PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (1001725)

Clipboard (0)
None

Related Articles

1.  Enhanced Neural Responses to Rule Violation in Children with Autism: A Comparison to Social Exclusion 
The present study aimed to explore the neural correlates of two characteristic deficits in autism spectrum disorders (ASD); social impairment and restricted, repetitive behavior patterns. To this end, we used comparable experiences of social exclusion and rule violation to probe potentially atypical neural networks in ASD. In children and adolescents with and without ASD, we used the interactive ball-toss game (Cyberball) to elicit social exclusion and a comparable game (Cybershape) to elicit a non-exclusive rule violation. Using functional magnetic resonance imaging (fMRI), we identified group differences in brain responses to social exclusion and rule violation. Though both groups reported equal distress following exclusion, the right insula and ventral anterior cingulate cortex were hypoactive during exclusion in children with ASD. In rule violation, right insula and dorsal prefrontal cortex were hyperactive in ASD. Right insula showed a dissociation in activation; it was hypoactive to social exclusion and hyperactive to rule violation in the ASD group. Further probed, different regions of right insula were modulated in each game, highlighting differences in regional specificity for which subsequent analyses revealed differences in patterns of functional connectivity. These results demonstrate neurobiological differences in processing social exclusion and rule violation in children with ASD.
doi:10.1016/j.dcn.2011.02.002
PMCID: PMC3129780  PMID: 21743819
Social Exclusion; Rule Violation; Autism Spectrum Disorder; Right Insula; Functional Magnetic Resonance Imaging
2.  Neural correlates of social exclusion during adolescence: understanding the distress of peer rejection 
Developmental research has demonstrated the harmful effects of peer rejection during adolescence; however, the neural mechanisms responsible for this salience remain unexplored. In this study, 23 adolescents were excluded during a ball-tossing game in which they believed they were playing with two other adolescents during an fMRI scan; in reality, participants played with a preset computer program. Afterwards, participants reported their exclusion-related distress and rejection sensitivity, and parents reported participants’ interpersonal competence. Similar to findings in adults, during social exclusion adolescents displayed insular activity that was positively related to self-reported distress, and right ventrolateral prefrontal activity that was negatively related to self-reported distress. Findings unique to adolescents indicated that activity in the subgenual anterior cingulate cortex (subACC) related to greater distress, and that activity in the ventral striatum related to less distress and appeared to play a role in regulating activity in the subACC and other regions involved in emotional distress. Finally, adolescents with higher rejection sensitivity and interpersonal competence scores displayed greater neural evidence of emotional distress, and adolescents with higher interpersonal competence scores also displayed greater neural evidence of regulation, perhaps suggesting that adolescents who are vigilant regarding peer acceptance may be most sensitive to rejection experiences.
doi:10.1093/scan/nsp007
PMCID: PMC2686232  PMID: 19470528
peer rejection; adolescence; functional magnetic resonance imaging
3.  Early neural activation during facial affect processing in adolescents with Autism Spectrum Disorder☆ 
NeuroImage : Clinical  2014;7:203-212.
Impaired social interaction is one of the hallmarks of Autism Spectrum Disorder (ASD). Emotional faces are arguably the most critical visual social stimuli and the ability to perceive, recognize, and interpret emotions is central to social interaction and communication, and subsequently healthy social development. However, our understanding of the neural and cognitive mechanisms underlying emotional face processing in adolescents with ASD is limited. We recruited 48 adolescents, 24 with high functioning ASD and 24 typically developing controls. Participants completed an implicit emotional face processing task in the MEG. We examined spatiotemporal differences in neural activation between the groups during implicit angry and happy face processing. While there were no differences in response latencies between groups across emotions, adolescents with ASD had lower accuracy on the implicit emotional face processing task when the trials included angry faces. MEG data showed atypical neural activity in adolescents with ASD during angry and happy face processing, which included atypical activity in the insula, anterior and posterior cingulate and temporal and orbitofrontal regions. Our findings demonstrate differences in neural activity during happy and angry face processing between adolescents with and without ASD. These differences in activation in social cognitive regions may index the difficulties in face processing and in comprehension of social reward and punishment in the ASD group. Thus, our results suggest that atypical neural activation contributes to impaired affect processing, and thus social cognition, in adolescents with ASD.
Highlights
•The ability to recognize and interpret emotions is central to social interaction.•Deficits in social interactions are hallmarks of autism spectrum disorder (ASD).•Adolescents with and without ASD completed an emotional face task in MEG.•MEG data showed atypical neural activity in ASD to both angry and happy faces.•Insula, cingulate, temporal and orbitofrontal activities were particularly affected in the ASD group.
doi:10.1016/j.nicl.2014.11.009
PMCID: PMC4300004  PMID: 25610782
Implicit face processing; Adolescents; Autism Spectrum Disorder; Magnetoencephalography; Affect processing; Anterior cingulate cortex
4.  Non-Specialist Psychosocial Interventions for Children and Adolescents with Intellectual Disability or Lower-Functioning Autism Spectrum Disorders: A Systematic Review 
PLoS Medicine  2013;10(12):e1001572.
In a systematic review, Brian Reichow and colleagues assess the evidence that non-specialist care providers in community settings can provide effective interventions for children and adolescents with intellectual disabilities or lower-functioning autism spectrum disorders.
Please see later in the article for the Editors' Summary
Background
The development of effective treatments for use by non-specialists is listed among the top research priorities for improving the lives of people with mental illness worldwide. The purpose of this review is to appraise which interventions for children with intellectual disabilities or lower-functioning autism spectrum disorders delivered by non-specialist care providers in community settings produce benefits when compared to either a no-treatment control group or treatment-as-usual comparator.
Methods and Findings
We systematically searched electronic databases through 24 June 2013 to locate prospective controlled studies of psychosocial interventions delivered by non-specialist providers to children with intellectual disabilities or lower-functioning autism spectrum disorders. We screened 234 full papers, of which 34 articles describing 29 studies involving 1,305 participants were included. A majority of the studies included children exclusively with a diagnosis of lower-functioning autism spectrum disorders (15 of 29, 52%). Fifteen of twenty-nine studies (52%) were randomized controlled trials and just under half of all effect sizes (29 of 59, 49%) were greater than 0.50, of which 18 (62%) were statistically significant. For behavior analytic interventions, the best outcomes were shown for development and daily skills; cognitive rehabilitation, training, and support interventions were found to be most effective for improving developmental outcomes, and parent training interventions to be most effective for improving developmental, behavioral, and family outcomes. We also conducted additional subgroup analyses using harvest plots. Limitations include the studies' potential for performance bias and that few were conducted in lower- and middle-income countries.
Conclusions
The findings of this review support the delivery of psychosocial interventions by non-specialist providers to children who have intellectual disabilities or lower-functioning autism spectrum disorders. Given the scarcity of specialists in many low-resource settings, including many lower- and middle-income countries, these findings may provide guidance for scale-up efforts for improving outcomes for children with developmental disorders or lower-functioning autism spectrum disorders.
Protocol Registration
PROSPERO CRD42012002641
Please see later in the article for the Editors' Summary
Editors' Summary
Background
Newborn babies are helpless, but over the first few years of life, they acquire motor (movement) skills, language (communication) skills, cognitive (thinking) skills, and social (interpersonal interaction) skills. Individual aspects of these skills are usually acquired at specific ages, but children with a development disorder such as an autism spectrum disorder (ASD) or intellectual disability (mental retardation) fail to reach these “milestones” because of impaired or delayed brain maturation. Autism, Asperger syndrome, and other ASDs (also called pervasive developmental disorders) affect about 1% of the UK and US populations and are characterized by abnormalities in interactions and communication with other people (reciprocal socio-communicative interactions; for example, some children with autism reject physical affection and fail to develop useful speech) and a restricted, stereotyped, repetitive repertoire of interests (for example, obsessive accumulation of facts about unusual topics). About half of individuals with an ASD also have an intellectual disability—a reduced overall level of intelligence characterized by impairment of the skills that are normally acquired during early life. Such individuals have what is called lower-functioning ASD.
Why Was This Study Done?
Most of the children affected by developmental disorders live in low- and middle-income countries where there are few services available to help them achieve their full potential and where little research has been done to identify the most effective treatments. The development of effective treatments for use by non-specialists (for example, teachers and parents) is necessary to improve the lives of people with mental illnesses worldwide, but particularly in resource-limited settings where psychiatrists, psychologists, and other specialists are scarce. In this systematic review, the researchers investigated which psychosocial interventions for children and adolescents with intellectual disabilities or lower-functioning ASDs delivered by non-specialist providers in community settings produce improvements in development, daily skills, school performance, behavior, or family outcomes when compared to usual care (the control condition). A systematic review identifies all the research on a given topic using predefined criteria; psychosocial interventions are defined as therapy, education, training, or support aimed at improving behavior, overall development, or specific life skills without the use of drugs.
What Did the Researchers Do and Find?
The researchers identified 29 controlled studies (investigations with an intervention group and a control group) that examined the effects of various psychosocial interventions delivered by non-specialist providers to children (under 18 years old) who had a lower-functioning ASD or intellectual disability. The researchers retrieved information on the participants, design and methods, findings, and intervention characteristics for each study, and calculated effect sizes—a measure of the effectiveness of a test intervention relative to a control intervention—for several outcomes for each intervention. Across the studies, three-quarters of the effect size estimates were positive, and nearly half were greater than 0.50; effect sizes of less than 0.2, 0.2–0.5, and greater than 0.5 indicate that an intervention has no, a small, or a medium-to-large effect, respectively. For behavior analytic interventions (which aim to improve socially significant behavior by systematically analyzing behavior), the largest effect sizes were seen for development and daily skills. Cognitive rehabilitation, training, and support (interventions that facilitates the relearning of lost or altered cognitive skills) produced good improvements in developmental outcomes such as standardized IQ tests in children aged 6–11 years old. Finally, parental training interventions (which teach parents how to provide therapy services for their child) had strong effects on developmental, behavioral, and family outcomes.
What Do These Findings Mean?
Because few of the studies included in this systematic review were undertaken in low- and middle-income countries, the review's findings may not be generalizable to children living in resource-limited settings. Moreover, other characteristics of the included studies may limit the accuracy of these findings. Nevertheless, these findings support the delivery of psychosocial interventions by non-specialist providers to children who have intellectual disabilities or a lower-functioning ASD, and indicate which interventions are likely to produce the largest improvements in developmental, behavioral, and family outcomes. Further studies are needed, particularly in low- and middle-income countries, to confirm these findings, but given that specialists are scarce in many resource-limited settings, these findings may help to inform the implementation of programs to improve outcomes for children with intellectual disabilities or lower-functioning ASDs in low- and middle-income countries.
Additional Information
Please access these websites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1001572.
This study is further discussed in a PLOS Medicine Perspective by Bello-Mojeed and Bakare
The US Centers for Disease Control and Prevention provides information (in English and Spanish) on developmental disabilities, including autism spectrum disorders and intellectual disability
The US National Institute of Mental Health also provides detailed information about autism spectrum disorders, including the publication “A Parent's Guide to Autism Spectrum Disorder”
Autism Speaks, a US non-profit organization, provides information about all aspects of autism spectrum disorders and includes information on the Autism Speaks Global Autism Public Health Initiative
The National Autistic Society, a UK charity, provides information about all aspects of autism spectrum disorders and includes personal stories about living with these conditions
The UK National Health Service Choices website has an interactive guide to child development and information about autism and Asperger syndrome, including personal stories, and about learning disabilities
The UK National Institute for Health and Care Excellence provides clinical guidelines for the management and support of children with autism spectrum disorders
The World Health Organization provides information on its Mental Health Gap Action Programme (mhGAP), which includes recommendations on the management of developmental disorders by non-specialist providers; the mhGAP Evidence Resource Center provides evidence reviews for parent skills training for management of children with intellectual disabilities and pervasive developmental disorders and interventions for management of children with intellectual disabilities
PROSPERO, an international prospective register of systematic reviews, provides more information about this systematic review
doi:10.1371/journal.pmed.1001572
PMCID: PMC3866092  PMID: 24358029
5.  Temporal dynamics reveal atypical brain response to social exclusion in autism 
Despite significant social difficulties, children with autism spectrum disorder (ASD) are vulnerable to the effects of social exclusion. We recorded EEG while children with ASD and typical peers played a computerized game involving peer rejection. Children with ASD reported ostracism-related distress comparable to typically developing children. Event-related potentials (ERPs) indicated a distinct pattern of temporal processing of rejection events in children with ASD. While typically developing children showed enhanced response to rejection at a late slow wave indexing emotional arousal and regulation, those with autism showed attenuation at an early component, suggesting reduced engagement of attentional resources in the aversive social context. Results emphasize the importance of studying the time course of social information processing in ASD; they suggest distinct mechanisms subserving similar overt behavior and yield insights relevant to development and implementation of targeted treatment approaches and objective measures of response to treatment.
doi:10.1016/j.dcn.2011.02.003
PMCID: PMC3125043  PMID: 21731598
ERP; EEG; autism spectrum disorder; social exclusion; social neuroscience
6.  Functional Brain Networks and White Matter Underlying Theory-of-Mind in Autism 
Human beings constantly engage in attributing causal explanations to one’s own and to others’ actions, and theory-of-mind (ToM) is critical in making such inferences. Although children learn causal attribution early in development, children with autism spectrum disorders (ASDs) are known to have impairments in the development of intentional causality. This functional magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTI) study investigated the neural correlates of physical and intentional causal attribution in people with ASDs. In the fMRI scanner, 15 adolescents and adults with ASDs and 15 age- and IQ-matched typically developing peers made causal judgments about comic strips presented randomly in an event-related design. All participants showed robust activation in bilateral posterior superior temporal sulcus at the temporo-parietal junction (TPJ) in response to intentional causality. Participants with ASDs showed lower activation in TPJ, right inferior frontal gyrus and left premotor cortex. Significantly weaker functional connectivity was also found in the ASD group between TPJ and motor areas during intentional causality. DTI data revealed significantly reduced fractional anisotropy in ASD participants in white matter underlying the temporal lobe. In addition to underscoring the role of TPJ in ToM, this study found an interaction between motor simulation and mentalizing systems in intentional causal attribution and its possible discord in autism.
doi:10.1093/scan/nss106
PMCID: PMC3871731  PMID: 22977198
functional MRI; theory-of-mind; intentional causality; physical causality; causal attribution; diffusion tensor imaging; fractional anisotropy; functional connectivity; autism
7.  fMRI activation during a language task in adolescents with ASD 
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by language and communication impairments, social impairments, and repetitive behaviors or restricted interests. Previous studies of semantic functions have found differences in semantic processing and differences in the activation of the language network in adults with ASD compared to controls. The goal of this study is to examine semantic functions in adolescents with ASD compared to typically developing adolescents. We utilized fMRI with a reading version of a response-naming task to investigate activation in 12 right-handed adolescent boys with ASD and 12 typically developing boys. Both groups performed the task at ceiling levels. Boys with ASD had significantly stronger activation than controls in Broca's area, which was less left lateralized in ASD individuals. Controls had a significant correlation between frontal and temporal language area activation in the left hemisphere, whereas ASD adolescents did not. Direct group comparisons revealed additional regions activated in the ASD group relative to the control group. These results suggest differences in semantic organization, approaches to the semantic task, or efficiency in semantic processing in ASD adolescents relative to typically developing adolescents.
doi:10.1017/S1355617708081216
PMCID: PMC2747321  PMID: 18954477
Autistic disorder; Functional MRI; Broca's area; Wernicke's area; Semantics; Asymmetry
8.  The role of mirroring and mentalizing networks in mediating action intentions in autism 
Molecular Autism  2014;5:50.
Background
The ability to interpret agents’ intent from their actions is a vital skill in successful social interaction. However, individuals with autism spectrum disorders (ASD) have been found to have difficulty in attributing intentions to others. The present study investigated the neural mechanisms of inferring intentions from actions in individuals with ASD.
Methods
Functional magnetic resonance imaging (fMRI) data were acquired from 21 high-functioning young adults with ASD and 22 typically developing (TD) control participants, while making judgments about the means (how an action is performed) and intention (why an action is performed) of a model’s actions.
Results
Across both groups of participants, the middle and superior temporal cortex, extending to temporoparietal junction, and posterior cingulate cortex, responded significantly to inferring the intent of an action, while inferior parietal lobule and occipital cortices were active for judgments about the means of an action. Participants with ASD had significantly reduced activation in calcarine sulcus and significantly increased activation in left inferior frontal gyrus, compared to TD peers, while attending to the intentions of actions. Also, ASD participants had weaker functional connectivity between frontal and posterior temporal regions while processing intentions.
Conclusions
These results suggest that processing actions and intentions may not be mutually exclusive, with reliance on mirroring and mentalizing mechanisms mediating action understanding. Overall, inferring information about others’ actions involves activation of the mirror neuron system and theory-of-mind regions, and this activation (and the synchrony between activated brain regions) appears altered in young adults with ASD.
doi:10.1186/2040-2392-5-50
PMCID: PMC4210608  PMID: 25352976
Action; Intention; Means; fMRI; Autism spectrum disorders; Mirror neuron system; Theory-of-mind
9.  Neural responses to witnessing peer rejection after being socially excluded: fMRI as a window into adolescents’ emotional processing 
Developmental science  2013;16(5):743-759.
During adolescence, concerns about peer rejection and acceptance become increasingly common. Adolescents regularly experience peer rejection firsthand and witness these behaviors among their peers. In the current study, neuroimaging techniques were employed to conduct a preliminary investigation of the affective and cognitive processes involved in witnessing peer acceptance and rejection—specifically when these witnessed events occur in the immediate aftermath of a firsthand experience with rejection. During an fMRI scan, twenty-three adolescents underwent a simulated experience of firsthand peer rejection. Then, immediately following this experience they watched as another adolescent was ostensibly first accepted and then rejected. Findings indicated that in the immediate aftermath of being rejected by peers, adolescents displayed neural activity consistent with distress when they saw another peer being accepted, and neural activity consistent with emotion regulation and mentalizing (e.g., perspective-taking) processes when they saw another peer being rejected. Furthermore, individuals displaying a heightened sensitivity to firsthand rejection were more likely to show neural activity consistent with distress when observing a peer being accepted. Findings are discussed in terms of how witnessing others being accepted or rejected relates to adolescents’ interpretations of both firsthand and observed experiences with peers. Additionally, the potential impact that witnessed events might have on the broader perpetuation of bullying at this age is also considered.
doi:10.1111/desc.12056
PMCID: PMC3775008  PMID: 24033579
peer rejection; peer acceptance; adolescence; functional magnetic resonance imaging; bullying
10.  Brain function and gaze-fixation during facial emotion processing in fragile-X and autism 
This research focuses on the relationship between fragile X syndrome (FXS) and autism spectrum disorders (ASD). Both of these populations have a tendency to avoid looking others in the eye, along with difficulties in communication with others and tend to be socially withdrawn. While it is clear that FXS and ASD share some common abnormal behaviors, the underlying brain mechanisms associated with the social and emotional deficits in these groups remain unclear. We showed pictures of emotional and non-emotional human faces to these groups while in a magnetic resonance scanner (MRI). We collected images of brain function along with measures of where on the faces the individuals were looking (e.g. eyes or mouth). The FXS group showed a similar yet less abnormal pattern of where they were looking on the face compared to the ASD group. The FXS group also showed a similar pattern of decreased brain function in the area of the brain typically used when looking at faces, the fusiform gyrus (FG). The amount of activation in the FG was associated with how much time the FXS and ASD individuals looked at the eyes, the more they looked at the eyes, the greater the FG activation. The FXS group also displayed more brain activation than both the ASD group and a group of typically developing control subjects in brain areas that might suggest increased task difficulty for the FXS group. These group differences in brain activation are important as they suggest there is some overlap in areas of brain function in FXS and ASD when looking at faces, but that these two groups also have unique activation in other brain areas. These findings largely support the idea that ASD characteristics in FXS are associated with partially different patterns of brain activation when looking at human faces compared to individuals with ASD.
Objective:
Fragile X syndrome (FXS) is the most commonly known genetic disorder associated with autism spectrum disorder (ASD). Overlapping features in these populations include gaze aversion, communication deficits, and social withdrawal. Although the association between FXS and ASD has been well documented at the behavioral level, the underlying neural mechanisms associated with the social/emotional deficits in these groups remain unclear.
Method:
We collected functional brain images and eye-gaze fixations from 9 individuals with FXS and 14 individuals with idiopathic ASD, as well as 15 typically developing (TD) individuals, while they performed a facial-emotion discrimination task.
Results:
The FXS group showed a similar yet less aberrant pattern of gaze-fixations compared to the ASD group. The FXS group also showed fusiform gyrus (FG) hypoactivation compared to the TD control group. Activation in FG was strongly and positively associated with average eye fixation and negatively associated with ASD characteristics in the FXS group. The FXS group displayed significantly greater activation than both the TD control and ASD groups in the left hippocampus (HIPP), left superior temporal gyrus (STG), right insula (INS), and left post-central gyrus (PCG).
Conclusions:
These group differences in brain activation are important as they suggest unique underlying face-processing neural circuitry in FXS versus idiopathic ASD, largely supporting the hypothesis that ASD characteristics in FXS and idiopathic ASD reflect partially divergent impairments at the neural level, at least in FXS individuals without a co-morbid diagnosis of ASD.
doi:10.1002/aur.32
PMCID: PMC2679695  PMID: 19360673
fragile X syndrome; autism; face processing; brain function; fMRI
11.  Atypical Neural Networks for Social Orienting in Autism Spectrum Disorders 
NeuroImage  2011;56(1):354-362.
Autism spectrum disorders (ASD) are characterized by significant social impairments, including deficits in orienting attention following social cues. Behavioral studies investigating social orienting in ASD, however, have yielded mixed results, as the use of naturalistic paradigms typically reveals clear deficits whereas computerized laboratory experiments often report normative behavior. The present study is the first to examine the neural mechanisms underlying social orienting in ASD in order to provide new insight into the social attention impairments that characterize this disorder. Using fMRI, we examined the neural correlates of social orienting in children and adolescents with ASD and in a matched sample of typically developing (TD) controls while they performed a spatial cueing paradigm with social (eye gaze) and nonsocial (arrow) cues. Cues were either directional (indicating left or right) or neutral (indicating no direction), and directional cues were uninformative of the upcoming target location in order to engage automatic processes by minimizing expectations. Behavioral results demonstrated intact orienting effects for social and nonsocial cues, with no differences between groups. The imaging results, however, revealed clear group differences in brain activity. When attention was directed by social cues compared to nonsocial cues, the TD group showed increased activity in frontoparietal attention networks, visual processing regions, and the striatum, whereas the ASD group only showed increased activity in the superior parietal lobule. Significant group × cue type interactions confirmed greater responsivity in task-relevant networks for social cues than nonsocial cues in TD as compared to ASD, despite similar behavioral performance. These results indicate that, in the autistic brain, social cues are not assigned the same privileged status as they are in the typically developing brain. These findings provide the first empirical evidence that the neural circuitry involved in social orienting is disrupted in ASD and highlight that normative behavioral performance in a laboratory setting may reflect compensatory mechanisms rather than intact social attention.
doi:10.1016/j.neuroimage.2011.02.031
PMCID: PMC3091391  PMID: 21334443
autism; attention; functional magnetic resonance imaging; gaze; social cue
12.  Neural bases of gaze and emotion processing in children with autism spectrum disorders 
Brain and Behavior  2011;1(1):1-11.
Abnormal eye contact is a core symptom of autism spectrum disorders (ASD), though little is understood of the neural bases of gaze processing in ASD. Competing hypotheses suggest that individuals with ASD avoid eye contact due to the anxiety-provoking nature of direct eye gaze or that eye-gaze cues hold less interest or significance to children with ASD. The current study examined the effects of gaze direction on neural processing of emotional faces in typically developing (TD) children and those with ASD. While undergoing functional magnetic resonance imaging (fMRI), 16 high-functioning children and adolescents with ASD and 16 TD controls viewed a series of faces depicting emotional expressions with either direct or averted gaze. Children in both groups showed significant activity in visual-processing regions for both direct and averted gaze trials. However, there was a significant group by gaze interaction such that only TD children showed reliably greater activity in ventrolateral prefrontal cortex for direct versus averted gaze. The ASD group showed no difference between direct and averted gaze in response to faces conveying negative emotions. These results highlight the key role of eye gaze in signaling communicative intent and suggest altered processing of the emotional significance of direct gaze in children with ASD.
doi:10.1002/brb3.6
PMCID: PMC3217668  PMID: 22398976
Autism; facial expression; functional magnetic resonance imaging; gaze; developmental neuroimaging
13.  DUF1220 Dosage Is Linearly Associated with Increasing Severity of the Three Primary Symptoms of Autism 
PLoS Genetics  2014;10(3):e1004241.
One of the three most frequently documented copy number variations associated with autism spectrum disorder (ASD) is a 1q21.1 duplication that encompasses sequences encoding DUF1220 protein domains, the dosage of which we previously implicated in increased human brain size. Further, individuals with ASD frequently display accelerated brain growth and a larger brain size that is also associated with increased symptom severity. Given these findings, we investigated the relationship between DUF1220 copy number and ASD severity, and here show that in individuals with ASD (n = 170), the copy number (dosage) of DUF1220 subtype CON1 is highly variable, ranging from 56 to 88 copies following a Gaussian distribution. More remarkably, in individuals with ASD CON1 copy number is also linearly associated, in a dose-response manner, with increased severity of each of the three primary symptoms of ASD: social deficits (p = 0.021), communicative impairments (p = 0.030), and repetitive behaviors (p = 0.047). These data indicate that DUF1220 protein domain (CON1) dosage has an ASD-wide effect and, as such, is likely to be a key component of a major pathway underlying ASD severity. Finally, these findings, by implicating the dosage of a previously unexamined, copy number polymorphic and brain evolution-related gene coding sequence in ASD severity, provide an important new direction for further research into the genetic factors underlying ASD.
Author Summary
Autism Spectrum Disorder (ASD) is a common behaviorally defined condition noted by impairments in social reciprocity and communicative abilities and exaggerated repetitive behaviors and stereotyped interests. Individuals with ASD frequently have a larger and more rapidly growing brain than their typically developing peers. Given the widely documented heritability suggesting that ASD is predominantly a genetic condition and the well-established link between ASD and abnormal brain growth patterns, genes involved in brain growth would be excellent candidates to study regarding ASD. One such candidate is DUF1220, a highly copy number polymorphic protein domain that we have previously linked to brain evolution and brain size. However, due to the extreme copy number variability of DUF1220, it has not been directly investigated in previous genome wide polymorphism studies searching for genes important in ASD. Here we show that, in individuals with ASD, 1) DUF1220 subtype CON1 is highly variable, ranging from 56 to 88 copies, and 2) the copy number of CON1 is associated, in a linear dose-response manner, with increased severity of each of the three primary symptoms of ASD: as CON1 copy number increases each of the three primary symptoms of ASD (impaired social reciprocity, impaired communicative ability and increased repetitive behaviors) become incrementally worse.
doi:10.1371/journal.pgen.1004241
PMCID: PMC3961203  PMID: 24651471
14.  Atypical Cross Talk Between Mentalizing and Mirror Neuron Networks in Autism Spectrum Disorder 
JAMA psychiatry  2014;71(7):751-760.
IMPORTANCE
Converging evidence indicates that brain abnormalities in autism spectrum disorder (ASD) involve atypical network connectivity, but it is unclear whether altered connectivity is especially prominent in brain networks that participate in social cognition.
OBJECTIVE
To investigate whether adolescents with ASD show altered functional connectivity in 2 brain networks putatively impaired in ASD and involved in social processing, theory of mind (ToM) and mirror neuron system (MNS).
DESIGN, SETTING, AND PARTICIPANTS
Cross-sectional study using resting-state functional magnetic resonance imaging involving 25 adolescents with ASD between the ages of 11 and 18 years and 25 typically developing adolescents matched for age, handedness, and nonverbal IQ.
MAIN OUTCOMES AND MEASURES
Statistical parametric maps testing the degree of whole-brain functional connectivity and social functioning measures.
RESULTS
Relative to typically developing controls, participants with ASD showed a mixed pattern of both over- and underconnectivity in the ToM network, which was associated with greater social impairment. Increased connectivity in the ASD group was detected primarily between the regions of the MNS and ToM, and was correlated with sociocommunicative measures, suggesting that excessive ToM-MNS cross talk might be associated with social impairment. In a secondary analysis comparing a subset of the 15 participants with ASD with the most severe symptomology and a tightly matched subset of 15 typically developing controls, participants with ASD showed exclusive overconnectivity effects in both ToM and MNS networks, which were also associated with greater social dysfunction.
CONCLUSIONS AND RELEVANCE
Adolescents with ASD showed atypically increased functional connectivity involving the mentalizing and mirror neuron systems, largely reflecting greater cross talk between the 2. This finding is consistent with emerging evidence of reduced network segregation in ASD and challenges the prevailing theory of general long-distance underconnectivity in ASD. This excess ToM-MNS connectivity may reflect immature or aberrant developmental processes in 2 brain networks involved in understanding of others, a domain of impairment in ASD. Further, robust links with sociocommunicative symptoms of ASD implicate atypically increased ToM-MNS connectivity in social deficits observed in ASD.
doi:10.1001/jamapsychiatry.2014.83
PMCID: PMC4404406  PMID: 24740586
15.  Audiovisual speech integration in autism spectrum disorder: ERP evidence for atypicalities in lexical-semantic processing 
Lay Abstract
Language and communicative impairments are among the primary characteristics of autism spectrum disorders (ASD). Previous studies have examined auditory language processing in ASD. However, during face-to-face conversation, auditory and visual speech inputs provide complementary information, and little is known about audiovisual (AV) speech processing in ASD. It is possible to elucidate the neural correlates of AV integration by examining the effects of seeing the lip movements accompanying the speech (visual speech) on electrophysiological event-related potentials (ERP) to spoken words. Moreover, electrophysiological techniques have a high temporal resolution and thus enable us to track the time-course of spoken word processing in ASD and typical development (TD). The present study examined the ERP correlates of AV effects in three time windows that are indicative of hierarchical stages of word processing. We studied a group of TD adolescent boys (n=14) and a group of high-functioning boys with ASD (n=14). Significant group differences were found in AV integration of spoken words in the 200–300ms time window when spoken words start to be processed for meaning. These results suggest that the neural facilitation by visual speech of spoken word processing is reduced in individuals with ASD.
Scientific Abstract
In typically developing (TD) individuals, behavioural and event-related potential (ERP) studies suggest that audiovisual (AV) integration enables faster and more efficient processing of speech. However, little is known about AV speech processing in individuals with autism spectrum disorder (ASD). The present study examined ERP responses to spoken words to elucidate the effects of visual speech (the lip movements accompanying a spoken word) on the range of auditory speech processing stages from sound onset detection to semantic integration. The study also included an AV condition which paired spoken words with a dynamic scrambled face in order to highlight AV effects specific to visual speech. Fourteen adolescent boys with ASD (15–17 years old) and 14 age- and verbal IQ-matched TD boys participated. The ERP of the TD group showed a pattern and topography of AV interaction effects consistent with activity within the superior temporal plane, with two dissociable effects over fronto-central and centro-parietal regions. The posterior effect (200–300ms interval) was specifically sensitive to lip movements in TD boys, and no AV modulation was observed in this region for the ASD group. Moreover, the magnitude of the posterior AV effect to visual speech correlated inversely with ASD symptomatology. In addition, the ASD boys showed an unexpected effect (P2 time window) over the frontal-central region (pooled electrodes F3, Fz, F4, FC1, FC2, FC3, FC4) which was sensitive to scrambled face stimuli. These results suggest that the neural networks facilitating processing of spoken words by visual speech are altered in individuals with ASD.
doi:10.1002/aur.231
PMCID: PMC3586407  PMID: 22162387
Auditory; ASD; ERP; Language; Multisensory; Visual
16.  Eye Examination Testability in Children with Autism and in Typical Peers 
Optometry and Vision Science  2014;92(1):31-43.
Supplemental digital content is available in the text.
ABSTRACT
Purpose
To compare testability of vision and eye tests in an examination protocol of 9- to 17-year-old patients with autism spectrum disorder (ASD) to typically developing (TD) peers.
Methods
In a prospective pilot study, 61 children and adolescents (34 with ASD and 27 who were TD) aged 9 to 17 years completed an eye examination protocol including tests of visual acuity, refraction, convergence (eye teaming), stereoacuity (depth perception), ocular motility, and ocular health. Patients who required new refractive correction were retested after wearing their updated spectacle prescription for 1 month. The specialized protocol incorporated visual, sensory, and communication supports. A psychologist determined group status/eligibility using DSM-IV-TR (Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, Text Revision) criteria by review of previous evaluations and parent responses on the Social Communication Questionnaire. Before the examination, parents provided information regarding patients’ sex, race, ethnicity, and, for ASD patients, verbal communication level (nonverbal, uses short words, verbal). Parents indicated whether the patient wore a refractive correction, whether the patient had ever had an eye examination, and the age at the last examination. Chi-square tests compared testability results for TD and ASD groups.
Results
Typically developing and ASD groups did not differ by age (p = 0.54), sex (p = 0.53), or ethnicity (p = 0.22). Testability was high on most tests (TD, 100%; ASD, 88 to 100%), except for intraocular pressure (IOP), which was reduced for both the ASD (71%) and the TD (89%) patients. Among ASD patients, IOP testability varied greatly with verbal communication level (p < 0.001). Although IOP measurements were completed on all verbal patients, only 37.5% of nonverbal and 44.4% of ASD patients who used short words were successful.
Conclusions
Patients with ASD can complete most vision and eye tests within an examination protocol. Testability of IOPs is reduced, particularly for nonverbal patients and patients who use short words to communicate.
doi:10.1097/OPX.0000000000000442
PMCID: PMC4274340  PMID: 25415280
autism; children; eye examinations; vision acuity; tonometry
17.  The Neural Substrates of Cognitive Control Deficits in Autism Spectrum Disorders 
Neuropsychologia  2009;47(12):2515-2526.
Executive functions deficits are among the most frequently reported symptoms of autism spectrum disorders (ASDs), however, there have been few functional magnetic resonance imaging (fMRI) studies that investigate the neural substrates of executive functions deficits in ASDs, and only one in adolescents. The current study examined cognitive control –the ability to maintain task context online to support adaptive functioning in the face of response competition—in 22 adolescents aged 12–18 with autism spectrum disorders and 23 age, gender, and IQ matched typically developing subjects. During the cue phase of the task, where subjects must maintain information online to overcome a prepotent response tendency, typically developing subjects recruited significantly more anterior frontal (BA 10), parietal (BA 7, 40), and occipital regions (BA 18) for high control trials (25% of trials) versus low control trials (75% of trials). Both groups showed similar activation for low control cues, however the ASD group exhibited significantly less activation for high control cues. Functional connectivity analysis using time series correlation, factor analysis, and beta series correlation methods provided convergent evidence that the ASD group exhibited lower levels of functional connectivity and less network integration between frontal, parietal, and occipital regions. In the typically developing group, fronto-parietal connectivity was related to lower error rates on high control trials. In the autism group, reduced fronto-parietal connectivity was related to attention deficit hyperactivity disorder symptoms.
doi:10.1016/j.neuropsychologia.2009.04.019
PMCID: PMC2766616  PMID: 19410583
autism spectrum disorders; cognitive control; executive functions; fMRI; functional connectivity; attention deficit disorder
18.  Subgenual anterior cingulate responses to peer rejection: A marker of adolescents’ risk for depression 
Development and psychopathology  2011;23(1):283-292.
Extensive developmental research has linked peer rejection during adolescence with a host of psychopathological outcomes, including depression. Moreover, recent neuroimaging research has suggested that increased activity in the subgenual region of the anterior cingulate cortex (subACC), which has been consistently linked with depression, is related to heightened sensitivity to peer rejection among adolescents. The goal of the current study was to directly test the hypothesis that adolescents’ subACC responses are predictive of their risk for future depression, by examining the relationship between subACC activity during peer rejection and increases in depressive symptoms during the following year. During a functional magnetic resonance imaging scan, 20 13-year-olds were ostensibly excluded by peers during an online social interaction. Participants’ depressive symptoms were assessed via parental reports at the time of the scan and 1 year later. Region of interest and whole-brain analyses indicated that greater subACC activity during exclusion was associated with increases in parent-reported depressive symptoms during the following year. These findings suggest that subACC responsivity to social exclusion may serve as a neural marker of adolescents’ risk for future depression and have implications for understanding the relationship between sensitivity to peer rejection and the increased risk of depression that occurs during adolescence.
doi:10.1017/S0954579410000799
PMCID: PMC3229829  PMID: 21262054
19.  Preserved reward outcome processing in ASD as revealed by event-related potentials 
Background
Problems with reward system function have been posited as a primary difficulty in autism spectrum disorders. The current study examined an electrophysiological marker of feedback monitoring, the feedback-related negativity (FRN), during a monetary reward task. The study advanced prior understanding by focusing exclusively on a developmental sample, applying rigorous diagnostic characterization and introducing an experimental paradigm providing more subtly different feedback valence (reward versus non-reward instead of reward versus loss).
Methods
Twenty-six children with autism spectrum disorder and 28 typically developing peers matched on age and full-scale IQ played a guessing game resulting in monetary gain (“win”) or neutral outcome (“draw”). ERP components marking early visual processing (N1, P2) and feedback appraisal (FRN) were contrasted between groups in each condition, and their relationships to behavioral measures of social function and dysfunction, social anxiety, and autism symptomatology were explored.
Results
FRN was observed on draw trials relative to win trials. Consistent with prior research, children with ASD exhibited a FRN to suboptimal outcomes that was comparable to typical peers. ERP parameters were unrelated to behavioral measures.
Conclusions
Results of the current study indicate typical patterns of feedback monitoring in the context of monetary reward in ASD. The study extends prior findings of normative feedback monitoring to a sample composed exclusively of children and demonstrates that, as in typical development, individuals with autism exhibit a FRN to suboptimal outcomes, irrespective of neutral or negative valence. Results do not support a pervasive problem with reward system function in ASD, instead suggesting any dysfunction lies in more specific domains, such as social perception, or in response to particular feedback-monitoring contexts, such as self-evaluation of one’s errors.
doi:10.1186/1866-1955-4-16
PMCID: PMC3436639  PMID: 22958616
Autism spectrum disorder; Reward processing; Event-related potentials; Electroencephalography; ERP; EEG; Feedback-related negativity; Medial-frontal negativity
20.  Time spent with friends in adolescence relates to less neural sensitivity to later peer rejection 
Involvement with friends carries many advantages for adolescents, including protection from the detrimental effects of being rejected by peers. However, little is known about the mechanisms through which friendships may serve their protective role at this age, or the potential benefit of these friendships as adolescents transition to adulthood. As such, this investigation tested whether friend involvement during adolescence related to less neural sensitivity to social threats during young adulthood. Twenty-one adolescents reported the amount of time they spent with friends outside of school using a daily diary. Two years later they underwent an fMRI scan, during which they were ostensibly excluded from an online ball-tossing game by two same-age peers. Findings from region of interest and whole brain analyses revealed that spending more time with friends during adolescence related to less activity in the dorsal anterior cingulate cortex and anterior insula—regions previously linked with negative affect and pain processing—during an experience of peer rejection 2 years later. These findings are consistent with the notion that positive relationships during adolescence may relate to individuals being less sensitive to negative social experiences later on.
doi:10.1093/scan/nsq098
PMCID: PMC3252626  PMID: 21183457
adolescence; friendship; peer rejection; functional magnetic resonance imaging
21.  Age-dependent changes in the neural substrates of empathy in autism spectrum disorder 
In typical development, empathic abilities continue to refine during adolescence and early adulthood. Children and adolescents with autism spectrum disorders (ASD) show deficits in empathy, whereas adults with ASD may have developed compensatory strategies. We aimed at comparing developmental trajectories in the neural mechanisms underlying empathy in individuals with ASD and typically developing control (TDC) subjects. Using an explicit empathizing paradigm and functional magnetic resonance imaging, 27 participants with ASD and 27 TDC aged 12–31 years were investigated. Participants were asked to empathize with emotional faces and to either infer the face’s emotional state (other-task) or to judge their own emotional response (self-task). Differential age-dependent changes were evident during the self-task in the right dorsolateral prefrontal cortex, right medial prefrontal cortex, right inferior parietal cortex, right anterior insula and occipital cortex. Age-dependent decreases in neural activation in TDC were paralleled by either increasing or unchanged age-dependent activation in ASD. These data suggest ASD-associated deviations in the developmental trajectories of self-related processing during empathizing. In TDC, age-dependent modulations of brain areas may reflect the ‘fine-tuning’ of cortical networks by reduction of task-unspecific brain activity. Increased age-related activation in individuals with ASD may indicate the development of compensatory mechanisms.
doi:10.1093/scan/nst088
PMCID: PMC4127013  PMID: 23784073
social cognition; theory of mind; medial prefrontal cortex; facial emotion; developmental trajectories
22.  Neural and Behavioral Responses During Self-Evaluative Processes Differ in Youth With and Without Autism 
This fMRI study investigated neural responses while making appraisals of self and other, across the social and academic domains, in children and adolescents with and without autism spectrum disorders (ASD). Compared to neurotypical youth, those with ASD exhibited hypoactivation of ventromedial prefrontal cortex during self-appraisals. Responses in middle cingulate cortex (MCC) and anterior insula (AI) also distinguished between groups. Stronger activity in MCC and AI during self-appraisals was associated with better social functioning in the ASD group. Although self-appraisals were significantly more positive in the neurotypical group, positivity was unrelated to brain activity in these regions. Together, these results suggest that multiple brain regions support making self-appraisals in neurotypical development, and function atypically in youth with ASD.
doi:10.1007/s10803-012-1563-3
PMCID: PMC3507334  PMID: 22760337
Autism; Self; Ventral mPFC; Anterior insula; Middle cingulate cortex; Development
23.  Social Involvement of Children with Autism Spectrum Disorders in Elementary School Classrooms 
Background
Children with autism spectrum disorders (ASD) are increasingly included in general education classrooms in an effort to improve their social involvement.
Methods
Seventy-nine children with ASD and 79 randomly-selected, gender-matched peers (88.6% male) in 75 early (K-1), middle (2nd–3rd), and late (4th–5th) elementary classrooms across 30 schools completed social network surveys examining each child’s reciprocal friendships, peer rejection, acceptance, and social involvement.
Results
Across grade levels, peers less frequently reciprocated friendships with children with ASD than students in the matched sample. While children with ASD were not more likely to be rejected by peers, they were less accepted and had fewer reciprocal friendships than matched peers at each grade level. Although 48.1% of children with ASD were involved in the social networks of their classrooms, children with ASD were more likely to be isolated or peripheral to social relationships within the classroom across all grade levels, and this difference is even more dramatic in later elementary grades.
Conclusions
In inclusive classrooms, children with ASD are only involved in peers’ social relationships about half of the time, and appear to be even less connected with increasing grade level. Promoting children with ASD’s skills in popular activities to share with peers in early childhood may be a key preventive intervention to protect social relationships in late elementary school grades.
doi:10.1111/j.1469-7610.2010.02289.x
PMCID: PMC2970745  PMID: 20673234
Autism; Social involvement; Inclusive education; Social networks
24.  Development of neural systems for processing social exclusion from childhood to adolescence 
Developmental science  2011;14(6):1431-1444.
Adolescence is a period of development in which peer relationships become especially important. A computer-based game (Cyberball) has been used to explore the effects of social exclusion in adolescents and adults. The current functional magnetic resonance imaging (fMRI) study used Cyberball to extend prior work to the cross-sectional study of younger children and adolescents (7 to 17 years), identifying age-related changes in the neural correlates of social exclusion across the important transition from middle childhood into adolescence. Additionally, a control task illustrated the specificity of these age-related changes for social exclusion as distinct from expectancy violation more generally. During exclusion, activation in and functional connectivity between ventrolateral prefrontal cortex and ventral anterior cingulate cortex increased with age. These effects were specific to social exclusion and did not exist for expectancy violation. Our results illustrate developmental changes from middle childhood through adolescence in both affective and regulatory brain regions during social exclusion.
doi:10.1111/j.1467-7687.2011.01087.x
PMCID: PMC4457505  PMID: 22010901
25.  Are You Being Rejected or Excluded? Insights from Neuroimaging Studies Using Different Rejection Paradigms 
Rejection sensitivity is the heightened tendency to perceive or anxiously expect disengagement from others during social interaction. There has been a recent wave of neuroimaging studies of rejection. The aim of the current review was to determine key brain regions involved in social rejection by selectively reviewing neuroimaging studies that employed one of three paradigms of social rejection, namely social exclusion during a ball-tossing game, evaluating feedback about preference from peers and viewing scenes depicting rejection during social interaction. Across the different paradigms of social rejection, there was concordance in regions for experiencing rejection, namely dorsal anterior cingulate cortex (ACC), subgenual ACC and ventral ACC. Functional dissociation between the regions for experiencing rejection and those for emotion regulation, namely medial prefrontal cortex, ventrolateral prefrontal cortex (VLPFC) and ventral striatum, was evident in the positive association between social distress and regions for experiencing rejection and the inverse association between social distress and the emotion regulation regions. The paradigms of social exclusion and scenes depicting rejection in social interaction were more adept at evoking rejection-specific neural responses. These responses were varyingly influenced by the amount of social distress during the task, social support received, self-esteem and social competence. Presenting rejection cues as scenes of people in social interaction showed high rejection sensitive or schizotypal individuals to under-activate the dorsal ACC and VLPFC, suggesting that such individuals who perceive rejection cues in others down-regulate their response to the perceived rejection by distancing themselves from the scene.
doi:10.9758/cpn.2012.10.3.144
PMCID: PMC3569164  PMID: 23430682
Social distance; Gyrus cinguli; Prefrontal cortex; Social support

Results 1-25 (1001725)