Search tips
Search criteria

Results 1-25 (560702)

Clipboard (0)

Related Articles

1.  Carbon dioxide accumulation during analgosedated colonoscopy: Comparison of propofol and midazolam 
AIM: To characterize the profiles of alveolar hypoventilation during colonoscopies performed under sedoanalgesia with a combination of alfentanil and either midazolam or propofol.
METHODS: Consecutive patients undergoing routine colonoscopy were randomly assigned to sedation with either propofol or midazolam in an open-labeled design using a titration scheme. All patients received 4 μg/kg per body weight alfentanil for analgesia and 3 L of supplemental oxygen. Oxygen saturation (SpO2) was measured by pulse oximetry (POX), and capnography (PcCO2) was continuously measured using a combined dedicated sensor at the ear lobe. Instances of apnea resulting in measures such as stimulation of the patient, a chin lift, a mask maneuver, or withholding of sedation were recorded. PcCO2 values (as a parameter of sedation-induced hypoventilation) were compared between groups at the following distinct time points: baseline, maximal rise, termination of the procedure and 5 min after termination of the procedure. The number of patients in both study groups who regained baseline PcCO2 values (± 1.5 mmHg) five minutes after the procedure was determined.
RESULTS: A total of 97 patients entered this study. The data from 14 patients were subsequently excluded for clinical procedure-related reasons or for technical problems. Therefore, 83 patients (mean age 62 ± 13 years) were successfully randomized to receive propofol (n = 42) or midazolam (n = 41) for sedation. Most of the patients were classified as American Society of Anesthesiologists (ASA) II [16 (38%) in the midazolam group and 15 (32%) in the propofol group] and ASA III [14 (33%) and 13 (32%) in the midazolam and propofol groups, respectively]. A mean dose of 5 (4-7) mg of IV midazolam and 131 (70-260) mg of IV propofol was used during the procedure in the corresponding study arms. The mean SpO2 at baseline (%) was 99 ± 1 for the midazolam group and 99 ± 1 for the propofol group. No cases of hypoxemia (SpO2 < 85%) or apnea were recorded. However, an increase in PcCO2 that indicated alveolar hypoventilation occurred in both groups after administration of the first drug and was not detected with pulse oximetry alone. The mean interval between the initiation of sedation and the time when the PcCO2 value increased to more than 2 mmHg was 2.8 ± 1.3 min for midazolam and 2.8 ± 1.1 min for propofol. The mean maximal rise was similar for both drugs: 8.6 ± 3.7 mmHg for midazolam and 7.4 ± 3.2 mmHg for propofol. Five minutes after the end of the procedure, the mean difference from the baseline values was significantly lower for the propofol treatment compared with midazolam (0.9 ± 3.0 mmHg vs 4.3 ± 3.7 mmHg, P = 0.0000169), and significantly more patients in the propofol group had regained their baseline value ± 1.5 mmHg (32 of 41 vs 12 of 42, P = 0.0004).
CONCLUSION: A significantly higher number of patients sedated with propofol had normalized PcCO2 values five minutes after sedation when compared with patients sedated with midazolam.
PMCID: PMC3471107  PMID: 23082055
Colonoscopy; Deep sedation; Propofol; Hypoventilation; Blood gas monitoring; Transcutaneous
2.  Stepwise sedation for elderly patients with mild/moderate COPD during upper gastrointestinal endoscopy 
AIM: To investigate stepwise sedation for elderly patients with mild/moderate chronic obstructive pulmonary disease (COPD) during upper gastrointestinal (GI) endoscopy.
METHODS: Eighty-six elderly patients with mild/moderate COPD and 82 elderly patients without COPD scheduled for upper GI endoscopy were randomly assigned to receive one of the following two sedation methods: stepwise sedation involving three-stage administration of propofol combined with midazolam [COPD with stepwise sedation (group Cs), and non-COPD with stepwise sedation (group Ns)] or continuous sedation involving continuous administration of propofol combined with midazolam [COPD with continuous sedation (group Cc), and non-COPD with continuous sedation (group Nc)]. Saturation of peripheral oxygen (SpO2), blood pressure, and pulse rate were monitored, and patient discomfort, adverse events, drugs dosage, and recovery time were recorded.
RESULTS: All endoscopies were completed successfully. The occurrences of hypoxemia in groups Cs, Cc, Ns, and Nc were 4 (9.3%), 12 (27.9%), 3 (7.3%), and 5 (12.2%), respectively. The occurrence of hypoxemia in group Cs was significantly lower than that in group Cc (P < 0.05). The average decreases in value of SpO2, systolic blood pressure, and diastolic blood pressure in group Cs were significantly lower than those in group Cc. Additionally, propofol dosage and overall rate of adverse events in group Cs were lower than those in group Cc. Finally, the recovery time in group Cs was significantly shorter than that in group Cc, and that in group Ns was significantly shorter than that in group Nc (P < 0.001).
CONCLUSION: The stepwise sedation method is effective and safer than the continuous sedation method for elderly patients with mild/moderate COPD during upper GI endoscopy.
PMCID: PMC3732854  PMID: 23922479
Upper gastrointestinal endoscopy; Adverse events; Sedation; Monitoring; Chronic obstructive pulmonary disease
3.  Comparison between the recovery time of alfentanil and fentanyl in balanced propofol sedation for gastrointestinal and colonoscopy: a prospective, randomized study 
BMC Gastroenterology  2012;12:164.
There is increasing interest in balanced propofol sedation (BPS) titrated to moderate sedation (conscious sedation) for endoscopic procedures. However, few controlled studies on BPS targeted to deep sedation for diagnostic endoscopy were found. Alfentanil, a rapid and short-acting synthetic analog of fentanyl, appears to offer clinically significant advantages over fentanyl during outpatient anesthesia.
It is reasonable to hypothesize that low dose of alfentanil used in BPS might also result in more rapid recovery as compared with fentanyl.
A prospective, randomized and double-blinded clinical trial of alfentanil, midazolam and propofol versus fentanyl, midazolam and propofol in 272 outpatients undergoing diagnostic esophagogastroduodenal endoscopy (EGD) and colonoscopy for health examination were enrolled. Randomization was achieved by using the computer-generated random sequence. Each combination regimen was titrated to deep sedation. The recovery time, patient satisfaction, safety and the efficacy and cost benefit between groups were compared.
260 participants were analyzed, 129 in alfentanil group and 131 in fentanyl group. There is no significant difference in sex, age, body weight, BMI and ASA distribution between two groups. Also, there is no significant difference in recovery time, satisfaction score from patients, propofol consumption, awake time from sedation, and sedation-related cardiopulmonary complications between two groups. Though deep sedation was targeted, all cardiopulmonary complications were minor and transient (10.8%, 28/260). No serious adverse events including the use of flumazenil, assisted ventilation, permanent injury or death, and temporary or permanent interruption of procedure were found in both groups. However, fentanyl is New Taiwan Dollar (NT$) 103 (approximate US$ 4) cheaper than alfentanil, leading to a significant difference in total cost between two groups.
This randomized, double-blinded clinical trial showed that there is no significant difference in the recovery time, satisfaction score from patients, propofol consumption, awake time from sedation, and sedation-related cardiopulmonary complications between the two most common sedation regimens for EGD and colonoscopy in our hospital. However, fentanyl is NT$103 (US$ 4) cheaper than alfentanil in each case.
Trial registration
Institutional Review Board of Buddhist Tzu Chi General Hospital (IRB097-18) and Chinese Clinical Trial Registry (ChiCTR-TRC-12002575)
PMCID: PMC3607964  PMID: 23170921
Balanced propofol sedation; Alfentanil; Fentanyl; Deep sedation; Diagnostic endoscopy; Cost benefit
4.  Use of sevoflurane inhalation sedation for outpatient third molar surgery. 
Anesthesia Progress  1999;46(1):21-29.
This study attempted to determine if sevoflurane in oxygen inhaled via a nasal hood as a sole sedative agent would provide an appropriate level of deep sedation for outpatient third molar surgery. Twenty-four patients scheduled for third molar removal were randomly assigned to receive either nasal hood inhalation sevoflurane or an intravenous deep sedation using midazolam and fentanyl followed by a propofol infusion. In addition to measuring patient, surgeon, and dentist anesthesiologist subjective satisfaction with the technique, physiological parameters, amnesia, and psychomotor recovery were also assessed. No statistically significant difference was found between the sevoflurane and midazolam-fentanyl-propofol sedative groups in physiological parameters, degree of amnesia, reported quality of sedation, or patient willingness to again undergo a similar deep sedation. A trend toward earlier recovery in the sevoflurane group was identified. Sevoflurane can be successfully employed as a deep sedative rather than a general anesthetic for extraction of third molars in healthy subjects.
PMCID: PMC2148884  PMID: 10551056
5.  Does nasal oxygen reduce the cardiorespiratory problems experienced by elderly patients undergoing endoscopic retrograde cholangiopancreatography? 
Gut  1992;33(7):973-975.
Elderly patients undergoing endoscopic retrograde cholangiopancreatography (ERCP) have an increased risk of sedation related complications during the procedure. To determine whether nasal oxygen supplementation (2 l/min) reduces these risks, half of 66 patients aged over 60 undergoing ERCP using minimal midazolam sedation alone were randomised to receive nasal oxygen. The arterial oxygen saturation and pulse rate of all patients were monitored by pulse oximetry before and during the procedure. Only three patients in the oxygen supplemented group (n = 33) required any form of intervention for hypoxia compared with six in the control group (n = 33). Comparison of mean arterial oxygen saturation between the groups showed significantly higher levels in the nasal oxygen group throughout the procedure. Pulse rate comparisons showed no significant difference from control group values, both groups had short periods of significant tachycardia. We conclude that minimal sedation with midazolam alone still produces hypoxia during ERCP in a substantial number of elderly patients. Nasal oxygen supplementation increases the level of patient oxygenation and reduces the need for intervention, but does not reduce tachycardia in the elderly patient. Because hyoscine may be a significant factor contributing to the tachycardia, sparing rather than routine use of this agent is advisable.
PMCID: PMC1379416  PMID: 1644341
6.  241 Nasal Cytology is Important in the Classification of Patients with Allergic and Non-Allergic Rhinitis 
The purpose of the study is the classification and clinical characterization of patients with allergic rhinitis and non-allergic and differentiate the presence of eosinophils and neutrophils in nasal cytology.
Prospective study of 405 patients with chronic symptoms of sneezes, pruritus, nasal congestion and rhinorrhea were evaluated by clinical examination, skin prick test and nasal cytology. Patients with diseases and/or treatments that could alter the outcome of these tests were excluded.
405 patients from 3 to 80 years were evaluated; 248 female patients (61%) and 157 males (39%). The sample was divided into 2 groups according to skin prick tests: allergic 270 (67%), 135 non-allergic (33%). The mean age of onset of symptoms was 14.27 and 23.47 years in allergic and nonallergic respectively. Nasal symptoms (nasal congestion, sneezes/pruritus, rhinorrhea, postnasal secretion) and signs (turbinates color and edema, secretion and oropharynx redness) were accessed using scores from 0 to 3, ranging from 0 to 24. In the allergic group the mean total nasal symptoms and signs scores were 6.64 and 4.66, while in non-allergic were 5.67 and 3.52. Allergic patients had an average 27.82% of eosinophils and 64.09% of neutrophils in nasal smears, whereas non-allergic patients 8.38% and 85.30%. Using skin prick test and nasal cytology we were able to diagnose allergic rhinitis in 69.6% (208) of the patients. 20.7% (62) had neutrophilic non-allergic rhinitis (NARNA) and 9.7% (29) non-allergic rhinitis with eosinophilia syndrome (NARES). No idiopathic rhinitis patients were found.
The frequencies of the types of rhinitis were: allergic rhinitis 69.6%, RENA 9.7%, NARNA 20.7% and idiopathic rhinitis 0%. Despite the fact that each sub group of nonallergic rhinitis has particularities, in allergic rhinitis we found early onset of complaints, signs and symptoms more intense and a greater number of eosinophils, compared with the nonallergic patients.
PMCID: PMC3512858
7.  Deep sedation during gastrointestinal endoscopy: Propofol-fentanyl and midazolam-fentanyl regimens 
AIM: To compare deep sedation with propofol-fentanyl and midazolam-fentanyl regimens during upper gastrointestinal endoscopy.
METHODS: After obtaining approval of the research ethics committee and informed consent, 200 patients were evaluated and referred for upper gastrointestinal endoscopy. Patients were randomized to receive propofol-fentanyl or midazolam-fentanyl (n = 100/group). We assessed the level of sedation using the observer’s assessment of alertness/sedation (OAA/S) score and bispectral index (BIS). We evaluated patient and physician satisfaction, as well as the recovery time and complication rates. The statistical analysis was performed using SPSS statistical software and included the Mann-Whitney test, χ2 test, measurement of analysis of variance, and the κ statistic.
RESULTS: The times to induction of sedation, recovery, and discharge were shorter in the propofol-fentanyl group than the midazolam-fentanyl group. According to the OAA/S score, deep sedation events occurred in 25% of the propofol-fentanyl group and 11% of the midazolam-fentanyl group (P = 0.014). Additionally, deep sedation events occurred in 19% of the propofol-fentanyl group and 7% of the midazolam-fentanyl group according to the BIS scale (P = 0.039). There was good concordance between the OAA/S score and BIS for both groups (κ = 0.71 and κ = 0.63, respectively). Oxygen supplementation was required in 42% of the propofol-fentanyl group and 26% of the midazolam-fentanyl group (P = 0.025). The mean time to recovery was 28.82 and 44.13 min in the propofol-fentanyl and midazolam-fentanyl groups, respectively (P < 0.001). There were no severe complications in either group. Although patients were equally satisfied with both drug combinations, physicians were more satisfied with the propofol-fentanyl combination.
CONCLUSION: Deep sedation occurred with propofol-fentanyl and midazolam-fentanyl, but was more frequent in the former. Recovery was faster in the propofol-fentanyl group.
PMCID: PMC3683682  PMID: 23801836
Endoscopy; Deep sedation; Anesthetic administration; Anesthetic dose; Adverse effects
8.  Therapeutic Effects of Fermented Red Ginseng in Allergic Rhinitis: A Randomized, Double-Blind, Placebo-Controlled Study 
Allergic rhinitis is clinically defined as a disorder of the nose induced by IgE mediated inflammation after allergen exposure of the nasal mucosa. Many reports have stated that Panax ginseng and fermented red ginseng have anti-inflammatory effects, especially against Th2-type inflammation. This study was conducted to evaluate the therapeutic effects of fermented red ginseng in allergic rhinitis.
In this 4-week, double-blind, placebo-controlled study, 59 patients with persistent perennial allergic rhinitis were randomly divided into two groups: those receiving fermented red ginseng tablets (experimental group) and those receiving placebo (control group). The primary efficacy variable was the total nasal symptom score (TNSS; rhinorrhea, sneezing, itchy nose, and nasal congestion). Secondary efficacy variables were the Rhinitis Quality of Life (RQoL) score and skin reactivity to inhalant allergens, as determined by the skin prick test.
There was no significant difference in the TNSS score and TNSS duration score between the experimental and placebo groups in weeks 1, 2, 3, or 4. For nasal congestion, fermented red ginseng was significantly effective (P<0.005), while placebo caused no change. The activity and emotion of RQoL improved markedly secondary to treatment with fermented red ginseng (P<0.05), while placebo caused no change. Additionally, fermented red ginseng reduced skin reactivity to sensitized perennial allergens (P<0.05). Fermented red ginseng was well tolerated.
Fermented red ginseng improved nasal congestion symptoms and RQoL in patients with perennial allergic rhinitis.
PMCID: PMC3062788  PMID: 21461249
Allergic rhinitis; alternative medicine; fermented ginseng; ginsenoside
9.  Pharmacology of Nasal Medications: An Update 
Canadian Family Physician  1988;34:2706-2709.
The author of this article reviews the pharmacology of nasal medication, focusing on the indications and side-effects. The newer group of non-sedating antihistamines proves to be a useful supplement to disodium cromoglycate and the traditional antihistamines in the treatment of allergic rhinitis. The topical steroids (flunisolide and beclomethasone dipropionate) did not produce a significant incidence of adrenal suppression, mucosal atrophy, or nasal candidiasis. The anticholinergic ipatropium bromide shows promise in the treatment of rhinorrhea. The author also reviews the use of decongestants and emollients and remarks on the factors that affect patient compliance when nasal medications are prescribed.
PMCID: PMC2218146  PMID: 20469495
pharmacology; nasal medications; decongestants; patient compliance
10.  Changes of Alpha1-Antitrypsin Levels in Allergen-induced Nasal Inflammation 
Alpha1-antitrypsin (AAT) is the main inhibitor of human neutrophil elastase, and plays a role in counteracting the tissue damage caused by elastase in local inflammatory conditions. The study evaluated the involvement of AAT in nasal allergic inflammation.
Forty subjects with mono-sensitization to Dermatophagoides pteronyssinus (Dpt) were enrolled. Twenty allergic rhinitis patients frequently complained of nasal symptoms such as rhinorrhea, stuffiness, sneezing, and showed positive responses to the nasal provocation test (NPT) with Dpt (Group I). The other 20 asymptomatic patients showed sensitization to Dpt but negative NPT (Group II). The levels of AAT, eosinophil cationic protein (ECP), and Dpt-specific IgA antibodies were measured in the nasal lavage fluids (NLFs), collected at baseline, 10 minutes, 30 minutes, 3 hours, and 6 hours after the NPT. Nasal mucosa AAT expression was evaluated with immunohistochemical staining from Group I and Group II.
At baseline, only the Dpt-specific IgA level was significantly increased in the NLFs of Group I compared with Group II, while ECP and AAT levels were not significantly different between two groups. After Dpt provocation, AAT, ECP, and Dpt-specific IgA levels were significantly increased in the NLFs of Group I during the early and late responses. The protein expression level of AAT was mostly found in the infiltrating inflammatory cells of the nasal mucosa, which was significantly increased in Group I compared to Group II.
The increment of AAT showed a close relationship with the activation of eosinophils induced by allergen-specific IgA in the NLFs of patients with allergic rhinitis after allergen stimulation. These findings implicate AAT in allergen-induced nasal inflammation.
PMCID: PMC3062225  PMID: 21461061
Alpha1-antitrypsin; Allergic rhinitis; Eosinophil cationic protein; IgA; Nasal lavage fluid
11.  Midazolam sedation for outpatient fibreoptic endoscopy: evaluation of alfentanil supplementation. 
Alfentanil, a short-acting opioid, was used as an adjuvant to midazolam for sedation of 30 outpatients undergoing upper gastrointestinal endoscopy. The operating conditions and recovery times were compared with those of a similar group of 30 patients sedated with midazolam only. The use of alfentanil resulted in improved operating conditions and a more rapid recovery. Patient acceptance was high.
PMCID: PMC2498817  PMID: 3142331
12.  Combined sedation with midazolam/propofol for gastrointestinal endoscopy in elderly patients 
BMC Gastroenterology  2010;10:11.
Although gastrointestinal endoscopy with sedation is increasingly performed in elderly patients, data on combined sedation with midazolam/propofol are very limited for this age group.
We retrospectively analyzed 454 endoscopic procedures in 347 hospitalized patients ≥ 70 years who had received combined sedation with midazolam/propofol. 513 endoscopic procedures in 397 hospitalized patients < 70 years during the observation period served as controls. Characteristics of endoscopic procedures, co-morbidity, complications and mortality were compared.
Elderly patients had a higher level of co-morbidity and needed lower mean propofol doses for sedation. We observed no major complication and no difference in the number of minor complications. The procedure-associated mortality was 0%; the 28-day mortality was significantly higher in the elderly (2.9% vs. 1.0%).
In this study on elderly patients with high level co-morbidity, a favourable safety profile was observed for a combined sedation with midazolam/propofol with a higher sensitivity to propofol in the elderly.
PMCID: PMC2823646  PMID: 20105314
13.  Is there any correlation between the results of skin-prick test and the severity of symptoms in allergic rhinitis? 
This study was designed to determine whether there is any correlation between results of the skin-prick test and the severity of symptoms in allergic rhinitis.
We retrospectively evaluated 150 patients with persistent or intermittent allergic rhinitis confirmed by positive skin tests and scaled from 1 to 4 according to the size of the wheal. The symptoms including sneezing, nasal obstruction, rhinorrhea, and nasal itching were ranked according to their severity (0 for no symptoms, 1 for mild, 2 for moderate, and 3 for severe). We investigated the correlation between the skin tests' positivity and symptoms score, rhinoconjunctivitis quality-of-life questionnaire (RQLQ), and visual analog scale (VAS) scores.
Of the 150 patients, 98 had persistent and 52 had intermittent allergic rhinitis. Some patients had multiple allergen sensitivity. Each skin test group was compared with respect to symptom scores, RQLQ, or VAS scores. There was no statistically significant correlation between the size of the wheal and symptoms score, RQLQ, or VAS scores. There was also no correlation between the type of allergen and symptoms score.
The skin-prick test can be applied to support the diagnosis of allergic rhinitis, but one can not predict the severity of illness by stratifying the size of the skin-prick test result.
PMCID: PMC3906524  PMID: 22391080
Allergic rhinitis; rhinoconjunctivitis quality of life; skin-prick test; symptoms score; VAS
14.  Beclomethasone dipropionate aerosol in allergic rhinitis. 
Treatment with beclomethasone dipropionate aerosol (BDA), 50 mug four times daily in each nostril, was compared with placebo therapy in a double-blind non-crossover trial of 30 matched patients with allergic rhinitis induced by ragweed pollen. The trial was started at the beginning of the ragweed season and continued for 42 days. Response to treatment was assessed from information on daily diary cards, weekly objective measurements of nasal patency and measurement of total eosinophil count (TEC) before treatment and at week 4. Patients in the BDA group had significantly less (P less than 0.05) sneezing, rhinorrhea and nasal stuffiness at 36 days, cough at 10 days and antihistamine consumption at 17 days. There was no significant difference between the groups in eye symptoms, nasal airway inspiratory resistance, maximum inspiratory nasal flow or TEC. Overall comparison with previous pollen seasons by the patients indicated moderate to great improvement in 86% of the BDA group and in 13% of the placebo group (P less than 0.01). Minor side effects were noted by two patients in each group.
PMCID: PMC1878740  PMID: 782679
15.  Sedation levels during propofol administration for outpatient colonoscopies 
The levels of sedation required for patients to comfortably undergo colonoscopy with propofol were examined. One hundred patients undergoing colonoscopy with propofol were enrolled. In addition to standard-of-care monitoring, sedation level was monitored with the Patient State Index (PSI) obtained from a brain function monitor, transcutaneous carbon dioxide (tcpCO2) was monitored with the TCM TOSCA monitor, and end-tidal carbon dioxide was monitored via nasal cannula. The Ramsay Sedation Score (RSS) was also assessed and recorded. After baseline data were obtained from the first 40 consecutive patients enrolled in the study, the remaining 60 patients were randomized into two groups. In one group the PSI value was blinded from the anesthesiologist and in the second group the PSI was visible and the impact of this information on the management of the sedation was analyzed. Overall 96% of patients reached levels of deep sedation and 89% reached levels of general anesthesia. When comparing the blinded to PSI versus unblinded groups, the blinded group had a significantly lower PSI and higher RSS and tcpCO2, indicating the blinded group was maintained at a deeper sedation level with more respiratory compromise than the unblinded group. Patients undergoing colonoscopy under propofol sedation delivered by a bolus technique are frequently taken to levels of general anesthesia and are at risk for respiratory depression, airway obstruction, and hemodynamic compromise.
PMCID: PMC3862122  PMID: 24381393
16.  Dexmedetomidine is effective for monitored anesthesia care in outpatients undergoing cataract surgery 
Korean Journal of Anesthesiology  2011;61(6):453-459.
Dexmedetomidine has a sedative analgesic property without respiratory depression. This study evaluated the efficacy of dexmedetomidine as an appropriate sedative drug for monitored anesthesia care (MAC) in outpatients undergoing cataract surgery on both eyes compared with combination of propofol and alfentanil.
Thirty-one eligible patients were randomly divided into two groups on the first operation day. Dexmedetomidine was administered in group D at 0.6 µg/kg/h, and propofol and alfentanil was infused concomitantly in group P at a rate of 2 mg/kg/h and 20 µg/kg/h, respectively. Sedation was titrated at Ramsay sedation score 3. Iowa satisfaction with anesthesia scale (ISAS) of the patients was evaluated postoperatively. Systolic blood pressure (SBP), heart rate (HR), respiration rate (RR), and peripheral oxygen saturation (SpO2) were recorded throughout the surgery. For the second operation, the group assignments were exchanged.
Postoperative ISAS was 50.3 (6.2) in group D and 42.7 (8.7) in group P, which was statistically significant (P < 0.001). SBP was significantly lower in group D compared with group P from the beginning of the operation. HR, RR, and SpO2 were comparable between the two groups. There were 8 cases (25.8%) of hypertension in group P, and 1 case (3.2%) in group D (P < 0.05). In contrast, 1 case (3.2%) of hypotension and 1 case (3.2%) of bradycardia occurred in group D.
Compared with the combined use of propofol and alfentanil, dexmedetomidine could be used appropriately for MAC in cataract surgery with better satisfaction from the patients and a more stable cardiovascular state.
PMCID: PMC3249565  PMID: 22220220
Cataract; Dexmedetomidine; Monitored anesthesia care; Propofol
17.  Sedation in gastrointestinal endoscopy: Current issues 
Diagnostic and therapeutic endoscopy can successfully be performed by applying moderate (conscious) sedation. Moderate sedation, using midazolam and an opioid, is the standard method of sedation, although propofol is increasingly being used in many countries because the satisfaction of endoscopists with propofol sedation is greater compared with their satisfaction with conventional sedation. Moreover, the use of propofol is currently preferred for the endoscopic sedation of patients with advanced liver disease due to its short biologic half-life and, consequently, its low risk of inducing hepatic encephalopathy. In the future, propofol could become the preferred sedation agent, especially for routine colonoscopy. Midazolam is the benzodiazepine of choice because of its shorter duration of action and better pharmacokinetic profile compared with diazepam. Among opioids, pethidine and fentanyl are the most popular. A number of other substances have been tested in several clinical trials with promising results. Among them, newer opioids, such as remifentanil, enable a faster recovery. The controversy regarding the administration of sedation by an endoscopist or an experienced nurse, as well as the optimal staffing of endoscopy units, continues to be a matter of discussion. Safe sedation in special clinical circumstances, such as in the cases of obese, pregnant, and elderly individuals, as well as patients with chronic lung, renal or liver disease, requires modification of the dose of the drugs used for sedation. In the great majority of patients, sedation under the supervision of a properly trained endoscopist remains the standard practice worldwide. In this review, an overview of the current knowledge concerning sedation during digestive endoscopy will be provided based on the data in the current literature.
PMCID: PMC3558570  PMID: 23382625
Gastrointestinal endoscopy; Endoscopy; Sedation; Analgesia; Digestive system
18.  Feasibility of Bispectral Index-Guided Propofol Infusion for Flexible Bronchoscopy Sedation: A Randomized Controlled Trial 
PLoS ONE  2011;6(11):e27769.
There are safety issues associated with propofol use for flexible bronchoscopy (FB). The bispectral index (BIS) correlates well with the level of consciousness. The aim of this study was to show that BIS-guided propofol infusion is safe and may provide better sedation, benefiting the patients and bronchoscopists.
After administering alfentanil bolus, 500 patients were randomized to either propofol infusion titrated to a BIS level of 65-75 (study group) or incremental midazolam bolus based on clinical judgment to achieve moderate sedation. The primary endpoint was safety, while the secondary endpoints were recovery time, patient tolerance, and cooperation.
The proportion of patients with hypoxemia or hypotensive events were not different in the 2 groups (study vs. control groups: 39.9% vs. 35.7%, p = 0.340; 7.4% vs. 4.4%, p = 0.159, respectively). The mean lowest blood pressure was lower in the study group. Logistic regression revealed male gender, higher American Society of Anesthesiologists physical status, and electrocautery were associated with hypoxemia, whereas lower propofol dose for induction was associated with hypotension in the study group. The study group had better global tolerance (p<0.001), less procedural interference by movement or cough (13.6% vs. 36.1%, p<0.001; 30.0% vs. 44.2%, p = 0.001, respectively), and shorter time to orientation and ambulation (11.7±10.2 min vs. 29.7±26.8 min, p<0.001; 30.0±18.2 min vs. 55.7±40.6 min, p<0.001, respectively) compared to the control group.
BIS-guided propofol infusion combined with alfentanil for FB sedation provides excellent patient tolerance, with fast recovery and less procedure interference.
Trial Registration
ClinicalTrials. gov NCT00789815
PMCID: PMC3223212  PMID: 22132138
19.  236 H1 Antihistamines Influence on Pro-inflammatory Cytokines Level in Patients With Allergic Rhinitis 
The World Allergy Organization Journal  2012;5(Suppl 2):S94-S95.
The aim of the study is to evaluate the effect of H1 antihistamines on symptoms and pro-inflammatory cytokines plasmatic level in patients with persistent allergic rhinitis (PAR), after 4 weeks treatment, during continuous exposure to allergens.
79 patients, mean age 30.44 ± 9.90 years, diagnosed with PAR were included in the study, divided into 2 groups: 39 patients were under treatment with Desloratadine 5 mg/day and 40 patients received Levocetirizine 5 mg/day for 4 weeks. The patients were evaluated before and after the treatment, regarding rhinitis symptoms (sneezing, rhinorrhea, nasal congestion, nasal and ocular itching), total symptoms score, type of sensitisation (indoor or outdoor allergens), plasmatic levels of IL-6 and IL-8. The obtained data were analised using SPSS 15 and GraphPad Prism 4 programs, using Wilcoxon Signed Rank and Mann Whitney test, with a significant P values < 0.05.
Both Desloratadine and Levocetirizine reduce total symptoms score (8.35 versus 1.97, P = 0.0001, respectively 8.67 versus 1.97, P = 0.0001), especially nasal congestion in patients with allergic rhinitis (1.76 versus 1.02, P = 0.001 and 1.72 versus 0.87, P = 0.0001). IL-6 and IL-8 have no different plasmatic level in patients with allergic rhinitis compared with the values obtained in healthy volunteers. Levocetirizine reduces plasmatic level of IL-6 (1.19 versus 1.006, P = 0.0097) and IL-8 (8.90 versus 6.90, P = 0.0003) after 4 weeks treatment, while Desloratadine has influence only IL-6 level (1.68 versus 1.36, P = 0.0038). The intergroup analysis revealed no significant difference between these 2 drugs regarding IL-6 (P = 0.36) and IL-8 (P = 0.25).
Both studied H1 antihistamines present anti-inflammatory effect in patients with PAR after 4 weeks treatment.
PMCID: PMC3512911
20.  Comparison of Midazolam and Propofol for BIS-Guided Sedation During Regional Anaesthesia 
Indian Journal of Anaesthesia  2009;53(6):662-666.
Regional anaesthesia has become an important anaesthetic technique. Effective sedation is an essential for regional techniques too. This study compares midazolam and propofol in terms of onset & recovery from sedation, dosage and side effects of both the drugs using Bispectral Index monitoring. Ninety eight patients were randomly divided into two groups,one group recieved midazolam infusion while the other recieved propofol infusion until BIS reached 75. We observed Time to reach desired sedation, HR, MABP, time for recovery, dose to reach sedation and for maintenance of sedation and side effects if any. The time to reach required sedation was 11 min in Midazolam group(Group I) while it was 6 min in Propofol group(Group II) (p=0.0). Fall in MABP was greater with propofol. Recovery in with midazolam was slower than with propofol (18.6 ± 6.5 vs 10.10±3.65 min) (p=0.00). We concluded that both midazolam and propofol are effective sedatives, but onset and offset was quicker with propofol, while midazolam was more cardiostable.
PMCID: PMC2900075  PMID: 20640093
Propofol; Midazolam; Sedation; BIS
21.  Management of Rhinitis: Allergic and Non-Allergic 
Rhinitis is a global problem and is defined as the presence of at least one of the following: congestion, rhinorrhea, sneezing, nasal itching, and nasal obstruction. The two major classifications are allergic and nonallergic rhinitis (NAR). Allergic rhinitis occurs when an allergen is the trigger for the nasal symptoms. NAR is when obstruction and rhinorrhea occurs in relation to nonallergic, noninfectious triggers such as change in the weather, exposure to caustic odors or cigarette smoke, barometric pressure differences, etc. There is a lack of concomitant allergic disease, determined by negative skin prick test for relevant allergens and/or negative allergen-specific antibody tests. Both are highly prevalent diseases that have a significant economic burden on society and negative impact on patient quality of life. Treatment of allergic rhinitis includes allergen avoidance, antihistamines (oral and intranasal), intranasal corticosteroids, intranasal cromones, leukotriene receptor antagonists, and immunotherapy. Occasional systemic corticosteroids and decongestants (oral and topical) are also used. NAR has 8 major subtypes which includes nonallergic rhinopathy (previously known as vasomotor rhinitis), nonallergic rhinitis with eosinophilia, atrophic rhinitis, senile rhinitis, gustatory rhinitis, drug-induced rhinitis, hormonal-induced rhinitis, and cerebral spinal fluid leak. The mainstay of treatment for NAR are intranasal corticosteroids. Topical antihistamines have also been found to be efficacious. Topical anticholinergics such as ipratropium bromide (0.03%) nasal spray are effective in treating rhinorrhea symptoms. Adjunct therapy includes decongestants and nasal saline. Investigational therapies in the treatment of NAR discussed include capsaicin, silver nitrate, and acupuncture.
PMCID: PMC3121056  PMID: 21738880
Allergic rhinitis; nonallergic rhinitis; intranasal corticosteroids; immunotherapy; intranasal antihistamines; oral antihistamines
22.  Comparison between Midazolam Used Alone and in Combination with Propofol for Sedation during Endoscopic Retrograde Cholangiopancreatography 
Clinical Endoscopy  2014;47(1):94-100.
Endoscopic retrograde cholangiopancreatography (ERCP) is an uncomfortable procedure that requires adequate sedation for its successful conduction. We investigated the efficacy and safety of the combined use of intravenous midazolam and propofol for sedation during ERCP.
A retrospective review of patient records from a single tertiary care hospital was performed. Ninety-four patients undergoing ERCP received one of the two medication regimens, which was administered by a nurse under the supervision of a gastroenterologist. Patients in the midazolam (M) group (n=44) received only intravenous midazolam, which was titrated to achieve deep sedation. Patients in the midazolam pulse propofol (MP) group (n=50) initially received an intravenous combination of midazolam and propofol, and then propofol was titrated to achieve deep sedation.
The time to the initial sedation was shorter in the MP group than in the M group (1.13 minutes vs. 1.84 minutes, respectively; p<0.001). The recovery time was faster in the MP group than in the M group (p=0.031). There were no significant differences between the two groups with respect to frequency of adverse events, pain experienced by the patient, patient discomfort, degree of amnesia, and gag reflex. Patient cooperation, rated by the endoscopist as excellent, was greater in the MP group than in the M group (p=0.046).
The combined use of intravenous midazolam and propofol for sedation during ERCP is more effective than midazolam alone. There is no difference in the safety of the procedure.
PMCID: PMC3928499  PMID: 24570889
Propofol; Midazolam; Cholangiopancreatography, endoscopic retrograde; Conscious sedation
23.  Morning versus evening dosing of desloratadine in seasonal allergic rhinitis: a randomized controlled study [ISRCTN23032971]. 
A circadian rhythm of symptoms has been reported in allergic rhinitis and some studies have shown the dosing time of antihistamines to be of importance for optimizing symptom relief in this disease. The objective of this study was to examine the efficacy of morning vs. evening dosing of the antihistamine desloratadine at different time points during the day.
Patients ≥ 18 years, with seasonal allergic rhinitis received desloratadine 5 mg orally once daily in the morning (AM-group) or evening (PM-group) for two weeks. Rhinorrhea, nasal congestion, sneezing and eye symptoms were scored morning and evening. Wilcoxon rank sum and 2-way ANOVA test were used.
Six-hundred and sixty-three patients were randomized; 336 in the AM-group; 327 in the PM-group. No statistically significant differences were seen between the AM and PM group at any time points. In the sub-groups with higher morning or evening total symptom score no difference in treatment efficacy was seen whether the dose was taken 12 or 24 hours before the higher score time. There was a circadian variation in baseline total symptom score; highest during daytime and lowest at night. The circadian variation in symptoms was reduced during treatment. This reduction was highest for daytime symptoms.
A circadian rhythm was seen for most symptoms being more pronounced during daytime. This was less apparent after treatment with desloratadine. No statistically significant difference in efficacy was seen whether desloratadine was given in the morning or in the evening. This gives the patients more flexibility in choosing dosing time.
PMCID: PMC549030  PMID: 15686600
24.  Investigation of the antiallergic activity of olopatadine on rhinitis induced by intranasal instillation of antigen in sensitized rats using thermography 
Asia Pacific Allergy  2011;1(3):138-144.
The main symptoms of allergic rhinitis (AR) are sneezing, rhinorrhea and nasal obstruction. It was reported that the nasal skin temperature after intranasal administration of histamine or grass pollen rose. In patients with AR, the levels of nerve growth factor (NGF) and vascular endothelial growth factor (VEGF) have increased in nasal fluids and mucosa.
The present study were to determine the temperature changes of the nose in rat allergic rhinitis model, and if olopatadine, an antiallergic agent with histamine H1 receptor antagonistic action, proved to be effective, were studied the productions of NGF and VEGF in nasal lavage fluids (NALF). In the present study, we used ovalbumin (OVA)-sensitized rats as an animal model of nasal allergy and examined the effects of olopatadine on the skin temperature of the nose area, and the productions of NGF and VEGF in NALF.
The temperature changes of the nose area were carried out with thermo tracer in rat passively sensitized with OVA antiserum. The numbers of sneezing episodes were counted and, NGF and VEGF levels in NALF were examined using the specific ELISA.
In OVA-sensitized rats, the number of sneezing episodes increase and the nasal skin temperature rise were provoked after OVA challenge. The levels of NGF and VEGF in NALF also were increased. Olopatadine reduced the increased frequency of sneezing and the nasal skin temperature rise. It also inhibited the increased NGF and VEGF productions in NALF.
The nasal skin temperature after OVA challenge rose even in OVA-sensitized rats. These results suggest that the suppression of the increased NGF and VEGF levels might partially be involved in the improvement of allergy-like behavior (sneezing and nasal skin temperature rise) by the treatment of olopatadine.
PMCID: PMC3206240  PMID: 22053310
Olopatadine; Antihistamine; Animal model; Rhinitis; Thermography
25.  Patient-Controlled Sedation 
Anesthesia Progress  1998;45(3):117-126.
Patient-controlled sedation was utilized in patients aged 15 to 85 yr who were undergoing surgery under local or regional anesthesia. Midazolam, propofol, and methohexitone were used, either by themselves or in combination with fentanyl or alfentanil. Sedation was mild to moderate in the majority of patients, and operating conditions were good. The sedation method provided patients the ability to control the sedation and to vary the degree of sedation according to the environment and to the stress of the procedure. Sedation of the elderly, which tends to be problematic, was made easy using this method, and the elderly patients appeared to enjoy the option. The problems encountered were oversedation, respiratory depression, pain during injection, and postural hypotension.
PMCID: PMC2148957  PMID: 19598717
Patient-controlled sedation; Review

Results 1-25 (560702)