɛ subunit-α subunit and ɛ subunit-θ subunit interactions. However, the dnaQ49 mutation greatly reduces the strength of interaction of the ɛ subunit with both the α and the θ subunits. Thus, the mutator phenotype of dnaQ49 may be the result of an altered conformation of the ɛ protein, which leads to altered interactions within the Pol III core.
PMCID: PMC107058  PMID: 9515927
17.  A Temperature-Sensitive Mutation in the dnaE Gene of Caulobacter crescentus That Prevents Initiation of DNA Replication but Not Ongoing Elongation of DNA 
Journal of Bacteriology  2004;186(4):1205-1212.
A genetic screen for cell division cycle mutants of Caulobacter crescentus identified a temperature-sensitive DNA replication mutant. Genetic complementation experiments revealed a mutation within the dnaE gene, encoding the α-catalytic subunit of DNA polymerase III holoenzyme. Sequencing of the temperature-sensitive dnaE allele indicated a single base pair substitution resulting in a change from valine to glutamic acid within the C-terminal portion of the protein. This mutation lies in a region of the DnaE protein shown in Escherichia coli, to be important in interactions with other essential DNA replication proteins. Using DNA replication assays and fluorescence flow cytometry, we show that the observed block in DNA synthesis in the Caulobacter dnaE mutant strain occurs at the initiation stage of replication and that there is also a partial block of DNA elongation.
doi:10.1128/JB.186.4.1205-1212.2004
PMCID: PMC344199  PMID: 14762018
18.  Sequence analysis of the Escherichia coli dnaE gene. 
Journal of Bacteriology  1987;169(12):5735-5744.
We have determined the sequence of a 4,350-nucleotide region of the Escherichia coli chromosome that contains dnaE, the structural gene for the alpha subunit of DNA polymerase III holoenzyme. The dnaE gene appeared to be part of an operon containing at least three other genes: 5'-lpxB-ORF23-dnaE-ORF37-3' (ORF, open reading frame). The lpxB gene encodes lipid A disaccharide synthase, an enzyme essential for cell growth and division (M. Nishijima, C.E. Bulawa, and C.R.H. Raetz, J. Bacteriol. 145:113-121, 1981). The termination codons of lpxB and ORF23 overlapped the initiation codons of ORF23 and dnaE, respectively, suggesting translational coupling. No rho-independent transcription termination sequences were observed. A potential internal transcriptional promoter was found preceding dnaE. Deletion of the -35 region of this promoter abolished dnaE expression in plasmids lacking additional upstream sequences. From the deduced amino acid sequence, alpha had a molecular weight of 129,920 and an isoelectric point of 4.93 for the denatured protein. ORF23 encoded a more basic protein (pI 7.11) with a molecular weight of 23,228. In the accompanying paper (D.N. Crowell, W.S. Reznikoff, and C.R.H. Raetz, J. Bacteriol. 169:5727-5734, 1987), the sequence of the upstream region that contains lpxA and lpxB is reported.
Images
PMCID: PMC214094  PMID: 3316192
19.  Intrinsic Polymerase Activities of UmuD′2C and MucA′2B Are Responsible for Their Different Mutagenic Properties during Bypass of a T-T cis-syn Cyclobutane Dimer 
Journal of Bacteriology  2000;182(8):2285-2291.
In wild-type Escherichia coli, translesion replication is largely dependent upon the UmuD′2C complex (DNA polymerase V [polV]) or its plasmid-encoded homologs, such as MucA′2B. Interestingly, both the efficiency of translesion replication of a T-T cis-syn dimer and the spectra of mutations observed are different in Umu- and Muc-expressing strains. We have investigated whether the polIII core is responsible for these differences by measuring the frequency of dimer bypass, the error rate of bypass, and the resulting mutation spectrum in mutants carrying a deletion of dnaQ (ɛ subunit) or holE (θ subunit) or carrying the dnaQ allele mutD5, which is deficient in proofreading but is competent in the structural function of ɛ, or the dnaE antimutator allele spq-2. The chromosomal copy of the umuDC operon was deleted in each strain, and the UmuDC, UmuD′C, MucAB, or MucA′B proteins were expressed from a low-copy-number plasmid. With only few exceptions, we found that the characteristically different mutation spectra resulting from Umu- and Muc-mediated bypass are maintained in all of the strains investigated, indicating that differences in the activity or structure of the polIII core are not responsible for the observed phenotype. We also demonstrate that the MucA′2B complex is more efficient in promoting translesion replication than the UmuD′2C proteins and show that, contrary to expectation, the T-T dimer is bypassed more accurately by MucA′2B than by UmuD′2C. These results are consistent with the view that in a wild-type cell, the polV-like enzymes are responsible for the spectra of mutations generated during translesion replication and that polIII may simply be required to fix the misincorporations as mutations by completing chromosomal replication. Our observations also show that the mutagenic properties of a lesion can depend strongly on the particular enzyme employed in bypass.
PMCID: PMC111279  PMID: 10735873
20.  Determination of the precise location and orientation of the Escherichia coli dnaE gene. 
Journal of Bacteriology  1984;158(2):455-459.
The minimal region required for expression of the dnaE gene of Escherichia coli has been determined relative to a detailed restriction endonuclease map. This has been accomplished by analysis of Bal 31 exonuclease-generated deletions from the termini of the E. coli DNA contained in plasmid pMWE303 , a plasmid that we have previously demonstrated to contain the dnaE gene (M. M. Welch and C. S. McHenry , J. Bacteriol . 152:351-356, 1982). The competence of these deletion-containing plasmids in expressing the alpha subunit of DNA polymerase III holoenzyme has been determined by their ability both to complement a dnaE mutant and to direct the synthesis of a complete alpha subunit. The carboxyl-terminal coding region of dnaE has been identified through the detection of partial alpha polypeptides encoded by plasmids containing deletions from one end of the gene. This approach has permitted the precise determination of both termini of the dnaE gene and the determination of the orientation of the gene within the E. coli chromosome.
Images
PMCID: PMC215449  PMID: 6327605
21.  Flexibility and Symmetry of Prokaryotic Genome Rearrangement Reveal Lineage-Associated Core-Gene-Defined Genome Organizational Frameworks 
mBio  2014;5(6):e01867-14.
ABSTRACT
The prokaryotic pangenome partitions genes into core and dispensable genes. The order of core genes, albeit assumed to be stable under selection in general, is frequently interrupted by horizontal gene transfer and rearrangement, but how a core-gene-defined genome maintains its stability or flexibility remains to be investigated. Based on data from 30 species, including 425 genomes from six phyla, we grouped core genes into syntenic blocks in the context of a pangenome according to their stability across multiple isolates. A subset of the core genes, often species specific and lineage associated, formed a core-gene-defined genome organizational framework (cGOF). Such cGOFs are either single segmental (one-third of the species analyzed) or multisegmental (the rest). Multisegment cGOFs were further classified into symmetric or asymmetric according to segment orientations toward the origin-terminus axis. The cGOFs in Gram-positive species are exclusively symmetric and often reversible in orientation, as opposed to those of the Gram-negative bacteria, which are all asymmetric and irreversible. Meanwhile, all species showing strong strand-biased gene distribution contain symmetric cGOFs and often specific DnaE (α subunit of DNA polymerase III) isoforms. Furthermore, functional evaluations revealed that cGOF genes are hub associated with regard to cellular activities, and the stability of cGOF provides efficient indexes for scaffold orientation as demonstrated by assembling virtual and empirical genome drafts. cGOFs show species specificity, and the symmetry of multisegmental cGOFs is conserved among taxa and constrained by DNA polymerase-centric strand-biased gene distribution. The definition of species-specific cGOFs provides powerful guidance for genome assembly and other structure-based analysis.
IMPORTANCE
Prokaryotic genomes are frequently interrupted by horizontal gene transfer (HGT) and rearrangement. To know whether there is a set of genes not only conserved in position among isolates but also functionally essential for a given species and to further evaluate the stability or flexibility of such genome structures across lineages are of importance. Based on a large number of multi-isolate pangenomic data, our analysis reveals that a subset of core genes is organized into a core-gene-defined genome organizational framework, or cGOF. Furthermore, the lineage-associated cGOFs among Gram-positive and Gram-negative bacteria behave differently: the former, composed of 2 to 4 segments, have their fragments symmetrically rearranged around the origin-terminus axis, whereas the latter show more complex segmentation and are partitioned asymmetrically into chromosomal structures. The definition of cGOFs provides new insights into prokaryotic genome organization and efficient guidance for genome assembly and analysis.
doi:10.1128/mBio.01867-14
PMCID: PMC4251990  PMID: 25425232
22.  Nucleotide sequences of dnaE, the gene for the polymerase subunit of DNA polymerase III in Salmonella typhimurium, and a variant that facilitates growth in the absence of another polymerase subunit. 
Journal of Bacteriology  1989;171(10):5581-5586.
The dnaE gene of Salmonella typhimurium, like that of Escherichia coli, encodes the alpha subunit containing the polymerase activity of the principal replicative enzyme, DNA polymerase III. This gene, or one nearby, has been identified as the locus of suppressor mutations that promote growth by cells deleted for dnaQ, the gene for the editing subunit of this enzyme complex. Using a combination of nucleotide sequencing and marker rescue experiments, the alteration in one such suppressor was identified as a valine-to-glycine substitution at amino acid 832 of the 1,160-amino-acid alpha polypeptide. The alpha polypeptides of E. coli and S. typhimurium are identical in size and in 97% of their amino acid residues. Their identity includes the valine residue that was changed in the suppressor allele of S. typhimurium. We also localized a temperature-sensitive dnaE mutation to the 3' half of dnaE.
Images
PMCID: PMC210400  PMID: 2676978
23.  Cytochrome Oxidase Deficiency Protects Escherichia coli from Cell Death but Not from Filamentation Due to Thymine Deficiency or DNA Polymerase Inactivation 
Journal of Bacteriology  2005;187(8):2827-2835.
Temperature-sensitive DNA polymerase mutants (dnaE) are protected from cell death on incubation at nonpermissive temperature by mutation in the cydA gene controlling cytochrome bd oxidase. Protection is observed in complex (Luria-Bertani [LB]) medium but not on minimal medium. The cydA mutation protects a thymine-deficient strain from death in the absence of thymine on LB but not on minimal medium. Both dnaE and Δthy mutants filament under nonpermissive conditions. Filamentation per se is not the cause of cell death, because the dnaE cydA double mutant forms long filaments after 24 h of incubation in LB medium at nonpermissive temperature. These filaments have multiply dispersed nucleoids and produce colonies on return to permissive conditions. The protective effect of a deficiency of cydA at high temperature is itself suppressed by overexpression of cytochrome bo3, indicating that the phenomenon is related to energy metabolism rather than to a specific effect of the cydA protein. We propose that filamentation and cell death resulting from thymine deprivation or slowing of DNA synthesis are not sequential events but occur in response to the same or a similar signal which is modulated in complex medium by cytochrome bd oxidase. The events which follow inhibition of replication fork progression due to either polymerase inactivation, thymine deprivation, or hydroxyurea inhibition differ in detail from those following actual DNA damage.
doi:10.1128/JB.187.8.2827-2835.2005
PMCID: PMC1070382  PMID: 15805529
24.  Isolation and characterization of a new globomycin-resistant dnaE mutant of Escherichia coli. 
Journal of Bacteriology  1987;169(8):3400-3408.
We isolated a globomycin-resistant, temperature-sensitive mutant of Escherichia coli K-12 strain AB1157. The mutation mapped in dnaE, the structural gene for the alpha-subunit of DNA polymerase III. The in vivo processing of lipid-modified prolipoprotein was more resistant to globomycin in the mutant strain 307 than in its parent. The prolipoprotein signal peptidase activity was also increased twofold in the mutant, and there was a threefold increase in the activity of isoleucyl-tRNA synthetase. The results suggest that a mutation in dnaE may affect the expression of the ileS-lsp operon in E. coli. In addition, strain 307 showed a reduced level of streptomycin resistance compared with its parental strain AB1157 (rpsL31). Strain 307 was killed by streptomycin at a concentration of 200 micrograms/ml, which did not affect the rate of bulk protein synthesis in this mutant. A second mutation which was involved in the reduced streptomycin resistance in strain 307 was identified and found to be closely linked to or within the rpsD (ramA, ribosomal ambiguity) gene. Both dnaE and rpsD were required for the reduced streptomycin resistance in strain 307.
Images
PMCID: PMC212409  PMID: 3112119
25.  Translesion-synthesis DNA polymerases participate in replication of the telomeres in Streptomyces 
Nucleic Acids Research  2011;40(3):1118-1130.
Linear chromosomes and linear plasmids of Streptomyces are capped by terminal proteins that are covalently bound to the 5′-ends of DNA. Replication is initiated from an internal origin, which leaves single-stranded gaps at the 3′-ends. These gaps are patched by terminal protein-primed DNA synthesis. Streptomyces contain five DNA polymerases: one DNA polymerase I (Pol I), two DNA polymerases III (Pol III) and two DNA polymerases IV (Pol IV). Of these, one Pol III, DnaE1, is essential for replication, and Pol I is not required for end patching. In this study, we found the two Pol IVs (DinB1 and DinB2) to be involved in end patching. dinB1 and dinB2 could not be co-deleted from wild-type strains containing a linear chromosome, but could be co-deleted from mutant strains containing a circular chromosome. The resulting ΔdinB1 ΔdinB2 mutants supported replication of circular but not linear plasmids, and exhibited increased ultraviolet sensitivity and ultraviolet-induced mutagenesis. In contrast, the second Pol III, DnaE2, was not required for replication, end patching, or ultraviolet resistance and mutagenesis. All five polymerase genes are relatively syntenous in the Streptomyces chromosomes, including a 4-bp overlap between dnaE2 and dinB2. Phylogenetic analysis showed that the dinB1-dinB2 duplication occurred in a common actinobacterial ancestor.
doi:10.1093/nar/gkr856
PMCID: PMC3273824  PMID: 22006845

Results 1-25 (923648)