PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (561871)

Clipboard (0)
None

Related Articles

1.  RhoA Mediates Flow-induced Endothelial Sprouting in a 3-D Tissue Analogue of Angiogenesis 
Lab on a chip  2012;12(23):10.1039/c2lc40389g.
Endothelial cells (ECs) integrate signals from the local microenvironment to guide their behaviour. RhoA is involved in vascular endothelial growth factor (VEGF) - driven angiogenesis, but its role in mechanotransduction during sprouting has not been established. Using dominant negative cell transfections in a microfluidic device that recapitulates angiogenic sprouting, we show that endothelial cells respond to interstitial flow in a RhoA-dependent manner while invading into a 3-D extracellular matrix. Furthermore, RhoA regulates flow-induced, but not VEGF gradient-5 induced tip cell filopodial extensions. Thus, RhoA pathways mediate mechanically-activated but not VEGF- induced endothelial morphogenesis.
doi:10.1039/c2lc40389g
PMCID: PMC3490212  PMID: 23073300
2.  VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia 
The Journal of Cell Biology  2003;161(6):1163-1177.
Vascular endothelial growth factor (VEGF-A) is a major regulator of blood vessel formation and function. It controls several processes in endothelial cells, such as proliferation, survival, and migration, but it is not known how these are coordinately regulated to result in more complex morphogenetic events, such as tubular sprouting, fusion, and network formation. We show here that VEGF-A controls angiogenic sprouting in the early postnatal retina by guiding filopodial extension from specialized endothelial cells situated at the tips of the vascular sprouts. The tip cells respond to VEGF-A only by guided migration; the proliferative response to VEGF-A occurs in the sprout stalks. These two cellular responses are both mediated by agonistic activity of VEGF-A on VEGF receptor 2. Whereas tip cell migration depends on a gradient of VEGF-A, proliferation is regulated by its concentration. Thus, vessel patterning during retinal angiogenesis depends on the balance between two different qualities of the extracellular VEGF-A distribution, which regulate distinct cellular responses in defined populations of endothelial cells.
doi:10.1083/jcb.200302047
PMCID: PMC2172999  PMID: 12810700
VEGF; endothelial cell; filopodia; astrocyte; migration; proliferation
3.  Notch modulates VEGF action in endothelial cells by inducing Matrix Metalloprotease activity 
Vascular Cell  2011;3:2.
Background
In the vasculature, Notch signaling functions as a downstream effecter of Vascular Endothelial Growth Factor (VEGF) signaling. VEGF regulates sprouting angiogenesis in part by inducing and activating matrix metalloproteases (MMPs). This study sought to determine if VEGF regulation of MMPs was mediated via Notch signaling and to determine how Notch regulation of MMPs influenced endothelial cell morphogenesis.
Methods and Results
We assessed the relationship between VEGF and Notch signaling in cultured human umbilical vein endothelial cells. Overexpression of VEGF-induced Notch4 and the Notch ligand, Dll4, activated Notch signaling, and altered endothelial cell morphology in a fashion similar to that induced by Notch activation. Expression of a secreted Notch antagonist (Notch1 decoy) suppressed VEGF-mediated activation of endothelial Notch signaling and endothelial morphogenesis. We demonstrate that Notch mediates VEGF-induced matrix metalloprotease activity via induction of MMP9 and MT1-MMP expression and activation of MMP2. Introduction of a MMP inhibitor blocked Notch-mediated endothelial morphogenesis. In mice, analysis of VEGF-induced dermal angiogenesis demonstrated that the Notch1 decoy reduced perivascular MMP9 expression.
Conclusions
Taken together, our data demonstrate that Notch signaling can act downstream of VEGF signaling to regulate endothelial cell morphogenesis via induction and activation of specific MMPs. In a murine model of VEGF-induced dermal angiogenesis, Notch inhibition led to reduced MMP9 expression.
doi:10.1186/2045-824X-3-2
PMCID: PMC3039832  PMID: 21349159
4.  Determination of Endothelial Stalk versus Tip Cell Potential during Angiogenesis by H2.0-like Homeobox-1 
Current Biology  2012;22(19):1789-1794.
Summary
Tissue branching morphogenesis requires the hierarchical organization of sprouting cells into leading “tip” and trailing “stalk” cells [1, 2]. During new blood vessel branching (angiogenesis), endothelial tip cells (TCs) lead sprouting vessels, extend filopodia, and migrate in response to gradients of the secreted ligand, vascular endothelial growth factor (Vegf) [3]. In contrast, adjacent stalk cells (SCs) trail TCs, generate the trunk of new vessels, and critically maintain connectivity with parental vessels. Here, we establish that h2.0-like homeobox-1 (Hlx1) determines SC potential, which is critical for angiogenesis during zebrafish development. By combining a novel pharmacological strategy for the manipulation of angiogenic cell behavior in vivo with transcriptomic analyses of sprouting cells, we identify the uniquely sprouting-associated gene, hlx1. Expression of hlx1 is almost entirely restricted to sprouting endothelial cells and is excluded from adjacent nonangiogenic cells. Furthermore, Hlx1 knockdown reveals its essential role in angiogenesis. Importantly, mosaic analyses uncover a cell-autonomous role for Hlx1 in the maintenance of SC identity in sprouting vessels. Hence, Hlx1-mediated maintenance of SC potential regulates angiogenesis, a finding that may have novel implications for sprouting morphogenesis of other tissues.
Highlights
► Expression of hlx1 is associated with angiogenic cell behavior in vivo ► hlx1 selectively marks sprouting endothelial cells during zebrafish development ► Hlx1 is required for intersegmental vessel angiogenesis in zebrafish embryos ► Hlx1 cell-autonomously maintains endothelial stalk cell potential
doi:10.1016/j.cub.2012.07.037
PMCID: PMC3471071  PMID: 22921365
5.  Decreased Cell Adhesion Promotes Angiogenesis in a Pyk2-dependent Manner 
Experimental cell research  2011;317(13):1860-1871.
Angiogenesis is regulated by both soluble growth factors and cellular interactions with the extracellular matrix (ECM). While cell adhesion via integrins has been shown to be required for angiogenesis, the effects of quantitative changes in cell adhesion and spreading against the ECM remain less clear. Here, we show that angiogenic sprouting in natural and engineered three-dimensional matrices exhibited a biphasic response, with peak sprouting when adhesion to the matrix was limited to intermediate levels. Examining changes in global gene expression to determine a genetic basis for this response, we demonstrate a vascular endothelial growth factor (VEGF)-induced upregulation of genes associated with vascular invasion and remodeling when cell adhesion was limited, whereas cells on highly adhesive surfaces upregulated genes associated with proliferation. To explore a mechanistic basis for this effect, we turned to focal adhesion kinase (FAK), a central player in adhesion signaling previously implicated in angiogenesis, and its homologue, proline-rich tyrosine kinase 2 (Pyk2). While FAK signaling had some impact, our results suggested that Pyk2 can regulate both gene expression and endothelial sprouting through its enhanced activation by VEGF in limited adhesion contexts. We also demonstrate decreased sprouting of tissue explants from Pyk2-null mice as compared to wild type mice as further confirmation of the role of Pyk2 in angiogenic sprouting. These results suggest a surprising finding that limited cell adhesion can enhance endothelial responsiveness to VEGF and demonstrate a novel role for Pyk2 in the adhesive regulation of angiogenesis.
doi:10.1016/j.yexcr.2011.05.006
PMCID: PMC3123418  PMID: 21640103
Angiogenesis; cell adhesion; gene expression; Pyk2; VEGF
6.  Activated Notch4 Inhibits Angiogenesis: Role of β1-Integrin Activation 
Molecular and Cellular Biology  2002;22(8):2830-2841.
Notch4 is a member of the Notch family of transmembrane receptors that is expressed primarily on endothelial cells. Activation of Notch in various cell systems has been shown to regulate cell fate decisions. The sprouting of endothelial cells from microvessels, or angiogenesis, involves the modulation of the endothelial cell phenotype. Based on the function of other Notch family members and the expression pattern of Notch4, we postulated that Notch4 activation would modulate angiogenesis. Using an in vitro endothelial-sprouting assay, we show that expression of constitutively active Notch4 in human dermal microvascular endothelial cells (HMEC-1) inhibits endothelial sprouting. We also show that activated Notch4 inhibits vascular endothelial growth factor (VEGF)-induced angiogenesis in the chick chorioallantoic membrane in vivo. Activated Notch4 does not inhibit HMEC-1 proliferation or migration through fibrinogen. However, migration through collagen is inhibited. Our data show that Notch4 cells exhibit increased β1-integrin-mediated adhesion to collagen. HMEC-1 expressing activated Notch4 do not have increased surface expression of β1-integrins. Rather, we demonstrate that Notch4-expressing cells display β1-integrin in an active, high-affinity conformation. Furthermore, using function-activating β1-integrin antibodies, we demonstrate that activation of β1-integrins is sufficient to inhibit VEGF-induced endothelial sprouting in vitro and angiogenesis in vivo. Our findings suggest that constitutive Notch4 activation in endothelial cells inhibits angiogenesis in part by promoting β1-integrin-mediated adhesion to the underlying matrix.
doi:10.1128/MCB.22.8.2830-2841.2002
PMCID: PMC133705  PMID: 11909975
7.  Morelloflavone, a biflavonoid, inhibits tumor angiogenesis by targeting Rho GTPases and ERK signaling pathways 
Cancer research  2009;69(2):518-525.
Morelloflavone, a biflavonoid extracted from Garcinia dulcis, has shown anti-oxidative, antiviral, and anti-inflammatory properties. However, the function and the mechanism of this compound in cancer treatment and tumor angiogenesis have not been elucidated to date. In this study, we postulated that morelloflavone might have the ability to inhibit angiogenesis, the pivotal step in tumor growth, invasiveness and metastasis. We demonstrated that morelloflavone could inhibit vascular endothelial growth factor (VEGF)-induced cell proliferation, migration, invasion, and capillary-like tube formation of primary cultured human umbilical endothelial cells (HUVECs) in a dose-dependent manner. Morelloflavone effectively inhibited microvessel sprouting of endothelial cells in the rat aortic ring assay and the formation of new blood microvessels induced by VEGF in the mouse Matrigel plug assay. Furthermore, morelloflavone inhibited tumor growth and tumor angiogenesis of prostate cancer cells (PC-3) in xenograft mouse tumor model in vivo, suggesting that morelloflavone inhibited tumorigenesis by targeting angiogenesis. To understand the underlying mechanism of morelloflavone on the inhibitory effect of tumor growth and angiogenesis, we demonstrated that morelloflavone could inhibit the activation of both RhoA and Rac1 GTPases, but have little effect on the activation of Cdc42 GTPase. Additionally, morelloflavone inhibited the phosphorylation and activation of Raf/MEK/ERK pathway kinases without affecting VEGFR2 activity. Together, our results indicate that morelloflavone exerts anti-angiogenic action by targeting the activation of Rho-GTPases and ERK signaling pathways. These findings are the first to reveal the novel functions of morelloflavone in tumor angiogenesis and its molecular basis for the anticancer action.
doi:10.1158/0008-5472.CAN-08-2531
PMCID: PMC2662342  PMID: 19147565
Morelloflavone; angiogenesis; Rho GTPases; ERK pathway; antitumor agent
8.  VEGF and Notch Signaling 
Cell Adhesion & Migration  2007;1(3):133-136.
Tubular sprouting in angiogenesis relies on division of labour between endothelial tip cells, leading and guiding the sprout, and their neighboring stalk cells, which divide and form the vascular lumen. We previously learned how the graded extracellular distribution of heparin-binding vascular endothelial growth factor (VEGF)-A orchestrates and balances tip and stalk cell behavior. Recent data now provided insight into the regulation of tip cell numbers, illustrating how delta-like (Dll)4-Notch signalling functions to limit the explorative tip cell behavior induced by VEGF-A. These data also provided a first answer to the question why not all endothelial cells stimulated by VEGF-A turn into tip cells. Here we review this new model and discuss how VEGF-A and Dll4/Notch signalling may interact dynamically at the cellular level to control vascular patterning.
PMCID: PMC2634014  PMID: 19262131
Notch; angiogenesis; mouse development; VEGF-A; tip cells
9.  Moderation of Calpain Activity Promotes Neovascular Integration and Lumen Formation during VEGF-Induced Pathological Angiogenesis 
PLoS ONE  2010;5(10):e13612.
Background
Successful neovascularization requires that sprouting endothelial cells (ECs) integrate to form new vascular networks. However, architecturally defective, poorly integrated vessels with blind ends are typical of pathological angiogenesis induced by vascular endothelial growth factor-A (VEGF), thereby limiting the utility of VEGF for therapeutic angiogenesis and aggravating ischemia-related pathologies. Here we investigated the possibility that over-exuberant calpain activity is responsible for aberrant VEGF neovessel architecture and integration. Calpains are a family of intracellular calcium-dependent, non-lysosomal cysteine proteases that regulate cellular functions through proteolysis of numerous substrates.
Methodology/Principal Findings
In a mouse skin model of VEGF-driven angiogenesis, retroviral transduction with dominant-negative (DN) calpain-I promoted neovessel integration and lumen formation, reduced blind ends, and improved vascular perfusion. Moderate doses of calpain inhibitor-I improved VEGF-driven angiogenesis similarly to DN calpain-I. Conversely, retroviral transduction with wild-type (WT) calpain-I abolished neovessel integration and lumen formation. In vitro, moderate suppression of calpain activity with DN calpain-I or calpain inhibitor-I increased the microtubule-stabilizing protein tau in endothelial cells (ECs), increased the average length of microtubules, increased actin cable length, and increased the interconnectivity of vascular cords. Conversely, WT calpain-I diminished tau, collapsed microtubules, disrupted actin cables, and inhibited integration of cord networks. Consistent with the critical importance of microtubules for vascular network integration, the microtubule-stabilizing agent taxol supported vascular cord integration whereas microtubule dissolution with nocodazole collapsed cord networks.
Conclusions/Significance
These findings implicate VEGF-induction of calpain activity and impairment of cytoskeletal dynamics in the failure of VEGF-induced neovessels to form and integrate properly. Accordingly, calpain represents an important target for rectifying key vascular defects associated with pathological angiogenesis and for improving therapeutic angiogenesis with VEGF.
doi:10.1371/journal.pone.0013612
PMCID: PMC2963609  PMID: 21049044
10.  Robo4 stabilizes the vascular network by inhibiting pathologic angiogenesis and endothelial hyperpermeability 
Nature medicine  2008;14(4):448-453.
The angiogenic sprout has been compared to the growing axon, and indeed, many proteins direct pathfinding by both structures1. The Roundabout (Robo) proteins are guidance receptors with well-established functions in the nervous system2,3; however, their role in the mammalian vasculature remains ill defined4–8. Here we show that an endothelial-specific Robo, Robo4, maintains vascular integrity. Activation of Robo4 by Slit2 inhibits vascular endothelial growth factor (VEGF)-165–induced migration, tube formation and permeability in vitro and VEGF-165–stimulated vascular leak in vivo by blocking Src family kinase activation. In mouse models of retinal and choroidal vascular disease, Slit2 inhibited angiogenesis and vascular leak, whereas deletion of Robo4 enhanced these pathologic processes. Our results define a previously unknown function for Robo receptors in stabilizing the vasculature and suggest that activating Robo4 may have broad therapeutic application in diseases characterized by excessive angiogenesis and/or vascular leak.
doi:10.1038/nm1742
PMCID: PMC2875252  PMID: 18345009
11.  Computational Model of Vascular Endothelial Growth Factor Spatial Distribution in Muscle and Pro-Angiogenic Cell Therapy 
PLoS Computational Biology  2006;2(9):e127.
Members of the vascular endothelial growth factor (VEGF) family of proteins are critical regulators of angiogenesis. VEGF concentration gradients are important for activation and chemotactic guidance of capillary sprouting, but measurement of these gradients in vivo is not currently possible. We have constructed a biophysically and molecularly detailed computational model to study microenvironmental transport of two isoforms of VEGF in rat extensor digitorum longus skeletal muscle under in vivo conditions. Using parameters based on experimental measurements, the model includes: VEGF secretion from muscle fibers; binding to the extracellular matrix; binding to and activation of endothelial cell surface VEGF receptors; and internalization. For 2-D cross sections of tissue, we analyzed predicted VEGF distributions, gradients, and receptor binding. Significant VEGF gradients (up to 12% change in VEGF concentration over 10 μm) were predicted in resting skeletal muscle with uniform VEGF secretion, due to non-uniform capillary distribution. These relative VEGF gradients were not sensitive to extracellular matrix composition, or to the overall VEGF expression level, but were dependent on VEGF receptor density and affinity, and internalization rate parameters. VEGF upregulation in a subset of fibers increased VEGF gradients, simulating transplantation of pro-angiogenic myoblasts, a possible therapy for ischemic diseases. The number and relative position of overexpressing fibers determined the VEGF gradients and distribution of VEGF receptor activation. With total VEGF expression level in the tissue unchanged, concentrating overexpression into a small number of adjacent fibers can increase the number of capillaries activated. The VEGF concentration gradients predicted for resting muscle (average 3% VEGF/10 μm) is sufficient for cellular sensing; the tip cell of a vessel sprout is approximately 50 μm long. The VEGF gradients also result in heterogeneity in the activation of blood vessel VEGF receptors. This first model of VEGF tissue transport and heterogeneity provides a platform for the design and evaluation of therapeutic approaches.
Synopsis
It is not currently possible to experimentally quantify the gradients of protein concentration in the extracellular space in vivo. However, the concentration gradients of vascular endothelial growth factor (VEGF) are essential for both initiation and directed guidance of new blood vessels. The authors develop a computational model of VEGF transport in tissue in vivo (skeletal muscle, though the method is applicable to other tissues and other proteins) with realistic geometry and including biophysical interactions of VEGF, its receptors, and the extracellular matrix. Using this model, the authors predict for the first time the distribution of VEGF concentration and VEGF receptor activation throughout the tissue. VEGF concentration gradients are significant, up to 12% change in VEGF concentration over 10 μm in resting muscle. Transplanting VEGF-overexpressing myocytes (for therapeutic induction of blood vessel growth) increases the gradients significantly. Endothelial cells in sprouting vessels are approximately 50 μm long, and therefore the predicted gradients across the cell are high and sufficient for chemotactic guidance of the new vessels. The VEGF concentration gradients also result in significant heterogeneity in the activation of VEGF receptors on blood vessels throughout the tissue, a possible reason for the sporadic nature of sprout initiation.
doi:10.1371/journal.pcbi.0020127
PMCID: PMC1570371  PMID: 17002494
12.  Computational Model of Vascular Endothelial Growth Factor Spatial Distribution in Muscle and Pro-Angiogenic Cell Therapy 
PLoS Computational Biology  2006;2(9):e127.
Members of the vascular endothelial growth factor (VEGF) family of proteins are critical regulators of angiogenesis. VEGF concentration gradients are important for activation and chemotactic guidance of capillary sprouting, but measurement of these gradients in vivo is not currently possible. We have constructed a biophysically and molecularly detailed computational model to study microenvironmental transport of two isoforms of VEGF in rat extensor digitorum longus skeletal muscle under in vivo conditions. Using parameters based on experimental measurements, the model includes: VEGF secretion from muscle fibers; binding to the extracellular matrix; binding to and activation of endothelial cell surface VEGF receptors; and internalization. For 2-D cross sections of tissue, we analyzed predicted VEGF distributions, gradients, and receptor binding. Significant VEGF gradients (up to 12% change in VEGF concentration over 10 μm) were predicted in resting skeletal muscle with uniform VEGF secretion, due to non-uniform capillary distribution. These relative VEGF gradients were not sensitive to extracellular matrix composition, or to the overall VEGF expression level, but were dependent on VEGF receptor density and affinity, and internalization rate parameters. VEGF upregulation in a subset of fibers increased VEGF gradients, simulating transplantation of pro-angiogenic myoblasts, a possible therapy for ischemic diseases. The number and relative position of overexpressing fibers determined the VEGF gradients and distribution of VEGF receptor activation. With total VEGF expression level in the tissue unchanged, concentrating overexpression into a small number of adjacent fibers can increase the number of capillaries activated. The VEGF concentration gradients predicted for resting muscle (average 3% VEGF/10 μm) is sufficient for cellular sensing; the tip cell of a vessel sprout is approximately 50 μm long. The VEGF gradients also result in heterogeneity in the activation of blood vessel VEGF receptors. This first model of VEGF tissue transport and heterogeneity provides a platform for the design and evaluation of therapeutic approaches.
Synopsis
It is not currently possible to experimentally quantify the gradients of protein concentration in the extracellular space in vivo. However, the concentration gradients of vascular endothelial growth factor (VEGF) are essential for both initiation and directed guidance of new blood vessels. The authors develop a computational model of VEGF transport in tissue in vivo (skeletal muscle, though the method is applicable to other tissues and other proteins) with realistic geometry and including biophysical interactions of VEGF, its receptors, and the extracellular matrix. Using this model, the authors predict for the first time the distribution of VEGF concentration and VEGF receptor activation throughout the tissue. VEGF concentration gradients are significant, up to 12% change in VEGF concentration over 10 μm in resting muscle. Transplanting VEGF-overexpressing myocytes (for therapeutic induction of blood vessel growth) increases the gradients significantly. Endothelial cells in sprouting vessels are approximately 50 μm long, and therefore the predicted gradients across the cell are high and sufficient for chemotactic guidance of the new vessels. The VEGF concentration gradients also result in significant heterogeneity in the activation of VEGF receptors on blood vessels throughout the tissue, a possible reason for the sporadic nature of sprout initiation.
doi:10.1371/journal.pcbi.0020127
PMCID: PMC1570371  PMID: 17002494
13.  The Fibrinogen Globe of Tenascin-C Promotes Basic Fibroblast Growth Factor-induced Endothelial Cell Elongation 
Molecular Biology of the Cell  1999;10(9):2933-2943.
To investigate the potential role of tenascin-C (TN-C) on endothelial sprouting we used bovine aortic endothelial cells (BAECs) as an in vitro model of angiogenesis. We found that TN-C is specifically expressed by sprouting and cord-forming BAECs but not by nonsprouting BAECs. To test whether TN-C alone or in combination with basic fibroblast growth factor (bFGF) can enhance endothelial sprouting or cord formation, we used BAECs that normally do not sprout and, fittingly, do not express TN-C. In the presence of bFGF, exogenous TN-C but not fibronectin induced an elongated phenotype in nonsprouting BAECs. This phenotype was due to altered actin cytoskeleton organization. The fibrinogen globe of the TN-C molecule was the active domain promoting the elongated phenotype in response to bFGF. Furthermore, we found that the fibrinogen globe was responsible for reduced cell adhesion of BAECs on TN-C substrates. We conclude that bFGF-stimulated endothelial cells can be switched to a sprouting phenotype by the decreased adhesive strength of TN-C, mediated by the fibrinogen globe.
PMCID: PMC25533  PMID: 10473637
14.  Formation of VEGF isoform-specific spatial distributions governing angiogenesis: computational analysis 
BMC Systems Biology  2011;5:59.
Background
The spatial distribution of vascular endothelial growth factor A (VEGF) is an important mediator of vascular patterning. Previous experimental studies in the mouse hindbrain and retina have suggested that VEGF alternative splicing, which controls the ability of VEGF to bind to heparan sulfate proteoglycans (HSPGs) in the extracellular matrix (ECM), plays a key role in controlling VEGF diffusion and gradients in tissues. Conversely, proteolysis notably by matrix metalloproteinases (MMPs), plays a critical role in pathological situations by releasing matrix-sequestered VEGF and modulating angiogenesis. However, computational models have predicted that HSPG binding alone does not affect VEGF localization or gradients at steady state.
Results
Using a 3D molecular-detailed reaction-diffusion model of VEGF ligand-receptor kinetics and transport, we test alternate models of VEGF transport in the extracellular environment surrounding an endothelial sprout. We show that differences in localization between VEGF isoforms, as observed experimentally in the mouse hindbrain, as well as the ability of proteases to redistribute VEGF in pathological situations, are consistent with a model where VEGF is endogenously cleared or degraded in an isoform-specific manner. We use our predictions of the VEGF distribution to quantify a tip cell's receptor binding and gradient sensing capacity. A novel prediction is that neuropilin-1, despite functioning as a coreceptor to VEGF165-VEGFR2 binding, reduces the ability of a cell to gauge the relative steepness of the VEGF distribution. Comparing our model to available in vivo vascular patterning data suggests that vascular phenotypes are most consistently predicted at short range by the soluble fraction of the VEGF distributions, or at longer range by matrix-bound VEGF detected in a filopodia-dependent manner.
Conclusions
Isoform-specific VEGF degradation provides a possible explanation for numerous examples of isoform specificity in VEGF patterning and examples of proteases relocation of VEGF upon release.
doi:10.1186/1752-0509-5-59
PMCID: PMC3113235  PMID: 21535871
15.  Syx, a RhoA guanine exchange factor, is essential for angiogenesis in vivo 
Circulation research  2008;103(7):710-716.
Rho GTPases play an important and versatile role in several biological processes. In this study, we identified the zebrafish ortholog of the mammalian Rho A guanine exchange factor (GEF), Synectin-binding GEF (Syx), and determined its in vivo function in the zebrafish and the mouse. We found that Syx is expressed specifically in the vasculature of these organisms. Loss-of-function studies in the zebrafish and mouse point to a specific role for Syx in angiogenic sprouting in the developing vascular bed. Importantly, vasculogenesis and angioblast differentiation steps were unaffected in syx-knockdown (KD) zebrafish embryos, and the vascular sprouting defects were partially rescued by the mouse ortholog. Syx KD in vitro impairs vascular endothelial growth factor-A (VEGF-A) induced endothelial cell migration and angiogenesis. We have also uncovered a potential mechanism of endothelial sprout guidance in which Angiomotin (Amot), a component of endothelial cell junctions, plays an additive role with Syx in directing endothelial sprouts. These results identify Syx as an essential contributor to angiogenesis in vivo.
doi:10.1161/CIRCRESAHA.108.181388
PMCID: PMC2758496  PMID: 18757825
vascular; zebrafish; PDZ; knockdown; intersomitic vessels
16.  VEGF-Mediated Elevated Intracellular Calcium and Angiogenesis in Human Microvascular Endothelial Cells In Vitro Are Inhibited by Dominant Negative TRPC6 
Objective
Vascular endothelial growth factor (VEGF)-induced vascular permeability has been shown to be dependent on calcium influx, possibly through a transient receptor potential cation channel (TRPC)-mediated cation channel with properties of the TRPC3/6/7 subfamily. To investigate further the involvement of this subfamily, we determined the effects of dominant negative TRPC6 overexpression on VEGF-mediated changes of human microvascular endothelial cell (HMVEC) calcium, proliferation, migration, and sprouting.
Methods
Cytoplasmic calcium concentration was estimated by fura-2 fluorescence spectrophotometry, migration by Boyden chamber assay, sprouting by immunofluorescence imaging of stimulated endothelial cells, and proliferation by flow cytometry.
Results
Overexpression of a dominant negative TRPC6 construct in HMVECs inhibited the VEGF-mediated increases in cytosolic calcium, migration, sprouting, and proliferation. In contrast, overexpression of a wild-type TRPC6 construct increased the proliferation and migration of HMVECs.
Conclusions
TRPC6 is an obligatory component of cation channels required for the VEGF-mediated increase in cytosolic calcium and subsequent downstream signaling that leads to processes associated with angiogenesis.
doi:10.1080/10739680802220323
PMCID: PMC2635545  PMID: 18800249
VEGF; TRPC6; calcium; angiogenesis
17.  1′-Acetoxychavicol acetate suppresses angiogenesis-mediated human prostate tumor growth by targeting VEGF-mediated Src-FAK-Rho GTPase-signaling pathway 
Carcinogenesis  2011;32(6):904-912.
Cancer therapeutic agents that are safe, effective and affordable are urgently needed. We describe that 1′-acetoxychavicol acetate (ACA), a component of Siamese ginger (Languas galanga), can suppress prostate tumor growth by largely abrogating angiogenesis. ACA suppressed vascular endothelial growth factor (VEGF)-induced proliferation, migration, adhesion and tubulogenesis of primary cultured human umbilical vascular endothelial cells (HUVECs) in a dose-dependent manner. ACA also inhibited VEGF-induced microvessel sprouting from aortic rings ex vivo and suppressed new vasculature formation in Matrigel plugs in vivo. We further demonstrated that the mechanisms of this chavicol were to block the activation of VEGF-mediated Src kinase, focal adhesion kinase (FAK) and Rho family of small guanosine triphosphatases (GTPases) (Rac1 and Cdc42 but not RhoA) in HUVECs. Furthermore, treatment of human prostate cancer cells (PC-3) with ACA resulted in decreased cell viability and suppression of angiogenic factor production by interference with dual Src/FAK kinases. After subcutaneous administration to mice bearing human prostate cancer PC-3 xenografts, ACA (6 mg/kg/day) remarkably inhibited tumor volume and tumor weight and decreased levels of Src, CD31, VEGF and Ki-67. As indicated by immunohistochemistry and TUNEL analysis, microvessel density and cell proliferation were also dramatically suppressed in tumors from ACA-treated mice. Taken together, our findings suggest that ACA targets the Src-FAK-Rho GTPase pathway, leading to the suppression of prostate tumor angiogenesis and growth.
doi:10.1093/carcin/bgr052
PMCID: PMC3106438  PMID: 21427164
18.  SRF in angiogenesis 
Cell Adhesion & Migration  2009;3(3):264-267.
Cell cytoskeleton proteins are fundamental to cell shape, cell adhesion and cell motility, and therefore play an important role during angiogenesis. One of the major regulators of cytoskeletal protein expression is serum response factor (SRF), a MADS-box transcription factor that regulates multiple genes implicated in cell growth, migration, cytoskeletal organization, energy metabolism and myogenesis. Recent data have demonstrated a crucial role of SRF downstream of VEGF and FGF signalling during sprouting angiogenesis, regulating endothelial cell (EC) migration, actin polymerisation, tip cell morphology, EC junction assembly and vascular integrity. Here, we review the role of SRF in the regulation of angiogenesis and EC function, integrate SRF function into a broader mechanism regulating branching morphogenesis, and discuss future directions and perspectives of SRF in EC biology.
PMCID: PMC2712806  PMID: 19287204
SRF; angiogenesis; vascular morphogenesis; endothelial cell; VEGF; FGF
19.  VEGF and endothelial guidance in angiogenic sprouting 
Organogenesis  2008;4(4):241-246.
The cellular actions of VEGF need to be coordinated to guide vascular patterning during sprouting angiogenesis. Individual endothelial tip cells lead and guide the blood vessel sprout, while neighbouring stalk cells proliferate and form the vascular lumen. Recent studies illustrate how endothelial DLL4/NOTCH signalling, stimulated by VEGF, regulates the sprouting response by limiting tip cell formation in the stalk. The spatial distribution of VEGF, in turn, regulates the shape of the ensuing sprout by directing tip cell migration and determining stalk cell proliferation.
PMCID: PMC2634329  PMID: 19337404
VEGF; Notch; angiogenesis; tip cells; vascular patterning
20.  VE-PTP regulates VEGFR2 activity in stalk cells to establish endothelial cell polarity and lumen formation 
Nature Communications  2013;4:1672-.
Vascular endothelial growth factor (VEGF) guides the path of new vessel sprouts by inducing VEGF receptor-2 activity in the sprout tip. In the stalk cells of the sprout, VEGF receptor-2 activity is downregulated. Here, we show that VEGF receptor-2 in stalk cells is dephosphorylated by the endothelium-specific vascular endothelial-phosphotyrosine phosphatase (VE-PTP). VE-PTP acts on VEGF receptor-2 located in endothelial junctions indirectly, via the Angiopoietin-1 receptor Tie2. VE-PTP inactivation in mouse embryoid bodies leads to excess VEGF receptor-2 activity in stalk cells, increased tyrosine phosphorylation of VE-cadherin and loss of cell polarity and lumen formation. Vessels in ve-ptp−/− teratomas also show increased VEGF receptor-2 activity and loss of endothelial polarization. Moreover, the zebrafish VE-PTP orthologue ptp-rb is essential for polarization and lumen formation in intersomitic vessels. We conclude that the role of Tie2 in maintenance of vascular quiescence involves VE-PTP-dependent dephosphorylation of VEGF receptor-2, and that VEGF receptor-2 activity regulates VE-cadherin tyrosine phosphorylation, endothelial cell polarity and lumen formation.
Vascular endothelial growth factor is implicated in blood vessel development. In zebrafish, Hayashi et al. find that blood vessel development is dependent on the suppression of vascular endothelial growth factor by the phosphatase VE-PTP, which is recruited by activation of the angiopoietin receptor Tie2.
doi:10.1038/ncomms2683
PMCID: PMC3644080  PMID: 23575676
21.  Promoting Angiogenesis via Manipulation of VEGF Responsiveness with Notch Signaling 
Biomaterials  2009;30(25):4085-4093.
Promoting angiogenesis via delivery of vascular endothelial growth factor (VEGF) and other angiogenic factors is both a potential therapy for cardiovascular diseases and a critical aspect for tissue regeneration. The recent demonstration that VEGF signaling is modulated by the Notch signaling pathway, however, suggests that inhibiting Notch signaling may enhance regional neovascularization, by altering the responsiveness of local endothelial cells to angiogenic stimuli. We tested this possibility with in vitro assays using human endothelial cells, as well as in a rodent hindlimb ischemia model. Treatment of cultured human endothelial cells with DAPT, a gamma secretase inhibitor, increased cell migration and sprout formation in response to VEGF stimulation with a biphasic dependence on DAPT concentration. Further, delivery of an appropriate combination of DAPT and VEGF from an injectable alginate hydrogel system into ischemic hindlimbs led to a faster recovery of blood flow than VEGF or DAPT alone; perfusion levels reached 80% of the normal level by week 4 with combined DAPT and VEGF delivery. Direct intramuscular or intraperitoneal injection of DAPT did not result in the same level of improvement, suggesting that appropriate presentation of DAPT (gel delivery) is important for its activity. DAPT delivery from the hydrogels also did not lead to any adverse side effects, in contrast to systemic introduction of DAPT. Altogether, these results suggest a new approach to promote angiogenesis by controlling Notch signaling, and may provide new options to treat patients with diseases that diminish angiogenic responsiveness.
doi:10.1016/j.biomaterials.2009.04.051
PMCID: PMC2730921  PMID: 19481797
Angiogenesis; VEGF; Notch; ischemia; tissue engineering
22.  VEGF-C induced angiogenesis preferentially occurs at a distance from lymphangiogenesis 
Cardiovascular research  2007;78(2):315-323.
Aims
Vascular endothelial growth factor-C (VEGF-C) has been shown to stimulate both angiogenesis and lymphangiogenesis in some but not all models where VEGF-C is over-expressed. Our aim was to investigate the interaction between lymphangiogenesis and angiogenesis in adult tissues regulated by VEGF-C and identify evidence of polarized growth of lymphatics driven by specialized cells at the tip of the growing sprout.
Methods and results
We used an adult model of lymphangiogenesis in the rat mesentery. The angiogenic effect of VEGF-C was markedly attenuated in the presence of a growing lymphatic network. Furthermore, we show that this growth of lymphatic vessels can occur both by recruitment of isolated lymphatic islands to a connected network and by filopodial sprouting. The latter is independent of polarized tip cell differentiation that can be generated all along lymphatic capillaries, independently of the proliferation status of the lymphatic endothelial cells.
Conclusion
These results both demonstrate a dependence of VEGF-C-mediated angiogenesis on lymphatic vascular networks and indicate that the mechanism of VEGF-C-mediated lymphangiogenesis is different from that of classical angiogenic mechanisms.
doi:10.1093/cvr/cvm094
PMCID: PMC2613351  PMID: 18065770
Angiogenesis; Lymphangiogenesis; VEGF-C; Sprouting
23.  Therapeutics targeting angiogenesis: Genetics and epigenetics, extracellular miRNAs and signaling networks (Review) 
Angiogenesis is a process of neovascular formation from pre-existing blood vessels, which consists of sequential steps for vascular destabilization, angiogenic sprouting, lumen formation and vascular stabilization. Vascular endothelial growth factor (VEGF), fibroblast growth factor (FGF), angiopoietin, Notch, transforming growth factor-β (TGF-β), Hedgehog and WNT signaling cascades orchestrate angiogenesis through the direct or indirect regulation of quiescence, migration and the proliferation of endothelial cells. Small-molecule compounds and human/humanized monoclonal antibodies interrupting VEGF signaling have been developed as anti-angiogenic therapeutics for cancer and neovascular age-related macular degeneration (AMD). Gene or protein therapy delivering VEGF, FGF2 or FGF4, as well as cell therapy using endothelial progenitor cells (EPCs), mesenchymal stem cells (MSCs) or induced pluripotent stem cells (iPSCs) have been developed as pro-angiogenic therapeutics for ischemic heart disease and peripheral vascular disease. Anti-angiogenic therapy for cancer and neovascular AMD is more successful than pro-angiogenic therapy for cardiovascular diseases, as VEGF-signal interruption is technically feasible compared with vascular re-construction. Common and rare genetic variants are detected using array-based technology and personal genome sequencing, respectively. Drug and dosage should be determined based on personal genotypes of VEGF and other genes involved in angiogenesis. As epigenetic alterations give rise to human diseases, polymer-based hydrogel film may be utilized for the delivery of drugs targeting epigenetic processes and angiogenesis as treatment modalities for cardiovascular diseases. Circulating microRNAs (miRNAs) in exosomes and microvesicles are applied as functional biomarkers for diagnostics and prognostics, while synthetic miRNAs in polymer-based nanoparticles are applicable for therapeutics. A more profound understanding of the spatio-temporal interactions of regulatory signaling cascades and advances in personal genotyping and miRNA profiling are required for the optimization of targeted therapy.
doi:10.3892/ijmm.2013.1444
PMCID: PMC3812243  PMID: 23863927
bevacizumab; sunitinib; sorafenib; dovitinib; ponatinib; AZD4547; breast cancer; lung cancer; colorectal cancer; gastric cancer; field cancerization; poly(lactic-co-glycolic acid); chitosan; vascular medicine
24.  Spatial regulation of VEGF receptor endocytosis in angiogenesis 
Nature cell biology  2013;15(3):249-260.
Activities as diverse as migration, proliferation and patterning occur simultaneously and in a coordinated fashion during tissue morphogenesis. In the growing vasculature, the formation of motile, invasive and filopodia-carrying endothelial sprouts is balanced with the stabilisation of blood-transporting vessels. Here, we show that sprouting endothelial cells in the retina have high rates of VEGF uptake, VEGF receptor endocytosis and turnover. These internalisation processes are opposed by atypical protein kinase C activity in more stable and mature vessels. aPKC phosphorylates Dab2, a clathrin-associated sorting protein that, together with the transmembrane protein ephrin-B2 and the cell polarity regulator PAR-3, enables VEGF receptor endocytosis and downstream signal transduction. Accordingly, VEGF receptor internalisation and the angiogenic growth of vascular beds are defective in loss-of-function mice lacking key components of this regulatory pathway. Our work uncovers how vessel growth is dynamically controlled by local VEGFR endocytosis and the activity of cell polarity proteins.
doi:10.1038/ncb2679
PMCID: PMC3901019  PMID: 23354168
25.  Recombinant human VEGF165b protein is an effective anti-cancer agent in mice 
Tumour growth is dependent on angiogenesis, the key mediator of which is vascular endothelial growth factor-A (VEGF-A). VEGF-A exists as two families of alternatively spliced isoforms - pro-angiogenic VEGFxxx generated by proximal, and anti-angiogenic VEGFxxxb by distal splicing of exon 8. VEGF165b inhibits angiogenesis and is downregulated in tumours. Here, we show for the first time that administration of recombinant human VEGF165b inhibits colon carcinoma tumour growth and tumour vessel density in nude mice, with a terminal plasma half-life of 6.2 h and directly inhibited angiogenic parameters (endothelial sprouting, orientation and structure formation) in vitro. Intravenous injection of 125I-VEGF165b demonstrated significant tumour uptake lasting at least 24 h. No adverse effects on liver function or haemodynamics were observed. These results indicate that injected VEGF165b was taken up into the tumour as an effective anti-angiogenic cancer therapy, and provide proof of principle for the development of this anti-angiogenic growth factor splice isoform as a novel cancer therapy.
doi:10.1016/j.ejca.2008.05.027
PMCID: PMC2565644  PMID: 18657413
VEGF; VEGF165b; Anti-angiogenesis; Cancer inhibition; Pharmacokinetics; Liver toxicity

Results 1-25 (561871)