Search tips
Search criteria

Results 1-25 (983789)

Clipboard (0)

Related Articles

1.  Approaches to measuring the activities of protein arginine N-methyltransferases 
Analytical biochemistry  2009;397(1):1-11.
Despite the emerging importance of protein arginine N-methyltransferase (PRMT) activity in regulating cellular processes, only a limited number of PRMT assays have been developed. Here, we compare several qualitative and quantitative methods that we use for measuring PRMT activity. Gel-based methods allow for the simultaneous detection of methyl transfer activity on multiple substrates, but require signals well above background in order to generate reliable data for quantitation, which can be challenging with low activity PRMTs or substrates that are poor methyl-acceptors. Techniques that measure S-adenosyl-L-homocysteine (AdoHcy) product formation suffer from a background caused by PRMT automethylation and the spontaneous formation of AdoHcy from S-adenosyl-L-methionine (AdoMet). However, when this background is controlled, this approach is useful for product inhibition studies. Methods that detect methylated arginines derived from acid hydrolysis of PRMT reaction samples can determine the absolute amounts of ω-NG-monomethylarginine (MMA), asymmetric ω-NG,NG-dimethylarginine (aDMA) or symmetric ω-NG,N′G-dimethylarginine (sDMA) to quantify PRMT activity. We describe separation methods of these methylated arginine derivatives by thin layer, reverse phase, or cation exchange chromatography, and quantification by radioactivity or mass spectrometry. The latter approach is advantageous because it does not require radiolabelled samples for detection, and activity is readily quantified with commercially available standards.
PMCID: PMC2808438  PMID: 19761747
PRMT; AdoMet; AdoHcy; methylarginine; enzyme kinetics
2.  Theoretical Insights into Catalytic Mechanism of Protein Arginine Methyltransferase 1 
PLoS ONE  2013;8(8):e72424.
Protein arginine methyltransferase 1 (PRMT1), the major arginine asymmetric dimethylation enzyme in mammals, is emerging as a potential drug target for cancer and cardiovascular disease. Understanding the catalytic mechanism of PRMT1 will facilitate inhibitor design. However, detailed mechanisms of the methyl transfer process and substrate deprotonation of PRMT1 remain unclear. In this study, we present a theoretical study on PRMT1 catalyzed arginine dimethylation by employing molecular dynamics (MD) simulation and quantum mechanics/molecular mechanics (QM/MM) calculation. Ternary complex models, composed of PRMT1, peptide substrate, and S-adenosyl-methionine (AdoMet) as cofactor, were constructed and verified by 30-ns MD simulation. The snapshots selected from the MD trajectory were applied for the QM/MM calculation. The typical SN2-favored transition states of the first and second methyl transfers were identified from the potential energy profile. Deprotonation of substrate arginine occurs immediately after methyl transfer, and the carboxylate group of E144 acts as proton acceptor. Furthermore, natural bond orbital analysis and electrostatic potential calculation showed that E144 facilitates the charge redistribution during the reaction and reduces the energy barrier. In this study, we propose the detailed mechanism of PRMT1-catalyzed asymmetric dimethylation, which increases insight on the small-molecule effectors design, and enables further investigations into the physiological function of this family.
PMCID: PMC3748068  PMID: 23977297
3.  Characterization of the PRMT Gene Family in Rice Reveals Conservation of Arginine Methylation 
PLoS ONE  2011;6(8):e22664.
Post-translational methylation of arginine residues profoundly affects the structure and functions of protein and, hence, implicated in a myriad of essential cellular processes such as signal transduction, mRNA splicing and transcriptional regulation. Protein arginine methyltransferases (PRMTs), the enzymes catalyzing arginine methylation have been extensively studied in animals, yeast and, to some extent, in model plant Arabidopsis thaliana. Eight genes coding for the PRMTs were identified in Oryza sativa, previously. Here, we report that these genes show distinct expression patterns in various parts of the plant. In vivo targeting experiment demonstrated that GFP-tagged OsPRMT1, OsPRMT5 and OsPRMT10 were localized to both the cytoplasm and nucleus, whereas OsPRMT6a and OsPRMT6b were predominantly localized to the nucleus. OsPRMT1, OsPRMT4, OsPRMT5, OsPRMT6a, OsPRMT6b and OsPRMT10 exhibited in vitro arginine methyltransferase activity against myelin basic protein, glycine-arginine-rich domain of fibrillarin and calf thymus core histones. Furthermore, they depicted specificities for the arginine residues in histones H3 and H4 and were classified into type I and Type II PRMTs, based on the formation of type of dimethylarginine in the substrate proteins. The two homologs of OsPRMT6 showed direct interaction in vitro and further titrating different amounts of these proteins in the methyltransferase assay revealed that OsPRMT6a inhibits the methyltransferase activity of OsPRMT6b, probably, by the formation of heterodimer. The identification and characterization of PRMTs in rice suggests the conservation of arginine methylation in monocots and hold promise for gaining further insight into regulation of plant development.
PMCID: PMC3154905  PMID: 21853042
4.  Novel Inhibitors for PRMT1 Discovered by High–Throughput Screening Using Activity–Based Fluorescence Polarization 
ACS Chemical Biology  2012;7(7):1198-1204.
Protein Arginine Methyltransferases (PRMTs) catalyze the posttranslational methylation of arginine using S–adenosyl–methionine (SAM) as a methyl–donor. The PRMT family is widely expressed and has been implicated in biological functions such as RNA splicing, transcriptional control, signal transduction, and DNA repair. Therefore, specific inhibitors of individual PRMTs have potentially significant research and therapeutic value. In particular, PRMT1 is responsible for >85% of arginine methyltransferase activity, but currently available inhibitors of PRMT1 lack specificity, efficacy, and bioavailability. To address this limitation, we developed a high–throughput screening assay for PRMT1 that utilizes a hyper–reactive cysteine within the active–site, which is lacking in almost all other PRMTs. This assay, which monitors the kinetics of the fluorescence polarization signal increase upon PRMT1 labeling by a rhodamine–containing cysteine–reactive probe, successfully identified two novel inhibitors selective for PRMT1 over other SAM–dependent methyltransferases.
PMCID: PMC3401332  PMID: 22506763
arginine methylation; PRMT1; inhibitor
5.  TbPRMT6 Is a Type I Protein Arginine Methyltransferase That Contributes to Cytokinesis in Trypanosoma brucei▿† 
Eukaryotic Cell  2010;9(6):866-877.
Arginine methylation is a widespread posttranslational modification of proteins catalyzed by a family of protein arginine methyltransferases (PRMTs). In Saccharomyces cerevisiae and mammals, this modification affects multiple cellular processes, such as chromatin remodeling leading to transcriptional regulation, RNA processing, DNA repair, and cell signaling. The protozoan parasite Trypanosoma brucei possesses five putative PRMTs in its genome. This is a large number of PRMTs relative to other unicellular eukaryotes, suggesting an important role for arginine methylation in trypanosomes. Here, we present the in vitro and in vivo characterization of a T. brucei enzyme homologous to human PRMT6, which we term TbPRMT6. Like human PRMT6, TbPRMT6 is a type I PRMT, catalyzing the production of monomethylarginine and asymmetric dimethylarginine residues. In in vitro methylation assays, TbPRMT6 utilizes bovine histones as a substrate, but it does not methylate several T. brucei glycine/arginine-rich proteins. As such, it exhibits a relatively narrow substrate specificity compared to other T. brucei PRMTs. Knockdown of TbPRMT6 in both procyclic form and bloodstream form T. brucei leads to a modest but reproducible effect on parasite growth in culture. Moreover, upon TbPRMT6 depletion, both PF and BF exhibit aberrant morphologies indicating defects in cell division, and these defects differ in the two life cycle stages. Mass spectrometry of TbPRMT6-associated proteins reveals histones, components of the nuclear pore complex, and flagellar proteins that may represent TbPRMT6 substrates contributing to the observed growth and morphological defects.
PMCID: PMC2901642  PMID: 20418380
6.  Pharmacophore-Based Virtual Screening and Biological Evaluation of Small Molecule Inhibitors for Protein Arginine Methylation 
Journal of medicinal chemistry  2012;55(18):7978-7987.
Protein arginine methyltransferases (PRMTs) are proved to play vital roles in chromatin remodeling, RNA metabolism and signal transduction. Aberrant regulation of PRMT activity is associated with various pathological states such as cancer and cardiovascular disorders. Development and application of small molecule PRMT inhibitors will provide new avenues for therapeutic discovery. We combined pharmacophore-based virtual screening methods with radioactive methylation assays, six hits were identified as inhibitors against the predominant arginine methyltransferase PRMT1 within micromolar potency. Two potent compounds, A9 and A36, exhibitting the inhibitory effect by directly targeting substrate H4 other than PRMT1 and displayed even higher inhibition activity than the well-known PRMT inhibitors AMI-1 and stilbamidine. A9 significantly inhibits proliferation of castrate-resistant prostate cancer cells. Together, A9 may be a potential inhibitor against advanced hormone-independent cancers and the work will provide clues for the future development of specific compounds that block the interaction of PRMTs with their targets.
PMCID: PMC4150255  PMID: 22928876
arginine methylation; PRMT1; inhibitor; pharmacophore; virtual screening
7.  Activity-Based Protein Profiling of Protein Arginine Methyltransferase 1† 
ACS chemical biology  2011;6(10):1127-1135.
The protein arginine methyltransferases (PRMTs) are SAM-dependent enzymes that catalyze the mono- and di-methylation of peptidyl arginine residues. PRMT1 is the founding member of the PRMT family, and this isozyme is responsible for methylating ~85% of the arginine residues in mammalian cells. Additionally, PRMT1 activity is aberrantly upregulated in heart disease and cancer. As a part of a program to develop isozyme specific PRMT inhibitors, we recently described the design and synthesis of C21, a chloroacetamidine bearing histone H4 tail analog that acts as an irreversible PRMT1 inhibitor. Given the covalent nature of the interaction, we set out to develop Activity Based Probes (ABPs) that could be used to characterize the physiological roles of PRMT1. Herein, we report the design, synthesis, and characterization of fluorescein-conjugated C21 (F-C21) and biotin-conjugated C21 (B-C21) as PRMT1-specific ABPs. Additionally, we provide the first evidence that PRMT1 activity is negatively regulated in a spatial and temporal fashion.
PMCID: PMC3199286  PMID: 21838253
8.  Functional interplay between protein arginine methyltransferases in Trypanosoma brucei 
MicrobiologyOpen  2014;3(5):595-609.
Arginine methylation is a common posttranslational modification that has far-reaching cellular effects. Trypanosoma brucei is an early-branching eukaryote with four characterized protein arginine methyltransferases (PRMTs), one additional putative PRMT, and over 800 arginine methylated proteins, suggesting that arginine methylation has widespread impacts in this organism. While much is known about the activities of individual T. brucei PRMTs (TbPRMTs), little is known regarding how TbPRMTs function together in vivo. In this study, we analyzed single and selected double TbPRMT knockdowns for the impact on expression of TbPRMTs and global methylation status. Repression of TbPRMT1 caused a decrease in asymmetric dimethylarginine and a marked increase in monomethylarginine that was catalyzed by TbPRMT7, suggesting that TbPRMT1 and TbPRMT7 can compete for the same substrate. We also observed an unexpected and strong interdependence between TbPRMT1 and TbPRMT3 protein levels. This finding, together with the observation of similar methyl landscape profiles in TbPRMT1 and TbPRMT3 repressed cells, strongly suggests that these two enzymes form a functional complex. We show that corepression of TbPRMT6/7 synergistically impacts growth of procyclic-form T. brucei. Our findings also implicate the actions of noncanonical, and as yet unidentified, PRMTs in T. brucei. Together, our studies indicate that TbPRMTs display a functional interplay at multiple levels.
PMCID: PMC4234254  PMID: 25044453
Arginine methylation; posttranslational modifications; PRMTs; Trypanosomes
9.  Disruption of Protein Arginine N-Methyltransferase 2 regulates leptin signaling and produces leanness in vivo through loss of STAT3 methylation 
Circulation research  2010;107(8):992-1001.
Arginine methylation by protein N-arginine methyltransferases (PRMTs) is an important post-translational modification in the regulation of protein signaling. PRMT2 contains a highly conserved catalytic Ado-Met binding domain, but the enzymatic function of PRMT2 with respect to methylation is unknown. The JAK-STAT pathway is proposed to be regulated through direct arginine methylation of STAT transcription factors, and STAT3 signaling is known to be required for leptin regulation of energy balance.
To identify the potential role of STAT3 arginine methylation by PRMT2 in the regulation of leptin signaling and energy homeostasis.
Methods and Results
We identified that PRMT2-/- mice are hypophagic, lean, and have significantly reduced serum leptin levels. This lean phenotype is accompanied by resistance to food-dependent obesity and an increased sensitivity to exogenous leptin administration. PRMT2 co-localizes with STAT3 in hypothalamic nuclei, where it binds and methylates STAT3 through its Ado-Met binding domain. In vitro studies further clarified that the Ado-Met binding domain of PRMT2 induces STAT3 methylation at the Arg31 residue. Absence of PRMT2 results in decreased methylation and prolonged tyrosine phosphorylation of hypothalamic STAT3, which was associated with increased expression of hypothalamic pro-opiomelanocortin following leptin stimulation.
These data elucidate a molecular pathway that directly links arginine methylation of STAT3 by PRMT2 to the regulation of leptin signaling, suggesting a potential role for PRMT2 antagonism in the treatment of obesity and obesity-related syndromes.
PMCID: PMC2997704  PMID: 20798359
PRMT2; leptin; methylation; STAT3
10.  The Effect of PRMT1-Mediated Arginine Methylation on the Subcellular Localization, Stress Granules, and Detergent-Insoluble Aggregates of FUS/TLS 
PLoS ONE  2012;7(11):e49267.
Fused in sarcoma/translocated in liposarcoma (FUS/TLS) is one of causative genes for familial amyotrophic lateral sclerosis (ALS). In order to identify binding partners for FUS/TLS, we performed a yeast two-hybrid screening and found that protein arginine methyltransferase 1 (PRMT1) is one of binding partners primarily in the nucleus. In vitro and in vivo methylation assays showed that FUS/TLS could be methylated by PRMT1. The modulation of arginine methylation levels by a general methyltransferase inhibitor or conditional over-expression of PRMT1 altered slightly the nucleus-cytoplasmic ratio of FUS/TLS in cell fractionation assays. Although co-localized primarily in the nucleus in normal condition, FUS/TLS and PRMT1 were partially recruited to the cytoplasmic granules under oxidative stress, which were merged with stress granules (SGs) markers in SH-SY5Y cell. C-terminal truncated form of FUS/TLS (FUS-dC), which lacks C-terminal nuclear localization signal (NLS), formed cytoplasmic inclusions like ALS-linked FUS mutants and was partially co-localized with PRMT1. Furthermore, conditional over-expression of PRMT1 reduced the FUS-dC-mediated SGs formation and the detergent-insoluble aggregates in HEK293 cells. These findings indicate that PRMT1-mediated arginine methylation could be implicated in the nucleus-cytoplasmic shuttling of FUS/TLS and in the SGs formation and the detergent-insoluble inclusions of ALS-linked FUS/TLS mutants.
PMCID: PMC3496700  PMID: 23152885
11.  PRMT1 Arginine Methyltransferase Accumulates in Cytoplasmic Bodies that Respond to Selective Inhibition and DNA Damage 
Protein arginine methyltransferases (PRMTs) are responsible for symmetric and asymmetric methylation of arginine residues of nuclear and cytoplasmic proteins. In the nucleus, PRMTs belong to important chromatin modifying enzymes of immense functional significance that affect gene expression, splicing and DNA repair. By time-lapse microscopy we have studied the sub-cellular localization and kinetics of PRMT1 after inhibition of PRMT1 and after irradiation. Both transiently expressed and endogenous PRMT1 accumulated in cytoplasmic bodies that were located in the proximity of the cell nucleus. The shape and number of these bodies were stable in untreated cells. However, when cell nuclei were microirradiated by UV-A, the mobility of PRMT1 cytoplasmic bodies increased their, size was reduced, and they disappeared within approximately 20 min. The same response occurred after γ-irradiation of the whole cell population, but with delayed kinetics. Treatment with PRMT1 inhibitors induced disintegration of these PRMT1 cytoplasmic bodies and prevented formation of 53BP1 nuclear bodies (NBs) that play a role during DNA damage repair. The formation of 53BP1 NBs was not influenced by PRMT1 over-expression. Taken together, we show that PRMT1 concentrates in cytoplasmic bodies, which respond to DNA injury in the cell nucleus, and to treatment with various PRMT1 inhibitors.
PMCID: PMC4083328  PMID: 24998928
Epigenetics; PRMTs; epi-drugs; arginine methylation; DNA repair
12.  A Transient Kinetic Analysis of PRMT1 Catalysis 
Biochemistry  2011;50(32):7033-7044.
Posttranslational modifications (PTMs) are important strategies used by eukaryotic organisms to modulate their phenotypes. One of the well studied PTMs, arginine methylation, is catalyzed by protein arginine methyltransferases (PRMTs) with SAM as the methyl donor. The functions of PRMTs have been broadly studied in different biological processes and diseased states, but the molecular basis for arginine methylation is not well defined. In this study, we report the transient-state kinetic analysis of PRMT1 catalysis. The fast association and dissociation rates suggest that PRMT1 catalysis of histone H4 methylation follows a rapid equilibrium sequential kinetic mechanism. The data give direct evidence that the chemistry of methyl transfer is the major rate-limiting step, and that binding of the cofactor SAM or SAH affects the association and dissociation of H4 with PRMT1. Importantly, from the stopped-flow fluorescence measurements, we have identified a critical kinetic step suggesting a precatalytic conformational transition induced by substrate binding. These results provide new insights into the mechanism of arginine methylation and the rational design of PRMT inhibitors.
PMCID: PMC3153576  PMID: 21736313
PRMT1; arginine methylation; transient-state kinetics; conformational transition; fluorescent probe; stopped flow
13.  Cellular localization of protein arginine methyltransferase-5 correlates with grade of lung tumors 
Diagnostic Pathology  2013;8:201.
Protein arginine methyltransferase-5 (PRMT5) is a chromatin-modifying enzyme capable of methylating histone and non-histone proteins, and is involved in a wide range of cellular processes that range from transcriptional regulation to organelle biosynthesis. As such, its overexpression has been linked to tumor suppressor gene silencing, enhanced tumor cell growth and survival.
Material and methods
Quantitative real-time polymerase chain reaction, Western immunoblot and immunohistochemistry were used to characterize PRMT5 expression in lung cancer cell lines and human tumors. Clinicopathological findings of tissue microarray based samples from 229 patients with non-small cell lung carcinomas (NSCLC) and 133 cases with pulmonary neuroendocrine tumors (NET) were analyzed with regard to nuclear and cytoplasmic PRMT5 expression.
There was statistically significant difference in PRMT5 messenger RNA expression between tumors and nonneoplastic lung tissues. Immunoblot experiments showed abundant expression of PRMT5 and its symmetric methylation mark H4R3 in lung carcinoma but not in non-neoplastic human pulmonary alveolar and bronchial epithelial cell lines. More than two thirds of lung tumors expressed PRMT5. High levels of cytoplasmic PRMT5 were detected in 20.5% of NSCLC and in 16.5% of NET; high levels of nuclear PRMT5 were detected in 38.0% of NSCLC and 24.0% of NET. Cytoplasmic PRMT5 was associated with high grade in both NSCLC and pulmonary NET while nuclear PRMT5 was more frequent in carcinoid tumors (p < 0.05).
The observed findings support the role of PRMT5 in lung tumorigenesis and reflect its functional dichotomy in cellular compartments.
Virtual slide
The virtual slides for this article can be found here:
PMCID: PMC3933389  PMID: 24326178
Protein arginine methyltransferase-5; Lung carcinoma; Neuroendocrine tumors
14.  Overexpression of PRMT6 does not suppress HIV-1 Tat transactivation in cells naturally lacking PRMT6 
Virology Journal  2013;10:207.
Protein arginine methyltransferase 6 (PRMT6) can methylate the HIV-1 Tat, Rev and nucleocapsid proteins in a manner that diminishes each of their functions in in vitro assays, and increases the stability of Tat in human cells. In this study, we explored the relationship between PRMT6 and HIV-1 Tat by determining the domains in each protein required for interaction.
Through domain mapping and immunoprecipitation experiments, we determined that both the amino and carboxyl termini of PRMT6, and the activation domain within Tat are essential for interaction. Mutation of the basic domain of Tat did not affect the ability of PRMT6 to interact with Tat.
We next used the A549 human alveolar adenocarcinoma cell line, which naturally expresses undetectable levels of PRMT6, as a model for testing the effects of PRMT6 on Tat stability, transactivation, and HIV-1 replication. As previously observed, steady state levels and the protein half-life of Tat were increased by the ectopic expression of PRMT6. However, no down regulation of Tat transactivation function was observed, even with over 300-fold molar excess of PRMT6 plasmid. We also observed no negative effect on HIV-1 infectivity when A549 producer cells overexpressed PRMT6.
We show that PRMT6 requires the activation domain, but surprisingly not the basic domain, of Tat for protein interaction. This interaction between Tat and PRMT6 may impact upon pathogenic effects attributed to Tat during HIV-1 infection other than its function during transactivation.
PMCID: PMC3695826  PMID: 23800116
HIV; Tat; Protein arginine methyltransferase 6; Protein methylation; A549 cell line
15.  Cell Cycle Regulation by the PRMT6 Arginine Methyltransferase through Repression of Cyclin-Dependent Kinase Inhibitors 
PLoS ONE  2012;7(8):e41446.
PRMT6 belongs to the family of Protein Arginine Methyltransferase (PRMT) enzymes that catalyze the methylation of guanidino nitrogens of arginine residues. PRMT6 has been shown to modify the tail of histone H3, but the in vivo function of PRMT6 is largely unknown. Here, we show that PRMT6 regulates cell cycle progression. Knockdown of PRMT6 expression in the human osteosarcoma cell line U2OS results in an accumulation of cells at the G2 checkpoint. Loss of PRMT6 coincides with upregulation of p21 and p27, two members of the CIP/KIP family of cyclin-dependent kinase (CDK) inhibitors. Gene expression and promoter analysis show that p21 and p27 are direct targets of PRMT6, which involves methylation of arginine-2 of histone H3. Our findings imply arginine methylation of histones by PRMT6 in cell cycle regulation.
PMCID: PMC3423397  PMID: 22916108
16.  Correlation of SRSF1 and PRMT1 expression with clinical status of pediatric acute lymphoblastic leukemia 
Acute lymphoblastic leukemia (ALL) is the most frequently-occurring malignant neoplasm in children, but the pathogenesis of the disease remains unclear. In a microarray assay using samples from 100 children with ALL, SFRS1 was found to be up-regulated. Serine/arginine-rich splicing factor 1 (SRSF1, also termed SF2/ASF), encoded by the SFRS1 gene, had been shown to be a pro-oncoprotein. Our previous study indicated that SRSF1 can be methylated by protein arginine methyltransferase 1 (PRMT1) in vitro; however, the biological function of SRSF1 and PRMT1 in pediatric ALL are presently unknown.
Matched, newly diagnosed (ND), complete remission (CR) and relapse (RE) bone marrow samples from 57 patients were collected in order to evaluate the expression patterns of SRSF1 and PRMT1. The potential oncogenic mechanism of SRSF1 and PRMT1 in leukemogenesis was also investigated.
We identified significant up-regulation of SRSF1 and PRMT1 in the ND samples. Importantly, the expression of SRSF1 and PRMT1 returned to normal levels after CR, but rebounded in the RE samples. Our observation that SRSF1 could predict disease relapse was of particular interest, although the expression patterns of SRSF1 and PRMT1 were independent of the cytogenetic subtypes. In pre-B-cell lines, both SRSF1 and PRMT1 expression could be efficiently attenuated by the clinical chemotherapy agents arabinoside cytosine (Ara-c) or vincristine (VCR). Moreover, SRSF1 and PRMT1 were associated with each other in leukemia cells in vivo. Knock-down of SRSF1 resulted in an increase in early apoptosis, which could be further induced by chemotherapeutics.
Our results indicate that SRSF1 serves as an anti-apoptotic factor and potentially contributes to leukemogenesis in pediatric ALL patients by cooperating with PRMT1.
PMCID: PMC3459738  PMID: 22839530
Acute lymphoblastic leukemia; Splicing factor SRSF1; Protein arginine methyltransferase 1 (PRMT1); Alternative splicing; Arginine methylation
17.  Kinetic mechanism of Protein Arginine Methyltransferase 1 † 
Biochemistry  2008;47(39):10420-10427.
Protein arginine methyltransferases (PRMTs) are SAM-dependent enzymes that catalyze the mono- and di-methylation of peptidyl arginine residues. Although all PRMTs produce mono-methyl arginine (MMA), type 1 PRMTs go on to form asymmetrically dimethylated arginine (ADMA), while type 2 enzymes form symmetrically dimethylated arginine (SDMA). PRMT1 is the major type 1 PRMT in vivo, thus it is the primary producer of the competitive NOS inhibitor, ADMA. Hence, potent inhibitors, which are highly selective for this particular isozyme, could serve as excellent therapeutics for heart disease. However, the design of such inhibitors is impeded by a lack of information regarding this enzyme’s kinetic and catalytic mechanisms. Herein we report an analysis of the kinetic mechanism of human PRMT1 using both an unmethylated and a mono-methylated substrate peptide based on the N-terminus of histone H4. The results of initial velocity and product and dead-end inhibition experiments indicate that PRMT1 utilize a rapid equilibrium random mechanism with the formation of dead-end EAP and EBQ complexes. This mechanism is gratifyingly consistent with previous results demonstrating that PRMT1 catalyzes substrate dimethylation in a partially processive manner.
PMCID: PMC2933744  PMID: 18771293
18.  Structure of the Arginine Methyltransferase PRMT5-MEP50 Reveals a Mechanism for Substrate Specificity 
PLoS ONE  2013;8(2):e57008.
The arginine methyltransferase PRMT5-MEP50 is required for embryogenesis and is misregulated in many cancers. PRMT5 targets a wide variety of substrates, including histone proteins involved in specifying an epigenetic code. However, the mechanism by which PRMT5 utilizes MEP50 to discriminate substrates and to specifically methylate target arginines is unclear. To test a model in which MEP50 is critical for substrate recognition and orientation, we determined the crystal structure of Xenopus laevis PRMT5-MEP50 complexed with S-adenosylhomocysteine (SAH). PRMT5-MEP50 forms an unusual tetramer of heterodimers with substantial surface negative charge. MEP50 is required for PRMT5-catalyzed histone H2A and H4 methyltransferase activity and binds substrates independently. The PRMT5 catalytic site is oriented towards the cross-dimer paired MEP50. Histone peptide arrays and solution assays demonstrate that PRMT5-MEP50 activity is inhibited by substrate phosphorylation and enhanced by substrate acetylation. Electron microscopy and reconstruction showed substrate centered on MEP50. These data support a mechanism in which MEP50 binds substrate and stimulates PRMT5 activity modulated by substrate post-translational modifications.
PMCID: PMC3581573  PMID: 23451136
19.  Protein Arginine Methyltransferase 5 Functions in Opposite Ways in the Cytoplasm and Nucleus of Prostate Cancer Cells 
PLoS ONE  2012;7(8):e44033.
Protein arginine methyltransferase 5 (PRMT5) plays multiple roles in a large number of cellular processes, and its subcellular localization is dynamically regulated during mouse development and cellular differentiation. However, little is known of the functional differences between PRMT5 in the cytoplasm and PRMT5 in the nucleus. Here, we demonstrated that PRMT5 predominantly localized in the cytoplasm of prostate cancer cells. Subcellular localization assays designed to span the entire open-reading frame of the PRMT5 protein revealed the presence of three nuclear exclusion signals (NESs) in the PRMT5 protein. PRMT5 and p44/MED50/WD45/WDR77 co-localize in the cytoplasm, and both are required for the growth of prostate cancer cells in an PRMT5 methyltransferase activity-dependent manner. In contrast, PRMT5 in the nucleus inhibited cell growth in a methyltransferase activity-independent manner. Consistent with these observations, PRMT5 localized in the nucleus in benign prostate epithelium, whereas it localized in the cytoplasm in prostate premalignant and cancer tissues. We further found that PRMT5 alone methylated both histone H4 and SmD3 proteins but PRMT5 complexed with p44 and pICln methylated SmD3 but not histone H4. These results imply a novel mechanism by which PRMT5 controls cell growth and contributes to prostate tumorigenesis.
PMCID: PMC3428323  PMID: 22952863
20.  Crystal Structure of Arginine Methyltransferase 6 from Trypanosoma brucei 
PLoS ONE  2014;9(2):e87267.
Arginine methylation plays vital roles in the cellular functions of the protozoan Trypanosoma brucei. The T. brucei arginine methyltransferase 6 (TbPRMT6) is a type I arginine methyltransferase homologous to human PRMT6. In this study, we report the crystal structures of apo-TbPRMT6 and its complex with the reaction product S-adenosyl-homocysteine (SAH). The structure of apo-TbPRMT6 displays several features that are different from those of type I PRMTs that were structurally characterized previously, including four stretches of insertion, the absence of strand β15, and a distinct dimerization arm. The comparison of the apo-TbPRMT6 and SAH-TbPRMT6 structures revealed the fine rearrangements in the active site upon SAH binding. The isothermal titration calorimetry results demonstrated that SAH binding greatly increases the affinity of TbPRMT6 to a substrate peptide derived from bovine histone H4. The western blotting and mass spectrometry results revealed that TbPRMT6 methylates bovine histone H4 tail at arginine 3 but cannot methylate several T. brucei histone tails. In summary, our results highlight the structural differences between TbPRMT6 and other type I PRMTs and reveal that the active site rearrangement upon SAH binding is important for the substrate binding of TbPRMT6.
PMCID: PMC3911951  PMID: 24498306
21.  Protein Arginine Methyltransferase 1 Interacts with and Activates p38α to Facilitate Erythroid Differentiation 
PLoS ONE  2013;8(3):e56715.
Protein arginine methylation is emerging as a pivotal posttranslational modification involved in regulating various cellular processes; however, its role in erythropoiesis is still elusive. Erythropoiesis generates circulating red blood cells which are vital for body activity. Deficiency in erythroid differentiation causes anemia which compromises the quality of life. Despite extensive studies, the molecular events regulating erythropoiesis are not fully understood. This study showed that the increase in protein arginine methyltransferase 1 (PRMT1) levels, via transfection or protein transduction, significantly promoted erythroid differentiation in the bipotent human K562 cell line as well as in human primary hematopoietic progenitor CD34+ cells. PRMT1 expression enhanced the production of hemoglobin and the erythroid surface marker glycophorin A, and also up-regulated several key transcription factors, GATA1, NF-E2 and EKLF, which are critical for lineage-specific differentiation. The shRNA-mediated knockdown of PRMT1 suppressed erythroid differentiation. The methyltransferase activity-deficient PRMT1G80R mutant failed to stimulate differentiation, indicating the requirement of arginine methylation of target proteins. Our results further showed that a specific isoform of p38 MAPK, p38α, promoted erythroid differentiation, whereas p38β did not play a role. The stimulation of erythroid differentiation by PRMT1 was diminished in p38α- but not p38β-knockdown cells. PRMT1 appeared to act upstream of p38α, since expression of p38α still promoted erythroid differentiation in PRMT1-knockdown cells, and expression of PRMT1 enhanced the activation of p38 MAPK. Importantly, we showed for the first time that PRMT1 was associated with p38α in cells by co-immunoprecipitation and that PRMT1 directly methylated p38α in in vitro methylation assays. Taken together, our findings unveil a link between PRMT1 and p38α in regulating the erythroid differentiation program and provide evidence suggesting a novel regulatory mechanism for p38α through arginine methylation.
PMCID: PMC3590204  PMID: 23483889
22.  Accurate Localization and Relative Quantification of Arginine Methylation Using Nanoflow Liquid Chromatography Coupled to Electron Transfer Dissociation and Orbitrap Mass Spectrometry 
Protein arginine (Arg) methylation serves an important functional role in eukaryotic cells, and typically occurs in domains consisting of multiple Arg in close proximity. Localization of methylarginine (MA) within Arg-rich domains poses a challenge for mass spectrometry (MS)-based methods; the peptides are highly-charged under electrospray ionization (ESI), which limits the number of sequence-informative products produced by collision induced dissociation (CID), and loss of the labile methylation moieties during CID precludes effective fragmentation of the peptide backbone. Here the fragmentation behavior of Arg-rich peptides was investigated comprehensively using electron transfer dissociation (ETD) and CID for both methylated and unmodified glycine-/Arg-rich peptides (GAR), derived from residues 679-695 of human nucleolin, which contains methylation motifs that are widely-represented in biological systems. ETD produced abundant information for sequencing and MA localization, whereas CID failed to provide credible identification for any available charge state (z=2-4). Nevertheless, CID produced characteristic neutral losses that can be employed to distinguish among different types of MA, as suggested by previous works and confirmed here with product ion scans of high accuracy/resolution by an LTQ/Orbitrap. To analyze MA-peptides in relatively complex mixtures, a method was developed that employs nano-LC coupled to alternating CID/ETD for peptide sequencing and MA localization/characterization, and an Orbitrap for accurate precursor measurement and relative quantification of MA-peptide stoichiometries. As proof of concept, GAR-peptides methylated in vitro by protein arginine N-methyltransferases PRMT1 and PRMT7 were analyzed. It was observed that PRMT1 generated a number of monomethylated (MMA) and asymmetric-dimethylated peptides, while PRMT7 produced predominantly MMA peptides and some symmetric-dimethylated peptides. This approach and the results may advance understanding of the actions of PRMTs and the functional significance of Arg methylation patterns.
PMCID: PMC3351756  PMID: 19110445
23.  Prmt7 is dispensable in tissue culture models for adipogenic differentiation 
F1000Research  2013;2:279.
Protein arginine methylation is a common posttranslational modification that has been implicated in numerous biological processes including gene expression. The mammalian genome encodes nine protein arginine methyltransferases (Prmts) that catalyze monomethylation, asymmetric dimethylation, and symmetric dimethylation on arginine residues. Protein arginine methyltransferase 7 (Prmt7) is categorized as a type II and type III enzyme that produces symmetric dimethylated arginine and monomethylated arginine, respectively. However, the biological role of Prmt7 is not well characterized. We previously showed that Prmt5, a type II Prmt that associates with Brg1-based SWI/SNF chromatin remodeling complex, is required for adipocyte differentiation. Since Prmt7 also associates with Brg1-based SWI/SNF complex and modifies core histones, we hypothesized that Prmt7 might play a role in transcriptional regulation of adipogenesis. In the present study, we determined that the expression of Prmt7 did not change throughout adipogenic differentiation of C3H10T1/2 mesenchymal cells. Knockdown or over-expression of Prmt7 had no effect on lipid accumulation or adipogenic gene expression in differentiating C3H10T1/2 cells or in C/EBPα-reprogrammed NIH3T3 fibroblasts. Based on these results, we conclude that Prmt7, unlike Prmt5, is dispensable for adipogenic differentiation in tissue culture models.
PMCID: PMC3962006  PMID: 24715966
24.  Evolutionarily Divergent Type II Protein Arginine Methyltransferase in Trypanosoma brucei▿  
Eukaryotic Cell  2007;6(9):1665-1681.
Protein arginine methylation is a posttranslational modification that impacts cellular functions, such as RNA processing, transcription, DNA repair, and signal transduction. The majority of our knowledge regarding arginine methylation derives from studies of yeast and mammals. Here, we describe a protein arginine N-methyltransferase (PRMT), TbPRMT5, from the early-branching eukaryote Trypanosoma brucei. TbPRMT5 shares the greatest sequence similarity with PRMT5 and Skb1 type II enzymes from humans and Schizosaccharomyces pombe, respectively, although it is significantly divergent at the amino acid level from its mammalian and yeast counterparts. Recombinant TbPRMT5 displays broad substrate specificity in vitro, including methylation of a mitochondrial-gene-regulatory protein, RBP16. TbPRMT5 catalyzes the formation of ω-NG-monomethylarginine and symmetric ω-NG,NG′-dimethylarginine and does not require trypanosome cofactors for this activity. These data establish that type II PRMTs evolved early in the eukaryotic lineage. In vivo, TbPRMT5 is constitutively expressed in the bloodstream form and procyclic-form (insect host) life stages of the parasite and localizes to the cytoplasm. Genetic disruption via RNA interference in procyclic-form trypanosomes indicates that TbPRMT5 is not essential for growth in this life cycle stage. TbPRMT5-TAP ectopically expressed in procyclic-form trypanosomes is present in high-molecular-weight complexes and associates with an RG domain-containing DEAD box protein related to yeast Ded1 and two kinetoplastid-specific proteins. Thus, TbPRMT5 is likely to be involved in novel methylation-regulated functions in trypanosomes, some of which may include RNA processing and/or translation.
PMCID: PMC2043365  PMID: 17601874
25.  PRMT6 diminishes HIV-1 Rev binding to and export of viral RNA 
Retrovirology  2006;3:93.
The HIV-1 Rev protein mediates nuclear export of unspliced and partially spliced viral RNA through interaction with the Rev response element (RRE) by means of an arginine rich motif that is similar to the one found in Tat. Since Tat is known to be asymmetrically arginine dimethylated by protein arginine methyltransferase 6 (PRMT6) in its arginine rich motif, we investigated whether the Rev protein could act as a substrate for this enzyme.
Here, we report the methylation of Rev due to a single arginine dimethylation in the N-terminal portion of its arginine rich motif and the association of Rev with PRMT6 in vivo. Further analysis demonstrated that the presence of increasing amounts of wild-type PRMT6, as well as a methylation-inactive mutant PRMT6, dramatically down-regulated Rev protein levels in concentration-dependent fashion, which was not dependent on the methyltransferase activity of PRMT6. Quantification of Rev mRNA revealed that attenuation of Rev protein levels was due to a posttranslational event, carried out by a not yet defined activity of PRMT6. However, no relevant protein attenuation was observed in subsequent chloramphenicol acetyltransferase (CAT) expression experiments that screened for RNA export and interaction with the RRE. Binding of the Rev arginine rich motif to the RRE was reduced in the presence of wild-type PRMT6, whereas mutant PRMT6 did not exert this negative effect. In addition, diminished interactions between viral RNA and mutant Rev proteins were observed, due to the introduction of single arginine to lysine substitutions in the Rev arginine rich motif. More importantly, wild-type PRMT6, but not mutant methyltransferase, significantly decreased Rev-mediated viral RNA export from the nucleus to the cytoplasm in a dose-dependent manner.
These findings indicate that PRMT6 severely impairs the function of HIV-1 Rev.
PMCID: PMC1779295  PMID: 17176473

Results 1-25 (983789)