Search tips
Search criteria

Results 1-25 (1361823)

Clipboard (0)

Related Articles

1.  One-Dimensional Nanostructures and Devices of II–V Group Semiconductors 
Nanoscale Research Letters  2009;4(8):779-788.
The II–V group semiconductors, with narrow band gaps, are important materials with many applications in infrared detectors, lasers, solar cells, ultrasonic multipliers, and Hall generators. Since the first report on trumpet-like Zn3P2nanowires, one-dimensional (1-D) nanostructures of II–V group semiconductors have attracted great research attention recently because these special 1-D nanostructures may find applications in fabricating new electronic and optoelectronic nanoscale devices. This article covers the 1-D II–V semiconducting nanostructures that have been synthesized till now, focusing on nanotubes, nanowires, nanobelts, and special nanostructures like heterostructured nanowires. Novel electronic and optoelectronic devices built on 1-D II–V semiconducting nanostructures will also be discussed, which include metal–insulator-semiconductor field-effect transistors, metal-semiconductor field-effect transistors, andp–nheterojunction photodiode. We intent to provide the readers a brief account of these exciting research activities.
PMCID: PMC2893915  PMID: 20596452
Nanowires; Nanotubes; Nanobelts; Semiconductors; Nanoelectronics
2.  One-Dimensional Nanostructures and Devices of II–V Group Semiconductors 
Nanoscale Research Letters  2009;4(8):779-788.
The II–V group semiconductors, with narrow band gaps, are important materials with many applications in infrared detectors, lasers, solar cells, ultrasonic multipliers, and Hall generators. Since the first report on trumpet-like Zn3P2 nanowires, one-dimensional (1-D) nanostructures of II–V group semiconductors have attracted great research attention recently because these special 1-D nanostructures may find applications in fabricating new electronic and optoelectronic nanoscale devices. This article covers the 1-D II–V semiconducting nanostructures that have been synthesized till now, focusing on nanotubes, nanowires, nanobelts, and special nanostructures like heterostructured nanowires. Novel electronic and optoelectronic devices built on 1-D II–V semiconducting nanostructures will also be discussed, which include metal–insulator-semiconductor field-effect transistors, metal-semiconductor field-effect transistors, and p–n heterojunction photodiode. We intent to provide the readers a brief account of these exciting research activities.
PMCID: PMC2893915  PMID: 20596452
Nanowires; Nanotubes; Nanobelts; Semiconductors; Nanoelectronics
3.  Metal Oxide Nanostructures and Their Gas Sensing Properties: A Review 
Sensors (Basel, Switzerland)  2012;12(3):2610-2631.
Metal oxide gas sensors are predominant solid-state gas detecting devices for domestic, commercial and industrial applications, which have many advantages such as low cost, easy production, and compact size. However, the performance of such sensors is significantly influenced by the morphology and structure of sensing materials, resulting in a great obstacle for gas sensors based on bulk materials or dense films to achieve highly-sensitive properties. Lots of metal oxide nanostructures have been developed to improve the gas sensing properties such as sensitivity, selectivity, response speed, and so on. Here, we provide a brief overview of metal oxide nanostructures and their gas sensing properties from the aspects of particle size, morphology and doping. When the particle size of metal oxide is close to or less than double thickness of the space-charge layer, the sensitivity of the sensor will increase remarkably, which would be called “small size effect”, yet small size of metal oxide nanoparticles will be compactly sintered together during the film coating process which is disadvantage for gas diffusion in them. In view of those reasons, nanostructures with many kinds of shapes such as porous nanotubes, porous nanospheres and so on have been investigated, that not only possessed large surface area and relatively mass reactive sites, but also formed relatively loose film structures which is an advantage for gas diffusion. Besides, doping is also an effective method to decrease particle size and improve gas sensing properties. Therefore, the gas sensing properties of metal oxide nanostructures assembled by nanoparticles are reviewed in this article. The effect of doping is also summarized and finally the perspectives of metal oxide gas sensor are given.
PMCID: PMC3376589  PMID: 22736968
metal oxide; gas sensing; nanostructure; size effect; doping
4.  Biomedical Detection via Macro- and Nano-Sensors Fabricated with Metallic and Semiconducting Oxides 
Originally developed as gas sensors, the benefits of metallic and semiconducting oxide materials are now being realized in other areas of sensing, such as chemical, environmental, and biomedical monitoring and detection. Metallic and semiconducting oxides have continuously expanded their roles to date, and have also established their significance in biosensing by utilizing a variety of modes for signal generation and detection mechanism. These sensors are typically based either on their optical, electrochemical, electrical, gravimetric, acoustic, and magnetic properties for signal transduction. This article reviews such biosensors that employ metallic and semiconducting oxides as active sensing elements to detect nucleic acids, proteins, cells, and a variety of important biomarkers, both in thin film and one-dimensional forms. Specific oxide materials (Mx Oy ) examined comprehensively in this article include M = Fe, Cu, Si, Zn, Sn, In. The derivatives of these oxide materials resulting from incorporation of dopants are examined as well. The crystalline structures and unique properties that may be exploited for various biosensing applications are discussed, and recent efforts investigating the feasibility of using these oxide materials in biosensor technology are described. Key biosensor characteristics resulting from reduced dimensionality are overviewed under the motif of planar and one-dimensional sensors. This article also provides insight into current challenges facing biosensor applications for metallic and semiconducting oxides. In addition, future outlook in this particular field as well as different impacts on biology and medicine are addressed.
PMCID: PMC3766318  PMID: 23627064
Semiconducting Oxides; Metallic Oxides; Biosensors; Solid-State Biodetection; Nanobiosensors; Nanomaterials; Biomedical Detection
5.  Gas Sensors Based on Semiconducting Nanowire Field-Effect Transistors 
Sensors (Basel, Switzerland)  2014;14(9):17406-17429.
One-dimensional semiconductor nanostructures are unique sensing materials for the fabrication of gas sensors. In this article, gas sensors based on semiconducting nanowire field-effect transistors (FETs) are comprehensively reviewed. Individual nanowires or nanowire network films are usually used as the active detecting channels. In these sensors, a third electrode, which serves as the gate, is used to tune the carrier concentration of the nanowires to realize better sensing performance, including sensitivity, selectivity and response time, etc. The FET parameters can be modulated by the presence of the target gases and their change relate closely to the type and concentration of the gas molecules. In addition, extra controls such as metal decoration, local heating and light irradiation can be combined with the gate electrode to tune the nanowire channel and realize more effective gas sensing. With the help of micro-fabrication techniques, these sensors can be integrated into smart systems. Finally, some challenges for the future investigation and application of nanowire field-effect gas sensors are discussed.
PMCID: PMC4208231  PMID: 25232915
gas sensors; semiconducting nanowires; field effect transistors
6.  Hydrogen Gas Sensors Based on Semiconductor Oxide Nanostructures 
Sensors (Basel, Switzerland)  2012;12(5):5517-5550.
Recently, the hydrogen gas sensing properties of semiconductor oxide (SMO) nanostructures have been widely investigated. In this article, we provide a comprehensive review of the research progress in the last five years concerning hydrogen gas sensors based on SMO thin film and one-dimensional (1D) nanostructures. The hydrogen sensing mechanism of SMO nanostructures and some critical issues are discussed. Doping, noble metal-decoration, heterojunctions and size reduction have been investigated and proved to be effective methods for improving the sensing performance of SMO thin films and 1D nanostructures. The effect on the hydrogen response of SMO thin films and 1D nanostructures of grain boundary and crystal orientation, as well as the sensor architecture, including electrode size and nanojunctions have also been studied. Finally, we also discuss some challenges for the future applications of SMO nanostructured hydrogen sensors.
PMCID: PMC3386698  PMID: 22778599
hydrogen gas sensor; semiconductor oxides; nanostructure; thin films; one-dimensional nanostructures
7.  Low Temperature Sensing Properties of a Nano Hybrid Material Based on ZnO Nanotetrapods and Titanyl Phthalocyanine 
Sensors (Basel, Switzerland)  2013;13(3):3445-3453.
ZnO nanotetrapods have recently been exploited for the realization of high-sensitivity gas sensors, but they are affected by the typical drawbacks of metal-oxides, i.e., poor selectivity and a relatively high working temperature. On the other hand, it has been also demonstrated that the combined use of nanostructured metal oxides and organic molecules can improve the gas sensing performance sensitivity or selectivity, even at lower temperatures. A gas sensor device, based on films of interconnected ZnO nanotetrapods properly functionalized by titanyl phthalocyanine (TiOPc), has been realized in order to combine the high surface to volume ratio and structural stability of the crystalline ZnO nanostructures with the enhanced sensitivity of the semiconducting TiOPc molecule, especially at low temperature. The electronic properties of the resulting nanohybrid material are different from those of each single component. The response of the hybrid nanostructure towards different gases has been compared with that of ZnO nanotetrapod without functionalization in order to highlight the peculiar properties of the hybrid interaction(s). The dynamic response in time has been studied for different gases and temperatures; in particular, an increase in the response to NO2 has been observed, even at room temperature. The formation of localized p-n heterojunctions and the possibility of exchanging charge carriers at the hybrid interface is shown to be crucial for the sensing mechanism.
PMCID: PMC3658755  PMID: 23486215
gas sensor; ZnO nanostructures; phthalocyanine; NO2; room temperature
8.  Gas Sensors Based on One Dimensional Nanostructured Metal-Oxides: A Review 
Sensors (Basel, Switzerland)  2012;12(6):7207-7258.
Recently one dimensional (1-D) nanostructured metal-oxides have attracted much attention because of their potential applications in gas sensors. 1-D nanostructured metal-oxides provide high surface to volume ratio, while maintaining good chemical and thermal stabilities with minimal power consumption and low weight. In recent years, various processing routes have been developed for the synthesis of 1-D nanostructured metal-oxides such as hydrothermal, ultrasonic irradiation, electrospinning, anodization, sol-gel, molten-salt, carbothermal reduction, solid-state chemical reaction, thermal evaporation, vapor-phase transport, aerosol, RF sputtering, molecular beam epitaxy, chemical vapor deposition, gas-phase assisted nanocarving, UV lithography and dry plasma etching. A variety of sensor fabrication processing routes have also been developed. Depending on the materials, morphology and fabrication process the performance of the sensor towards a specific gas shows a varying degree of success. This article reviews and evaluates the performance of 1-D nanostructured metal-oxide gas sensors based on ZnO, SnO2, TiO2, In2O3, WOx, AgVO3, CdO, MoO3, CuO, TeO2 and Fe2O3. Advantages and disadvantages of each sensor are summarized, along with the associated sensing mechanism. Finally, the article concludes with some future directions of research.
PMCID: PMC3435973  PMID: 22969344
gas sensor; one dimensional nanostructures; metal-oxides
9.  One-Dimensional Oxide Nanostructures as Gas-Sensing Materials: Review and Issues 
Sensors (Basel, Switzerland)  2010;10(4):4083-4099.
In this article, we review gas sensor application of one-dimensional (1D) metal-oxide nanostructures with major emphases on the types of device structure and issues for realizing practical sensors. One of the most important steps in fabricating 1D-nanostructure devices is manipulation and making electrical contacts of the nanostructures. Gas sensors based on individual 1D nanostructure, which were usually fabricated using electron-beam lithography, have been a platform technology for fundamental research. Recently, gas sensors with practical applicability were proposed, which were fabricated with an array of 1D nanostructures using scalable micro-fabrication tools. In the second part of the paper, some critical issues are pointed out including long-term stability, gas selectivity, and room-temperature operation of 1D-nanostructure-based metal-oxide gas sensors.
PMCID: PMC3274262  PMID: 22319343
1-dimensional nanostructures; gas sensors; long-term stability; gas selectivity; electronic-nose; room-temperature operation
10.  Laser-Assisted Growth of t-Te Nanotubes and their Controlled Photo-induced Unzipping to ultrathin core-Te/sheath-TeO2 Nanowires 
Scientific Reports  2013;3:1209.
One dimensional (1D) nanostructures of semiconducting oxides and elemental chalcogens culminate over the last decade in nanotechnology owing to their unique properties exploitable in several applications sectors. Whereas several synthetic strategies have been established for rational design of 1D materials using solution chemistry and high temperature evaporation methods, much less attention has been given to the laser-assisted growth of hybrid nanostructures. Here, we present a laser-assisted method for the controlled fabrication of Te nanotubes. A series of light-driven phase transition is employed to controllably transform Te nanotubes to core-Te/sheath-TeO2 and/or even neat TeO2 nanowires. This solid-state laser-processing of semiconducting materials apart from offering new opportunities for the fast and spatially controlled fabrication of anisotropic nanostructures, provides a means of simultaneous growing and integrating these nanostructures into an optoelectronic or photonic device.
PMCID: PMC3563036  PMID: 23383377
11.  Chemo-sensors development based on low-dimensional codoped Mn2O3-ZnO nanoparticles using flat-silver electrodes 
Semiconductor doped nanostructure materials have attained considerable attention owing to their electronic, opto-electronic, para-magnetic, photo-catalysis, electro-chemical, mechanical behaviors and their potential applications in different research areas. Doped nanomaterials might be a promising owing to their high-specific surface-area, low-resistances, high-catalytic activity, attractive electro-chemical and optical properties. Nanomaterials are also scientifically significant transition metal-doped nanostructure materials owing to their extraordinary mechanical, optical, electrical, electronic, thermal, and magnetic characteristics. Recently, it has gained significant interest in manganese oxide doped-semiconductor materials in order to develop their physico-chemical behaviors and extend their efficient applications. It has not only investigated the basic of magnetism, but also has huge potential in scientific features such as magnetic materials, bio- & chemi-sensors, photo-catalysts, and absorbent nanomaterials.
The chemical sensor also displays the higher-sensitivity, reproducibility, long-term stability, and enhanced electrochemical responses. The calibration plot is linear (r2 = 0.977) over the 0.1 nM to 50.0 μM 4-nitrophenol concentration ranges. The sensitivity and detection limit is ~4.6667 μA cm-2 μM-1 and ~0.83 ± 0.2 nM (at a Signal-to-Noise-Ratio, SNR of 3) respectively. To best of our knowledge, this is the first report for detection of 4-nitrophenol chemical with doped Mn2O3-ZnO NPs using easy and reliable I-V technique in short response time.
As for the doped nanostructures, NPs are introduced a route to a new generation of toxic chemo-sensors, but a premeditate effort has to be applied for doped Mn2O3-ZnO NPs to be taken comprehensively for large-scale applications, and to achieve higher-potential density with accessible to individual chemo-sensors. In this report, it is also discussed the prospective utilization of Mn2O3-ZnO NPs on the basis of carcinogenic chemical sensing, which could also be applied for the detection of hazardous chemicals in ecological, environmental, and health care fields.
PMCID: PMC3630067  PMID: 23537000
Doped Mn2O3-ZnO nanoparticles; Wet-chemical method; Powder X-ray diffraction; 4-nitrophenol; I-V technique; X-ray photoelectron spectroscopy; Sensitivity
12.  Kinked p-n Junction Nanowire Probes for High Spatial Resolution Sensing and Intracellular Recording 
Nano Letters  2012;12(3):1711-1716.
Semiconductor nanowires and other semiconducting nanoscale materials configured as field-effect transistors have been studied extensively as biological/chemical (bio/chem.) sensors. These nanomaterials have demonstrated high-sensitivity from one- and two-dimensional sensors, although the realization of the ultimate point-like detector has not been achieved. In this regard, nanoscale p-n diodes are attractive since the device element is naturally localized near the junction, and while nanowire p-n diodes have been widely studied as photovoltaic devices, their applications as bio/chem. sensors have not been explored. Here we demonstrate that p-n diode devices can serve as a new and powerful family of highly localized biosensor probes. Designed nanoscale axial p-n junctions were synthetically introduced at the joints of kinked silicon nanowires. Scanning electron microscopy images showed that the kinked nanowire structures were achieved, and electrical transport measurements exhibited rectifying behavior with well-defined turn-on in forward bias as expected for a p-n diode. In addition, scanning gate microscopy demonstrated that the most sensitive region of these nanowires was localized near the kinked region at the p-n junction. High spatial resolution sensing using these p-n diode probes was carried out in aqueous solution using fluorescent charged polystyrene nanobeads. Multiplexed electrical measurements show well-defined single-nanoparticle detection, and experiments with simultaneous confocal imaging correlate directly the motion of the nanobeads with the electrical signals recorded from the p-n devices. In addition, kinked p-n junction nanowires configured as three-dimensional probes demonstrate the capability of intracellular recording of action potentials from electrogenic cells. These p-n junction kinked nanowire devices, which represent a new way of constructing nanoscale probes with highly-localized sensing regions, provide substantial opportunity in areas ranging from bio/chem. sensing and nanoscale photon detection to three-dimensional recording from within living cells and tissue.
PMCID: PMC3303933  PMID: 22309132
nanosensor; nanoprobe; nano-bioelectronics; nanoelectronic device; diode
13.  The design, fabrication, and photocatalytic utility of nanostructured semiconductors: focus on TiO2-based nanostructures 
Recent advances in basic fabrication techniques of TiO2-based nanomaterials such as nanoparticles, nanowires, nanoplatelets, and both physical- and solution-based techniques have been adopted by various research groups around the world. Our research focus has been mainly on various deposition parameters used for fabricating nanostructured materials, including TiO2-organic/inorganic nanocomposite materials. Technically, TiO2 shows relatively high reactivity under ultraviolet light, the energy of which exceeds the band gap of TiO2. The development of photocatalysts exhibiting high reactivity under visible light allows the main part of the solar spectrum to be used. Visible light-activated TiO2 could be prepared by doping or sensitizing. As far as doping of TiO2 is concerned, in obtaining tailored material with improved properties, metal and nonmetal doping has been performed in the context of improved photoactivity. Nonmetal doping seems to be more promising than metal doping. TiO2 represents an effective photocatalyst for water and air purification and for self-cleaning surfaces. Additionally, it can be used as an antibacterial agent because of its strong oxidation activity and superhydrophilicity. Therefore, applications of TiO2 in terms of photocatalytic activities are discussed here. The basic mechanisms of the photoactivities of TiO2 and nanostructures are considered alongside band structure engineering and surface modification in nanostructured TiO2 in the context of doping. The article reviews the basic structural, optical, and electrical properties of TiO2, followed by detailed fabrication techniques of 0-, 1-, and quasi-2-dimensional TiO2 nanomaterials. Applications and future directions of nanostructured TiO2 are considered in the context of various photoinduced phenomena such as hydrogen production, electricity generation via dye-sensitized solar cells, photokilling and self-cleaning effect, photo-oxidation of organic pollutant, wastewater management, and organic synthesis.
PMCID: PMC3781710  PMID: 24198485
TiO2 nanostructure; fabrication techniques; doping in TiO2; TiO2-assisted photoactivity; solar hydrogen; TiO2-based dye-sensitized solar cells; TiO2 self-cleaning; organic synthesis
14.  Metal Oxide Gas Sensors: Sensitivity and Influencing Factors 
Sensors (Basel, Switzerland)  2010;10(3):2088-2106.
Conductometric semiconducting metal oxide gas sensors have been widely used and investigated in the detection of gases. Investigations have indicated that the gas sensing process is strongly related to surface reactions, so one of the important parameters of gas sensors, the sensitivity of the metal oxide based materials, will change with the factors influencing the surface reactions, such as chemical components, surface-modification and microstructures of sensing layers, temperature and humidity. In this brief review, attention will be focused on changes of sensitivity of conductometric semiconducting metal oxide gas sensors due to the five factors mentioned above.
PMCID: PMC3264469  PMID: 22294916
metal oxide; gas sensors; sensitivity; surface reaction
15.  Design Concepts, Fabrication and Advanced Characterization Methods of Innovative Piezoelectric Sensors Based on ZnO Nanowires 
Sensors (Basel, Switzerland)  2014;14(12):23539-23562.
Micro- and nano-scale materials and systems based on zinc oxide are expected to explode in their applications in the electronics and photonics, including nano-arrays of addressable optoelectronic devices and sensors, due to their outstanding properties, including semiconductivity and the presence of a direct bandgap, piezoelectricity, pyroelectricity and biocompatibility. Most applications are based on the cooperative and average response of a large number of ZnO micro/nanostructures. However, in order to assess the quality of the materials and their performance, it is fundamental to characterize and then accurately model the specific electrical and piezoelectric properties of single ZnO structures. In this paper, we report on focused ion beam machined high aspect ratio nanowires and their mechanical and electrical (by means of conductive atomic force microscopy) characterization. Then, we investigate the suitability of new power-law design concepts to accurately model the relevant electrical and mechanical size-effects, whose existence has been emphasized in recent reviews.
PMCID: PMC4299076  PMID: 25494351
zinc oxide; nanowire; atomic force microscopy; FIB machining; conductive AFM; power-law design; FEM analysis
16.  A Comprehensive Review of One-Dimensional Metal-Oxide Nanostructure Photodetectors 
Sensors (Basel, Switzerland)  2009;9(8):6504-6529.
One-dimensional (1D) metal-oxide nanostructures are ideal systems for exploring a large number of novel phenomena at the nanoscale and investigating size and dimensionality dependence of nanostructure properties for potential applications. The construction and integration of photodetectors or optical switches based on such nanostructures with tailored geometries have rapidly advanced in recent years. Active 1D nanostructure photodetector elements can be configured either as resistors whose conductions are altered by a charge-transfer process or as field-effect transistors (FET) whose properties can be controlled by applying appropriate potentials onto the gates. Functionalizing the structure surfaces offers another avenue for expanding the sensor capabilities. This article provides a comprehensive review on the state-of-the-art research activities in the photodetector field. It mainly focuses on the metal oxide 1D nanostructures such as ZnO, SnO2, Cu2O, Ga2O3, Fe2O3, In2O3, CdO, CeO2, and their photoresponses. The review begins with a survey of quasi 1D metal-oxide semiconductor nanostructures and the photodetector principle, then shows the recent progresses on several kinds of important metal-oxide nanostructures and their photoresponses and briefly presents some additional prospective metal-oxide 1D nanomaterials. Finally, the review is concluded with some perspectives and outlook on the future developments in this area.
PMCID: PMC3312456  PMID: 22454597
metal oxide semiconductor; one-dimensional nanostructures; sensor; photodetector; transistor
17.  Ferromagnetism and semiconducting of boron nanowires 
Nanoscale Research Letters  2012;7(1):678.
More recently, motivated by extensively technical applications of carbon nanostructures, there is a growing interest in exploring novel non-carbon nanostructures. As the nearest neighbor of carbon in the periodic table, boron has exceptional properties of low volatility and high melting point and is stronger than steel, harder than corundum, and lighter than aluminum. Boron nanostructures thus are expected to have broad applications in various circumstances. In this contribution, we have performed a systematical study of the stability and electronic and magnetic properties of boron nanowires using the spin-polarized density functional calculations. Our calculations have revealed that there are six stable configurations of boron nanowires obtained by growing along different base vectors from the unit cell of the bulk α-rhombohedral boron (α-B) and β-rhombohedral boron (β-B). Well known, the boron bulk is usually metallic without magnetism. However, theoretical results about the magnetic and electronic properties showed that, whether for the α-B-based or the β-B-based nanowires, their magnetism is dependent on the growing direction. When the boron nanowires grow along the base vector [001], they exhibit ferromagnetism and have the magnetic moments of 1.98 and 2.62 μB, respectively, for the α-c [001] and β-c [001] directions. Electronically, when the boron nanowire grows along the α-c [001] direction, it shows semiconducting and has the direct bandgap of 0.19 eV. These results showed that boron nanowires possess the unique direction dependence of the magnetic and semiconducting behaviors, which are distinctly different from that of the bulk boron. Therefore, these theoretical findings would bring boron nanowires to have many promising applications that are novel for the boron bulk.
PMCID: PMC3549899  PMID: 23244063
Boron nanowires; Ferromagnetism; Semiconducting
18.  Research progress on electronic phase separation in low-dimensional perovskite manganite nanostructures 
Nanoscale Research Letters  2014;9(1):325.
Perovskite oxide manganites with a general formula of R1-x AxMnO3 (where R is a trivalent rare-earth element such as La, Pr, Sm, and A is a divalent alkaline-earth element such as Ca, Sr, and Ba) have received much attention due to their unusual electron-transport and magnetic properties, which are indispensable for applications in microelectronic, magnetic, and spintronic devices. Recent advances in the science and technology have resulted in the feature sizes of microelectronic devices based on perovskite manganite oxides down-scaling into nanoscale dimensions. At the nanoscale, low-dimensional perovskite manganite oxide nanostructures display novel physical properties that are different from their bulk and film counterparts. Recently, there is strong experimental evidence to indicate that the low-dimensional perovskite manganite oxide nanostructures are electronically inhomogeneous, consisting of different spatial regions with different electronic orders, a phenomenon that is named as electronic phase separation (EPS). As the geometry sizes of the low-dimensional manganite nanostructures are reduced to the characteristic EPS length scale (typically several tens of nanometers in manganites), the EPS is expected to be strongly modulated, leading to quite dramatic changes in functionality and more emergent phenomena. Therefore, reduced dimensionality opens a door to the new functionalities in perovskite manganite oxides and offers a way to gain new insight into the nature of EPS. During the past few years, much progress has been made in understanding the physical nature of the EPS in low-dimensional perovskite manganite nanostructures both from experimentalists and theorists, which have a profound impact on the oxide nanoelectronics. This nanoreview covers the research progresses of the EPS in low-dimensional perovskite manganite nanostructures such as nanoparticles, nanowires/nanotubes, and nanostructured films and/or patterns. The possible physical origins of the EPS are also discussed from the signatures of electronic inhomogeneities as well as some theoretical scenarios, to shed light on understanding this phenomenon. Finally, the perspectives to the future researches in this area are also outlined.
PMCID: PMC4080779  PMID: 25024686
Perovskite manganites; Low-dimensional nanostructures; Electronic phase separation
19.  Morphological and chemical stability of silicon nanostructures and their molecular overlayers under physiological conditions: towards long-term implantable nanoelectronic biosensors 
The detection of biological and chemical species is of key importance to numerous areas of medical and life sciences. Therefore, a great interest exists in developing new, rapid, miniature, biocompatible and highly sensitive sensors, capable to operate under physiological conditions and displaying long-term stabilities (e.g. in-body implantable sensors). Silicon nanostructures, nanowires and nanotubes, have been extensively explored as building blocks for the creation of improved electrical biosensing devices, by virtue of their remarkably high surface-to-volume ratios, and have shown exceptional sensitivity for the real time label-free detection of molecular species adsorbed on their surfaces, down to the sensitivity of single molecules.
Yet, till this date, almost no rigorous studies have been performed on the temporal morphological stability of these nanostructures, and their resulting electrical devices, under physiological conditions (e.g. serum, blood), as well as on the chemical stability of the molecular recognition over-layers covering these structures.
Here, we present systematic time-resolved results on the morphological stability of bare Si nanowire building blocks, as well on the chemical stability of siloxane-based molecular over-layers, under physiological conditions. Furthermore, in order to overcome the observed short-term morpho-chemical instabilities, we present on the chemical passivation of the Si nanostructures by thin metal oxide nanoshells, in the range of 3–10 nm. The thickness of the metal oxide layer influences on the resulting electrical sensitivity of the fabricated FETs (field effect transistors), with an optimum thickness of 3–4 nm.
The core-shell structures display remarkable long-term morphological stability, preventing both, the chemical hydrolytic dissolution of the silicon under-structure and the concomitant loss of the siloxane-based chemical over-layers, for periods of at least several months. Electrical devices constructed from these nanostructures display excellent electrical characteristics and detection sensitivities, with exceptionally high morphological and functional stabilities. These results pave the road for the creation of long-term implantable biosensing devices in general, and nanodevices in particular.
PMCID: PMC3975481  PMID: 24606762
Nanowire; Field effect transistors; Chemical stability; Silicon; Dissolution; Biosensors
20.  Fluorescence Intensity- and Lifetime-Based Glucose Sensing Using Glucose/Galactose-Binding Protein 
We review progress in our laboratories toward developing in vivo glucose sensors for diabetes that are based on fluorescence labeling of glucose/galactose-binding protein. Measurement strategies have included both monitoring glucose-induced changes in fluorescence resonance energy transfer and labeling with the environmentally sensitive fluorophore, badan. Measuring fluorescence lifetime rather than intensity has particular potential advantages for in vivo sensing. A prototype fiber-optic-based glucose sensor using this technology is being tested.Fluorescence technique is one of the major solutions for achieving the continuous and noninvasive glucose sensor for diabetes. In this article, a highly sensitive nanostructured sensor is developed to detect extremely small amounts of aqueous glucose by applying fluorescence energy transfer (FRET). A one-pot method is applied to produce the dextran-fluorescein isothiocyanate (FITC)-conjugating mesoporous silica nanoparticles (MSNs), which afterward interact with the tetramethylrhodamine isothiocyanate (TRITC)-labeled concanavalin A (Con A) to form the FRET nanoparticles (FITC-dextran-Con A-TRITC@MSNs). The nanostructured glucose sensor is then formed via the self-assembly of the FRET nanoparticles on a transparent, flexible, and biocompatible substrate, e.g., poly(dimethylsiloxane). Our results indicate the diameter of the MSNs is 60 ± 5 nm. The difference in the images before and after adding 20 μl of glucose (0.10 mmol/liter) on the FRET sensor can be detected in less than 2 min by the laser confocal laser scanning microscope. The correlation between the ratio of fluorescence intensity, I(donor)/I(acceptor), of the FRET sensor and the concentration of aqueous glucose in the range of 0.04–4 mmol/liter has been investigated; a linear relationship is found. Furthermore, the durability of the nanostructured FRET sensor is evaluated for 5 days. In addition, the recorded images can be converted to digital images by obtaining the pixels from the resulting matrix using Matlab image processing functions. We have also studied the in vitro cytotoxicity of the device. The nanostructured FRET sensor may provide an alternative method to help patients manage the disease continuously.
PMCID: PMC3692217  PMID: 23439161
continuous glucose monitoring; diabetes; fluorescence; glucose/galactose binding protein; glucose sensor
21.  Nanostructures: a platform for brain repair and augmentation 
Nanoscale structures have been at the core of research efforts dealing with integration of nanotechnology into novel electronic devices for the last decade. Because the size of nanomaterials is of the same order of magnitude as biomolecules, these materials are valuable tools for nanoscale manipulation in a broad range of neurobiological systems. For instance, the unique electrical and optical properties of nanowires, nanotubes, and nanocables with vertical orientation, assembled in nanoscale arrays, have been used in many device applications such as sensors that hold the potential to augment brain functions. However, the challenge in creating nanowires/nanotubes or nanocables array-based sensors lies in making individual electrical connections fitting both the features of the brain and of the nanostructures. This review discusses two of the most important applications of nanostructures in neuroscience. First, the current approaches to create nanowires and nanocable structures are reviewed to critically evaluate their potential for developing unique nanostructure based sensors to improve recording and device performance to reduce noise and the detrimental effect of the interface on the tissue. Second, the implementation of nanomaterials in neurobiological and medical applications will be considered from the brain augmentation perspective. Novel applications for diagnosis and treatment of brain diseases such as multiple sclerosis, meningitis, stroke, epilepsy, Alzheimer's disease, schizophrenia, and autism will be considered. Because the blood brain barrier (BBB) has a defensive mechanism in preventing nanomaterials arrival to the brain, various strategies to help them to pass through the BBB will be discussed. Finally, the implementation of nanomaterials in neurobiological applications is addressed from the brain repair/augmentation perspective. These nanostructures at the interface between nanotechnology and neuroscience will play a pivotal role not only in addressing the multitude of brain disorders but also to repair or augment brain functions.
PMCID: PMC4064704  PMID: 24999319
nanotechnology; brain repair and augmentation; brain activity mapping; blood brain barrier; carbon nanotube; multi-electrode array; nano-imprint lithography; inter-laminar microcircuit
22.  Role of the Exposed Polar Facets in the Performance of Thermally and UV Activated ZnO Nanostructured Gas Sensors 
ZnO nanostructures with different morphologies (nanowires, nanodisks, and nanostars) were synthesized hydrothermally. Gas sensing properties of the as-grown nanostructures were investigated under thermal and UV activation. The performance of the ZnO nanodisk gas sensor was found to be superior to that of other nanostructures (Sg ∼ 3700% to 300 ppm ethanol and response time and recovery time of 8 and 13 s). The enhancement in sensitivity is attributed to the surface polarities of the different structures on the nanoscale. Furthermore, the selectivity of the gas sensors can be achieved by controlling the UV intensity used to activate these sensors. The highest sensitivity value for ethanol, isopropanol, acetone, and toluene are recorded at the optimal UV intensity of 1.6, 2.4, 3.2, and 4 mW/cm2, respectively. Finally, the UV activation mechanism for metal oxide gas sensors is compared with the thermal activation process. The UV activation of analytes based on solution processed ZnO structures pave the way for better quality gas sensors.
PMCID: PMC3759168  PMID: 24009781
23.  La 1−x Ca x MnO3 semiconducting nanostructures: morphology and thermoelectric properties 
Nanoscale Research Letters  2014;9(1):415.
Semiconducting metallic oxides, especially perosvkite materials, are great candidates for thermoelectric applications due to several advantages over traditionally metallic alloys such as low production costs and high chemical stability at high temperatures. Nanostructuration can be the key to develop highly efficient thermoelectric materials. In this work, La 1−x Ca x MnO3 perosvkite nanostructures with Ca as a dopant have been synthesized by the hydrothermal method to be used in thermoelectric applications at room temperature. Several heat treatments have been made in all samples, leading to a change in their morphology and thermoelectric properties. The best thermoelectric efficiency has been obtained for a Ca content of x=0.5. The electrical conductivity and Seebeck coefficient are strongly related to the calcium content.
PMCID: PMC4148682  PMID: 25206315
Nanostructures; Seebeck; Thermoelectricity; Perovskites
24.  A Comprehensive Review of Glucose Biosensors Based on Nanostructured Metal-Oxides 
Sensors (Basel, Switzerland)  2010;10(5):4855-4886.
Nanotechnology has opened new and exhilarating opportunities for exploring glucose biosensing applications of the newly prepared nanostructured materials. Nanostructured metal-oxides have been extensively explored to develop biosensors with high sensitivity, fast response times, and stability for the determination of glucose by electrochemical oxidation. This article concentrates mainly on the development of different nanostructured metal-oxide [such as ZnO, Cu(I)/(II) oxides, MnO2, TiO2, CeO2, SiO2, ZrO2, and other metal-oxides] based glucose biosensors. Additionally, we devote our attention to the operating principles (i.e., potentiometric, amperometric, impedimetric and conductometric) of these nanostructured metal-oxide based glucose sensors. Finally, this review concludes with a personal prospective and some challenges of these nanoscaled sensors.
PMCID: PMC3292151  PMID: 22399911
nanostructured metal-oxides; glucose biosensor; electrochemical principles; enzymatic sensor; nonenzymatic sensor
25.  Sn doping induced enhancement in the activity of ZnO nanostructures against antibiotic resistant S. aureus bacteria 
Highly ionic metal oxide nanostructures are attractive, not only for their physiochemical properties but also for antibacterial activity. Zinc oxide (ZnO) nanostructures are known to have inhibitory activity against many pathogens but very little is known about doping effects on it. The antibacterial activity of undoped ZnO and tin (Sn) doped ZnO nanostructures synthesized by a simple, versatile, and wet chemical technique have been investigated against Escherichia coli, methicillin-resistant Staphylococcus aureus, and Pseudomonas aeruginosa bacterial strains. It has been interestingly observed that Sn doping enhanced the inhibitory activity of ZnO against S. aureus more efficiently than the other two bacterial strains. From cytotoxicity and reactive oxygen species (ROS) production studies it is found that Sn doping concentration in ZnO does not alter the cytotoxicity and ROS production very much. It has also been observed that undoped and Sn doped ZnO nanostructures are biosafe and biocompatible materials towards SH-SY5Y Cells. The observed behavior of ZnO nanostructures with Sn doping is a new way to prevent bacterial infections of S. aureus, especially on skin, when using these nanostructures in creams or lotions in addition to their sunscreen property as an ultraviolet filter. Structural investigations have confirmed the formation of a single phase wurtzite structure of ZnO. The morphology of ZnO nanostructures is found to vary from spherical to rod shaped as a function of Sn doping. The excitation absorption peak of ZnO is observed to have a blue shift, with Sn doping leading toward a significant tuning in band gap.
PMCID: PMC3792850  PMID: 24109181
nanostructures; Sn doped ZnO; S. aureus; antibacterial activity

Results 1-25 (1361823)