PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (1319339)

Clipboard (0)
None

Related Articles

1.  Dopamine and Impulse Control Disorders in Parkinson’s Disease 
Annals of neurology  2008;64(Suppl 2):S93-100.
There is an increasing awareness that impulse control disorders (ICDs), including compulsive gambling, buying, sexual behavior, and eating, can occur as a complication of Parkinson’s disease (PD). In addition, other impulsive or compulsive disorders have been reported to occur, including dopamine dysregulation syndrome (DDS) and punding. Case reporting and prospective studies have reported an association between ICDs and the use of dopamine agonists (DAs), particularly at greater dosages, whereas dopamine dysregulation syndrome has been associated with greater dosages of levodopa or short-acting DAs. Data suggest that risk factors for an ICD may include male sex, younger age or younger age at PD onset, a pre-PD history of ICD symptoms, personal or family history of substance abuse or bipolar disorder, and a personality style characterized by impulsiveness. Although psychiatric medications are used clinically in the treatment of ICDs, there is no empiric evidence supporting their use in PD. Therefore, management for clinically significant ICD symptoms should consist of modifications to dopamine replacement therapy, particularly DAs, and there is emerging evidence that such management is associated with an overall improvement in ICD symptomatology. It is important that PD patients be aware that DA use may lead to the development of an ICD, and that clinicians monitor patients as part of routine clinical care. As empirically validated treatments for ICDs are emerging, it will be important to examine their efficacy and tolerability in individuals with cooccurring PD and ICDs.
doi:10.1002/ana.21454
PMCID: PMC3530139  PMID: 19127573
2.  Whole-Brain Diffusion-Tensor Changes in Parkinsonian Patients with Impulse Control Disorders 
Background and Purpose
The aim of this study was to determine the changes in diffusion-tensor images associated with medication-related impulse control disorder (ICD) in Parkinson's disease (PD) patients undergoing chronic dopamine-replacement therapy.
Methods
Nineteen PD patients, comprising 10 with ICD (PD-ICD) and 9 without ICD (PD-nonICD), and 18 age-matched healthy controls (HCs) with no cognitive or other psychiatric disorders were analyzed. All subjects underwent 3-T magnetic resonance diffusion-tensor imaging. For all PD patients, clinical data on PD duration, antiparkinsonian medication dosages, Unified Parkinson's Disease Rating Scale and Mini-Mental State Examination were collected. Whole-brain voxel-based measures of fractional anisotropy (FA) and mean diffusivity (MD) were analyzed.
Results
In comparison with HCs, the PD-nonICD subjects had low FA at the bilateral orbitofrontal areas. While the PD-ICD subjects exhibited no such difference, their FA was significantly elevated at the anterior corpus callosum. Analysis of FA between the two PD groups revealed that FA in the anterior corpus callosum, right internal capsule posterior limbs, right posterior cingulum, and right thalamic radiations were significantly higher (corrected p<0.05) in the PD-ICD than in the PD-nonICD patients. MD did not differ between the PD-ICD and PD-nonICD groups in any brain regions.
Conclusions
The PD-ICD patients appear to have relatively preserved white-matter integrity in the regions involved in reward-related behaviors compared to PD-nonICD patients. Further investigation is required to determine whether the difference in FA between PD-ICD and PD-nonICD patients reflects microstructural differences in the pathological progression of PD or is secondary to ICD.
doi:10.3988/jcn.2015.11.1.42
PMCID: PMC4302178  PMID: 25628736
impulse control disorders; Parkinson's disease; diffusion-tensor imaging
3.  Dopamine Agonist Use is Associated with Impulse Control Disorders in Parkinson’s Disease 
Archives of neurology  2006;63(7):969-973.
Objective
To determine the frequency and correlates of impulse control disorders (ICDs) in Parkinson’s disease (PD).
Design
An unstructured screening interview for ICDs (compulsive gambling, buying, and sexual behavior) followed by a telephone-administered structured interview for screen-positive patients.
Setting
Two university-affiliated movement disorders centers.
Participants
A convenience sample of 272 patients with idiopathic PD who were screened for psychiatric complications.
Main Outcome Measures
Presence of compulsive gambling, buying, or sexual behavior as assessed by the Minnesota Impulsive Disorders Interview.
Results
Eighteen (6.6%) PD patients met criteria for an ICD at some point during the course of PD, including 11 (4.0%) with an active ICD. Compulsive gambling and compulsive sexual behavior were equally common. In a multivariate model, treatment with a dopamine agonist (P = .01) and a history of ICD symptomatology prior to PD onset (P = .02) predicted current ICD. There were no differences between the dopamine agonists in their association with ICDs (P = .21), and daily doses of dopamine agonists were higher in patients with an ICD than in dopamine agonist-treated patients without an ICD (P < .001).
Conclusions
PD patients treated with a dopamine agonist should be made aware of the risk of developing an ICD and monitored clinically. As dopamine agonists are increasing being used for other indications, future research should assess the dopamine agonist-associated risk for ICDs in other populations.
doi:10.1001/archneur.63.7.969
PMCID: PMC1761054  PMID: 16831966
4.  Maladaptive Reward-Learning and Impulse Control Disorders in Patients with Parkinson’s Disease: A Clinical Overview and Pathophysiology Update 
Journal of Movement Disorders  2014;7(2):67-76.
Impulse control disorders (ICD) in Parkinson’s disease (PD) are a disabling non-motor symptom with frequencies of 13–35% among patients receiving dopamine replacement therapy. ICD in PD is strongly associated with dopaminergic drug use, especially non-ergot dopamine agonists (DA). However, individual susceptibility and disease-related neural changes are also important contributors to the development of ICD. Discrepancies between nigrostriatal and mesolimbic dopaminergic degeneration and non-physiological administration of dopaminergic drugs may induce abnormal ’hyperstimulation’ of the mesolimbic system, which alters reward-learning behaviors in PD patients. In addition, DA can make patients more impulsive during decision-making and seek risk-taking behaviors. DA intake is also related to the biased representation of rewards. Ultimately, loss of negative feedback control due to dysfunctional frontostriatal connections is necessary for the establishment of ICD in PD. The subsequent behavioral and neural changes are affected by PD treatment and disease progression; thus, proper treatment guidelines for physicians are needed to prevent the development of ICD. Future studies aimed at producing novel therapeutics to control the risk factors for ICD or treat ICD behaviors in PD are warranted. This review summarizes recent advances from epidemiological and pathophysiological studies on ICD in PD. Management principles and limitations of current therapeutics are briefly discussed.
doi:10.14802/jmd.14010
PMCID: PMC4213534  PMID: 25360230
Impulse control disorder; Parkinson’s disease; Dopamine agonist; Reward-learning; Impulsivity; Addiction
5.  Prospective Cohort Study of Impulse Control Disorders in Parkinson’s Disease 
Impulse control disorders (ICDs) are potentially serious side effects of dopamine agonist therapy in Parkinson’s disease (PD), but prospective data are lacking about their incidence, time course, and risk factors. This work was a 4-year, prospective cohort study of outpatients with PD and no previous ICDs (N = 164). All subjects treated with a dopamine agonist during the study were followed longitudinally for new-onset ICDs. Baseline characteristics were compared in groups with (ICD+) and without (ICD−) subsequent ICDs. Forty-six subjects were treated with a dopamine agonist, including 25 who were newly treated and 21 who received ongoing dopamine agonist therapy. Of these 46 subjects, 18 (39.1%) developed new-onset ICDs. The timing of ICD onset varied from 3.0 to 114.0 months (median, 23.0) after initiation of dopamine agonist therapy. Baseline demographic characteristics were similar in ICD+ and ICD− groups. At baseline, ICD+ subjects had a greater prevalence of motor complications (61.1% versus 25.0%; P = 0.01) than ICD− subjects, despite comparable total dopaminergic medication usage in both groups (median, 150.0 versus 150.0 levodopa equivalents; P = 0.61). Compared with ICD− subjects, ICD+ subjects had a greater baseline prevalence of caffeine use (100% versus 66.7%; P = 0.007) and higher lifetime prevalence of cigarette smoking (44.4% versus 14.3%; P = 0.04). Peak dopamine agonist doses were higher in ICD+ than ICD− subjects (median 300.0 versus 165.0 L-dopa equivalents; P = 0.03), but cumulative dopamine agonist exposure was similar in both groups. In summary, the timing of new-onset ICDs in PD is highly variable. Risk factors include cigarette smoking, caffeine use, motor complications, and higher peak dopamine agonist dosage.
doi:10.1002/mds.25291
PMCID: PMC3894820  PMID: 23283708
dopamine agonist; dopamine agonist withdrawal syndrome; impulse control disorder; prospective; Parkinson’s disease
6.  Long-Term Follow-Up of Impulse Control Disorders in Parkinson’s Disease 
Recent studies have linked dopamine agonist (DA) usage with the development of impulse control disorders (ICDs) in Parkinson’s disease (PD). Little is known about optimal management strategies or the long-term outcomes of affected patients. To report on the clinical interventions and long-term outcomes of PD patients who developed an ICD after DA initiation. Subjects contacted by telephone for a follow-up interview after a mean time period of 29.2 months. They were administered a modified Minnesota Impulse Disorder Interview for compulsive buying, gambling, and sexuality, and also self-rated changes in their ICD symptomatology. Baseline and follow-up dopamine replacement therapy use was recorded and verified by chart review. Of 18 subjects, 15 (83.3%) participated in the follow-up interview. At follow-up, patients were receiving a significantly lower DA levodopa equivalent daily dosage (LEDD) (Z = -3.1, P = 0.002) and a higher daily levodopa dosage (Z = -1.9, P = 0.05), but a similar total LEDD dosage (Z = -0.47, P = 0.64) with no changes in Unified Parkinson’s Disease Rating Scale motor score (Z = -1.3, P = 0.19). As part of ICD management, 12 (80.0%) patients discontinued or significantly decreased DA treatment, all of whom experienced full or partial remission of ICD symptoms by self-report, and 10 (83.3%) of whom no longer met diagnostic criteria for an ICD. For PD patients who develop an ICD in the context of DA treatment, discontinuing or significantly decreasing DA exposure, even when offset by an increase in levodopa treatment, is associated with remission of or significant reduction in ICD behaviors without worsening in motor symptoms.
doi:10.1002/mds.21770
PMCID: PMC2651355  PMID: 17960796
dopamine agonist; gambling; impulse control disorders; Parkinson’s disease
7.  The Risky Business of Dopamine Agonists in Parkinson Disease and Impulse Control Disorders 
Behavioral neuroscience  2011;125(4):492-500.
Risk-taking behavior is characterized by pursuit of reward in spite of potential negative consequences. Dopamine neurotransmission along the mesocorticolimbic pathway is a potential modulator of risk behavior. In patients with Parkinson's Disease (PD), impulse control disorder (ICD) can result from dopaminergic medication use, particularly Dopamine Agonists (DAA). Behaviors associated with ICD include hypersexuality as well as compulsive gambling, shopping, and eating, and are potentially linked to alterations to risk processing. Using the Balloon Analogue Risk task, we assessed the role of agonist therapy on risk-taking behavior in PD patients with (n=22) and without (n=19) active ICD symptoms. Patients performed the task both ‘on’ and ‘off’ DAA. DAA increased risk-taking in PD patients with active ICD symptoms, but did not affect risk behavior of PD controls. DAA dose was also important in explaining risk behavior. Both groups similarly reduced their risk-taking in high compared to low risk conditions and following the occurrence of a negative consequence, suggesting that ICD patients do not necessarily differ in their ability to process and adjust to some aspects of negative consequences. Our findings suggest dopaminergic augmentation of risk-taking behavior as a potential contributing mechanism for the emergence of ICD in PD patients.
doi:10.1037/a0023795
PMCID: PMC3144294  PMID: 21604834
Impulse Control Disorders; Dopamine Agonists; Parkinson Disease; Risk behavior
8.  Impulse control disorders and compulsive behaviors associated with dopaminergic therapies in Parkinson disease 
Neurology. Clinical Practice  2012;2(4):267-274.
Summary
Impulse control disorders (ICD) (most commonly pathologic gambling, hypersexuality, and uncontrollable spending) and compulsive behaviors can be triggered by dopaminergic therapies in Parkinson disease (PD). ICD are especially prevalent in patients receiving a dopamine agonist as part of their treatment regimen for PD, and have also been reported when dopamine agonists are used for other indications (e.g., restless legs syndrome). Although these iatrogenic disorders are common, affecting 1 in 7 patients with PD on dopamine agonists, they often elude detection by the treating physician. ICD lead to serious consequences, causing significant financial loss and psychosocial morbidity for many patients and families. ICD can appear at any time during treatment with dopamine agonists, sometimes within the first few months, but most often after years of treatment, particularly when patients receive dopamine agonists and levodopa together. In most cases ICD resolve if the dopamine agonist is withdrawn, and PD motor symptoms are managed with levodopa monotherapy. Familiarity with the clinical aspects, risk factors, pathophysiology, and management of ICD is essential for physicians using dopaminergic therapies to treat PD and other disorders.
doi:10.1212/CPJ.0b013e318278be9b
PMCID: PMC3613210  PMID: 23634371
9.  Impulse control disorders in Parkinson's disease: background and update on prevention and management 
SUMMARY
Given that impulse control disorders (ICDs) have been identified among a considerable minority of Parkinson's disease (PD) patients, these conditions have gained increased clinical and research attention in the past decade. Dopamine-replacement therapies, taken to ameliorate PD symptoms, have been associated with ICDs in PD. Unfortunately, there are relatively sparse empirical data regarding how best to address ICDs in PD patients. Conversely, progress has been made in understanding the clinical, neurobiological and cognitive correlates of ICDs in PD. Some of these findings may inform possible courses of action for care providers working with PD patients with ICDs. The literature on ICDs in non-PD populations may also be informative in this regard. The goals of the present article are to outline important clinical characteristics of ICDs in PD, briefly review relevant neurocognitive and neurobiological studies and discuss possible ways to prevent and manage ICDs in PD.
doi:10.2217/nmt.12.35
PMCID: PMC3627213  PMID: 23606908
10.  Impulsive and Compulsive Behaviors in Parkinson’s Disease 
Background: Impulsive and compulsive behaviors (ICBs) are a heterogeneous group of conditions that may be caused by long-term dopaminergic replacement therapy (DRT) of Parkinson’s disease (PD). The spectrum of ICBs includes dopamine dysregulation syndrome (DDS), punding, and impulse control disorders (ICDs).
Contents: We made a detailed review regarding the epidemiology, pathology, clinical characteristics, risk factors, diagnosis as well as treatment of ICBs.
Results: The prevalence of ICBs in PD patients is approximately 3–4% for DDS, 0.34–4.2% for punding, and 6–14% for ICDs, with higher prevalence in Western populations than in Asian. Those who take high dose of levodopa are more prone to have DDS, whereas, ICDs are markedly associated with dopamine agonists. Different subtypes of ICBs share many risk factors such as male gender, higher levodopa equivalent daily dose, younger age at PD onset, history of alcoholism, impulsive, or novelty-seeking personality. The Questionnaire for Impulsive–Compulsive Disorder in Parkinson’s Disease-Rating Scale seems to be a rather efficacious instrument to obtain relevant information from patients and caregivers. Treatment of ICBs is still a great challenge for clinicians. Readjustment of DRT remains the primary method. Atypical antipsychotics, antidepressants, amantadine, and psychosocial interventions are also prescribed in controlling episodes of psychosis caused by compulsive DRT, but attention should be drawn to balance ICBs symptoms and motor disorders. Moreover, deep brain stimulation of the subthalamic nucleus might be a potential method in controlling ICBs.
Conclusion: The exact pathophysiological mechanisms of ICBs in PD remains poorly understood. Further researches are needed not only to study the pathogenesis, prevalence, features, and risk factors of ICBs, but to find efficacious therapy for patients with these devastating consequences.
doi:10.3389/fnagi.2014.00318
PMCID: PMC4231987  PMID: 25452726
Parkinson disease; impulsive control disorders; dopamine dysregulation syndrome; review; dopaminergic replacement therapy
11.  Internet-Based Device-Assisted Remote Monitoring of Cardiovascular Implantable Electronic Devices 
Executive Summary
Objective
The objective of this Medical Advisory Secretariat (MAS) report was to conduct a systematic review of the available published evidence on the safety, effectiveness, and cost-effectiveness of Internet-based device-assisted remote monitoring systems (RMSs) for therapeutic cardiac implantable electronic devices (CIEDs) such as pacemakers (PMs), implantable cardioverter-defibrillators (ICDs), and cardiac resynchronization therapy (CRT) devices. The MAS evidence-based review was performed to support public financing decisions.
Clinical Need: Condition and Target Population
Sudden cardiac death (SCD) is a major cause of fatalities in developed countries. In the United States almost half a million people die of SCD annually, resulting in more deaths than stroke, lung cancer, breast cancer, and AIDS combined. In Canada each year more than 40,000 people die from a cardiovascular related cause; approximately half of these deaths are attributable to SCD.
Most cases of SCD occur in the general population typically in those without a known history of heart disease. Most SCDs are caused by cardiac arrhythmia, an abnormal heart rhythm caused by malfunctions of the heart’s electrical system. Up to half of patients with significant heart failure (HF) also have advanced conduction abnormalities.
Cardiac arrhythmias are managed by a variety of drugs, ablative procedures, and therapeutic CIEDs. The range of CIEDs includes pacemakers (PMs), implantable cardioverter-defibrillators (ICDs), and cardiac resynchronization therapy (CRT) devices. Bradycardia is the main indication for PMs and individuals at high risk for SCD are often treated by ICDs.
Heart failure (HF) is also a significant health problem and is the most frequent cause of hospitalization in those over 65 years of age. Patients with moderate to severe HF may also have cardiac arrhythmias, although the cause may be related more to heart pump or haemodynamic failure. The presence of HF, however, increases the risk of SCD five-fold, regardless of aetiology. Patients with HF who remain highly symptomatic despite optimal drug therapy are sometimes also treated with CRT devices.
With an increasing prevalence of age-related conditions such as chronic HF and the expanding indications for ICD therapy, the rate of ICD placement has been dramatically increasing. The appropriate indications for ICD placement, as well as the rate of ICD placement, are increasingly an issue. In the United States, after the introduction of expanded coverage of ICDs, a national ICD registry was created in 2005 to track these devices. A recent survey based on this national ICD registry reported that 22.5% (25,145) of patients had received a non-evidence based ICD and that these patients experienced significantly higher in-hospital mortality and post-procedural complications.
In addition to the increased ICD device placement and the upfront device costs, there is the need for lifelong follow-up or surveillance, placing a significant burden on patients and device clinics. In 2007, over 1.6 million CIEDs were implanted in Europe and the United States, which translates to over 5.5 million patient encounters per year if the recommended follow-up practices are considered. A safe and effective RMS could potentially improve the efficiency of long-term follow-up of patients and their CIEDs.
Technology
In addition to being therapeutic devices, CIEDs have extensive diagnostic abilities. All CIEDs can be interrogated and reprogrammed during an in-clinic visit using an inductive programming wand. Remote monitoring would allow patients to transmit information recorded in their devices from the comfort of their own homes. Currently most ICD devices also have the potential to be remotely monitored. Remote monitoring (RM) can be used to check system integrity, to alert on arrhythmic episodes, and to potentially replace in-clinic follow-ups and manage disease remotely. They do not currently have the capability of being reprogrammed remotely, although this feature is being tested in pilot settings.
Every RMS is specifically designed by a manufacturer for their cardiac implant devices. For Internet-based device-assisted RMSs, this customization includes details such as web application, multiplatform sensors, custom algorithms, programming information, and types and methods of alerting patients and/or physicians. The addition of peripherals for monitoring weight and pressure or communicating with patients through the onsite communicators also varies by manufacturer. Internet-based device-assisted RMSs for CIEDs are intended to function as a surveillance system rather than an emergency system.
Health care providers therefore need to learn each application, and as more than one application may be used at one site, multiple applications may need to be reviewed for alarms. All RMSs deliver system integrity alerting; however, some systems seem to be better geared to fast arrhythmic alerting, whereas other systems appear to be more intended for remote follow-up or supplemental remote disease management. The different RMSs may therefore have different impacts on workflow organization because of their varying frequency of interrogation and methods of alerts. The integration of these proprietary RM web-based registry systems with hospital-based electronic health record systems has so far not been commonly implemented.
Currently there are 2 general types of RMSs: those that transmit device diagnostic information automatically and without patient assistance to secure Internet-based registry systems, and those that require patient assistance to transmit information. Both systems employ the use of preprogrammed alerts that are either transmitted automatically or at regular scheduled intervals to patients and/or physicians.
The current web applications, programming, and registry systems differ greatly between the manufacturers of transmitting cardiac devices. In Canada there are currently 4 manufacturers—Medtronic Inc., Biotronik, Boston Scientific Corp., and St Jude Medical Inc.—which have regulatory approval for remote transmitting CIEDs. Remote monitoring systems are proprietary to the manufacturer of the implant device. An RMS for one device will not work with another device, and the RMS may not work with all versions of the manufacturer’s devices.
All Internet-based device-assisted RMSs have common components. The implanted device is equipped with a micro-antenna that communicates with a small external device (at bedside or wearable) commonly known as the transmitter. Transmitters are able to interrogate programmed parameters and diagnostic data stored in the patients’ implant device. The information transfer to the communicator can occur at preset time intervals with the participation of the patient (waving a wand over the device) or it can be sent automatically (wirelessly) without their participation. The encrypted data are then uploaded to an Internet-based database on a secure central server. The data processing facilities at the central database, depending on the clinical urgency, can trigger an alert for the physician(s) that can be sent via email, fax, text message, or phone. The details are also posted on the secure website for viewing by the physician (or their delegate) at their convenience.
Research Questions
The research directions and specific research questions for this evidence review were as follows:
To identify the Internet-based device-assisted RMSs available for follow-up of patients with therapeutic CIEDs such as PMs, ICDs, and CRT devices.
To identify the potential risks, operational issues, or organizational issues related to Internet-based device-assisted RM for CIEDs.
To evaluate the safety, acceptability, and effectiveness of Internet-based device-assisted RMSs for CIEDs such as PMs, ICDs, and CRT devices.
To evaluate the safety, effectiveness, and cost-effectiveness of Internet-based device-assisted RMSs for CIEDs compared to usual outpatient in-office monitoring strategies.
To evaluate the resource implications or budget impact of RMSs for CIEDs in Ontario, Canada.
Research Methods
Literature Search
The review included a systematic review of published scientific literature and consultations with experts and manufacturers of all 4 approved RMSs for CIEDs in Canada. Information on CIED cardiac implant clinics was also obtained from Provincial Programs, a division within the Ministry of Health and Long-Term Care with a mandate for cardiac implant specialty care. Various administrative databases and registries were used to outline the current clinical follow-up burden of CIEDs in Ontario. The provincial population-based ICD database developed and maintained by the Institute for Clinical Evaluative Sciences (ICES) was used to review the current follow-up practices with Ontario patients implanted with ICD devices.
Search Strategy
A literature search was performed on September 21, 2010 using OVID MEDLINE, MEDLINE In-Process and Other Non-Indexed Citations, EMBASE, the Cumulative Index to Nursing & Allied Health Literature (CINAHL), the Cochrane Library, and the International Agency for Health Technology Assessment (INAHTA) for studies published from 1950 to September 2010. Search alerts were generated and reviewed for additional relevant literature until December 31, 2010. Abstracts were reviewed by a single reviewer and, for those studies meeting the eligibility criteria full-text articles were obtained. Reference lists were also examined for any additional relevant studies not identified through the search.
Inclusion Criteria
published between 1950 and September 2010;
English language full-reports and human studies;
original reports including clinical evaluations of Internet-based device-assisted RMSs for CIEDs in clinical settings;
reports including standardized measurements on outcome events such as technical success, safety, effectiveness, cost, measures of health care utilization, morbidity, mortality, quality of life or patient satisfaction;
randomized controlled trials (RCTs), systematic reviews and meta-analyses, cohort and controlled clinical studies.
Exclusion Criteria
non-systematic reviews, letters, comments and editorials;
reports not involving standardized outcome events;
clinical reports not involving Internet-based device assisted RM systems for CIEDs in clinical settings;
reports involving studies testing or validating algorithms without RM;
studies with small samples (<10 subjects).
Outcomes of Interest
The outcomes of interest included: technical outcomes, emergency department visits, complications, major adverse events, symptoms, hospital admissions, clinic visits (scheduled and/or unscheduled), survival, morbidity (disease progression, stroke, etc.), patient satisfaction, and quality of life.
Summary of Findings
The MAS evidence review was performed to review available evidence on Internet-based device-assisted RMSs for CIEDs published until September 2010. The search identified 6 systematic reviews, 7 randomized controlled trials, and 19 reports for 16 cohort studies—3 of these being registry-based and 4 being multi-centered. The evidence is summarized in the 3 sections that follow.
1. Effectiveness of Remote Monitoring Systems of CIEDs for Cardiac Arrhythmia and Device Functioning
In total, 15 reports on 13 cohort studies involving investigations with 4 different RMSs for CIEDs in cardiology implant clinic groups were identified in the review. The 4 RMSs were: Care Link Network® (Medtronic Inc,, Minneapolis, MN, USA); Home Monitoring® (Biotronic, Berlin, Germany); House Call 11® (St Jude Medical Inc., St Pauls, MN, USA); and a manufacturer-independent RMS. Eight of these reports were with the Home Monitoring® RMS (12,949 patients), 3 were with the Care Link® RMS (167 patients), 1 was with the House Call 11® RMS (124 patients), and 1 was with a manufacturer-independent RMS (44 patients). All of the studies, except for 2 in the United States, (1 with Home Monitoring® and 1 with House Call 11®), were performed in European countries.
The RMSs in the studies were evaluated with different cardiac implant device populations: ICDs only (6 studies), ICD and CRT devices (3 studies), PM and ICD and CRT devices (4 studies), and PMs only (2 studies). The patient populations were predominately male (range, 52%–87%) in all studies, with mean ages ranging from 58 to 76 years. One study population was unique in that RMSs were evaluated for ICDs implanted solely for primary prevention in young patients (mean age, 44 years) with Brugada syndrome, which carries an inherited increased genetic risk for sudden heart attack in young adults.
Most of the cohort studies reported on the feasibility of RMSs in clinical settings with limited follow-up. In the short follow-up periods of the studies, the majority of the events were related to detection of medical events rather than system configuration or device abnormalities. The results of the studies are summarized below:
The interrogation of devices on the web platform, both for continuous and scheduled transmissions, was significantly quicker with remote follow-up, both for nurses and physicians.
In a case-control study focusing on a Brugada population–based registry with patients followed-up remotely, there were significantly fewer outpatient visits and greater detection of inappropriate shocks. One death occurred in the control group not followed remotely and post-mortem analysis indicated early signs of lead failure prior to the event.
Two studies examined the role of RMSs in following ICD leads under regulatory advisory in a European clinical setting and noted:
– Fewer inappropriate shocks were administered in the RM group.
– Urgent in-office interrogations and surgical revisions were performed within 12 days of remote alerts.
– No signs of lead fracture were detected at in-office follow-up; all were detected at remote follow-up.
Only 1 study reported evaluating quality of life in patients followed up remotely at 3 and 6 months; no values were reported.
Patient satisfaction was evaluated in 5 cohort studies, all in short term follow-up: 1 for the Home Monitoring® RMS, 3 for the Care Link® RMS, and 1 for the House Call 11® RMS.
– Patients reported receiving a sense of security from the transmitter, a good relationship with nurses and physicians, positive implications for their health, and satisfaction with RM and organization of services.
– Although patients reported that the system was easy to implement and required less than 10 minutes to transmit information, a variable proportion of patients (range, 9% 39%) reported that they needed the assistance of a caregiver for their transmission.
– The majority of patients would recommend RM to other ICD patients.
– Patients with hearing or other physical or mental conditions hindering the use of the system were excluded from studies, but the frequency of this was not reported.
Physician satisfaction was evaluated in 3 studies, all with the Care Link® RMS:
– Physicians reported an ease of use and high satisfaction with a generally short-term use of the RMS.
– Physicians reported being able to address the problems in unscheduled patient transmissions or physician initiated transmissions remotely, and were able to handle the majority of the troubleshooting calls remotely.
– Both nurses and physicians reported a high level of satisfaction with the web registry system.
2. Effectiveness of Remote Monitoring Systems in Heart Failure Patients for Cardiac Arrhythmia and Heart Failure Episodes
Remote follow-up of HF patients implanted with ICD or CRT devices, generally managed in specialized HF clinics, was evaluated in 3 cohort studies: 1 involved the Home Monitoring® RMS and 2 involved the Care Link® RMS. In these RMSs, in addition to the standard diagnostic features, the cardiac devices continuously assess other variables such as patient activity, mean heart rate, and heart rate variability. Intra-thoracic impedance, a proxy measure for lung fluid overload, was also measured in the Care Link® studies. The overall diagnostic performance of these measures cannot be evaluated, as the information was not reported for patients who did not experience intra-thoracic impedance threshold crossings or did not undergo interventions. The trial results involved descriptive information on transmissions and alerts in patients experiencing high morbidity and hospitalization in the short study periods.
3. Comparative Effectiveness of Remote Monitoring Systems for CIEDs
Seven RCTs were identified evaluating RMSs for CIEDs: 2 were for PMs (1276 patients) and 5 were for ICD/CRT devices (3733 patients). Studies performed in the clinical setting in the United States involved both the Care Link® RMS and the Home Monitoring® RMS, whereas all studies performed in European countries involved only the Home Monitoring® RMS.
3A. Randomized Controlled Trials of Remote Monitoring Systems for Pacemakers
Two trials, both multicenter RCTs, were conducted in different countries with different RMSs and study objectives. The PREFER trial was a large trial (897 patients) performed in the United States examining the ability of Care Link®, an Internet-based remote PM interrogation system, to detect clinically actionable events (CAEs) sooner than the current in-office follow-up supplemented with transtelephonic monitoring transmissions, a limited form of remote device interrogation. The trial results are summarized below:
In the 375-day mean follow-up, 382 patients were identified with at least 1 CAE—111 patients in the control arm and 271 in the remote arm.
The event rate detected per patient for every type of CAE, except for loss of atrial capture, was higher in the remote arm than the control arm.
The median time to first detection of CAEs (4.9 vs. 6.3 months) was significantly shorter in the RMS group compared to the control group (P < 0.0001).
Additionally, only 2% (3/190) of the CAEs in the control arm were detected during a transtelephonic monitoring transmission (the rest were detected at in-office follow-ups), whereas 66% (446/676) of the CAEs were detected during remote interrogation.
The second study, the OEDIPE trial, was a smaller trial (379 patients) performed in France evaluating the ability of the Home Monitoring® RMS to shorten PM post-operative hospitalization while preserving the safety of conventional management of longer hospital stays.
Implementation and operationalization of the RMS was reported to be successful in 91% (346/379) of the patients and represented 8144 transmissions.
In the RM group 6.5% of patients failed to send messages (10 due to improper use of the transmitter, 2 with unmanageable stress). Of the 172 patients transmitting, 108 patients sent a total of 167 warnings during the trial, with a greater proportion of warnings being attributed to medical rather than technical causes.
Forty percent had no warning message transmission and among these, 6 patients experienced a major adverse event and 1 patient experienced a non-major adverse event. Of the 6 patients having a major adverse event, 5 contacted their physician.
The mean medical reaction time was faster in the RM group (6.5 ± 7.6 days vs. 11.4 ± 11.6 days).
The mean duration of hospitalization was significantly shorter (P < 0.001) for the RM group than the control group (3.2 ± 3.2 days vs. 4.8 ± 3.7 days).
Quality of life estimates by the SF-36 questionnaire were similar for the 2 groups at 1-month follow-up.
3B. Randomized Controlled Trials Evaluating Remote Monitoring Systems for ICD or CRT Devices
The 5 studies evaluating the impact of RMSs with ICD/CRT devices were conducted in the United States and in European countries and involved 2 RMSs—Care Link® and Home Monitoring ®. The objectives of the trials varied and 3 of the trials were smaller pilot investigations.
The first of the smaller studies (151 patients) evaluated patient satisfaction, achievement of patient outcomes, and the cost-effectiveness of the Care Link® RMS compared to quarterly in-office device interrogations with 1-year follow-up.
Individual outcomes such as hospitalizations, emergency department visits, and unscheduled clinic visits were not significantly different between the study groups.
Except for a significantly higher detection of atrial fibrillation in the RM group, data on ICD detection and therapy were similar in the study groups.
Health-related quality of life evaluated by the EuroQoL at 6-month or 12-month follow-up was not different between study groups.
Patients were more satisfied with their ICD care in the clinic follow-up group than in the remote follow-up group at 6-month follow-up, but were equally satisfied at 12- month follow-up.
The second small pilot trial (20 patients) examined the impact of RM follow-up with the House Call 11® system on work schedules and cost savings in patients randomized to 2 study arms varying in the degree of remote follow-up.
The total time including device interrogation, transmission time, data analysis, and physician time required was significantly shorter for the RM follow-up group.
The in-clinic waiting time was eliminated for patients in the RM follow-up group.
The physician talk time was significantly reduced in the RM follow-up group (P < 0.05).
The time for the actual device interrogation did not differ in the study groups.
The third small trial (115 patients) examined the impact of RM with the Home Monitoring® system compared to scheduled trimonthly in-clinic visits on the number of unplanned visits, total costs, health-related quality of life (SF-36), and overall mortality.
There was a 63.2% reduction in in-office visits in the RM group.
Hospitalizations or overall mortality (values not stated) were not significantly different between the study groups.
Patient-induced visits were higher in the RM group than the in-clinic follow-up group.
The TRUST Trial
The TRUST trial was a large multicenter RCT conducted at 102 centers in the United States involving the Home Monitoring® RMS for ICD devices for 1450 patients. The primary objectives of the trial were to determine if remote follow-up could be safely substituted for in-office clinic follow-up (3 in-office visits replaced) and still enable earlier physician detection of clinically actionable events.
Adherence to the protocol follow-up schedule was significantly higher in the RM group than the in-office follow-up group (93.5% vs. 88.7%, P < 0.001).
Actionability of trimonthly scheduled checks was low (6.6%) in both study groups. Overall, actionable causes were reprogramming (76.2%), medication changes (24.8%), and lead/system revisions (4%), and these were not different between the 2 study groups.
The overall mean number of in-clinic and hospital visits was significantly lower in the RM group than the in-office follow-up group (2.1 per patient-year vs. 3.8 per patient-year, P < 0.001), representing a 45% visit reduction at 12 months.
The median time from onset of first arrhythmia to physician evaluation was significantly shorter (P < 0.001) in the RM group than in the in-office follow-up group for all arrhythmias (1 day vs. 35.5 days).
The median time to detect clinically asymptomatic arrhythmia events—atrial fibrillation (AF), ventricular fibrillation (VF), ventricular tachycardia (VT), and supra-ventricular tachycardia (SVT)—was also significantly shorter (P < 0.001) in the RM group compared to the in-office follow-up group (1 day vs. 41.5 days) and was significantly quicker for each of the clinical arrhythmia events—AF (5.5 days vs. 40 days), VT (1 day vs. 28 days), VF (1 day vs. 36 days), and SVT (2 days vs. 39 days).
System-related problems occurred infrequently in both groups—in 1.5% of patients (14/908) in the RM group and in 0.7% of patients (3/432) in the in-office follow-up group.
The overall adverse event rate over 12 months was not significantly different between the 2 groups and individual adverse events were also not significantly different between the RM group and the in-office follow-up group: death (3.4% vs. 4.9%), stroke (0.3% vs. 1.2%), and surgical intervention (6.6% vs. 4.9%), respectively.
The 12-month cumulative survival was 96.4% (95% confidence interval [CI], 95.5%–97.6%) in the RM group and 94.2% (95% confidence interval [CI], 91.8%–96.6%) in the in-office follow-up group, and was not significantly different between the 2 groups (P = 0.174).
The CONNECT Trial
The CONNECT trial, another major multicenter RCT, involved the Care Link® RMS for ICD/CRT devices in a15-month follow-up study of 1,997 patients at 133 sites in the United States. The primary objective of the trial was to determine whether automatically transmitted physician alerts decreased the time from the occurrence of clinically relevant events to medical decisions. The trial results are summarized below:
Of the 575 clinical alerts sent in the study, 246 did not trigger an automatic physician alert. Transmission failures were related to technical issues such as the alert not being programmed or not being reset, and/or a variety of patient factors such as not being at home and the monitor not being plugged in or set up.
The overall mean time from the clinically relevant event to the clinical decision was significantly shorter (P < 0.001) by 17.4 days in the remote follow-up group (4.6 days for 172 patients) than the in-office follow-up group (22 days for 145 patients).
– The median time to a clinical decision was shorter in the remote follow-up group than in the in-office follow-up group for an AT/AF burden greater than or equal to 12 hours (3 days vs. 24 days) and a fast VF rate greater than or equal to 120 beats per minute (4 days vs. 23 days).
Although infrequent, similar low numbers of events involving low battery and VF detection/therapy turned off were noted in both groups. More alerts, however, were noted for out-of-range lead impedance in the RM group (18 vs. 6 patients), and the time to detect these critical events was significantly shorter in the RM group (same day vs. 17 days).
Total in-office clinic visits were reduced by 38% from 6.27 visits per patient-year in the in-office follow-up group to 3.29 visits per patient-year in the remote follow-up group.
Health care utilization visits (N = 6,227) that included cardiovascular-related hospitalization, emergency department visits, and unscheduled clinic visits were not significantly higher in the remote follow-up group.
The overall mean length of hospitalization was significantly shorter (P = 0.002) for those in the remote follow-up group (3.3 days vs. 4.0 days) and was shorter both for patients with ICD (3.0 days vs. 3.6 days) and CRT (3.8 days vs. 4.7 days) implants.
The mortality rate between the study arms was not significantly different between the follow-up groups for the ICDs (P = 0.31) or the CRT devices with defribillator (P = 0.46).
Conclusions
There is limited clinical trial information on the effectiveness of RMSs for PMs. However, for RMSs for ICD devices, multiple cohort studies and 2 large multicenter RCTs demonstrated feasibility and significant reductions in in-office clinic follow-ups with RMSs in the first year post implantation. The detection rates of clinically significant events (and asymptomatic events) were higher, and the time to a clinical decision for these events was significantly shorter, in the remote follow-up groups than in the in-office follow-up groups. The earlier detection of clinical events in the remote follow-up groups, however, was not associated with lower morbidity or mortality rates in the 1-year follow-up. The substitution of almost all the first year in-office clinic follow-ups with RM was also not associated with an increased health care utilization such as emergency department visits or hospitalizations.
The follow-up in the trials was generally short-term, up to 1 year, and was a more limited assessment of potential longer term device/lead integrity complications or issues. None of the studies compared the different RMSs, particularly the different RMSs involving patient-scheduled transmissions or automatic transmissions. Patients’ acceptance of and satisfaction with RM were reported to be high, but the impact of RM on patients’ health-related quality of life, particularly the psychological aspects, was not evaluated thoroughly. Patients who are not technologically competent, having hearing or other physical/mental impairments, were identified as potentially disadvantaged with remote surveillance. Cohort studies consistently identified subgroups of patients who preferred in-office follow-up. The evaluation of costs and workflow impact to the health care system were evaluated in European or American clinical settings, and only in a limited way.
Internet-based device-assisted RMSs involve a new approach to monitoring patients, their disease progression, and their CIEDs. Remote monitoring also has the potential to improve the current postmarket surveillance systems of evolving CIEDs and their ongoing hardware and software modifications. At this point, however, there is insufficient information to evaluate the overall impact to the health care system, although the time saving and convenience to patients and physicians associated with a substitution of in-office follow-up by RM is more certain. The broader issues surrounding infrastructure, impacts on existing clinical care systems, and regulatory concerns need to be considered for the implementation of Internet-based RMSs in jurisdictions involving different clinical practices.
PMCID: PMC3377571  PMID: 23074419
12.  Ventral Striatal Dopamine Synthesis Capacity Predicts Financial Extravagance in Parkinson’s Disease 
Impulse control disorders (ICDs), including disordered gambling, can occur in a significant number of patients with Parkinson’s disease (PD) receiving dopaminergic therapy. The neurobiology underlying susceptibility to such problems is unclear, but risk likely results from an interaction between dopaminergic medication and a pre-existing trait vulnerability. Impulse control and addictive disorders form part of a broader psychopathological spectrum of disorders, which share a common underlying genetic vulnerability, referred to as externalizing. The broad externalizing risk factor is a continuously varying trait reflecting vulnerability to various impulse control problems, manifested at the overt level by disinhibitory symptoms and at the personality level by antecedent traits such as impulsivity and novelty/sensation seeking. Trait “disinhibition” is thus a core endophenotype of ICDs, and a key target for neurobiological investigation. The ventral striatal dopamine system has been hypothesized to underlie individual variation in behavioral disinhibition. Here, we examined whether individual differences in ventral striatal dopamine synthesis capacity predicted individual variation in disinhibitory temperament traits in individuals with PD. Eighteen early-stage male PD patients underwent 6-[18F]Fluoro-l-DOPA (FDOPA) positron emission tomography scanning to measure striatal dopamine synthesis capacity, and completed a measure of disinhibited personality. Consistent with our predictions, we found that levels of ventral, but not dorsal, striatal dopamine synthesis capacity predicted disinhibited personality, particularly a propensity for financial extravagance. Our results are consistent with recent preclinical models of vulnerability to behavioral disinhibition and addiction proneness, and provide novel insights into the neurobiology of potential vulnerability to impulse control problems in PD and other disorders.
doi:10.3389/fpsyg.2013.00090
PMCID: PMC3583186  PMID: 23450713
dopa decarboxylase; dopamine; disordered gambling; externalizing; impulse control disorders; impulsivity; reward; ventral striatum
13.  Amantadine and cognitive flexibility: decision making in Parkinson’s patients with severe pathological gambling and other impulse control disorders 
Introduction
Dopamine replacement therapy for Parkinson’s disease (PD) was recently linked to the development of impulse control disorders such as pathological gambling (PG), hypersexuality, compulsive shopping, and binge or compulsive eating. Antiglutamatergic agents including amantadine (Ama) reduce these behaviors in PD and non-PD patients. The aim of our study is to evaluate the changes in executive functions, emotions, and reward/loss processing during Ama treatment in PD patients.
Methods
Thirty-three patients affected by idiopathic PD were selected from a cohort of 1,096 PD patients and categorized in three different groups: ten affected by PG (PD-PG); nine PD patients with other impulse control disorder (PD-ICD); and 14 PD patient without any psychiatric disorder (PD-CTR-controls). For the neuropsychological evaluation, the following behavioral tasks where administered: the Stroop, the emotional Stroop, and the monetary reward/loss risk-taking tasks.
Results
During Ama treatment, PD-PGs showed a decrease in risky choices and an increase in non-risky choices (t(9)=−2.40, P<0.05 and t(9)=2,67, P<0.05 uncorrected, respectively). Between-group comparison showed a significant decrease in risky choices for PD-PG with respect to PD-CTR (t(22)=−4.16, P<0.01), and a decreased accuracy for positive words in comparison between PD-PG and PD-ICD (t(17)=−7,49, P<0.01) and PD-PG and PD-CTR (t(22)=−4.29, P<0.01). No within- and between-group differences were observed for Stroop task.
Discussion
Our data showed that Ama add-on therapy reduces hypersensitivity to reward and sustains activation toward uncertainty in PD-PG patients. These finding might explain the behavioral mechanism underlying the effect of antiglutamatergic drugs.
doi:10.2147/NDT.S54423
PMCID: PMC4069151  PMID: 24971012
Parkinson’s disease; executive functions; emotion
14.  Impulsive choice and response in dopamine agonist-related impulse control behaviors 
Psychopharmacology  2009;207(4):645-659.
Rationale
Dopaminergic medication-related Impulse Control Disorders (ICDs) such as pathological gambling and compulsive shopping have been reported in Parkinson disease (PD).
Hypothesis
We hypothesized that dopamine agonists (DAs) would be associated with greater impulsive choice, or greater discounting of delayed rewards, in PD patients with ICDs (PDI).
Methods
Fourteen PDI patients, 14 PD controls without ICDs and 16 medication-free matched normal controls were tested on (i) the Experiential Discounting Task (EDT), a feedback-based intertemporal choice task, (ii) spatial working memory and (iii) attentional set shifting. The EDT was used to assess impulsivity choice (hyperbolic K-value), reaction time (RT) and decision conflict RT (the RT difference between high conflict and low conflict choices). PDI patients and PD controls were tested on and off DA.
Results
On the EDT, there was a group by medication interaction effect [F(1,26)=5.62; p=0.03] with pairwise analyses demonstrating that DA status was associated with increased impulsive choice in PDI patients (p=0.02) but not in PD controls (p=0.37). PDI patients also had faster RT compared to PD controls F(1,26)=7.51 p=0.01]. DA status was associated with shorter RT [F(3,24)=8.39, p=0.001] and decision conflict RT [F(1,26)=6.16, p=0.02] in PDI patients but not in PD controls. There were no correlations between different measures of impulsivity. PDI patients on DA had greater spatial working memory impairments compared to PD controls on DA (t=2.13, df=26, p=0.04).
Conclusion
Greater impulsive choice, faster RT, faster decision conflict RT and executive dysfunction may contribute to ICDs in PD.
doi:10.1007/s00213-009-1697-y
PMCID: PMC3676926  PMID: 19838863
dopamine agonist; gambling; impulse control; Parkinson disease; delay discounting
15.  Impulse control disorders in Parkinson’s disease: recent advances 
Current opinion in neurology  2011;24(4):324-330.
Purpose of review
To review the recent advances in the epidemiology and pathophysiology of impulse control disorders (ICD) in Parkinson’s disease (PD).
Recent findings
Large cross-sectional and case-control multicentre studies show that ICDs in PD are common with a frequency of 13.6%. These behaviours are associated with impaired functioning and with depressive, anxiety and obsessive symptoms, novelty seeking and impulsivity. Behavioural subtypes demonstrate differences in novelty seeking and impulsivity suggesting pathophysiological differences. Observational and neurophysiological studies point towards a potential mechanistic overlap between the behavioural (ICDs) and motor (dyskinesias) dopaminergic sequelae. Converging data suggest dopamine agonists in ICDs appear to enhance learning from rewarding outcomes and impulsive choice. ICD patients also have enhanced risk preference and impaired working memory. Neuroimaging data points towards enhanced bottom-up ventral striatal dopamine release to incentive cues, gambling tasks and reward prediction, and possibly inhibition of top-down orbitofrontal influences. Dopamine agonist-related ventral striatal hypoactivity to risk is consistent with impaired risk evaluation.
Summary
Recent large scale studies and converging findings are beginning to provide an understanding of mechanisms underlying ICDs in PD which can guide prevention of these behaviours and optimize therapeutic approaches.
doi:10.1097/WCO.0b013e3283489687
PMCID: PMC3154756  PMID: 21725242
Impulse control disorders; Parkinson’s disease; dopamine agonists; pathological gambling; impulsivity
16.  Patient versus informant reporting of ICD symptoms in Parkinson’s disease using the QUIP: Validity and variability☆ 
Parkinsonism & related disorders  2010;17(3):153-155.
Questions exist regarding the validity of patient-reporting of psychiatric symptoms in Parkinson’s disease (PD). We assessed observer variability and validity in reporting of impulse control disorder (ICD) symptoms in PD by using the Questionnaire for Impulsive-Compulsive Disorders in Parkinson’s Disease (QUIP). PD patients and their informants (71 pairs) completed the QUIP to assess four ICDs (compulsive gambling, buying, sexual behavior, and eating) in patients. Trained raters then administered a diagnostic interview. Sensitivity of the QUIP for a diagnosed ICD was 100% for both patient- and informant-completed instruments, and specificity was 75% for both raters. Approximately 40% of patients without an ICD diagnosis had a positive QUIP, suggesting that many PD patients experience subsyndromal ICD symptoms that require ongoing monitoring. Agreement between patient- and informant-reporting of any ICD behaviors on the QUIP was moderate (kappa = 0.408), and for individual ICDs was highest for gambling (kappa = 0.550). Overall, a negative QUIP from either the patient or informant rules out the possibility of an ICD, while a positive QUIP requires a follow-up diagnostic interview and ongoing monitoring to determine if symptoms currently are, or in the future become, clinically significant.
doi:10.1016/j.parkreldis.2010.11.015
PMCID: PMC3073062  PMID: 21186135
Impulse control disorders; Parkinson’s disease; QUIP
17.  Impulse control disorders in Parkinson’s disease: seeking a roadmap toward a better understanding 
Brain Structure & Function  2011;216(4):289-299.
The development of an impulse control disorder (ICD) is now recognized as a potential nonmotor adverse effect of dopamine replacement therapy in Parkinson’s disease (PD). Here, recent epidemiological, neurophysiological and genetic advances are summarized to outline potential mechanisms involved. It is safe to say that dopaminergic drugs, particularly dopamine agonists, are able to induce ICDs only in a minority of patients, while the majority are somehow protected from this adverse effect. While it seems clear that men with early-onset PD are more vulnerable, other predisposing factors, such as various current or pre-PD personality traits, are a matter of debate. In terms of neurophysiological advances, one may find striking analogies to the addiction literature suggesting a causal chain beginning with certain predisposing conditions of striatal dopamine synapses, an “unnatural” increase of dopamine stimulation and a characteristic pattern of resulting functional changes in remote networks of appetitive drive and impulse control. Future prospects include potential add-on medications and the possible identification of genetic predispositions at a genome-wide scale. Functional imaging of pharmacogenetic interactions (imaging pharmacogenomics) may be an important tool on that road.
doi:10.1007/s00429-011-0314-0
PMCID: PMC3197927  PMID: 21541715
Imaging; Gambling; Addiction; Impulsive; Compulsive; Dopamine agonist
18.  Effects of STN and GPi Deep Brain Stimulation on Impulse Control Disorders and Dopamine Dysregulation Syndrome 
PLoS ONE  2012;7(1):e29768.
Objective
Impulse control disorders (ICDs) and dopamine dysregulation syndrome (DDS) are important behavioral problems that affect a subpopulation of patients with Parkinson's disease (PD) and typically result in markedly diminished quality of life for patients and their caregivers. We aimed to investigate the effects of subthalamic nucleus (STN) and internal globus pallidus (GPi) deep brain stimulation (DBS) on ICD/DDS frequency and dopaminergic medication usage.
Methods
A retrospective chart review was performed on 159 individuals who underwent unilateral or bilateral PD DBS surgery in either STN or GPi. According to published criteria, pre- and post-operative records were reviewed to categorize patients both pre- and post-operatively as having ICD, DDS, both ICD and DDS, or neither ICD nor DDS. Group differences in patient demographics, clinical presentations, levodopa equivalent dose (LED), and change in diagnosis following unilateral/bilateral by brain target (STN or GPi DBS placement) were examined.
Results
28 patients met diagnostic criteria for ICD or DDS pre- or post-operatively. ICD or DDS classification did not differ by GPi or STN target stimulation. There was no change in DDS diagnosis after unilateral or bilateral stimulation. For ICD, diagnosis resolved in 2 of 7 individuals after unilateral or bilateral DBS. Post-operative development of these syndromes was significant; 17 patients developed ICD diagnoses post-operatively with 2 patients with pre-operative ICD developing DDS post-operatively.
Conclusions
Unilateral or bilateral DBS did not significantly treat DDS or ICD in our sample, even though a few cases of ICD resolved post-operatively. Rather, our study provides preliminary evidence that DDS and ICD diagnoses may emerge following DBS surgery.
doi:10.1371/journal.pone.0029768
PMCID: PMC3266249  PMID: 22295068
19.  Validation of the Questionnaire for Impulsive-Compulsive Disorders in Parkinson’s Disease (QUIP) 
Objective
As no comprehensive assessment instrument for impulse control disorders (ICDs) in Parkinson’s disease (PD) exists, the aim of this study was to design and assess the psychometric properties of a self-administered screening questionnaire for ICDs and other compulsive behaviors in PD.
Methods
The Questionnaire for Impulsive-Compulsive Disorders in Parkinson’s Disease (QUIP) has 3 sections: Section 1 assesses four ICDs (involving gambling, sexual, buying, and eating behaviors), Section 2 other compulsive behaviors (punding, hobbyism and walkabout), and Section 3 compulsive medication use. For validation, a convenience sample of 157 PD patients at 4 movement disorders centers first completed the QUIP, and then was administered a diagnostic interview by a trained rater blinded to the QUIP results. A shortened instrument (QUIP-S) was then explored.
Results
The discriminant validity of the QUIP was high for each disorder or behavior (receiver operating characteristic area under the curve [ROC AUC]: gambling=0.95, sexual behavior=0.97, buying=0.87, eating=0.88, punding=0.78, hobbyism=0.93, walkabout=0.79). On post hoc analysis, the QUIP-S ICD section had similar properties (ROC AUC: gambling=0.95, sexual behavior=0.96, buying=0.87, eating=0.88). When disorders/behaviors were combined, the sensitivity of the QUIP and QUIP-S to detect an individual with any disorder was 96% and 94%, respectively.
Conclusions
Scores on the QUIP appear to be valid as a self-assessment screening instrument for a range of ICDs and other compulsive behaviors that occur in PD, and a shortened version may perform as well as the full version. A positive screen should be followed by a comprehensive, clinical interview to determine the range and severity of symptoms, as well as need for clinical management.
doi:10.1002/mds.22571
PMCID: PMC2848971  PMID: 19452562
Parkinson’s disease; impulse control disorders; dopamine dysregulation syndrome; punding; pathological gambling
20.  Impulsivity and apathy in Parkinson’s disease 
Journal of neuropsychology  2013;7(2):10.1111/jnp.12013.
Impulse control disorders (ICDs) and apathy are recognized as two important neuropsychiatric syndromes associated with Parkinson’s disease (PD), but as yet we understand very little about the cognitive mechanisms underlying them. Here, we review emerging findings, from both human and animal studies, that suggest that impulsivity and apathy are opposite extremes of a dopamine-dependent spectrum of motivated decision making. We first argue that there is strong support for a hypodopaminergic state in PD patients with apathy, as well as for an association between dopamine therapy and development of ICDs. However, there is little evidence for a clear dose-response relationship, and great heterogeneity of findings. We argue that dopaminergic state on its own is an insufficient explanation, and suggest instead that there is now substantial evidence that both apathy and impulsivity are in fact multi-dimensional syndromes, with separate, dissociable mechanisms underlying their ‘surface’ manifestations. Some of these mechanisms might be dopamine-dependent. According to this view, individuals diagnosed as impulsive or apathetic may have very different mechanisms underlying their clinical states. We propose that impulsivity and apathy can arise from dissociable deficits in option generation, option selection, action initiation or inhibition and learning. Review of the behavioural and neurobiological evidence leads us to a new conceptual framework that might help understand the variety of functional deficits seen in PD.
doi:10.1111/jnp.12013
PMCID: PMC3836240  PMID: 23621377
21.  Implantable Cardioverter Defibrillators. Prophylactic Use 
Executive Summary
Objective
The use of implantable cardiac defibrillators (ICDs) to prevent sudden cardiac death (SCD) in patients resuscitated from cardiac arrest or documented dangerous ventricular arrhythmias (secondary prevention of SCD) is an insured service. In 2003 (before the establishment of the Ontario Health Technology Advisory Committee), the Medical Advisory Secretariat conducted a health technology policy assessment on the prophylactic use (primary prevention of SCD) of ICDs for patients at high risk of SCD. The Medical Advisory Secretariat concluded that ICDs are effective for the primary prevention of SCD. Moreover, it found that a more clearly defined target population at risk for SCD that would be likely to benefit from ICDs is needed, given that the number needed to treat (NNT) from recent studies is 13 to 18, and given that the per-unit cost of ICDs is $32,000, which means that the projected cost to Ontario is $770 million (Cdn).
Accordingly, as part of an annual review and publication of more recent articles, the Medical Advisory Secretariat updated its health technology policy assessment of ICDs.
Clinical Need
Sudden cardiac death is caused by the sudden onset of fatal arrhythmias, or abnormal heart rhythms: ventricular tachycardia (VT), a rhythm abnormality in which the ventricles cause the heart to beat too fast, and ventricular fibrillation (VF), an abnormal, rapid and erratic heart rhythm. About 80% of fatal arrhythmias are associated with ischemic heart disease, which is caused by insufficient blood flow to the heart.
Management of VT and VF with antiarrhythmic drugs is not very effective; for this reason, nonpharmacological treatments have been explored. One such treatment is the ICD.
The Technology
An ICD is a battery-powered device that, once implanted, monitors heart rhythm and can deliver an electric shock to restore normal rhythm when potentially fatal arrhythmias are detected. The use of ICDs to prevent SCD in patients resuscitated from cardiac arrest or documented dangerous ventricular arrhythmias (secondary prevention) is an insured service in Ontario.
Primary prevention of SCD involves identification of and preventive therapy for patients who are at high risk for SCD. Most of the studies in the literature that have examined the prevention of fatal ventricular arrhythmias have focused on patients with ischemic heart disease, in particular, those with heart failure (HF), which has been shown to increase the risk of SCD. The risk of HF is determined by left ventricular ejection fraction (LVEF); most studies have focused on patients with an LVEF under 0.35 or 0.30. While most studies have found ICDs to reduce significantly the risk for SCD in patients with an LVEF less than 0.35, a more recent study (Sudden Cardiac Death in Heart Failure Trial [SCD-HeFT]) reported that patients with HF with nonischemic heart disease could also benefit from this technology. Based on the generalization of the SCD-HeFT study, the Centers for Medicare and Medicaid in the United States recently announced that it would allocate $10 billion (US) annually toward the primary prevention of SCD for patients with ischemic and nonischemic heart disease and an LVEF under 0.35.
Review Strategy
The aim of this literature review was to assess the effectiveness, safety, and cost effectiveness of ICDs for the primary prevention of SCD.
The standard search strategy used by the Medical Advisory Secretariat was used. This included a search of all international health technology assessments as well as a search of the medical literature from January 2003–May 2005.
A modification of the GRADE approach (1) was used to make judgments about the quality of evidence and strength of recommendations systematically and explicitly. GRADE provides a framework for structured reflection and can help to ensure that appropriate judgments are made. GRADE takes into account a study’s design, quality, consistency, and directness in judging the quality of evidence for each outcome. The balance between benefits and harms, quality of evidence, applicability, and the certainty of the baseline risks are considered in judgments about the strength of recommendations.
Summary of Findings
Overall, ICDs are effective for the primary prevention of SCD. Three studies – the Multicentre Automatic Defibrillator Implantation Trial I (MADIT I), the Multicentre Automatic Defibrillator Implantation Trial II (MADIT II), and SCD-HeFT – showed there was a statistically significant decrease in total mortality for patients who prophylactically received an ICD compared with those who received conventional therapy (Table 1).
Results of Key Studies on the Use of Implantable Cardioverter Defibrillators for the Primary Prevention of Sudden Cardiac Death – All-Cause Mortality
MADIT I: Multicentre Automatic Defibrillator Implantation Trial I; MADIT II: Multicentre Automatic Defibrillator Implantation Trial II; SCD-HeFT: Sudden Cardiac Death in Heart Failure Trial.
EP indicates electrophysiology; ICD, implantable cardioverter defibrillator; NNT, number needed to treat; NSVT, nonsustained ventricular tachycardia. The NNT will appear higher if follow-up is short. For ICDs, the absolute benefit increases over time for at least a 5-year period; the NNT declines, often substantially, in studies with a longer follow-up. When the NNT are equalized for a similar period as the SCD-HeFT duration (5 years), the NNT for MADIT-I is 2.2; for MADIT-II, it is 6.3.
GRADE Quality of the Evidence
Using the GRADE Working Group criteria, the quality of these 3 trials was examined (Table 2).
Quality refers to the criteria such as the adequacy of allocation concealment, blinding and follow-up.
Consistency refers to the similarity of estimates of effect across studies. If there is important unexplained inconsistency in the results, our confidence in the estimate of effect for that outcome decreases. Differences in the direction of effect, the size of the differences in effect, and the significance of the differences guide the decision about whether important inconsistency exists.
Directness refers to the extent to which the people interventions and outcome measures are similar to those of interest. For example, there may be uncertainty about the directness of the evidence if the people of interest are older, sicker or have more comorbidity than those in the studies.
As stated by the GRADE Working Group, the following definitions were used to grade the quality of the evidence:
High: Further research is very unlikely to change our confidence n the estimate of effect.
Moderate: Further research is likely to have an important impact on our confidence in the estimate of effect and may change the estimate.
Low: Further research is very likely to have an important impact on our confidence in the estimate of effect and is likely to change the estimate.
Very low: Any estimate of effect is very uncertain.
Quality of Evidence – MADIT I, MADIT II, and SCD-HeFT*
MADIT I: Multicentre Automatic Defibrillator Implantation Trial I; MADIT II: Multicentre Automatic Defibrillator Implantation Trial II; SCD-HeFT: Sudden Cardiac Death in Heart Failure Trial.
The 3 trials had 3 different sets of eligibility criteria for implantation of an ICD for primary prevention of SCD. Conclusions
Conclusions
Overall, there is evidence that ICDs are effective for the primary prevention of SCD. Three trials have found a statistically significant decrease in total mortality for patients who prophylactically received an ICD compared with those who received conventional therapy in their respective study populations.
As per the GRADE Working Group, recommendations consider 4 main factors:
The tradeoffs, taking into account the estimated size of the effect for the main outcome, the confidence limits around those estimates, and the relative value placed on the outcome;
The quality of the evidence (Table 2);
Translation of the evidence into practice in a specific setting, taking into consideration important factors that could be expected to modify the size of the expected effects, such as proximity to a hospital or availability of necessary expertise; and
Uncertainty about the baseline risk for the population of interest
The GRADE Working Group also recommends that incremental costs of health care alternatives should be considered explicitly with the expected health benefits and harms. Recommendations rely on judgments about the value of the incremental health benefits in relation to the incremental costs. The last column in Table 3 is the overall trade-off between benefits and harms and incorporates any risk or uncertainty.
For MADIT I, the overall GRADE and strength of the recommendation is “moderate” – the quality of the evidence is “moderate” (uncertainty due to methodological limitations in the study design), and risk/uncertainty in cost and budget impact was mitigated by the use of filters to help target the prevalent population at risk (Table 3).
For MADIT II, the overall GRADE and strength of the recommendation is “very weak” – the quality of the evidence is “weak” (uncertainty due to methodological limitations in the study design), but there is risk or uncertainty regarding the high prevalence, cost, and budget impact. It is not clear why screening for high-risk patients was dropped, given that in MADIT II the absolute reduction in mortality was small (5.6%) compared to MADIT I, which used electrophysiological screening (23%) (Table 3).
For SCD-HeFT, the overall GRADE and strength of the recommendation is “weak” – the study quality is “moderate,” but there is also risk/uncertainty due to a high NNT at 5 years (13 compared to the MADIT II NNT of 6 and MADIT I NNT of 2 at 5 years), high prevalent population (N = 23,700), and a high budget impact ($770 million). A filter (as demonstrated in MADIT 1) is required to help target the prevalent population at risk and mitigate the risk or uncertainty relating to the high NNT, prevalence, and budget impact (Table 3).
The results of the most recent ICD trial (SCD-HeFT) are not generalizable to the prevalent population in Ontario (Table 3). Given that the current funding rate of an ICD is $32,500 (Cdn), the estimated budget impact for Ontario would be as high as $770 million (Cdn). The uncertainty around the cost estimate of treating the prevalent population with LVEF < 0.30 in Ontario, the lack of human resources to implement such a strategy and the high number of patients required to prevent one SCD (NNT = 13) calls for an alternative strategy that allows the appropriate uptake and diffusion of ICDs for primary prevention for patients at maximum risk for SCD within the SCD-HeFT population.
The uptake and diffusion of ICDs for primary prevention of SCD should therefore be based on risk stratification through the use of appropriate screen(s) that would identify patients at highest risk who could derive the most benefit from this technology.
Overall GRADE and Strength of Recommendation for the Use of Implantable Cardioverter Defibrillators for the Primary Prevention of Sudden Cardiac Death
MADIT I: Multicentre Automatic Defibrillator Implantation Trial I; MADIT II: Multicentre Automatic Defibrillator Implantation Trial II; SCD-HeFT: Sudden Cardiac Death in Heart Failure Trial.
NNT indicates number needed to treat. The NNT will appear higher if follow-up is short. For ICDs, the absolute benefit increases over time for at least a 5-year period; the NNT declines, often substantially, in studies with a longer follow-up. When the NNT are equalized for a similar period as the SCD-HeFT duration (5 years), the NNT for MADIT-I is 2.2; for MADIT-II, it is 6.3.
NSVT indicates nonsustained ventricular tachycardia; VT, ventricular tachycardia.
PMCID: PMC3382404  PMID: 23074465
22.  Frequency of impulse control behaviours associated with dopaminergic therapy in restless legs syndrome 
BMC Neurology  2011;11:117.
Background
Low doses of dopamine agonists (DA) and levodopa are effective in the treatment of restless legs syndrome (RLS). A range of impulse control and compulsive behaviours (ICBs) have been reported following the use of DAs and levodopa in patients with Parkinson's disease. With this study we sought to assess the cross-sectional prevalence of impulse control behaviours (ICBs) in restless legs syndrome (RLS) and to determine factors associated with ICBs in a population cohort in Germany.
Methods
Several questionnaires based on validated and previously used instruments for assessment of ICBs were mailed out to patients being treated for RLS. Final diagnoses of ICBs were based on stringent diagnostic criteria after psychiatric interviews were performed.
Results
10/140 RLS patients of a clinical cohort (7.1%) were finally diagnosed with ICBs, 8 of 10 on dopamine agonist (DA) therapy, 2 of 10 on levodopa. 8 of the 10 affected patients showed more than one type of abnormal behaviour. Among those who responded to the questionnaires 6/140 [4.3%] revealed binge eating, 5/140 [3.6%] compulsive shopping, 3/140 [2.1%] pathological gambling, 3/140 [2.1%] punding, and 2/140 [1.4%] hypersexuality in psychiatric assessments. Among those who did not respond to questionnaires, 32 were randomly selected and interviewed: only 1 patient showed positive criteria of ICBs with compulsive shopping and binge eating. ICBs were associated with higher DA dose (p = 0.001), younger RLS onset (p = 0.04), history of experimental drug use (p = 0.002), female gender (p = 0.04) and a family history of gambling disorders (p = 0.02), which accounted for 52% of the risk variance.
Conclusion
RLS patients treated with dopaminergic agents and dopamine agonists in particular, should be forewarned of potential side effects. A careful history of risk factors should be taken.
doi:10.1186/1471-2377-11-117
PMCID: PMC3195705  PMID: 21955669
Restless legs syndrome; impulse control disorders; dopamine agonist; gambling; levodopa
23.  Pramipexole-Induced Increased Probabilistic Discounting: Comparison Between a Rodent Model of Parkinson's Disease and Controls 
Neuropsychopharmacology  2012;37(6):1397-1408.
The dopamine agonist pramipexole (PPX) can increase impulsiveness, and PPX therapy for neurological diseases (Parkinson's disease (PD) and restless leg syndrome) is associated with impulse control disorders (ICDs) in subpopulations of treated patients. A commonly reported ICD is pathological gambling of which risk taking is a prominent feature. Probability discounting is a measurable aspect of risk taking. We recently developed a probability discounting paradigm wherein intracranial self-stimulation (ICSS) serves as the positive reinforcer. Here we used this paradigm to determine the effects of PPX on discounting. We included assessments of a rodent model of PD, wherein 6-OHDA was injected into the dorsolateral striatum of both hemispheres, which produced persistent PD-like deficits in posture adjustment. Rats were trained to perform ICSS-mediated probability discounting, in which PD-like and control groups exhibited similar profiles. Rats were treated twice daily for 2 weeks with 2 mg/kg (±)PPX (ie, 1 mg/kg of the active form), a dose that improved lesion-induced motor deficits. In both groups, (±)PPX increased discounting; preference for the large reinforcer was enhanced 30–45% at the most uncertain probabilities. Tolerance did not develop with repeated treatments. Increased discounting subsided within 2 weeks of (±)PPX cessation, and re-exposure to (±)PPX reinstated heightened discounting. Such findings emulate the clinical scenario; therefore, ICSS for discounting assessments in rats exhibited high face validity. This model should prove useful in medication development where assessment of the propensity of a putative therapy to induce risk-taking behaviors is of interest.
doi:10.1038/npp.2011.325
PMCID: PMC3327845  PMID: 22257895
pramipexole; probability discounting; 6-OHDA; gambling; rat; reward; animal models; dopamine; addiction & substance abuse; movement disorders; pramipexole; probability discounting; 6-OHDA; gambling; rat
24.  Decreased Ventral Striatal Activity with Impulse Control Disorders in Parkinson’s Disease 
Purpose
A range of impulse control disorders (ICDs) are reported to occur in Parkinson’s disease (PD). However, alterations in brain activity at rest and during risk taking occurring with ICDs in PD are not well understood.
Methods
We used both arterial spin labeling (ASL) perfusion fMRI to directly quantify resting cerebral blood flow (CBF) and blood oxygenation level dependent (BOLD) fMRI to measure neural responses to risk taking during performance on the Balloon Analogue Risk Task (BART).
Results
18 PD patients, either with a diagnosis of one or more ICDs (N=9) or no lifetime ICD history (N=9), participated. BOLD fMRI data demonstrated that PD patients without an ICD activate the mesocorticolimbic pathway during risk taking. Compared with non-ICD patients, ICD patients demonstrated significantly diminished BOLD activity in the right ventral striatum during risk taking and significantly reduced resting CBF in the right ventral striatum.
Conclusion
ICDs in PD are associated with reduced right ventral striatal activity at rest and diminished striatal activation during risk taking, suggesting that a common neural mechanism may underlie ICDs in individuals with PD and those without PD. Thus, treatments for ICDs in non-PD patients warrant consideration in PD patients with ICDs.
doi:10.1002/mds.23147
PMCID: PMC3063061  PMID: 20589879
25.  Deletion of alpha-synuclein decreases impulsivity in mice 
Genes, Brain, and Behavior  2011;11(2):137-146.
The presynaptic protein alpha-synuclein, associated with Parkinson's Disease (PD), plays a role in dopaminergic neurotransmission and is implicated in impulse control disorders (ICDs) such as drug addiction. In this study we investigated a potential causal relationship between alpha-synuclein and impulsivity, by evaluating differences in motor impulsivity in the 5-choice serial reaction time task (5-CSRTT) in strains of mice that differ in the expression of the alpha-synuclein gene. C57BL/6JOlaHsd mice differ from their C57BL/6J ancestors in possessing a chromosomal deletion resulting in the loss of two genes, snca, encoding alpha-synuclein, and mmrn1, encoding multimerin-1. C57BL/6J mice displayed higher impulsivity (more premature responding) than C57BL/6JOlaHsd mice when the pre-stimulus waiting interval was increased in the 5-CSRTT. In order to ensure that the reduced impulsivity was indeed related to snca, and not adjacent gene deletion, wild type (WT) and mice with targeted deletion of alpha-synuclein (KO) were tested in the 5-CSRTT. Similarly, WT mice were more impulsive than mice with targeted deletion of alpha-synuclein. Interrogation of our ongoing analysis of impulsivity in BXD recombinant inbred mouse lines revealed an association of impulsive responding with levels of alpha-synuclein expression in hippocampus. Expression of beta- and gamma-synuclein, members of the synuclein family that may substitute for alpha-synuclein following its deletion, revealed no differential compensations among the mouse strains. These findings suggest that alpha-synuclein may contribute to impulsivity and potentially, to ICDs which arise in some PD patients treated with dopaminergic medication.
doi:10.1111/j.1601-183X.2011.00758.x
PMCID: PMC3380554  PMID: 22142176
Alpha-synuclein; impulse control disorders; impulsivity; Parkinson's disease

Results 1-25 (1319339)