Search tips
Search criteria

Results 1-25 (778810)

Clipboard (0)

Related Articles

1.  Unique Structure and Dynamics of the EphA5 Ligand Binding Domain Mediate Its Binding Specificity as Revealed by X-ray Crystallography, NMR and MD Simulations 
PLoS ONE  2013;8(9):e74040.
The 16 EphA and EphB receptors represent the largest family of receptor tyrosine kinases, and their interactions with 9 ephrin-A and ephrin-B ligands initiate bidirectional signals controlling many physiological and pathological processes. Most interactions occur between receptor and ephrins of the same class, and only EphA4 can bind all A and B ephrins. To understand the structural and dynamic principles that enable Eph receptors to utilize the same jellyroll β-sandwich fold to bind ephrins, the VAPB-MSP domain, peptides and small molecules, we have used crystallography, NMR and molecular dynamics (MD) simulations to determine the first structure and dynamics of the EphA5 ligand-binding domain (LBD), which only binds ephrin-A ligands. Unexpectedly, despite being unbound, the high affinity ephrin-binding pocket of EphA5 resembles that of other Eph receptors bound to ephrins, with a helical conformation over the J–K loop and an open pocket. The openness of the pocket is further supported by NMR hydrogen/deuterium exchange data and MD simulations. Additionally, the EphA5 LBD undergoes significant picosecond-nanosecond conformational exchanges over the loops, as revealed by NMR and MD simulations, but lacks global conformational exchanges on the microsecond-millisecond time scale. This is markedly different from the EphA4 LBD, which shares 74% sequence identity and 87% homology. Consequently, the unbound EphA5 LBD appears to comprise an ensemble of open conformations that have only small variations over the loops and appear ready to bind ephrin-A ligands. These findings show how two proteins with high sequence homology and structural similarity are still able to achieve distinctive binding specificities through different dynamics, which may represent a general mechanism whereby the same protein fold can serve for different functions. Our findings also suggest that a promising strategy to design agonists/antagonists with high affinity and selectivity might be to target specific dynamic states of the Eph receptor LBDs.
PMCID: PMC3782497  PMID: 24086308
2.  Cytoplasmic Relaxation of Active Eph Controls Ephrin Shedding by ADAM10 
PLoS Biology  2009;7(10):e1000215.
Novel imaging strategies reveal a conformational shift in a receptor tyrosine kinase domain that controls ligand shedding by an ADAM metalloprotease.
Release of cell surface-bound ligands by A-Disintegrin-And-Metalloprotease (ADAM) transmembrane metalloproteases is essential for signalling by cytokine, cell adhesion, and tyrosine kinase receptors. For Eph receptor ligands, it provides the switch between cell-cell adhesion and repulsion. Ligand shedding is tightly controlled by intrinsic tyrosine kinase activity, which for Eph receptors relies on the release of an inhibitory interaction of the cytoplasmic juxtamembrane segment with the kinase domain. However, a mechanism linking kinase and sheddase activities had remained elusive. We demonstrate that it is a membrane-proximal localisation of the latent kinase domain that prevents ephrin ligand shedding in trans. Fluorescence lifetime imaging microscopy and electron tomography reveal that activation extends the Eph receptor tyrosine kinase intracellular domain away from the cell membrane into a conformation that facilitates productive association with ADAM10. Accordingly, EphA3 mutants with constitutively-released kinase domains efficiently support shedding, even when their kinase is disabled. Our data suggest that this phosphorylation-activated conformational switch of EphA3 directly controls ADAM-mediated shedding.
Author Summary
The Eph transmembrane receptors are part of the receptor tyrosine kinase family and play important roles in communication between neighbouring cells. An Eph receptor binds to its ligand, membrane-tethered ephrin, on a neighbouring cell so as to form a stable complex and activate downstream signalling events. One such event is regulation of ADAM10, a transmembrane protease of the ADAM metalloprotease family, which provides a feedback mechanism to Eph signalling. ADAM10 is located on Eph-expressing cells and cleaves ephrin from its membrane tether on the opposite cell (through its so-called sheddase activity), thereby separating the cell-cell connection and allowing the signalling complex to internalise. In other biological contexts, activity of the ADAM metalloprotease family underlies signalling mechanisms such as oncogenic EGF-receptor transactivation, adhesion molecule shedding and cytokine/chemokine release. In general, ADAM function is enhanced when receptor tyrosine signalling is active and repressed when tyrosine kinase signalling is inhibited. However, the mechanism through which receptor tyrosine kinase signalling regulates ADAM10, have remained elusive. By combining fluorescence lifetime imaging microscopy (FLIM) and electron microscopic tomography of EphA3, we have demonstrated in live cells at molecular resolution that tyrosine phosphorylation of activated EphA3 triggers a measurable movement of the kinase domain away from the plasma membrane. Only this conformation of the EphA3 kinase domain away from the plasma membrane permits ADAM10 to come close enough to EphA3 so that it can reach its tightly EphA3-bound substrate, ephrin-A5. Our findings delineate a new regulatory concept in cell-cell communication, whereby control over proteolytic sheddase activity is provided by an activation-induced switch in the conformation of the cytoplasmic domain of a receptor tyrosine kinase, rather than by a cytosolic signalling pathway.
PMCID: PMC2753297  PMID: 19823572
3.  Parcellation of the Thalamus into Distinct Nuclei reflects EphA Expression and Function 
Gene expression patterns : GEP  2013;13(8):10.1016/j.gep.2013.08.002.
Intercellular signaling via the Eph receptor tyrosine kinases and their ligands, the ephrins, acts to shape many regions of the developing brain. One intriguing consequence of Eph signaling is the control of mixing between discrete cell populations in the developing hindbrain, contributing to the formation of segregated rhombomeres. Since the thalamus is also a parcellated structure comprised of discrete nuclei, might Eph signaling play a parallel role in cell segregation in this brain structure? Analyses of expression reveal that several Eph family members are expressed in the forming thalamus and that cells expressing particular receptors form cellular groupings as development proceeds. Specifically, expression of receptors EphA4 or EphA7 and ligand ephrin-A5 is localized to distinct thalamic domains. EphA4 and EphA7 are often coexpressed in regions of the forming thalamus, with each receptor marking discrete thalamic domains. In contrast, ephrin-A5 is expressed by a limited group of thalamic cells. Within the ventral thalamus, EphA4 is present broadly, occasionally overlapping with ephrin-A5 expression. EphA7 is more restricted in its expression and is largely nonoverlapping with ephrin-A5. In mutant mice lacking one or both receptors or ephrin-A5, the appearance of the venteroposterolateral (VPL) and venteroposteromedial (VPM) nuclear complex is altered compared to wild type mice. These in vivo results support a role for Eph family members in the definition of the thalamic nuclei. In parallel, in vitro analysis reveals a hierarchy of mixing among cells expressing ephrin-A5 with cells expressing EphA4 alone, EphA4 and EphA7 together, or EphA7 alone. Together, these data support a model in which EphA molecules promote the parcellation of discrete thalamic nuclei by limiting the extent of cell mixing.
PMCID: PMC3839050  PMID: 24036135
EphA4; EphA7; Ephrin-A5; Thalamus; Development; Segregation; Nuclei
4.  Lithocholic Acid Is an Eph-ephrin Ligand Interfering with Eph-kinase Activation 
PLoS ONE  2011;6(3):e18128.
Eph-ephrin system plays a central role in a large variety of human cancers. In fact, alterated expression and/or de-regulated function of Eph-ephrin system promotes tumorigenesis and development of a more aggressive and metastatic tumour phenotype. In particular EphA2 upregulation is correlated with tumour stage and progression and the expression of EphA2 in non-trasformed cells induces malignant transformation and confers tumorigenic potential. Based on these evidences our aim was to identify small molecules able to modulate EphA2-ephrinA1 activity through an ELISA-based binding screening. We identified lithocholic acid (LCA) as a competitive and reversible ligand inhibiting EphA2-ephrinA1 interaction (Ki = 49 µM). Since each ephrin binds many Eph receptors, also LCA does not discriminate between different Eph-ephrin binding suggesting an interaction with a highly conserved region of Eph receptor family. Structurally related bile acids neither inhibited Eph-ephrin binding nor affected Eph phosphorylation. Conversely, LCA inhibited EphA2 phosphorylation induced by ephrinA1-Fc in PC3 and HT29 human prostate and colon adenocarcinoma cell lines (IC50 = 48 and 66 µM, respectively) without affecting cell viability or other receptor tyrosine-kinase (EGFR, VEGFR, IGFR1β, IRKβ) activity. LCA did not inhibit the enzymatic kinase activity of EphA2 at 100 µM (LANCE method) confirming to target the Eph-ephrin protein-protein interaction. Finally, LCA inhibited cell rounding and retraction induced by EphA2 activation in PC3 cells. In conclusion, our findings identified a hit compound useful for the development of molecules targeting ephrin system. Moreover, as ephrin signalling is a key player in the intestinal cell renewal, our work could provide an interesting starting point for further investigations about the role of LCA in the intestinal homeostasis.
PMCID: PMC3068151  PMID: 21479221
5.  Structurally encoded intraclass differences in EphA clusters drive distinct cell responses 
The functional outcomes of ephrin binding to Eph receptors (Ephs) range from cell repulsion to adhesion. Here we used cell collapse and stripe assays to show contrasting effects of human ephrinA5 binding to EphA2 and EphA4. Despite equivalent ligand-binding affinities EphA4 triggered greater cell collapse, while EphA2-expressing cells adhered better to ephrinA5-coated surfaces. Chimeric receptors showed the ectodomain is a major determinant of cell response. We report crystal structures of EphA4 ectodomain alone and in complexes with ephrinB3 and ephrinA5. These revealed closed clusters with a dimeric or circular arrangement in the crystal lattice, contrasting with extended arrays previously observed for EphA2 ectodomain. Localization microscopy-based analyses showed ligand-stimulated EphA4 induces smaller clusters than EphA2. Mutant Ephs link these characteristics to interactions observed in the crystal lattices, suggesting a mechanism by which distinctive ectodomain surfaces determine clustering, and thereby signalling, properties.
PMCID: PMC3941021  PMID: 23812375
cell adhesion; cell repulsion; receptor clustering; receptor cis interaction; Eph–ephrin crystal structures; Eph ectodomain
6.  Attenuation of Eph Receptor Kinase Activation in Cancer Cells by Coexpressed Ephrin Ligands 
PLoS ONE  2013;8(11):e81445.
The Eph receptor tyrosine kinases mediate juxtacrine signals by interacting “in trans” with ligands anchored to the surface of neighboring cells via a GPI-anchor (ephrin-As) or a transmembrane segment (ephrin-Bs), which leads to receptor clustering and increased kinase activity. Additionally, soluble forms of the ephrin-A ligands released from the cell surface by matrix metalloproteases can also activate EphA receptor signaling. Besides these trans interactions, recent studies have revealed that Eph receptors and ephrins coexpressed in neurons can also engage in lateral “cis” associations that attenuate receptor activation by ephrins in trans with critical functional consequences. Despite the importance of the Eph/ephrin system in tumorigenesis, Eph receptor-ephrin cis interactions have not been previously investigated in cancer cells. Here we show that in cancer cells, coexpressed ephrin-A3 can inhibit the ability of EphA2 and EphA3 to bind ephrins in trans and become activated, while ephrin-B2 can inhibit not only EphB4 but also EphA3. The cis inhibition of EphA3 by ephrin-B2 implies that in some cases ephrins that cannot activate a particular Eph receptor in trans can nevertheless inhibit its signaling ability through cis association. We also found that an EphA3 mutation identified in lung cancer enhances cis interaction with ephrin-A3. These results suggest a novel mechanism that may contribute to cancer pathogenesis by attenuating the tumor suppressing effects of Eph receptor signaling pathways activated by ephrins in trans.
PMCID: PMC3857839  PMID: 24348920
7.  Structural Plasticity of Eph Receptor A4 Facilitates Cross-Class Ephrin Signaling 
Structure(London, England:1993)  2009;17(10):1386-1397.
The EphA4 tyrosine kinase cell surface receptor regulates an array of physiological processes and is the only currently known class A Eph receptor that binds both A and B class ephrins with high affinity. We have solved the crystal structure of the EphA4 ligand binding domain alone and in complex with (1) ephrinB2 and (2) ephrinA2. This set of structures shows that EphA4 has significant conformational plasticity in its ligand binding face. In vitro binding data demonstrate that it has a higher affinity for class A than class B ligands. Structural analyses, drawing on previously reported Eph receptor structures, show that EphA4 in isolation and in complex with ephrinA2 resembles other class A Eph receptors but on binding ephrinB2 assumes structural hallmarks of the class B Eph receptors. This interactive plasticity reveals EphA4 as a structural chameleon, able to adopt both A and B class Eph receptor conformations, and thus provides a molecular basis for EphA-type cross-class reactivity.
PMCID: PMC2832735  PMID: 19836338
8.  The Ephrin Receptor Tyrosine Kinase A2 is a Cellular Receptor for Kaposi’s Sarcoma-Associated Herpesvirus 
Nature medicine  2012;18(6):961-966.
Kaposi’s sarcoma associated herpesvirus (KSHV) is the human oncovirus which causes Kaposi’s sarcoma (KS), a highly vascularised tumour originating from lymphatic endothelial cells. Amongst others, the dimeric complex formed by the KSHV virion envelope glycoproteins H and L (gH/gL) is required for entry of herpesviruses into the host cell. We show that the Ephrin receptor tyrosine kinase A2 (EphA2) is a cellular receptor for KSHV gH/gL. EphA2 co-precipitated with both gH/gL and KSHV virions. KSHV infection rates were increased upon over-expression of EphA2. In contrast, antibodies against EphA2 and siRNAs directed against EphA2 inhibited KSHV infection of lymphatic endothelial cells. Pretreatment of KSHV virions with soluble EphA2 resulted in a dose-dependent inhibition of KSHV infection by up to 90%. Similarly, pretreating cells with the soluble EphA2 ligand EphrinA4 but not with EphA2 itself impaired KSHV infection. Notably, deletion of the EphA2 gene essentially abolished KSHV infection of murine vascular endothelial cells. Binding of gH/gL to EphA2 triggered EphA2 phosphorylation and endocytosis, a major pathway of KSHV entry. Quantitative RT-PCR and situ histochemistry revealed a close correlation between KSHV infection and EphA2 expression both in cultured cells derived from KS or lymphatic endothelium and in KS specimens, respectively. Taken together, these results identify EphA2, a tyrosine kinase with known functions in neo-vascularisation and oncogenesis, as receptor for KSHV gH/gL and implicate an important role for EphA2 in KSHV infection especially of endothelial cells and in KS.
PMCID: PMC3645317  PMID: 22635007
9.  Protein dynamics and conformational selection in bidirectional signal transduction 
BMC Biology  2012;10:2.
Protein conformational dynamics simultaneously allow promiscuity and specificity in binding. The multiple conformations of the free EphA4 ligand-binding domain observed in two new EphA4 crystal structures provide a unique insight into the conformational dynamics of EphA4 and its signaling pathways. The heterogeneous ensemble and loop dynamics explain how the EphA4 receptor is able to bind multiple A- and B-ephrin ligands and small molecules via conformational selection, which helps to fine-tune cellular signal response in both receptor and ligand cells.
See research article
PMCID: PMC3266202  PMID: 22277130
10.  Distinctive Binding of Three Antagonistic Peptides to the Ephrin-Binding Pocket of the EphA4 Receptor 
The Biochemical journal  2012;445(1):47-56.
The EphA4 receptor tyrosine kinase interacts with ephrin ligands to regulate many processes, ranging from axon guidance and nerve regeneration to cancer malignancy. Thus, antagonists that inhibit ephrin binding to EphA4 could be useful for a variety of research and therapeutic applications. Here we characterize the binding features of three antagonistic peptides (KYL, APY and VTM) that selectively target EphA4 among the Eph receptors. Isothermal titration calorimetry analysis demonstrates that all three peptides bind to the ephrin-binding domain of EphA4 with low micromolar affinity. Furthermore, the effects of a series of EphA4 mutations suggest that the peptides interact in different ways with the ephrin-binding pocket of EphA4. Chemical shifts observed by NMR spectroscopy upon binding of the KYL peptide involve many EphA4 residues, consistent with extensive interactions and possibly receptor conformational changes. Additionally, systematic replacement of each of the 12 amino acids of KYL and VTM identify the residues critical for EphA4 binding. The peptides exhibit a long half-life in cell culture medium, which with their substantial binding affinity and selectivity for EphA4 makes them excellent research tools to modulate EphA4 function.
PMCID: PMC3677027  PMID: 22489865
receptor tyrosine kinase; antagonist; targeting; imaging; nerve regeneration; cancer
11.  Refined NMR structure of a heterodimeric SAM:SAM complex. Characterization and manipulation of the EhpA2 interface leads to discovery of new cellular functions of SHIP2 
The sterile alpha motif (SAM) for protein-protein interactions is encountered in over 200 proteins, but the structural bases for its interactions is just becoming clear. Here we solved the structure of the EphA2-SHIP2 SAM:SAM heterodimeric complex by use of NMR restraints from chemical shift perturbations, NOE and RDC experiments. Specific contacts between the protein surfaces differ significantly from a previous model and from other SAM:SAM complexes. Molecular dynamics and docking simulations indicate fluctuations in the complex towards alternate, higher energy conformations. The interface suggests that EphA family members bind to SHIP2 SAM whereas EphB members may not; correspondingly we demonstrate binding of EphA1 but not of EphB2 to SHIP2 SAM. A variant of EphB2 SAM was designed that binds SHIP2. Functional characterization of a mutant EphA2 compromised in SHIP2 binding reveals two previously unrecognized functions of SHIP2 in suppressing ligand-induced activation of EphA2 and in promoting chemotactic cell migration in coordination with the receptor.
PMCID: PMC3516615  PMID: 22244754
NMR structure determination of a protein complex; molecular dynamics and docking calculations; binding thermodynamics and specificity; receptor tyrosine kinase; SHIP2; cell migration; endocytosis
12.  A Small Molecule Agonist of EphA2 Receptor Tyrosine Kinase Inhibits Tumor Cell Migration In Vitro and Prostate Cancer Metastasis In Vivo 
PLoS ONE  2012;7(8):e42120.
During tumor progression, EphA2 receptor can gain ligand-independent pro-oncogenic functions due to Akt activation and reduced ephrin-A ligand engagement. The effects can be reversed by ligand stimulation, which triggers the intrinsic tumor suppressive signaling pathways of EphA2 including inhibition of PI3/Akt and Ras/ERK pathways. These observations argue for development of small molecule agonists for EphA2 as potential tumor intervention agents. Through virtual screening and cell-based assays, we report here the identification and characterization of doxazosin as a novel small molecule agonist for EphA2 and EphA4, but not for other Eph receptors tested. NMR studies revealed extensive contacts of doxazosin with EphA2/A4, recapitulating both hydrophobic and electrostatic interactions recently found in the EphA2/ephrin-A1 complex. Clinically used as an α1-adrenoreceptor antagonist (Cardura®) for treating hypertension and benign prostate hyperplasia, doxazosin activated EphA2 independent of α1-adrenoreceptor. Similar to ephrin-A1, doxazosin inhibited Akt and ERK kinase activities in an EphA2-dependent manner. Treatment with doxazosin triggered EphA2 receptor internalization, and suppressed haptotactic and chemotactic migration of prostate cancer, breast cancer, and glioma cells. Moreover, in an orthotopic xenograft model, doxazosin reduced distal metastasis of human prostate cancer cells and prolonged survival in recipient mice. To our knowledge, doxazosin is the first small molecule agonist of a receptor tyrosine kinase that is capable of inhibiting malignant behaviors in vitro and in vivo.
PMCID: PMC3419725  PMID: 22916121
13.  Structural, Stability, Dynamic and Binding Properties of the ALS-Causing T46I Mutant of the hVAPB MSP Domain as Revealed by NMR and MD Simulations 
PLoS ONE  2011;6(11):e27072.
T46I is the second mutation on the hVAPB MSP domain which was recently identified from non-Brazilian kindred to cause a familial amyotrophic lateral sclerosis (ALS). Here using CD, NMR and molecular dynamics (MD) simulations, we characterized the structure, stability, dynamics and binding capacity of the T46I-MSP domain. The results reveal: 1) unlike P56S which we previously showed to completely eliminate the native MSP structure, T46I leads to no significant disruption of the native secondary and tertiary structures, as evidenced from its far-UV CD spectrum, as well as Cα and Cβ NMR chemical shifts. 2) Nevertheless, T46I does result in a reduced thermodynamic stability and loss of the cooperative urea-unfolding transition. As such, the T46I-MSP domain is more prone to aggregation than WT at high protein concentrations and temperatures in vitro, which may become more severe in the crowded cellular environments. 3) T46I only causes a 3-fold affinity reduction to the Nir2 peptide, but a significant elimination of its binding to EphA4. 4) EphA4 and Nir2 peptide appear to have overlapped binding interfaces on the MSP domain, which strongly implies that two signaling networks may have a functional interplay in vivo. 5) As explored by both H/D exchange and MD simulations, the MSP domain is very dynamic, with most loop residues and many residues on secondary structures highly fluctuated or/and exposed to bulk solvent. Although T46I does not alter overall dynamics, it does trigger increased dynamics of several local regions of the MSP domain which are implicated in binding to EphA4 and Nir2 peptide. Our study provides the structural and dynamic understanding of the T46I-causing ALS; and strongly highlights the possibility that the interplay of two signaling networks mediated by the FFAT-containing proteins and Eph receptors may play a key role in ALS pathogenesis.
PMCID: PMC3206076  PMID: 22069488
14.  An extracellular steric seeding mechanism for Eph-ephrin signalling platform assembly 
Erythropoetin-producing hepatoma (Eph) receptors are cell surface protein tyrosine kinases mediating cell-cell communication. Upon activation they form signalling clusters. We report crystal structures of the full ectodomain of human EphA2 (eEphA2), alone and in complex with the receptor-binding domain of the ligand ephrinA5 (ephrinA5RBD). Unliganded eEphA2 forms linear arrays of staggered parallel receptors involving two patches of residues conserved across A-class Ephs. eEphA2-ephrinA5RBD forms a more elaborate assembly, whose interfaces include the same conserved regions on eEphA2, but re-arranged to accommodate ephrinA5RBD. Cell surface expression of mutant EphA2s demonstrated that these interfaces are critical for localization at cell-cell contacts and activation-dependent degradation. Our results suggest a ‘nucleation’ mechanism whereby a limited number of ligand-receptor interactions seed an arrangement of receptors which can propagate into extended signalling arrays.
PMCID: PMC3672960  PMID: 20228801
15.  Structure of the ligand-binding domain of the EphB2 receptor at 2 Å resolution 
The crystal structure of the ligand-binding domain of a receptor tyrosine kinase EphB2, an important mediator of cell-cell communication, has been determined at a resolution of 2 Å. The structure confirms the induced-fit mechanism for the binding of ligands to EphB receptors.
Eph tyrosine kinase receptors, the largest group of receptor tyrosine kinases, and their ephrin ligands are important mediators of cell–cell communication regulating cell attachment, shape and mobility. Recently, several Eph receptors and ephrins have also been found to play important roles in the progression of cancer. Structural and biophysical studies have established detailed information on the binding and recognition of Eph receptors and ephrins. The initial high-affinity binding of Eph receptors to ephrin occurs through the penetration of an extended G–H loop of the ligand into a hydrophobic channel on the surface of the receptor. Consequently, the G–H loop-binding channel of Eph receptors is the main target in the search for Eph antagonists that could be used in the development of anticancer drugs and several peptides have been shown to specifically bind Eph receptors and compete with the cognate ephrin ligands. However, the molecular details of the conformational changes upon Eph/ephrin binding have remained speculative, since two of the loops were unstructured in the original model of the free EphB2 structure and their conformational changes upon ligand binding could consequently not be analyzed in detail. In this study, the X-ray structure of unbound EphB2 is reported at a considerably higher 2 Å resolution, the conformational changes that the important receptor loops undergo upon ligand binding are described and the consequences that these findings have for the development of Eph antagonists are discussed.
PMCID: PMC2635866  PMID: 19193989
EphB2; Eph receptors; ligand binding
16.  Generation and characterization of a single-chain anti-EphA2 antibody 
Recombinant antibody phage library technology provides multiple advantages, including that human antibodies can be generated against proteins that are highly conserved between species. We used this technology to isolate and characterize an anti-EphA2 single-chain antibody. We show that the antibody binds the antigen with 1:1 stoichiometry and has high specificity for EphA2. The crystal structure of the complex reveals that the antibody targets the same receptor surface cavity as the ephrin ligand. Specifically, a lengthy CDR-H3 loop protrudes deep into the ligand-binding cavity, with several hydrophobic residues at its tip forming an anchor-like structure buried within the hydrophobic Eph pocket, in a way similar to the ephrin receptor-binding loop in the Eph/ephrin structures. Consequently, the antibody blocks ephrin binding to EphA2. Furthermore, it induces apoptosis and reduces cell proliferation in lymphoma cells lines. Since Ephs are important mediators of tumorigenesis, such antibodies could have applications both in research and therapy.
PMCID: PMC4335687  PMID: 25494541
Crystal structure; eph receptor; single-chain antibody
17.  Crystal Structure of the ligand-binding domain of the promiscuous EphA4 receptor reveals two distinct conformations 
Eph receptors and their ephrin ligands are important mediators of cell-cell communication. They are divided in two subclasses based on their affinities for each other and on sequence conservation. Receptor-ligand binding within each subclass is fairly promiscuous, while binding cross the subclasses happens rarely. EphA4 is an exception to this general rule, since it has long been known to bind both A- and B-class ephrin ligands but the reason for this exceptional behavior has not been worked out at molecular level. Recent structural and biochemical studies on EphA4 ligand-binding domain alone and in complex with its ligands have addressed this question. However, the published structures of EphA4/ephrin complexes differ considerably from each other and strikingly different explanations for the exceptional promiscuity of EphA4 were proposed. To address these contradictory findings, we have determined a crystal structure of the EphA4 ligand-binding domain at 2.3 Å resolution and show that the receptor has an unprecedented ability to exist in two very different, well-ordered conformations even in the unbound state. Our results suggest that the ligand promiscuity of the Ephs is directly correlated with the structural flexibility of the ligand-binding surface of the receptor.
PMCID: PMC2949057  PMID: 20678482
Eph; Receptor Tyrosine Kinase; Ephrin; Loop Flexibility; X-ray Crystallography
18.  Structure-activity relationships and mechanism of action of Eph-ephrin antagonists: interaction of cholanic acid with the EphA2 receptor 
ChemMedChem  2012;7(6):1071-1083.
The Eph–ephrin system, including the EphA2 receptor and the ephrin-A1 ligand, plays a critical role in tumor and vascular functions during carcinogenesis. We previously identified (3α,5β)-3-hydroxycholan-24-oic acid (lithocholic acid) as an Eph-ephrin antagonist able to inhibit EphA2 receptor activation and therefore potentially useful as a novel EphA2 receptor targeting agent. Here, we explore the structure-activity relationships of a focused set of lithocholic acid derivatives, based on molecular modelling investigation and displacement binding assays. Our exploration shows that while the 3-α-hydroxyl group of lithocholic acid has a negligible role in the recognition of the EphA2 receptor, its carboxylate group is critical for disrupting the binding of ephrin-A1 to the EphA2. As a result of our investigation, we identified (5β)-cholan-24-oic acid (cholanic acid) as a novel compound that competitively inhibits EphA2-ephrin-A1 interaction with higher potency than lithocholic acid. Surface plasmon resonance analysis indicates that cholanic acid binds specifically and reversibly to the ligand-binding domain of EphA2, with a steady-state dissociation constant (KD) in the low micromolar range. Furthermore, cholanic acid blocks the phosphorylation of EphA2 and cell retraction and rounding in PC3 prostate cancer cells, two effects that depend on EphA2 activation by the ephrin-A1 ligand. These findings suggest that cholanic acid can be used as a template structure to design effective EphA2 antagonists, with potential impact in the elucidation of the role played by this receptor in pathological conditions.
PMCID: PMC3677030  PMID: 22529030
Protein-protein interactions; Structure-activity relationships; Surface plasmon resonance; Steroids; Drug design
19.  Rhesus Monkey Rhadinovirus Uses Eph Family Receptors for Entry into B Cells and Endothelial Cells but Not Fibroblasts 
PLoS Pathogens  2013;9(5):e1003360.
Cellular Ephrin receptor tyrosine kinases (Ephrin receptors, Ephs) were found to interact efficiently with the gH/gL glycoprotein complex of the rhesus monkey rhadinovirus (RRV). Since EphA2 was recently identified as a receptor for the Kaposi's sarcoma-associated herpesvirus (KSHV) (Hahn et al., Nature Medicine 2012), we analyzed RRV and KSHV in parallel with respect to Eph-binding and Eph-dependent entry. Ten of the 14 Eph proteins, including both A- and B-type, interacted with RRV gH/gL. Two RRV strains with markedly different gH/gL sequences exhibited similar but slightly different binding patterns to Ephs. gH/gL of KSHV displayed high affinity towards EphA2 but substantially weaker binding to only a few other Ephs of the A-type. Productive entry of RRV 26-95 into B cells and into endothelial cells was essentially completely dependent upon Ephs since expression of a GFP reporter cassette from recombinant virus could be blocked to greater than 95% by soluble Eph decoys using these cells. In contrast, entry of RRV into fibroblasts and epithelial cells was independent of Ephs by these same criteria. Even high concentrations and mixtures of soluble Eph decoys were not able to reduce by any appreciable extent the number of fibroblasts and epithelial cells productively entered by RRV. Thus, RRV is similar to its close relative KSHV in the use of Eph family receptors for productive entry into B cells and endothelial cells. However, RRV uses a separate, distinct, Eph-independent pathway for productive entry into fibroblasts and epithelial cells. Whether KSHV also uses an Eph-independent pathway in some circumstances or to some extent remains to be determined.
Author Summary
Here we show that the gH/gL glycoprotein complex of rhesus monkey rhadinovirus binds to and mediates entry of virus into target cells via cellular Ephrin receptor tyrosine kinase proteins. Rhesus monkey rhadinovirus is a gamma-2 herpesvirus that is a close homolog of the human Kaposi's sarcoma-associated herpesvirus (KSHV; HHV-8). While KSHV uses EphA2 principally or exclusively for entry, RRV is able to use a broader range of both A-type and B-type Eph receptors. The use of Eph proteins as receptors is conserved despite substantial sequence variation in gH/gL between two RRV strain types and between RRV and KSHV. Importantly, while entry of RRV into B cells and endothelial cells was completely dependent on the Eph receptors by a variety of criteria, entry of RRV into fibroblasts and epithelial cells was essentially independent of Eph receptors by these same criteria. Thus, RRV uses a separate, distinct, Eph-independent pathway for productive entry into fibroblasts and epithelial cells. Whether KSHV also uses an Eph-independent pathway in some circumstances or to some extent remains to be determined.
PMCID: PMC3656109  PMID: 23696734
20.  EphrinA2 Regulates Clathrin Mediated KSHV Endocytosis in Fibroblast Cells by Coordinating Integrin-Associated Signaling and c-Cbl Directed Polyubiquitination 
PLoS Pathogens  2013;9(7):e1003510.
Kaposi's sarcoma-associated herpesvirus (KSHV) interacts with human dermal endothelial cell surface tyrosine kinase EphrinA2 (EphA2) and integrins (α3β1 and αVβ3) in the lipid raft (LR) region, and EphA2 regulates macropinocytic virus entry by coordinating integrin-c-Cbl associated signaling. In contrast, KSHV enters human foreskin fibroblast (HFF) cells by LR-independent clathrin mediated endocytosis. The present studies conducted to identify the key molecules regulating KSHV entry in HFF cells showed that KSHV induces association with integrins (αVβ5, αVβ3 and α3β1) and EphA2 in non-LR regions early during infection and activates EphA2, which in turn associates with phosphorylated c-Cbl, myosin IIA, FAK, Src, and PI3-K, as well as clathrin and its adaptor AP2 and effector Epsin-15 proteins. EphA2 knockdown significantly reduced these signal inductions, virus internalization and gene expression. c-Cbl knockdown ablated the c-Cbl mediated K63 type polyubiquitination of EphA2 and clathrin association with EphA2 and KSHV. Mutations in EphA2's tyrosine kinase domain (TKD) or sterile alpha motif (SAM) abolished its interaction with c-Cbl. Mutations in tyrosine kinase binding (TKB) or RING finger (RF) domains of c-Cbl resulted in very poor association of c-Cbl with EphA2 and decreased EphA2 polyubiquitination. These studies demonstrated the contributions of these domains in EphA2 and c-Cbl association, EphA2 polyubiquitination and virus-EphA2 internalization. Collectively, these results revealed for the first time that EphA2 influences the tyrosine phosphorylation of clathrin, the role of EphA2 in clathrin mediated endocytosis of a virus, and c-Cbl mediated EphA2 polyubiquitination directing KSHV entry in HFF cells via coordinated signal induction and progression of endocytic events, all of which suggest that targeting EphA2 and c-Cbl could block KSHV entry and infection.
Author Summary
KSHV is etiologically associated with Kaposi's sarcoma and primary effusion B-cell lymphoma. To initiate its in vitro infection of endothelial cells, KSHV interacts with cell surface heparan sulfate, integrins, and EphrinA2 (EphA2) molecules in the lipid raft (LR) regions, which induces the integrin-c-Cbl associated signaling and macropinocytic entry. In contrast, KSHV enters human foreskin fibroblast (HFF) cells via LR-independent clathrin mediated endocytosis. The present studies conducted to define the key molecules regulating KSHV entry in HFF cells demonstrate that KSHV induces the association of integrins (αVβ5, αVβ3 and α3β1) with EphA2 in the non-LR regions of HFF cells and activates EphA2, which in turn associates with c-Cbl, myosin IIA, FAK, Src, PI3-K, clathrin, AP2 and Epsin15. Loss of EphA2 function reduces the induction of these signals, virus entry and infection. c-Cbl knockdown also abolishes the EphA2 polyubiquitination and clathrin association with EphA2 and KSHV. These results reveal for the first time the role of EphA2 in clathrin mediated endocytosis of a virus and c-Cbl directed polyubiquitination of EphA2 regulating KSHV infection by coordinating signal induction and underscores EphA2 and c-Cbl as potential targets to intervene in KSHV entry and infection.
PMCID: PMC3715429  PMID: 23874206
21.  A Disalicylic Acid-Furanyl Derivative Inhibits Ephrin Binding to a Subset of Eph Receptors 
Chemical biology & drug design  2011;78(4):667-678.
Eph receptor tyrosine kinases and ephrin ligands control many physiological and pathological processes, and molecules interfering with their interaction are useful probes to elucidate their complex biological functions. Moreover, targeting Eph receptors might enable new strategies to inhibit cancer progression and pathological angiogenesis as well as promote nerve regeneration. Because our previous work suggested the importance of the salicylic acid group in antagonistic small molecules targeting Eph receptors, we screened a series of salicylic acid derivatives to identify novel Eph receptor antagonists. This identified a disalicylic acid-furanyl derivative that inhibits ephrin-A5 binding to EphA4 with an IC50 of 3 μM in ELISA assays. This compound, which appears to bind to the ephrin-binding pocket of EphA4, also targets several other Eph receptors. Furthermore, it inhibits EphA2 and EphA4 tyrosine phosphorylation in cells stimulated with ephrin while not affecting phosphorylation of EphB2, which is not a target receptor. In endothelial cells, the disalicylic acid-furanyl derivative inhibits EphA2 phosphorylation in response to TNFα and capillary-like tube formation on Matrigel, two effects that depend on EphA2 interaction with endogenous ephrin-A1. These findings suggest that salicylic acid derivatives could be used as starting points to design new small molecule antagonists of Eph receptors.
PMCID: PMC3196665  PMID: 21791013
small molecule; antagonist; dymethylpyrrole derivative; protein tyrosine kinase; angiogenesis; nerve regeneration
22.  Binding of the Kaposi's Sarcoma-Associated Herpesvirus to the Ephrin Binding Surface of the EphA2 Receptor and Its Inhibition by a Small Molecule 
Journal of Virology  2014;88(16):8724-8734.
The ephrin receptor tyrosine kinase A2 (EphA2) is an entry receptor for Kaposi's sarcoma-associated herpesvirus (KSHV) that is engaged by the virus through its gH/gL glycoprotein complex. We describe here that natural ephrin ligands inhibit the gH/gL-EphA2 interaction. The effects of point mutations within EphA2 demonstrated that KSHV gH/gL interacts with EphA2 through a restricted set of the same residues that mediate binding of A-type ephrins. Two previously described inhibitors of the EphA2 interaction with ephrin A5 also inhibited binding of KSHV gH/gL to EphA2. The more potent of the two compounds inhibited KSHV infection of blood vessel and lymphatic endothelial cells in the micromolar concentration range. Our results demonstrate that interaction of KSHV with EphA2 occurs in a fashion similar to that of the natural ephrin ligands. Our data further indicate a new avenue for drug development against KSHV.
IMPORTANCE Our study reports two important findings. First, we show that KSHV engages its receptor, the receptor tyrosine kinase EphA2, at a site that overlaps the binding site of the natural ephrin ligands. Second, we demonstrate that KSHV infection of target cells can be blocked by a small-molecule inhibitor of the viral glycoprotein-EphA2 interaction. These findings represent a novel avenue for the development of strategies to treat KSHV-associated diseases.
PMCID: PMC4136269  PMID: 24899181
23.  Ephrin-A1 inhibits NSCLC tumor growth via induction of Cdx-2 a tumor suppressor gene 
BMC Cancer  2012;12:309.
Tumor formation is a complex process which involves constitutive activation of oncogenes and suppression of tumor suppressor genes. Receptor EphA2 and its ligand ephrin-A1 form an important cell communication system with its functional role in cell-cell interaction and tumor growth. Loss of cell-cell adhesion is central to the cellular transformation and acquisition of metastatic potential. Claudins, the integrated tight junction (TJ) cell-cell adhesion proteins located on the apico-lateral portion of epithelial cells, functions in maintaining cell polarity. There is extensive evidence implicating Eph receptors and ephrins in malignancy, but the mechanisms how these molecular players affect TJ proteins and regulate tumor growth are not clear. In the present study we hypothesized that EphA2 signaling modulates claudin-2 gene expression via induction of cdx-2, a tumor suppressor gene in NSCLC cells.
The expression of EphA2, claudin-2 was determined in various NSCLC cell lines by using real-time quantitative polymerase chain reaction and Western blot analysis. The claudin-2 expression was also analyzed by immunofluorescence analysis. EphA2 and erk1/erk2 phosphorylation in ephrin-A1 activated cells was evaluated by Western blot analysis. The cell proliferation and tumor colony formation were determined by WST-1 and 3-D matrigel assays respectively.
NSCLC cells over expressed receptor EphA2 and claudin-2. Ephrin-A1 treatment significantly down regulated the claudin-2 and EphA2 expression in NSCLC cells. The transient transfection of cells with vector containing ephrin-A1 construct (pcDNA-EFNA1) decreased the expression of claudin-2, EphA2 when compared to empty vector. In addition ephrin-A1 activation increased cdx-2 expression in A549 cells. In contrast over-expression of EphA2 with plasmid pcDNA-EphA2 up regulated claudin-2 mRNA expression and decreased cdx-2 expression. The transient transfection of cells with vector containing cdx-2 construct (pcMV-cdx-2) decreased the expression of claudin-2 in A549 cells. Moreover, silencing the expression of receptor EphA2 by siRNA significantly reduced claudin-2 expression and decreased cell proliferation and tumor formation. Furthermore, silencing cdx-2 gene expression before ephrin-A1 treatment increased claudin-2 expression along with increased cell proliferation and tumor growth in A549 cells.
Our study suggests that EphA2 signaling up-regulates the expression of the TJ-protein claudin-2 that plays an important role in promoting cell proliferation and tumor growth in NSCLC cells. We conclude that receptor EphA2 activation by ephrin-A1 induces tumor suppressor gene cdx-2 expression which attenuates cell proliferation, tumor growth and thus may be a promising therapeutic target against NSCLC.
PMCID: PMC3488573  PMID: 22824143
Receptor EphA2; Ephrin-A1; Claudin-2; cdx-2; NSCLC
24.  Eph receptor function is modulated by heterooligomerization of A and B type Eph receptors 
The Journal of Cell Biology  2011;195(6):1033-1045.
Beyond homotypic receptor interactions that are required for Eph signaling, ligand-independent association and crosstalk between members of the EphA and -B subclasses determine cell signaling outcomes.
Eph receptors interact with ephrin ligands on adjacent cells to facilitate tissue patterning during normal and oncogenic development, in which unscheduled expression and somatic mutations contribute to tumor progression. EphA and B subtypes preferentially bind A- and B-type ephrins, respectively, resulting in receptor complexes that propagate via homotypic Eph–Eph interactions. We now show that EphA and B receptors cocluster, such that specific ligation of one receptor promotes recruitment and cross-activation of the other. Remarkably, coexpression of a kinase-inactive mutant EphA3 with wild-type EphB2 can cause either cross-activation or cross-inhibition, depending on relative expression. Our findings indicate that cellular responses to ephrin contact are determined by the EphA/EphB receptor profile on a given cell rather than the individual Eph subclass. Importantly, they imply that in tumor cells coexpressing different Ephs, functional mutations in one subtype may cause phenotypes that are a result of altered signaling from heterotypic rather from homotypic Eph clusters.
PMCID: PMC3241718  PMID: 22144690
25.  Crosstalk of the EphA2 Receptor with a Serine/Threonine Phosphatase Suppresses the Akt-mTORC1 Pathway in Cancer Cells 
Cellular signalling  2010;23(1):201-212.
Receptor tyrosine kinases of the Eph family play multiple roles in the physiological regulation of tissue homeostasis and in the pathogenesis of various diseases, including cancer. The EphA2 receptor is highly expressed in most cancer cell types, where it has disparate activities that are not well understood. It has been reported that interplay of EphA2 with oncogenic signaling pathways promotes cancer cell malignancy independently of ephrin ligand binding and receptor kinase activity. In contrast, stimulation of EphA2 signaling with ephrin-A ligands can suppress malignancy by inhibiting the Ras-MAP kinase pathway, integrin-mediated adhesion, and epithelial to mesenchymal transition. Here we show that ephrin-A1 ligand-dependent activation of EphA2 decreases the growth of PC3 prostate cancer cells and profoundly inhibits the Akt-mTORC1 pathway, which is hyperactivated due to loss of the PTEN tumor suppressor. Our results do not implicate changes in the activity of Akt upstream regulators (such as Ras family GTPases, PI3 kinase, integrins, or the Ship2 lipid phosphatase) in the observed loss of Akt T308 and S473 phosphorylation downstream of EphA2. Indeed, EphA2 can inhibit Akt phosphorylation induced by oncogenic mutations of not only PTEN but also PI3 kinase. Furthermore, it can decrease the hyperphosphorylation induced by constitutive membrane-targeting of Akt. Our data suggest a novel signaling mechanism whereby EphA2 inactivates the Akt-mTORC1 oncogenic pathway through Akt dephosphorylation mediated by a serine/threonine phosphatase. Ephrin-A1-induced Akt dephosphorylation was observed not only in PC3 prostate cancer cells but also in other cancer cell types. Thus, activation of EphA2 signaling represents a possible new avenue for anti-cancer therapies that exploit the remarkable ability of this receptor to counteract multiple oncogenic signaling pathways.
PMCID: PMC2972709  PMID: 20837138
ephrin; cell growth; tumor suppression; prostate cancer

Results 1-25 (778810)