Search tips
Search criteria

Results 1-25 (1072114)

Clipboard (0)

Related Articles

1.  MicroRNA-22 Can Reduce Parathymosin Expression in Transdifferentiated Hepatocytes 
PLoS ONE  2012;7(4):e34116.
Pancreatic acinar cells AR42J-B13 can transdifferentiate into hepatocyte-like cells permissive for efficient hepatitis B virus (HBV) replication. Here, we profiled miRNAs differentially expressed in AR42J-B13 cells before and after transdifferentiation to hepatocytes, using chip-based microarray. Significant increase of miRNA expression, including miR-21, miR-22, and miR-122a, was confirmed by stem-loop real-time PCR and Northern blot analyses. In contrast, miR-93, miR-130b, and a number of other miRNAs, were significantly reduced after transdifferentiation. To investigate the potential significance of miR-22 in hepatocytes, we generated cell lines stably expressing miR-22. By 2D-DIGE, LC-MS/MS, and Western blot analyses, we identified several potential target genes of miR-22, including parathymosin. In transdifferentiated hepatocytes, miR-22 can inhibit both mRNA and protein expression of parathymosin, probably through a direct and an indirect mechanism. We tested two computer predicted miR-22 target sites at the 3′ UTR of parathymosin, by the 3′ UTR reporter gene assay. Treatment with anti-miR-22 resulted in significant elevation of the reporter activity. In addition, we observed an in vivo inverse correlation between miR-22 and parathymosin mRNA in their tissue distribution in a rat model. The phenomenon that miR-22 can reduce parathymosin protein was also observed in human hepatoma cell lines Huh7 and HepG2. So far, we detected no major effect on several transdifferentiation markers when AR42J-B13 cells were transfected with miR-22, or anti-miR-22, or a parathymosin expression vector, with or without dexamethasone treatment. Therefore, miR-22 appears to be neither necessary nor sufficient for transdifferentiation. We discussed the possibility that altered expression of some other microRNAs could induce cell cycle arrest leading to transdifferentiation.
PMCID: PMC3320904  PMID: 22493679
2.  C/EBPa-Mediated Activation of MicroRNAs 34a and 223 Inhibits Lef1 Expression To Achieve Efficient Reprogramming into Macrophages 
Molecular and Cellular Biology  2014;34(6):1145-1157.
MicroRNAs (miRNAs) exert negative effects on gene expression and influence cell lineage choice during hematopoiesis. C/EBPa-induced pre-B cell-to-macrophage transdifferentiation provides an excellent model to investigate the contribution of miRNAs to hematopoietic cell identity, especially because the two cell types involved fall into separate lymphoid and myeloid branches. In this process, efficient repression of the B cell-specific program is essential to ensure transdifferentation and macrophage function. miRNA profiling revealed that upregulation of miRNAs is highly predominant compared with downregulation and that C/EBPa directly regulates several upregulated miRNAs. We also determined that miRNA 34a (miR-34a) and miR-223 sharply accelerate C/EBPa-mediated transdifferentiation, whereas their depletion delays this process. These two miRNAs affect the transdifferentiation efficiency and activity of macrophages, including their lipopolysaccharide (LPS)-dependent inflammatory response. miR-34a and miR-223 directly target and downregulate the lymphoid transcription factor Lef1, whose ectopic expression delays transdifferentiation to an extent similar to that seen with miR-34a and miR-223 depletion. In addition, ectopic introduction of Lef1 in macrophages causes upregulation of B cell markers, including CD19, Pax5, and Ikzf3. Our report demonstrates the importance of these miRNAs in ensuring the erasure of key B cell transcription factors, such as Lef1, and reinforces the notion of their essential role in fine-tuning the control required for establishing cell identity.
PMCID: PMC3958044  PMID: 24421386
3.  miR-124 and miR-137 inhibit proliferation of glioblastoma multiforme cells and induce differentiation of brain tumor stem cells 
BMC Medicine  2008;6:14.
Glioblastoma multiforme (GBM) is an invariably fatal central nervous system tumor despite treatment with surgery, radiation, and chemotherapy. Further insights into the molecular and cellular mechanisms that drive GBM formation are required to improve patient outcome. MicroRNAs are emerging as important regulators of cellular differentiation and proliferation, and have been implicated in the etiology of a variety of cancers, yet the role of microRNAs in GBM remains poorly understood. In this study, we investigated the role of microRNAs in regulating the differentiation and proliferation of neural stem cells and glioblastoma-multiforme tumor cells.
We used quantitative RT-PCR to assess microRNA expression in high-grade astrocytomas and adult mouse neural stem cells. To assess the function of candidate microRNAs in high-grade astrocytomas, we transfected miR mimics to cultured-mouse neural stem cells, -mouse oligodendroglioma-derived stem cells, -human glioblastoma multiforme-derived stem cells and -glioblastoma multiforme cell lines. Cellular differentiation was assessed by immunostaining, and cellular proliferation was determined using fluorescence-activated cell sorting.
Our studies revealed that expression levels of microRNA-124 and microRNA-137 were significantly decreased in anaplastic astrocytomas (World Health Organization grade III) and glioblastoma multiforme (World Health Organization grade IV) relative to non-neoplastic brain tissue (P < 0.01), and were increased 8- to 20-fold during differentiation of cultured mouse neural stem cells following growth factor withdrawal. Expression of microRNA-137 was increased 3- to 12-fold in glioblastoma multiforme cell lines U87 and U251 following inhibition of DNA methylation with 5-aza-2'-deoxycytidine (5-aza-dC). Transfection of microRNA-124 or microRNA-137 induced morphological changes and marker expressions consistent with neuronal differentiation in mouse neural stem cells, mouse oligodendroglioma-derived stem cells derived from S100β-v-erbB tumors and cluster of differentiation 133+ human glioblastoma multiforme-derived stem cells (SF6969). Transfection of microRNA-124 or microRNA-137 also induced G1 cell cycle arrest in U251 and SF6969 glioblastoma multiforme cells, which was associated with decreased expression of cyclin-dependent kinase 6 and phosphorylated retinoblastoma (pSer 807/811) proteins.
microRNA-124 and microRNA-137 induce differentiation of adult mouse neural stem cells, mouse oligodendroglioma-derived stem cells and human glioblastoma multiforme-derived stem cells and induce glioblastoma multiforme cell cycle arrest. These results suggest that targeted delivery of microRNA-124 and/or microRNA-137 to glioblastoma multiforme tumor cells may be therapeutically efficacious for the treatment of this disease.
PMCID: PMC2443372  PMID: 18577219
4.  The increase of microRNA-21 during lung fibrosis and its contribution to epithelial-mesenchymal transition in pulmonary epithelial cells 
Respiratory Research  2013;14(1):95.
The excess and persistent accumulation of fibroblasts due to aberrant tissue repair results in fibrotic diseases such as idiopathic pulmonary fibrosis. Recent reports have revealed significant changes in microRNAs during idiopathic pulmonary fibrosis and evidence in support of a role for microRNAs in myofibroblast differentiation and the epithelial-mesenchymal transition in the context of fibrosis. It has been reported that microRNA-21 is up-regulated in myofibroblasts during fibrosis and promotes transforming growth factor-beta signaling by inhibiting Smad7. However, expression changes in microRNA-21 and the role of microRNA-21 in epithelial-mesenchymal transition during lung fibrosis have not yet been defined.
Lungs from saline- or bleomycin-treated C57BL/6 J mice and lung specimens from patients with idiopathic pulmonary fibrosis were analyzed. Enzymatic digestions were performed to isolate single lung cells. Lung epithelial cells were isolated by flow cytometric cell sorting. The expression of microRNA-21 was analyzed using both quantitative PCR and in situ hybridization. To induce epithelial-mesenchymal transition in culture, isolated mouse lung alveolar type II cells were cultured on fibronectin-coated chamber slides in the presence of transforming growth factor-β, thus generating conditions that enhance epithelial-mesenchymal transition. To investigate the role of microRNA-21 in epithelial-mesenchymal transition, we transfected cells with a microRNA-21 inhibitor. Total RNA was isolated from the freshly isolated and cultured cells. MicroRNA-21, as well as mRNAs of genes that are markers of alveolar epithelial or mesenchymal cell differentiation, were quantified using quantitative PCR.
The lung epithelial cells isolated from the bleomycin-induced lung fibrosis model system had decreased expression of epithelial marker genes, whereas the expression of mesenchymal marker genes was increased. MicroRNA-21 was significantly upregulated in isolated lung epithelial cells during bleomycin-induced lung fibrosis and human idiopathic pulmonary fibrosis. MicroRNA-21 was also upregulated in the cultured alveolar epithelial cells under the conditions that enhance epithelial-mesenchymal transition. Exogenous administration of a microRNA-21 inhibitor prevented the increased expression of vimentin and alpha-smooth muscle actin in cultured primary mouse alveolar type II cells under culture conditions that induce epithelial-mesenchymal transition.
Our experiments demonstrate that microRNA-21 is increased in lung epithelial cells during lung fibrosis and that it promotes epithelial-mesenchymal transition.
PMCID: PMC3849377  PMID: 24063588
microRNAs; Epithelial-mesenchymal transition; Pulmonary fibrosis; Alveolar type II cells; Lung single cell separation
5.  microRNAs: key triggers of neuronal cell fate 
Development of the central nervous system (CNS) requires a precisely coordinated series of events. During embryonic development, different intra- and extracellular signals stimulate neural stem cells to become neural progenitors, which eventually irreversibly exit from the cell cycle to begin the first stage of neurogenesis. However, before this event occurs, the self-renewal and proliferative capacities of neural stem cells and neural progenitors must be tightly regulated. Accordingly, the participation of various evolutionary conserved microRNAs is key in distinct central nervous system (CNS) developmental processes of many organisms including human, mouse, chicken, frog, and zebrafish. microRNAs specifically recognize and regulate the expression of target mRNAs by sequence complementarity within the mRNAs 3′ untranslated region and importantly, a single microRNA can have several target mRNAs to regulate a process; likewise, a unique mRNA can be targeted by more than one microRNA. Thus, by regulating different target genes, microRNAs let-7, microRNA-124, and microRNA-9 have been shown to promote the differentiation of neural stem cells and neural progenitors into specific neural cell types while microRNA-134, microRNA-25 and microRNA-137 have been characterized as microRNAs that induce the proliferation of neural stem cells and neural progenitors. Here we review the mechanisms of action of these two sets of microRNAs and their functional implications during the transition from neural stem cells and neural progenitors to fully differentiated neurons. The genetic and epigenetic mechanisms that regulate the expression of these microRNAs as well as the role of the recently described natural RNA circles which act as natural microRNA sponges regulating post-transcriptional microRNA expression and function during the early stages of neurogenesis is also discussed.
PMCID: PMC4070303  PMID: 25009466
miRNAs; neuronal differentiation; neuronal cell fate; neural stem cell; neural progenitors; development; central nervous system
6.  mRNA turnover rate limits siRNA and microRNA efficacy 
Based on a simple model of the mRNA life cycle, we predict that mRNAs with high turnover rates in the cell are more difficult to perturb with RNAi.We test this hypothesis using a luciferase reporter system and obtain additional evidence from a variety of large-scale data sets, including microRNA overexpression experiments and RT–qPCR-based efficacy measurements for thousands of siRNAs.Our results suggest that mRNA half-lives will influence how mRNAs are differentially perturbed whenever small RNA levels change in the cell, not only after transfection but also during differentiation, pathogenesis and normal cell physiology.
What determines how strongly an mRNA responds to a microRNA or an siRNA? We know that properties of the sequence match between the small RNA and the mRNA are crucial. However, large-scale validations of siRNA efficacies have shown that certain transcripts remain recalcitrant to perturbation even after repeated redesign of the siRNA (Krueger et al, 2007). Weak response to RNAi may thus be an inherent property of the mRNA, but the underlying factors have proven difficult to uncover.
siRNAs induce degradation by sequence-specific cleavage of their target mRNAs (Elbashir et al, 2001). MicroRNAs, too, induce mRNA degradation, and ∼80% of their effect on protein levels can be explained by changes in transcript abundance (Hendrickson et al, 2009; Guo et al, 2010). Given that multiple factors act simultaneously to degrade individual mRNAs, we here consider whether variable responses to micro/siRNA regulation may, in part, be explained simply by the basic dynamics of mRNA turnover. If a transcript is already under strong destabilizing regulation, it is theoretically possible that the relative change in abundance after the addition of a novel degrading factor would be less pronounced compared with a stable transcript (Figure 1). mRNA turnover is achieved by a multitude of factors, and the influence of such factors on targetability can be explored. However, their combined action, including yet unknown factors, is summarized into a single property: the mRNA decay rate.
First, we explored the theoretical relationship between the pre-existing turnover rate of an mRNA, and its expected susceptibility to perturbation by a small RNA. We assumed a basic model of the mRNA life cycle, in which the rate of transcription is constant and the rate of degradation is described by first-order kinetics. Under this model, the relative change in steady-state expression level will become smaller as the pre-existing decay rate grows larger, independent of the transcription rate. This relationship persists also if we assume various degrees of synergy and antagonism between the pre-existing factors and the external factor, with increasing synergism leading to transcripts being more equally targetable, regardless of their pre-existing decay rate.
We next generated a series of four luciferase reporter constructs with destabilizing AU-rich elements (AREs) of various strengths incorporated into their 3′ UTRs. To evaluate how the different constructs would respond to perturbation, we performed co-transfections with an siRNA targeted at the coding region of the luciferase gene. This reduced the signal of the non-destabilized construct to 26% compared with a control siRNA. In contrast, the most destabilized construct showed 42% remaining reporter activity, and we could observe a dose–response relationship across the series.
The reporter experiment encouraged an investigation of this effect on real-world mRNAs. We analyzed a set of 2622 siRNAs, for which individual efficacies were determined using RT–qPCR 48 h post-transfection in HeLa cells ( Of these, 1778 could be associated with an experimentally determined decay rate (Figure 4A). Although the overall correlation between the two variables was modest (Spearman's rank correlation rs=0.22, P<1e−20), we found that siRNAs directed at high-turnover (t1/2<200 min) and medium-turnover (2001000 min) transcripts (P<8e−11 and 4e−9, respectively, two-tailed KS-test, Figure 4B). While 41.6% (498/1196) of the siRNAs directed at low-turnover transcripts reached 10% remaining expression or better, only 16.7% (31/186) of the siRNAs that targeted high-turnover mRNAs reached this high degree of silencing (Figure 4B). Reduced targetability (25.2%, 100/396) was also seen for transcripts with medium-turnover rate.
Our results based on siRNA data suggested that turnover rates could also influence microRNA targeting. By assembling genome-wide mRNA expression data from 20 published microRNA transfections in HeLa cells, we found that predicted target mRNAs with short and medium half-life were significantly less repressed after transfection than their long-lived counterparts (P<8e−5 and P<0.03, respectively, two-tailed KS-test). Specifically, 10.2% (293/2874) of long-lived targets versus 4.4% (41/942) of short-lived targets were strongly (z-score <−3) repressed. siRNAs are known to cause off-target effects that are mediated, in part, by microRNA-like seed complementarity (Jackson et al, 2006). We analyzed changes in transcript levels after transfection of seven different siRNAs, each with a unique seed region (Jackson et al, 2006). Putative ‘off-targets' were identified by mapping of non-conserved seed matches in 3′ UTRs. We found that low-turnover mRNAs (t1/2 >1000 min) were more affected by seed-mediated off-target silencing than high-turnover mRNAs (t1/2 <200 min), with twice as many long-lived seed-containing transcripts (3.8 versus 1.9%) being strongly (z-score <−3) repressed.
In summary, mRNA turnover rates have an important influence on the changes exerted by small RNAs on mRNA levels. It can be assumed that mRNA half-lives will influence how mRNAs are differentially perturbed whenever small RNA levels change in the cell, not only after transfection but also during differentiation, pathogenesis and normal cell physiology.
The microRNA pathway participates in basic cellular processes and its discovery has enabled the development of si/shRNAs as powerful investigational tools and potential therapeutics. Based on a simple kinetic model of the mRNA life cycle, we hypothesized that mRNAs with high turnover rates may be more resistant to RNAi-mediated silencing. The results of a simple reporter experiment strongly supported this hypothesis. We followed this with a genome-wide scale analysis of a rich corpus of experiments, including RT–qPCR validation data for thousands of siRNAs, siRNA/microRNA overexpression data and mRNA stability data. We find that short-lived transcripts are less affected by microRNA overexpression, suggesting that microRNA target prediction would be improved if mRNA turnover rates were considered. Similarly, short-lived transcripts are more difficult to silence using siRNAs, and our results may explain why certain transcripts are inherently recalcitrant to perturbation by small RNAs.
PMCID: PMC3010119  PMID: 21081925
microRNA; mRNA decay; RNAi; siRNA
7.  Pleiotropic actions of miR-21 highlight the critical role of deregulated stromal microRNAs during colorectal cancer progression 
Cell Death & Disease  2013;4(6):e684-.
The oncogene microRNA-21 (miRNA; miR-21) is overexpressed in most solid organ tumours; however, a recent examination of stage II colorectal cancer (CRC) specimens suggests this may be a stromal phenomenon and not only a feature of cancer cells. In vitro and in vivo studies show that miR-21 has potent pro-metastatic effects in various malignant carcinoma cell lines. The tumour microenvironment has also been identified as a key actor during the metastatic cascade; however to date the significance of deregulated miR-21 expression within the cancer-associated stroma has not been examined. In the present study, a quantitative RT-PCR-based analysis of laser microdissected tissue confirmed that miR-21 expression is associated with a four-fold mean increase in CRC stroma compared with normal tissue. In situ hybridisation using locked nucleic acid probes localised miR-21 expression predominantly to fibroblasts within tumour-associated stroma. To study the molecular and biological impact of deregulated stromal miR-21 in CRC, stable ectopic expression was induced in immortalised fibroblasts. This resulted in upregulated α-smooth muscle actin expression implying miR-21 overexpression is driving the fibroblast-to-myofibroblast transdifferentiation. Conditioned medium from miR-21-overexpressing fibroblasts protected CRC cells from oxaliplatin-induced apoptosis and increased their proliferative capacity. 3D organotypic co-cultures containing fibroblasts and CRC cells revealed that ectopic stromal miR-21 expression was associated with increased epithelial invasiveness. Reversion-inducing cysteine-rich protein with kazal motifs, an inhibitor of matrix-remodelling enzyme MMP2, was significantly downregulated by ectopic miR-21 in established and primary colorectal fibroblasts with a reciprocal rise in MMP2 activity. Inhibition of MMP2 abrogated the invasion-promoting effects of ectopic miR-21. This data, which characterises a novel pro-metastatic mechanism mediated by miR-21 in the CRC stroma, highlights the importance of miRNA deregulation within the tumour microenvironment and identifies a potential application for stromal miRNAs as biomarkers in cancer.
PMCID: PMC3702298  PMID: 23788041
colorectal neoplasia; neoplasm metastasis; stroma; MicroRNA; MiR-21
8.  Synaptic adaptations by alcohol and drugs of abuse: changes in microRNA expression and mRNA regulation 
Local translation of mRNAs is a mechanism by which cells can rapidly remodel synaptic structure and function. There is ample evidence for a role of synaptic translation in the neuroadaptations resulting from chronic drug use and abuse. Persistent and coordinated changes of many mRNAs, globally and locally, may have a causal role in complex disorders such as addiction. In this review we examine the evidence that translational regulation by microRNAs drives synaptic remodeling and mRNA expression, which may regulate the transition from recreational to compulsive drug use. microRNAs are small, non-coding RNAs that control the translation of mRNAs in the cell and within spatially restricted sites such as the synapse. microRNAs typically repress the translation of mRNAs into protein by binding to the 3′UTR of their targets. As ‘master regulators’ of many mRNAs, changes in microRNAs could account for the systemic alterations in mRNA and protein expression observed with drug abuse and dependence. Recent studies indicate that manipulation of microRNAs affects addiction-related behaviors such as the rewarding properties of cocaine, cocaine-seeking behavior, and self-administration rates of alcohol. There is limited evidence, however, regarding how synaptic microRNAs control local mRNA translation during chronic drug exposure and how this contributes to the development of dependence. Here, we discuss research supporting microRNA regulation of local mRNA translation and how drugs of abuse may target this process. The ability of synaptic microRNAs to rapidly regulate mRNAs provides a discrete, localized system that could potentially be used as diagnostic and treatment tools for alcohol and other addiction disorders.
PMCID: PMC4267177  PMID: 25565954
miRNAs; mRNA targets; ethanol; stimulants; cocaine; synaptoneurosomes; synaptic translation
9.  Mutations in Conserved Residues of the C. elegans microRNA Argonaute ALG-1 Identify Separable Functions in ALG-1 miRISC Loading and Target Repression 
PLoS Genetics  2014;10(4):e1004286.
microRNAs function in diverse developmental and physiological processes by regulating target gene expression at the post-transcriptional level. ALG-1 is one of two Caenorhabditis elegans Argonautes (ALG-1 and ALG-2) that together are essential for microRNA biogenesis and function. Here, we report the identification of novel antimorphic (anti) alleles of ALG-1 as suppressors of lin-28(lf) precocious developmental phenotypes. The alg-1(anti) mutations broadly impair the function of many microRNAs and cause dosage-dependent phenotypes that are more severe than the complete loss of ALG-1. ALG-1(anti) mutant proteins are competent for promoting Dicer cleavage of microRNA precursors and for associating with and stabilizing microRNAs. However, our results suggest that ALG-1(anti) proteins may sequester microRNAs in immature and functionally deficient microRNA Induced Silencing Complexes (miRISCs), and hence compete with ALG-2 for access to functional microRNAs. Immunoprecipitation experiments show that ALG-1(anti) proteins display an increased association with Dicer and a decreased association with AIN-1/GW182. These findings suggest that alg-1(anti) mutations impair the ability of ALG-1 miRISC to execute a transition from Dicer-associated microRNA processing to AIN-1/GW182 associated effector function, and indicate an active role for ALG/Argonaute in mediating this transition.
Author Summary
microRNAs are small non-coding RNAs that function in diverse processes by post-transcriptionally regulating gene expression. Argonautes form the core of the microRNA Induced Silencing Complex (miRISC) and are required for microRNA biogenesis and function. Here we describe the identification and characterization of a novel set of mutations in alg-1, a Caenorhabditis elegans microRNA specific Argonaute. This new class of alg-1 mutations causes phenotypes more severe than the complete loss of alg-1. Interestingly, the mutant ALG-1 proteins are able to promote microRNA biogenesis, but are defective in mediating microRNA target gene repression. We found that mutant ALG-1 associates more with Dicer, but less with miRISC effector AIN-1, compared to wild type ALG-1. We propose that these mutant ALG-1 proteins assemble nonfunctional complexes that effectively compete with the paralogous ALG-2 for critical miRISC components, including mature microRNAs. This new class of Argonaute mutants highlights the role of Argonaute in mediating a functional transition for miRISC from microRNA processing phase to target repression phase.
PMCID: PMC3998888  PMID: 24763381
10.  The miR-17-5p microRNA is a key regulator of the G1/S phase cell cycle transition 
Genome Biology  2008;9(8):R127.
Novel targets of the oncogenic miR-17-92 cluster have been identified and the mechanism of regulation of proliferation at the G1/S phase cell cycle transition via the miR-17-5p microRNA has been elucidated.
MicroRNAs are modifiers of gene expression, acting to reduce translation through either translational repression or mRNA cleavage. Recently, it has been shown that some microRNAs can act to promote or suppress cell transformation, with miR-17-92 described as the first oncogenic microRNA. The association of miR-17-92 encoded microRNAs with a surprisingly broad range of cancers not only underlines the clinical significance of this locus, but also suggests that miR-17-92 may regulate fundamental biological processes, and for these reasons miR-17-92 has been considered as a therapeutic target.
In this study, we show that miR-17-92 is a cell cycle regulated locus, and ectopic expression of a single microRNA (miR-17-5p) is sufficient to drive a proliferative signal in HEK293T cells. For the first time, we reveal the mechanism behind this response - miR-17-5p acts specifically at the G1/S-phase cell cycle boundary, by targeting more than 20 genes involved in the transition between these phases. While both pro- and anti-proliferative genes are targeted by miR-17-5p, pro-proliferative mRNAs are specifically up-regulated by secondary and/or tertiary effects in HEK293T cells.
The miR-17-5p microRNA is able to act as both an oncogene and a tumor suppressor in different cellular contexts; our model of competing positive and negative signals can explain both of these activities. The coordinated suppression of proliferation-inhibitors allows miR-17-5p to efficiently de-couple negative regulators of the MAPK (mitogen activated protein kinase) signaling cascade, promoting growth in HEK293T cells. Additionally, we have demonstrated the utility of a systems biology approach as a unique and rapid approach to uncover microRNA function.
PMCID: PMC2575517  PMID: 18700987
11.  Emerging roles of chicken and viral microRNAs in avian disease 
BMC Proceedings  2011;5(Suppl 4):S2.
MicroRNAs are short RNAs (~22 nt) expressed by plants, animals and viruses that regulate gene expression post-transcriptionally, and their importance is highlighted by distinct patterns of expression in many physiological processes, including development, hematopoeisis, stress resistance, and disease. Our group has characterized the microRNAs encoded by the avian herpesviruses; namely, oncogenic Marek’s disease (MD) virus (MDV1), non-oncogenic MDV (MDV2) herpesvirus of turkeys (HVT), and infectious laryngotracheitis virus (ILTV).
MicroRNAs encoded by the avian herpesviruses were identified using next generation sequencing technologies (454, Illumina).
The microRNAs of each the avian herpesviruses have unique sequences, but the genomic locations are similar, in that the microRNAs tend to be clustered in the rapidly evolving repeat regions of the viral genomes. For a given viral species the microRNA sequence is highly conserved in different strains with the exception of a virulence-associated polymorphism in the putative promoter of the MDV1 microRNAs upstream of the meq oncogene. These microRNAs are relatively highly expressed in tumors produced by very virulent MDV1 isolates compared to tumors produced by less virulent strains. MDV1 and HVT encode homologs of the host microRNA, miR-221, which targets a gene important in cell cycle regulation. MDV1 encodes a microRNA (mdv1-miR-M4) that shares a seed sequence with miR-155, a microRNA important in immune function. Mdv-miR-M4 is highly expressed in MDV induced tumors, while miR-155 is present at very low levels.
MicroRNAs are highly conserved among different field strains of MDV1, and they are expressed in lytic and latent infections and in MDV1-derived tumors. This suggests that these small molecules are very important to the virus, and roles in immune evasion, anti-apoptosis, or proliferation are likely.
PMCID: PMC3108214  PMID: 21645299
12.  Rapid neurogenesis through transcriptional activation in human stem cells 
Molecular Systems Biology  2014;10(11):760.
Advances in cellular reprogramming and stem cell differentiation now enable ex vivo studies of human neuronal differentiation. However, it remains challenging to elucidate the underlying regulatory programs because differentiation protocols are laborious and often result in low neuron yields. Here, we overexpressed two Neurogenin transcription factors in human-induced pluripotent stem cells and obtained neurons with bipolar morphology in 4 days, at greater than 90% purity. The high purity enabled mRNA and microRNA expression profiling during neurogenesis, thus revealing the genetic programs involved in the rapid transition from stem cell to neuron. The resulting cells exhibited transcriptional, morphological and functional signatures of differentiated neurons, with greatest transcriptional similarity to prenatal human brain samples. Our analysis revealed a network of key transcription factors and microRNAs that promoted loss of pluripotency and rapid neurogenesis via progenitor states. Perturbations of key transcription factors affected homogeneity and phenotypic properties of the resulting neurons, suggesting that a systems-level view of the molecular biology of differentiation may guide subsequent manipulation of human stem cells to rapidly obtain diverse neuronal types.
PMCID: PMC4299601  PMID: 25403753
gene regulatory networks; microRNAs; neurogenesis; stem cell differentiation; transcriptomics
13.  Network Modeling Identifies Molecular Functions Targeted by miR-204 to Suppress Head and Neck Tumor Metastasis 
PLoS Computational Biology  2010;6(4):e1000730.
Due to the large number of putative microRNA gene targets predicted by sequence-alignment databases and the relative low accuracy of such predictions which are conducted independently of biological context by design, systematic experimental identification and validation of every functional microRNA target is currently challenging. Consequently, biological studies have yet to identify, on a genome scale, key regulatory networks perturbed by altered microRNA functions in the context of cancer. In this report, we demonstrate for the first time how phenotypic knowledge of inheritable cancer traits and of risk factor loci can be utilized jointly with gene expression analysis to efficiently prioritize deregulated microRNAs for biological characterization. Using this approach we characterize miR-204 as a tumor suppressor microRNA and uncover previously unknown connections between microRNA regulation, network topology, and expression dynamics. Specifically, we validate 18 gene targets of miR-204 that show elevated mRNA expression and are enriched in biological processes associated with tumor progression in squamous cell carcinoma of the head and neck (HNSCC). We further demonstrate the enrichment of bottleneckness, a key molecular network topology, among miR-204 gene targets. Restoration of miR-204 function in HNSCC cell lines inhibits the expression of its functionally related gene targets, leads to the reduced adhesion, migration and invasion in vitro and attenuates experimental lung metastasis in vivo. As importantly, our investigation also provides experimental evidence linking the function of microRNAs that are located in the cancer-associated genomic regions (CAGRs) to the observed predisposition to human cancers. Specifically, we show miR-204 may serve as a tumor suppressor gene at the 9q21.1–22.3 CAGR locus, a well established risk factor locus in head and neck cancers for which tumor suppressor genes have not been identified. This new strategy that integrates expression profiling, genetics and novel computational biology approaches provides for improved efficiency in characterization and modeling of microRNA functions in cancer as compared to the state of art and is applicable to the investigation of microRNA functions in other biological processes and diseases.
Author Summary
MicroRNAs regulate the expression of genes in cells and are important in cancer development and progression. Designing new microRNA-based treatments requires the understanding of their mechanisms of action. Previous biological studies lack in depth since only a few genes are confirmed as microRNA targets. Additionally, key biological systems perturbed by altered microRNA functions in the context of cancer remain to be identified. Here, we demonstrate for the first time how genetic knowledge about the inheritance of cancer can be utilized jointly with data about the expression of genes in cancer samples to model deregulated microRNAs and their functions at multiple scales of biology. Our approach further uncovers previously unknown connections between microRNAs, their regulated genes, and their dynamics. Using head and neck cancer as a model, we predict the presence, functions, and gene targets of a new tumor suppressor microRNA in a cancer-associated chromosomal region where a candidate gene has not been identified. We then confirm their validity with extensive and thorough biological characterization and show attenuation of lung metastasis in mice. The discovery of molecular networks regulated by microRNAs could be exploited for the design of new treatments as an alternative to the single-gene target paradigm.
PMCID: PMC2848541  PMID: 20369013
14.  Systems biology of interstitial lung diseases: integration of mRNA and microRNA expression changes 
The molecular pathways involved in the interstitial lung diseases (ILDs) are poorly understood. Systems biology approaches, with global expression data sets, were used to identify perturbed gene networks, to gain some understanding of the underlying mechanisms, and to develop specific hypotheses relevant to these chronic lung diseases.
Lung tissue samples from patients with different types of ILD were obtained from the Lung Tissue Research Consortium and total cell RNA was isolated. Global mRNA and microRNA were profiled by hybridization and amplification-based methods. Differentially expressed genes were compiled and used to identify critical signaling pathways and potential biomarkers. Modules of genes were identified that formed a regulatory network, and studies were performed on cultured cells in vitro for comparison with the in vivo results.
By profiling mRNA and microRNA (miRNA) expression levels, we found subsets of differentially expressed genes that distinguished patients with ILDs from controls and that correlated with different disease stages and subtypes of ILDs. Network analysis, based on pathway databases, revealed several disease-associated gene modules, involving genes from the TGF-β, Wnt, focal adhesion, and smooth muscle actin pathways that are implicated in advancing fibrosis, a critical pathological process in ILDs. A more comprehensive approach was also adapted to construct a putative global gene regulatory network based on the perturbation of key regulatory elements, transcription factors and microRNAs. Our data underscores the importance of TGF-β signaling and the persistence of smooth muscle actin-containing fibroblasts in these diseases. We present evidence that, downstream of TGF-β signaling, microRNAs of the miR-23a cluster and the transcription factor Zeb1 could have roles in mediating an epithelial to mesenchymal transition (EMT) and the resultant persistence of mesenchymal cells in these diseases.
We present a comprehensive overview of the molecular networks perturbed in ILDs, discuss several potential key molecular regulatory circuits, and identify microRNA species that may play central roles in facilitating the progression of ILDs. These findings advance our understanding of these diseases at the molecular level, provide new molecular signatures in defining the specific characteristics of the diseases, suggest new hypotheses, and reveal new potential targets for therapeutic intervention.
PMCID: PMC3035594  PMID: 21241464
15.  MicroRNAs: Modulators of Cell Identity, and their Applications in Tissue Engineering 
MicroRNAs post-transcriptionally regulate the expression of approximately 60% of the mammalian genes, and have an important role in maintaining the differentiated state of somatic cells through the expression of unique tissue-specific microRNA sets. Likewise, the stemness of pluripotent cells is also sustained by embryonic stem cell-enriched microRNAs, which regulate genes involved in cell cycle, cell signaling and epigenetics, among others. Thus, microRNAs work as modulator molecules that ensure the appropriate expression profile of each cell type. Manipulation of microRNA expression might determine the cell fate. Indeed, microRNA-mediated reprogramming can change the differentiated status of somatic cells towards stemness or, conversely, microRNAs can also transform stem- into differentiated-cells both in vitro and in vivo. In this Review, we outline what is currently known in this field, focusing on the applications of microRNA in tissue engineering.
PMCID: PMC4262937  PMID: 25069512
Cell fate; ESC; iPSC; microRNA; stemness; tissue engineering.
16.  Retina regeneration in the chick embryo is not induced by spontaneous Mitf downregulation but requires FGF/FGFR/MEK/Erk dependent upregulation of Pax6 
Molecular Vision  2007;13:57-65.
To elucidate the early cellular events that take place during induction of retina regeneration in the embryonic chick, focusing on the relationship between fibroblast growth factor (FGF) signaling and the regulation of Pax6 and Mitf.
The retina of embryonic day 4 (E4) chicks was removed and a heparin coated bead soaked in fibroblast growth factor 2 (FGF2) was placed into the optic cup. The pharmacological inhibitor PD173074 was used to inhibit FGF receptors, PD98059 was used to inhibit MAP kinase-kinase/extracellular signal-regulated kinase (MEK/Erk) signaling. Retroviral constructs for paired box 6 (Pax6), MEK, and microphthalmia (Mitf) were also used in overexpression studies. Immunohistochemistry was used to examine pErk, Pax6, Mitf, and melanosomal matrix protein 115 (MMP115) immunoreactivity and bromodeoxyuridine (BrdU) incorporation at different time points after removing the retina.
The embryonic chick has the ability to regenerate a new retina by the process of transdifferentiation of the retinal pigment epithelium (RPE). We observed that during the induction of transdifferentiation, downregulation of Mitf was not sufficient to induce transdifferentiation at E4 and that FGF2 was required to drive Pax6 protein expression and cell proliferation, both of which are necessary for transdifferentiation. Furthermore, we show that FGF2 works through the FGFR/MEK/Erk signaling cascade to increase Pax6 expression and proliferation. Ectopic Mitf expression was able to inhibit transdifferentiation by acting downstream of FGFR/MEK/Erk signaling, likely by inhibiting the increase in Pax6 protein in the RPE.
FGF2 stimulates Pax6 expression during induction of transdifferentiation of the RPE through FGFR/MEK/Erk signaling cascade. This Pax6 expression is accompanied by an increase in BrdU incorporation. In addition, we show that Mitf is spontaneously downregulated after removal of the retina even in the absence of FGF2. This Mitf downregulation is not accompanied by Pax6 upregulation, demonstrating that FGF2 stimulated Pax6 upregulation is required for transdifferentiation of the RPE. Furthermore, we show that ectopic Mitf expression is able to protect the RPE from FGF2 induced transdifferentiation by inhibiting Pax6 upregulation.
PMCID: PMC2503104  PMID: 17277739
17.  Nonviral Direct Conversion of Primary Mouse Embryonic Fibroblasts to Neuronal Cells 
Transdifferentiation, where differentiated cells are reprogrammed into another lineage without going through an intermediate proliferative stem cell-like stage, is the next frontier of regenerative medicine. Wernig et al. first described the direct conversion of fibroblasts into functional induced neuronal cells (iNs). Subsequent reports of transdifferentiation into clinically relevant neuronal subtypes have further endorsed the prospect of autologous cell therapy for neurodegenerative disorders. So far, all published neuronal transdifferentiation protocols rely on lentiviruses, which likely precludes their clinical translation. Instead, we delivered plasmids encoding neuronal transcription factors (Brn2, Ascl1, Myt1l) to primary mouse embryonic fibroblasts with a bioreducible linear poly(amido amine). The low toxicity and high transfection efficiency of this gene carrier allowed repeated dosing to sustain high transgene expression levels. Serial 0.5 µg cm−2 doses of reprogramming factors delivered at 48-hour intervals produced up to 7.6% Tuj1+ (neuron-specific class III β-tubulin) cells, a subset of which expressed MAP2 (microtubule-associated protein 2), tau, and synaptophysin. A synapsin-red fluorescent protein (RFP) reporter helped to identify more mature, electrophysiologically active cells, with 24/26 patch-clamped RFP+ cells firing action potentials. Some non-virally induced neuronal cells (NiNs) were observed firing multiple and spontaneous action potentials. This study demonstrates the feasibility of nonviral neuronal transdifferentiation, and may be amenable to other transdifferentiation processes.
PMCID: PMC3411320  PMID: 23344148
18.  N-acetyl-seryl-aspartyl-lysyl-proline Inhibits Diabetes-Associated Kidney Fibrosis and Endothelial-Mesenchymal Transition 
BioMed Research International  2014;2014:696475.
Endothelial-to-mesenchymal transition (EndMT) emerges as an important source of fibroblasts. MicroRNA let-7 exhibits anti-EndMT effects and fibroblast growth factor (FGF) receptor has been shown to be an important in microRNA let-7 expression. The endogenous antifibrotic peptide N-acetyl-seryl-aspartyl-lysyl-proline (AcSDKP) is a substrate of angiotensin-converting enzyme (ACE). Here, we found that AcSDKP inhibited the EndMT and exhibited fibrotic effects that were associated with FGF receptor-mediated anti-fibrotic program. Conventional ACE inhibitor plus AcSDKP ameliorated kidney fibrosis and inhibited EndMT compared to therapy with the ACE inhibitor alone in diabetic CD-1 mice. The endogenous AcSDKP levels were suppressed in diabetic animals. Cytokines induced cultured endothelial cells into EndMT; coincubation with AcSDKP inhibited EndMT. Expression of microRNA let-7 family was suppressed in the diabetic kidney; antifibrotic and anti-EndMT effects of AcSDKP were associated with the restoration of microRNA let-7 levels. AcSDKP restored diabetes- or cytokines-suppressed FGF receptor expression/phosphorylation into normal levels both in vivo and in vitro. These results suggest that AcSDKP is an endogenous antifibrotic molecule that has the potential to cure diabetic kidney fibrosis via an inhibition of the EndMT associated with the restoration of FGF receptor and microRNA let-7.
PMCID: PMC3982268  PMID: 24783220
19.  Kaposi's Sarcoma Herpesvirus MicroRNAs Induce Metabolic Transformation of Infected Cells 
PLoS Pathogens  2014;10(9):e1004400.
Altered cell metabolism is inherently connected with pathological conditions including cancer and viral infections. Kaposi's sarcoma-associated herpesvirus (KSHV) is the etiological agent of Kaposi's sarcoma (KS). KS tumour cells display features of lymphatic endothelial differentiation and in their vast majority are latently infected with KSHV, while a small number are lytically infected, producing virions. Latently infected cells express only a subset of viral genes, mainly located within the latency-associated region, among them 12 microRNAs. Notably, the metabolic properties of KSHV-infected cells closely resemble the metabolic hallmarks of cancer cells. However, how and why KSHV alters host cell metabolism remains poorly understood. Here, we investigated the effect of KSHV infection on the metabolic profile of primary dermal microvascular lymphatic endothelial cells (LEC) and the functional relevance of this effect. We found that the KSHV microRNAs within the oncogenic cluster collaborate to decrease mitochondria biogenesis and to induce aerobic glycolysis in infected cells. KSHV microRNAs expression decreases oxygen consumption, increase lactate secretion and glucose uptake, stabilize HIF1α and decreases mitochondria copy number. Importantly this metabolic shift is important for latency maintenance and provides a growth advantage. Mechanistically we show that KSHV alters host cell energy metabolism through microRNA-mediated down regulation of EGLN2 and HSPA9. Our data suggest that the KSHV microRNAs induce a metabolic transformation by concurrent regulation of two independent pathways; transcriptional reprograming via HIF1 activation and reduction of mitochondria biogenesis through down regulation of the mitochondrial import machinery. These findings implicate viral microRNAs in the regulation of the cellular metabolism and highlight new potential avenues to inhibit viral latency.
Author Summary
Kaposi's sarcoma (KS) is the most common cancer in HIV-infected untreated individuals. Kaposi's sarcoma-associated herpesvirus (KSHV) is the infectious cause of this neoplasm. The discovery of KSHV and its oncogenic enigmas has enlightened many fields of tumor biology and viral oncogenesis. The metabolic properties of KS significantly differ from those of normal cells and resemble cancer cells in general, but the mechanisms employed by KSHV to alter host cell metabolism are poorly understood. Our work demonstrates that KSHV microRNAs can alter cell metabolism through coherent control of independent pathways, a key feature of microRNA-mediated control of cellular functions. This provides a fresh perspective for how microRNA-encoding pathogens shape a cell's metabolism to create an optimal environment for their survival and/or replication. Indeed, we show that, in the case of KSHV, viral microRNA-driven regulation of metabolism is important for viral latency. These findings will evoke new and exciting approaches to prevent KSHV from establishing latency and later on KS.
PMCID: PMC4177984  PMID: 25255370
20.  Dynamic microRNA Profiles of Hepatic Differentiated Human Umbilical Cord Lining-Derived Mesenchymal Stem Cells 
PLoS ONE  2012;7(9):e44737.
Despite the extensive hepatic differentiation potential of human umbilical cord lining-derived mesenchymal stem cells (hUC-MSC), little is known about the molecular mechanisms of hUC-MSC differentiation. At the post-transcriptional level, microRNAs are key players in the control of cell fate determination during differentiation. In this study, we aimed to identify microRNAs involved in the hepatic differentiation of hUC-MSCs. After successfully isolating hUC- MSCs, we induced hepatocyte formation in vitro with growth factors. After 26 days of induction, hUC-MSCs could express hepatocyte-specific genes, synthesize urea and glycogen and uptake low-density lipoprotein. Cellular total RNA from hUC-MSCs and hepatic differentiated hUC-MSCs was collected at 7 time points, including 2 days, 6 days, 10 days, 14 days, 22 days and 26 days, for microRNA microarray analysis. Dynamic microRNA profiles were identified that did not overlap or only partially overlapped with microRNAs reported to be involved in human liver development, hepatocyte regeneration or hepatic differentiation of liver-derived progenitor cells. A total of 61 microRNAs among 1205 human and 144 human viral microRNAs displayed consistent changes and were altered at least 2-fold between hUC-MSCs and hepatic differentiated hUC-MSCs. Among these microRNAs, 25 were over-expressed; this over-expression occurred either gradually or increased sharply and was maintained at a high level. A total of 36 microRNAs were under-expressed, with an expression pattern similar to that of the over-expressed microRNAs. The expression of the altered expressed microRNAs was also confirmed by quantitative reverse-transcription polymerase chain reaction. We also found that microRNAs involved in hepatic differentiation were not enriched in hepatocyte or hepatocellular carcinoma cells and can potentially target liver-enriched transcription factors and genes. The elucidation of the microRNA profile during the hepatic differentiation of hUC-MSCs provides the basis for clarifying the role of microRNAs in hUC-MSC hepatic differentiation and specific microRNA selection for the conversion of hUC-MSCs to hepatocytes.
PMCID: PMC3440352  PMID: 22984549
21.  Microarray analysis of microRNA expression in the developing mammalian brain 
Genome Biology  2004;5(9):R68.
A microarray technology suitable for analyzing the expression of microRNAs and of other small RNAs was used to determine the microRNA expression profile during mouse-brain development and observed a temporal wave of gene expression of sequential classes of microRNAs.
MicroRNAs are a large new class of tiny regulatory RNAs found in nematodes, plants, insects and mammals. MicroRNAs are thought to act as post-transcriptional modulators of gene expression. In invertebrates microRNAs have been implicated as regulators of developmental timing, neuronal differentiation, cell proliferation, programmed cell death and fat metabolism. Little is known about the roles of microRNAs in mammals.
We isolated 18-26 nucleotide RNAs from developing rat and monkey brains. From the sequences of these RNAs and the sequences of the rat and human genomes we determined which of these small RNAs are likely to have derived from stem-loop precursors typical of microRNAs. Next, we developed a microarray technology suitable for detecting microRNAs and printed a microRNA microarray representing 138 mammalian microRNAs corresponding to the sequences of the microRNAs we cloned as well as to other known microRNAs. We used this microarray to determine the profile of microRNAs expressed in the developing mouse brain. We observed a temporal wave of expression of microRNAs, suggesting that microRNAs play important roles in the development of the mammalian brain.
We describe a microarray technology that can be used to analyze the expression of microRNAs and of other small RNAs. MicroRNA microarrays offer a new tool that should facilitate studies of the biological roles of microRNAs. We used this method to determine the microRNA expression profile during mouse brain development and observed a temporal wave of gene expression of sequential classes of microRNAs.
PMCID: PMC522875  PMID: 15345052
22.  An Integrative Analysis of microRNA and mRNA Expression—A Case Study 
Cancer Informatics  2008;6:369-379.
MicroRNAs are believed to play an important role in gene expression regulation. They have been shown to be involved in cell cycle regulation and cancer. MicroRNA expression profiling became available owing to recent technology advancement. In some studies, both microRNA expression and mRNA expression are measured, which allows an integrated analysis of microRNA and mRNA expression.
We demonstrated three aspects of an integrated analysis of microRNA and mRNA expression, through a case study of human cancer data. We showed that (1) microRNA expression efficiently sorts tumors from normal tissues regardless of tumor type, while gene expression does not; (2) many microRNAs are down-regulated in tumors and these microRNAs can be clustered in two ways: microRNAs similarly affected by cancer and microRNAs similarly interacting with genes; (3) taking let-7f as an example, targets genes can be identified and they can be clustered based on their relationship with let-7f expression.
Our findings in this paper were made using novel applications of existing statistical methods: hierarchical clustering was applied with a new distance measure—the co-clustering frequency—to identify sample clusters that are stable; microRNA-gene correlation profiles were subject to hierarchical clustering to identify microRNAs that similarly interact with genes and hence are likely functionally related; the clustering of regression models method was applied to identify microRNAs similarly related to cancer while adjusting for tissue type and genes similarly related to microRNA while adjusting for disease status. These analytic methods are applicable to interrogate multiple types of -omics data in general.
PMCID: PMC2623315  PMID: 19259417
clustering; expression; microarray; microRNA
23.  A New Role for the GARP Complex in MicroRNA-Mediated Gene Regulation 
PLoS Genetics  2013;9(11):e1003961.
Many core components of the microRNA pathway have been elucidated and knowledge of their mechanisms of action actively progresses. In contrast, factors with modulatory roles on the pathway are just starting to become known and understood. Using a genetic screen in Caenorhabditis elegans, we identify a component of the GARP (Golgi Associated Retrograde Protein) complex, vps-52, as a novel genetic interactor of the microRNA pathway. The loss of vps-52 in distinct sensitized genetic backgrounds induces the enhancement of defective microRNA-mediated gene silencing. It synergizes with the core microRNA components, alg-1 Argonaute and ain-1 (GW182), in enhancing seam cell defects and exacerbates the gene silencing defects of the let-7 family and lsy-6 microRNAs in the regulation of seam cell, vulva and ASEL neuron development. Underpinning the observed genetic interactions, we found that VPS-52 impinges on the abundance of the GW182 proteins as well as the levels of microRNAs including the let-7 family. Altogether, we demonstrate that GARP complex fulfills a positive modulatory role on microRNA function and postulate that acting through GARP, vps-52 participates in a membrane-related process of the microRNA pathway.
Author Summary
The microRNA pathway is a post-transcriptional gene regulatory system that uses small non-coding RNAs called microRNAs to control multiple developmental and physiological processes. With the goal of unveiling factors modulating this regulatory pathway, we have undertaken the exploration of genetic interactors in the roundworm Caenorhabditis elegans. We identify vps-52, a component of the Golgi Associated Retrograde Protein or GARP complex, and establish that this complex executes a positive modulatory role on microRNA activity. The absence of vps-52 function exacerbates diverse microRNA-related defects. Molecularly, this effect relates to decreased abundance of microRNAs and the GW182 proteins. Considering that GARP is involved in the traffic of vesicles from endosomes back to the Golgi apparatus, we propose that GARP facilitates a membrane-related process of the microRNA pathway.
PMCID: PMC3820791  PMID: 24244204
24.  Target Repression Induced by Endogenous microRNAs: Large Differences, Small Effects 
PLoS ONE  2014;9(8):e104286.
MicroRNAs are small RNAs that regulate protein levels. It is commonly assumed that the expression level of a microRNA is directly correlated with its repressive activity – that is, highly expressed microRNAs will repress their target mRNAs more. Here we investigate the quantitative relationship between endogenous microRNA expression and repression for 32 mature microRNAs in Drosophila melanogaster S2 cells. In general, we find that more abundant microRNAs repress their targets to a greater degree. However, the relationship between expression and repression is nonlinear, such that a 10-fold greater microRNA concentration produces only a 10% increase in target repression. The expression/repression relationship is the same for both dominant guide microRNAs and minor mature products (so-called passenger strands/microRNA* sequences). However, we find examples of microRNAs whose cellular concentrations differ by several orders of magnitude, yet induce similar repression of target mRNAs. Likewise, microRNAs with similar expression can have very different repressive abilities. We show that the association of microRNAs with Argonaute proteins does not explain this variation in repression. The observed relationship is consistent with the limiting step in target repression being the association of the microRNA/RISC complex with the target site. These findings argue that modest changes in cellular microRNA concentration will have minor effects on repression of targets.
PMCID: PMC4139194  PMID: 25141277
25.  Effects of SDF-1-CXCR4 signaling on microRNA expression and tumorigenesis in estrogen receptor-alpha (ER-α)-positive breast cancer cells 
Experimental Cell Research  2011;317(18):2573-2581.
The majority of breast cancer cases ultimately become unresponsive to endocrine therapies, and this progression of breast cancer from hormone-responsive to hormone-independent represents an area in need of further research. Additionally, hormone-independent carcinomas are characterized as being more aggressive and metastatic, key features of more advanced disease. Having previously shown the ability of the stromal-cell derived factor-1 (SDF-1)-CXCR4 signaling axis to promote primary tumorigenesis and hormone independence by overexpressing CXCR4 in MCF-7 cells, in this study we further examined the role of SDF-1/CXCR4 in the endogenously CXCR4-positive, estrogen receptor α (ER-α)-positive breast carcinoma cell line, MDA-MB-361. In addition to regulating estrogen-induced and hormone-independent tumor growth, CXCR4 signaling stimulated the epithelial-to-mesenchymal transition, evidenced by decreased CDH1 expression following SDF-1 treatment. Furthermore, inhibition of CXCR4 with the small molecule inhibitor AMD3100 induced CDH1 gene expression and inhibited CDH2 gene expression in MDA-MB-361 cells. Further, exogenous SDF-1 treatment induced ER-α-phosphorylation in both MDA-MB-361 and MCF-7-CXCR4 cells, demonstrating ligand-independent activation of ER-α through CXCR4 crosstalk. qPCR microRNA array analyses of the MDA-MB-361 and MCF-7-CXCR4 cell lines revealed changes in microRNA expression profiles induced by SDF-1, consistent with a more advanced disease phenotype and further supporting our hypothesis that the SDF-1/CXCR4 signaling axis drives ER-α-positive breast cancer cells to a hormone independent and more aggressive phenotype. In this first demonstration of SDF-1-CXCR4-induced microRNAs in breast cancer, we suggest that this signaling axis may promote tumorigenesis via microRNA regulation. These findings represent future potential therapeutic targets for the treatment of hormone-independent and endocrine-resistant breast cancer.
PMCID: PMC3334320  PMID: 21906588
SDF-1; CXCR4; microRNA; breast carcinoma; hormone independence; AMD3100

Results 1-25 (1072114)