Search tips
Search criteria

Results 1-25 (844498)

Clipboard (0)

Related Articles

1.  Model of Transcriptional Activation by MarA in Escherichia coli 
PLoS Computational Biology  2009;5(12):e1000614.
The AraC family transcription factor MarA activates ∼40 genes (the marA/soxS/rob regulon) of the Escherichia coli chromosome resulting in different levels of resistance to a wide array of antibiotics and to superoxides. Activation of marA/soxS/rob regulon promoters occurs in a well-defined order with respect to the level of MarA; however, the order of activation does not parallel the strength of MarA binding to promoter sequences. To understand this lack of correspondence, we developed a computational model of transcriptional activation in which a transcription factor either increases or decreases RNA polymerase binding, and either accelerates or retards post-binding events associated with transcription initiation. We used the model to analyze data characterizing MarA regulation of promoter activity. The model clearly explains the lack of correspondence between the order of activation and the MarA-DNA affinity and indicates that the order of activation can only be predicted using information about the strength of the full MarA-polymerase-DNA interaction. The analysis further suggests that MarA can activate without increasing polymerase binding and that activation can even involve a decrease in polymerase binding, which is opposite to the textbook model of activation by recruitment. These findings are consistent with published chromatin immunoprecipitation assays of interactions between polymerase and the E. coli chromosome. We find that activation involving decreased polymerase binding yields lower latency in gene regulation and therefore might confer a competitive advantage to cells. Our model yields insights into requirements for predicting the order of activation of a regulon and enables us to suggest that activation might involve a decrease in polymerase binding which we expect to be an important theme of gene regulation in E. coli and beyond.
Author Summary
When environmental conditions change, cell survival can depend on sudden production of proteins that are normally in low demand. Protein production is controlled by transcription factors which bind to DNA near genes and either increase or decrease RNA production. Many puzzles remain concerning the ways transcription factors do this. Recently we collected data relating the intracellular level of a single transcription factor, MarA, to the increase in expression of several genes related to antibiotic and superoxide resistance in Escherichia coli. These data indicated that target genes are turned on in a well-defined order with respect to the level of MarA, enabling cells to mount a response that is commensurate to the level of threat detected in the environment. Here we develop a computational model to yield insight into how MarA turns on its target genes. The modeling suggests that MarA can increase the frequency with which a transcript is made while decreasing the overall presence of the transcription machinery at the start of a gene. This mechanism is opposite to the textbook model of transcriptional activation; nevertheless it enables cells to respond quickly to environmental challenges and is likely of general importance for gene regulation in E. coli and beyond.
PMCID: PMC2787020  PMID: 20019803
2.  Many Chromosomal Genes Modulate MarA-Mediated Multidrug Resistance in Escherichia coli▿  
Multidrug resistance (MDR) in clinical isolates of Escherichia coli can be associated with overexpression of marA, a transcription factor that upregulates multidrug efflux and downregulates membrane permeability. Using random transposome mutagenesis, we found that many chromosomal genes and environmental stimuli affected MarA-mediated antibiotic resistance. Seven genes affected resistance mediated by MarA in an antibiotic-specific way; these were mostly genes encoding unrelated enzymes, transporters, and unknown proteins. Other genes affected MarA-mediated resistance to all antibiotics tested. These genes were acrA, acrB, and tolC (which encode the major MarA-regulated multidrug efflux pump AcrAB-TolC), crp, cyaA, hns, and pcnB (four genes involved in global regulation of gene expression), and the unknown gene damX. The last five genes affected MarA-mediated MDR by altering marA expression or MarA function specifically on acrA. These findings demonstrate that MarA-mediated MDR is regulated at multiple levels by different genes and stimuli, which makes it both complex and fine-tuned and interconnects it with global cell regulation and metabolism. Such a regulation could contribute to the adaptation and spread of MDR strains and may be targeted to treat antibiotic-resistant E. coli and related pathogens.
PMCID: PMC2863627  PMID: 20211899
3.  The Salmonella typhimurium mar locus: molecular and genetic analyses and assessment of its role in virulence. 
Journal of Bacteriology  1997;179(6):1857-1866.
The marRAB operon is a regulatory locus that controls multiple drug resistance in Escherichia coli. marA encodes a positive regulator of the antibiotic resistance response, acting by altering the expression of unlinked genes. marR encodes a repressor of marRAB transcription and controls the production of MarA in response to environmental signals. A molecular and genetic study of the homologous operon in Salmonella typhimurium was undertaken, and the role of marA in virulence in a murine model was assessed. Expression of E. coli marA (marAEC) present on a multicopy plasmid in S. typhimurium resulted in a multiple antibiotic resistance (Mar) phenotype, suggesting that a similar regulon exists in this organism. A genomic plasmid library containing S. typhimurium chromosomal sequences was introduced into an E. coli strain that was deleted for the mar locus and contained a single-copy marR'-'lacZ translational fusion. Plasmid clones that contained both S. typhimurium marR (marRSt) and marA (marASt) genes were identified as those that were capable of repressing expression of the fusion and which resulted in a Mar phenotype. The predicted amino acid sequences of MarRSt, MarASt, and MarBSt were 91, 86, and 42% identical, respectively, to the same genes from E. coli, while the operator/promoter region of the operon was 86% identical to the same 98-nucleotide-upstream region in E. coli. The marRAB transcriptional start sites for both organisms were determined by primer extension, and a marRABSt transcript of approximately 1.1 kb was identified by Northern blot analysis. Its accumulation was shown to be inducible by sodium salicylate. Open reading frames flanking the marRAB operon were also conserved. An S. typhimurium marA disruption strain was constructed by an allelic exchange method and compared to the wild-type strain for virulence in a murine BALB/c infection model. No effect on virulence was noted. The endogenous S. typhimurium plasmid that is associated with virulence played no role in marA-mediated multiple antibiotic resistance. Taken together, the data show that the S. typhimurium mar locus is structurally and functionally similar to marRABEc and that a lesion in marASt has no effect on S. typhimurium virulence for BALB/c mice.
PMCID: PMC178907  PMID: 9068629
4.  Overexpression of the MarA positive regulator is sufficient to confer multiple antibiotic resistance in Escherichia coli. 
Journal of Bacteriology  1993;175(10):2888-2894.
A genetic approach was undertaken to identify normal bacterial genes whose products function to limit the effective concentration of antibiotics. In this approach, a multicopy plasmid library containing cloned Escherichia coli chromosomal sequences was screened for transformants that showed increased resistance to a number of unrelated antibiotics. Three such plasmids were identified, and all contained sequences originating from the mar locus. DNA sequence analysis of the minimal complementation unit revealed that the resistance phenotype was associated with the presence of the marA gene on the plasmids. The putative marA gene product is predicted to contain a helix-turn-helix DNA binding domain that is very similar to analogous domains found in three other E. coli proteins. One such similarity was to the SoxS gene product, the elevated expression of which has previously been associated with the multiple antibiotic resistance (Mar) phenotype. Constitutive expression of marA conferred antibiotic resistance even in cells carrying a deletion of the chromosomal mar locus. We have also found that transformants bearing marA plasmids show a significant reduction in ompF translation but not transcription, similar to previously described mar mutants. However, this reduction in ompF expression plays only a minor role in the resistance mechanism, suggesting that functions encoded by genes unlinked to mar must be affected by marA. These results suggest that activation of marA is the ultimate event that occurs at the mar locus during the process that results in multiple antibiotic resistance.
PMCID: PMC204606  PMID: 8491710
5.  marA, a regulated locus which controls expression of chromosomal multiple antibiotic resistance in Escherichia coli. 
Journal of Bacteriology  1991;173(17):5532-5538.
Stable chromosomal multiple-antibiotic-resistant (Mar) mutants of Escherichia coli, derived by exposing susceptible cells to low concentrations of tetracycline or chloramphenicol, express cross-resistance to structurally unrelated antibiotics. The entire resistance phenotype is reversed to susceptibility by insertion of transposon Tn5 into a locus, designated marA, near 34 min on the chromosome (A. M. George and S. B. Levy, J. Bacteriol. 155:541-548, 1983). Strains in which 39 kbp of chromosomal DNA, including marA, had been deleted were unable to produce Mar mutants. The deletion strain could be complemented in trans by introduction of intact marA+ on plasmid F'506. Junction fragments from a strain containing marA::Tn5 were cloned, exploiting kanamycin resistance on Tn5 for selection. They were used as probes to search a phasmid library of E. coli K-12 for recombinants containing the marA+ region. Two phasmids which contained regions hybridizing to this probe were identified and shown to complement delta marA in a deletion strain. From one phasmid, several marA-containing fragments were cloned: those of greater than or equal to 7.8 kbp restored the ability to form Mar mutants in a deletion strain. These Mar mutants were shown to be dependent on the cloned marA fragment. Chromosomal as well as recombinant Mar mutants showed increased expression of a marA-specific mRNA species of about 1.4 kb, which was barely or not detectable in wild-type strains. Exposure of mutants and, to a lesser extent, parental strains to tetracycline or chloramphenicol resulted in elevated levels of mRNA which hybridized to the marA probe. These results indicate that the marA locus is needed for production of Mar mutants and is regulated, responding to at least two antibiotics to which it controls resistance.
PMCID: PMC208267  PMID: 1715857
6.  Effect of MarA-Like Proteins on Antibiotic Resistance and Virulence in Yersinia pestis▿  
Infection and Immunity  2009;78(1):364-371.
MarA, an AraC/XylS transcriptional regulator in Escherichia coli, affects drug susceptibility and virulence. Two MarA-like proteins have been found in Yersinia pestis: MarA47 and MarA48. Deletion or overexpression of these proteins in the attenuated KIM 1001 Δpgm strain led to a change in multidrug susceptibility (including susceptibility to clinically relevant drugs). Additionally, lung colonization by the marA47 or marA48 deletion mutant was decreased about 10-fold in a pneumonic plague mouse model. Complementation of the deletions by replacing the deleted genes on the chromosome restored wild-type characteristics. These findings show that two MarA homologs in Y. pestis affect antibiotic susceptibility and virulence.
PMCID: PMC2798223  PMID: 19841071
7.  Role of the Multidrug Resistance Regulator MarA in Global Regulation of the hdeAB Acid Resistance Operon in Escherichia coli▿ †  
Journal of Bacteriology  2007;190(4):1290-1297.
MarA, a transcriptional regulator in Escherichia coli, affects functions such as multiple-antibiotic resistance (Mar) and virulence. Usually an activator, MarA is a repressor of hdeAB and other acid resistance genes. We found that, in wild-type cells grown in LB medium at pH 7.0 or pH 5.5, repression of hdeAB by MarA occurred only in stationary phase and was reduced in the absence of H-NS and GadE, the main regulators of hdeAB. Moreover, repression of hdeAB by MarA was greater in the absence of GadX or Lrp in exponential phase at pH 7.0 and in the absence of GadW or RpoS in stationary phase at pH 5.5. In turn, MarA enhanced repression of hdeAB by H-NS and hindered activation by GadE in stationary phase and also reduced the activity of GadX, GadW, RpoS, and Lrp on hdeAB under some conditions. As a result of its direct and indirect effects, overexpression of MarA prevented most of the induction of hdeAB expression as cells entered stationary phase and made the cells sevenfold more sensitive to acid challenge at pH 2.5. These findings show that repression of hdeAB by MarA depends on pH, growth phase, and other regulators of hdeAB and is associated with reduced resistance to acid conditions.
PMCID: PMC2238188  PMID: 18083817
8.  Differential Expression of over 60 Chromosomal Genes in Escherichia coli by Constitutive Expression of MarA 
Journal of Bacteriology  2000;182(12):3467-3474.
In Escherichia coli, the MarA protein controls expression of multiple chromosomal genes affecting resistance to antibiotics and other environmental hazards. For a more-complete characterization of the mar regulon, duplicate macroarrays containing 4,290 open reading frames of the E. coli genome were hybridized to radiolabeled cDNA populations derived from mar-deleted and mar-expressing E. coli. Strains constitutively expressing MarA showed altered expression of more than 60 chromosomal genes: 76% showed increased expression and 24% showed decreased expression. Although some of the genes were already known to be MarA regulated, the majority were newly determined and belonged to a variety of functional groups. Some of the genes identified have been associated with iron transport and metabolism; other genes were previously known to be part of the soxRS regulon. Northern blot analysis of selected genes confirmed the results obtained with the macroarrays. The findings reveal that the mar locus mediates a global stress response involving one of the largest networks of genes described.
PMCID: PMC101932  PMID: 10852879
9.  Salmonella enterica Serovar Typhimurium RamA, Intracellular Oxidative Stress Response, and Bacterial Virulence  
Infection and Immunity  2004;72(2):996-1003.
Escherichia coli and Salmonella enterica serovar Typhimurium have evolved genetic systems, such as the soxR/S and marA regulons, to detoxify reactive oxygen species, like superoxide, which are formed as by-products of metabolism. Superoxide also serves as a microbicidal effector mechanism of the host's phagocytes. Here, we investigate whether regulatory genes other than soxR/S and marA are active in response to oxidative stress in Salmonella and may function as virulence determinants. We identified a bacterial gene, which was designated ramA (342 bp) and mapped at 13.1 min on the Salmonella chromosome, that, when overexpressed on a plasmid in E. coli or Salmonella, confers a pleiotropic phenotype characterized by increased resistance to the redox-cycling agent menadione and to multiple unrelated antibiotics. The ramA gene is present in Salmonella serovars but is absent in E. coli. The gene product displays 37 to 52% homology to the transcriptional activators soxR/S and marA and 80 to 100% identity to a multidrug resistance gene in Klebsiella pneumoniae and Salmonella enterica serovar Paratyphi A. Although a ramA soxR/S double null mutant is highly susceptible to intracellular superoxide generated by menadione and displays decreased Mn-superoxide dismutase activity, intracellular survival of this mutant within macrophage-like RAW 264.7 cells and in vivo replication in the spleens in Ityr mice are not affected. We concluded that despite its role in the protective response of the bacteria to oxidative stress in vitro, the newly identified ramA gene, together with soxR/S, does not play a role in initial replication of Salmonella in the organs of mice.
PMCID: PMC321585  PMID: 14742546
10.  marA locus causes decreased expression of OmpF porin in multiple-antibiotic-resistant (Mar) mutants of Escherichia coli. 
Journal of Bacteriology  1988;170(12):5416-5422.
Mar (multiple antibiotic resistant) mutants of Escherichia coli express chromosomally mediated resistance to a variety of structurally unrelated hydrophilic and hydrophobic antibiotics. Insertion of transposon Tn5 into the marA locus at min 34.05 on the chromosome completely reverses the Mar phenotype (A. M. George and S. B. Levy, J. Bacteriol. 155:531-540, 1983). We found that among changes in the outer membrane of Mar mutants, porin OmpF was greatly reduced, although Mar mutants were more resistant than cells lacking only OmpF. Transduction of the marA region from a Mar strain, but not a wild-type strain, led to loss of OmpF. P1 transduction of marA::Tn5 into a Mar mutant partially restored OmpF levels. Therefore, OmpF reduction required a mutation in the marA region. Mar mutants of an ompF-lacZ operon fusion strain expressed 50 to 75% of the beta-galactosidase activity of the isogenic non-Mar parental strain, while Mar mutants of a protein fusion strain expressed less than 10% of the enzyme activity in the non-Mar strain. These changes were completely reversed by insertion of marA::Tn5. The responsiveness of OmpF-LacZ to osmolarity and temperature changes was similar in Mar and wild-type strains. Although some transcriptional control may have been present, OmpF reduction appeared to occur primarily by a posttranscriptional mechanism. The steady-state levels of ompF mRNA were twofold lower and the mRNA was five times less stable in the Mar mutant than in the wild-type strain. Expression of micF, which lowers ompF mRNA levels, was elevated in Mar strains, as revealed by a micF-lacZ fusion. Studies with strains deleted for the micF locus showed that the marA-dependent reduction of OmpF required an intact micF locus. Our findings suggest that the marA locus directly or indirectly increases micF expression, causing a posttranscriptional decrease in ompF mRNA and reduced amounts of OmpF.
PMCID: PMC211632  PMID: 2848006
11.  Inhibition of the multiple antibiotic resistance (mar) operon in Escherichia coli by antisense DNA analogs. 
Antimicrobial Agents and Chemotherapy  1997;41(12):2699-2704.
The multiple antibiotic resistance operon (marORAB) in Escherichia coli controls intrinsic susceptibility and resistance to multiple, structurally different antibiotics and other noxious agents. A plasmid construct with marA cloned in the antisense direction reduced LacZ expression from a constitutively expressed marA::lacZ translational fusion and inhibited the induced expression of LacZ in cells bearing the wild-type repressed fusion. The marA antisense construction also decreased the multiple antibiotic resistance of a Mar mutant. Two antisense phosphorothioate oligonucleotides, one targeted to marO and the other targeted to marA of the mar operon, introduced by heat shock or electroporation reduced LacZ expression in the strain having the marA::lacZ fusion. One antisense oligonucleotide, tested against a Mar mutant of E. coli ML308-225, increased the bactericidal activity of norfloxacin. These studies demonstrate the efficacy of exogenously delivered antisense oligonucleotides targeted to the marRAB operon in inhibiting expression of this chromosomal regulatory locus.
PMCID: PMC164191  PMID: 9420041
12.  Overexpression of the marA or soxS Regulatory Gene in Clinical Topoisomerase Mutants of Escherichia coli 
The contribution of regulatory genes to fluoroquinolone resistance was studied with clinical Escherichia coli strains bearing mutations in gyrA and parC and with different levels of fluoroquinolone resistance. Expression of marA and soxS was evaluated by Northern blot analysis of isolates that demonstrated increased organic solvent tolerance, a phenotype that has been linked to overexpression of marA, soxS, and rob. Among 25 cyclohexane-tolerant strains detected by a screen for increased organic solvent tolerance (M. Oethinger, W. V. Kern, J. D. Goldman, and S. B. Levy, J. Antimicrob. Chemother. 41:111–114, 1998), we found 5 Mar mutants and 4 Sox mutants. A further Mar mutant was detected among 11 fluoroquinolone-resistant, cyclohexane-susceptible E. coli strains used as controls. Comparison of the marOR sequences of clinical Mar mutants with that of E. coli K-12 (GenBank accession no. M96235) revealed point mutations in marR in all mutants which correlated with loss of repressor function as detected in a marO::lacZ transcriptional assay. We found four other amino acid changes in MarR that did not lead to loss of function. Two of these changes, present in 20 of the 35 sequenced marOR fragments, identified a variant genotype of marOR. Isolates with the same gyrA and parC mutations showed increased fluoroquinolone resistance when the mutations were accompanied by overexpression of marA or soxS. These data support the hypothesis that high-level fluoroquinolone resistance involves mutations at several chromosomal loci, comprising structural and regulatory genes.
PMCID: PMC105868  PMID: 9687412
13.  Genetic and functional analysis of the multiple antibiotic resistance (mar) locus in Escherichia coli. 
Journal of Bacteriology  1993;175(5):1484-1492.
A 7.8-kbp fragment of chromosomal DNA from a region controlling multiple antibiotic resistance (Mar) in Escherichia coli has been sequenced. Within the fragment is a potential divergent promoter region including marO, which contains two pairs of direct repeats, suggesting possible operator-regulatory sites. To the left of marO (region I) are one or two transcriptional units with three putative open reading frames (ORFs) encoding 64, 157, and 70 amino acids. To the right (region II) is a transcriptional unit containing three putative ORFs (ORF125/144, ORF129, and ORF72). Of six independent Mar mutants, four had mutations within the ORF encoding the first putative protein (ORF125/144) downstream of marO, including three different single-point mutations and an IS2 insertion. One of the other mutations occurred in marO (20-bp duplication), and the other occurred in a site in marO or ORF144 (a 1-bp change). All six mutations led to increased transcription of the region II transcript. High-copy-number plasmids containing marO and the adjacent ORF125/144 region from a wild-type source but not from a Mar mutant reduced the antibiotic resistance of a Mar mutant to levels comparable to those of wild-type cells. High-copy-number plasmids containing wild-type marO alone caused an increase in resistance to tetracycline, chloramphenicol, and norfloxacin in a wild-type strain. The nature of the Mar mutations and the results of the complementation studies suggest that ORF125/144 encodes a repressor (designated MarR) which acts at marO. The second ORF (ORF129), designated marA, would encode a protein, MarA, whose sequence shows strong similarity to those of a family of positive transcriptional regulators. A Tn5 insertion in marA inactivated the multiresistance phenotype of Mar mutants. The function of ORF72, designated marB, encoding the third putative protein in the operon, and that of other ORFs detected within the 7.8-kb fragment have not yet been determined.
PMCID: PMC193236  PMID: 8383113
14.  Multidrug Resistance following Expression of the Escherichia coli marA Gene in Mycobacterium smegmatis 
Journal of Bacteriology  1998;180(11):2995-2998.
Expression of the Escherichia coli multiple antibiotic resistance marA gene cloned in Mycobacterium smegmatis produced increased resistance to multiple antimicrobial agents, including rifampin, isoniazid, ethambutol, tetracycline, and chloramphenicol. Cloned marR or marA cloned in the antisense direction had no effect. Resistance changes were lost with spontaneous loss of the plasmid bearing marA. A MarA mutant protein, having an insertional mutation within either of its two alpha-helices of the first putative helix-turn-helix domain, failed to produce the multiresistance phenotype in E. coli and M. smegmatis, indicating that this region is critical for MarA function. These results strongly suggest that E. coli marA functions in M. smegmatis and that a mar-like regulatory system exists in this organism.
PMCID: PMC107271  PMID: 9603894
15.  Transcriptional activation of promoters of the superoxide and multiple antibiotic resistance regulons by Rob, a binding protein of the Escherichia coli origin of chromosomal replication. 
Journal of Bacteriology  1996;178(9):2507-2513.
The Rob protein, isolated on the basis of its ability to bind to the right arm of the Escherichia coli origin of chromosomal replication, is about 50% identical in amino acid sequence to SoxS and MarA, the direct regulators of the superoxide (soxRS) and multiple antibiotic resistance (mar) regulons, respectively. Having previously demonstrated that SoxS (as a MalE-SoxS fusion protein) and MarA are essentially identical in their abilities to activate in vitro transcription of genes of the sox-mar regulons, we investigated the properties of Rob as a transcriptional activator. We found that Rob (i) activates the transcription of zwf,fpr,fumC, micF, nfo, and sodA, (ii) requires a 21-bp soxbox-marbox-robbox sequence to activate zwf transcription, (iii) protects the soxbox/marbox/robbox from attack by DNase 1, (iv) is ambidextrous, i.e., requires the C-terminal domain of the alpha subunit of RNA polymerase for activation of zwf but not fumC or micF, (v) bends zwf and fumC DNA, and (vi) binds zwf and fumC DNA as a monomer. Since these transcription activation properties of Rob are virtually identical to those of MalE-SoxS and MarA, it appears as if the E. coli genome encodes three genes with the same functional capacity. However, in contrast to SoxS and MarA, whose syntheses are induced by specific environmental stimuli and elicit a clear defense response, Rob is expressed constitutively and its normal function is unknown.
PMCID: PMC177972  PMID: 8626315
16.  Role of the acrAB locus in organic solvent tolerance mediated by expression of marA, soxS, or robA in Escherichia coli. 
Journal of Bacteriology  1997;179(19):6122-6126.
Escherichia coli K-12 strains are normally tolerant to n-hexane and susceptible to cyclohexane. Constitutive expression of marA of the multiple antibiotic resistance (mar) locus or of the soxS or robA gene product produced tolerance to cyclohexane. Inactivation of the mar locus or the robA locus, but not the soxRS locus, increased organic solvent susceptibility in the wild type and Mar mutants (to both n-hexane and cyclohexane). The organic solvent hypersusceptibility is a newly described phenotype for a robA-inactivated strain. Multicopy expression of mar, soxS, or robA induced cyclohexane tolerance in strains with a deleted or inactivated chromosomal mar, soxRS, or robA locus; thus, each transcriptional activator acts independently of the others. However, in a strain with 39 kb of chromosomal DNA, including the mar locus, deleted, only the multicopy complete mar locus, consisting of its two operons, produced cyclohexane tolerance. Deletion of acrAB from either wild-type E. coli K-12 or a Mar mutant resulted in loss of tolerance to both n-hexane and cyclohexane. Organic solvent tolerance mediated by mar, soxS, or robA was not restored in strains with acrAB deleted. These findings strongly suggest that active efflux specified by the acrAB locus is linked to intrinsic organic solvent tolerance and to tolerance mediated by the marA, soxS, or robA gene product in E. coli.
PMCID: PMC179517  PMID: 9324261
17.  Evidence that Regulatory Protein MarA of Escherichia coli Represses rob by Steric Hindrance▿  
Journal of Bacteriology  2010;192(15):3977-3982.
The MarA protein of Escherichia coli can both activate and repress the initiation of transcription, depending on the position and orientation of its degenerate 20-bp binding site (“marbox”) at the promoter. For all three known repressed genes, the marbox overlaps the promoter. It has been reported that MarA represses the rob promoter via an RNA polymerase (RNAP)-DNA-MarA ternary complex. Under similar conditions, we found a ternary complex for the repressed purA promoter also. These findings, together with the backwards orientation of repressed marboxes, suggested a unique interaction of MarA with RNAP in repression. However, no repression-specific residues of MarA could be found among 38 single-alanine replacement mutations previously shown to retain activation function or among mutants from random mutagenesis. Mutations Thr12Ala, Arg36Ala, Thr95Ile, and Pro106Ala were more damaging for activation than for repression, some up to 10-fold, so these residues may play a specific role in activation. We found that nonspecific binding of RNAP to promoterless regions of DNA was presumably responsible for the ternary complexes seen previously. When RNAP binding was promoter specific, MarA reduced RNAP access to the rob promoter; there was little or no ternary complex. These findings strongly implicate steric hindrance as the mechanism of repression of rob by MarA.
PMCID: PMC2916391  PMID: 20453091
18.  Different effects of transcriptional regulators MarA, SoxS and Rob on susceptibility of Escherichia coli to cationic antimicrobial peptides (CAMPs): Rob-dependent CAMP induction of the marRAB operon 
Microbiology  2010;156(Pt 2):570-578.
Cationic antimicrobial peptides (CAMPs), a component of the mammalian immune system, protect the host from bacterial infections. The roles of the Escherichia coli transcriptional regulators MarA, SoxS and Rob in susceptibility to these peptides were examined. Overexpression of marA, either in an antibiotic-resistant marR mutant or from a plasmid, decreased bacterial susceptibility to CAMPs. Overexpression of the soxS gene from a plasmid, which decreased susceptibility to antibiotics, unexpectedly caused no decrease in CAMP susceptibility; instead it produced increased susceptibility to different CAMPs. Deletion or overexpression of rob had little effect on CAMP susceptibility. The marRAB operon was upregulated when E. coli was incubated in sublethal amounts of CAMPs polymyxin B, LL-37 or human β-defensin-1; however, this upregulation required Rob. Deletion of acrAB increased bacterial susceptibility to polymyxin B, LL-37 and human β-defensin-1 peptides. Deletion of tolC yielded an even greater increase in susceptibility to these peptides and also led to increased susceptibility to human α-defensin-2. Inhibition of cellular proton-motive force increased peptide susceptibility for wild-type and acrAB deletion strains; however, it decreased susceptibility of tolC mutants. These findings demonstrate that CAMPs are both inducers of marA-mediated drug resistance through interaction with Rob and also substrates for efflux in E. coli. The three related transcriptional regulators show different effects on bacterial cell susceptibility to CAMPs.
PMCID: PMC2890090  PMID: 19926649
19.  Autoactivation of the marRAB multiple antibiotic resistance operon by the MarA transcriptional activator in Escherichia coli. 
Journal of Bacteriology  1996;178(8):2216-2223.
Transcriptional activation of the promoters of the mar/soxRS regulons by the sequence-related but independently inducible MarA and SoxS proteins renders Escherichia coli resistant to a broad spectrum of antibiotics and superoxide generators. Here, the effects of MarA and SoxS on transcription of the marRAB promoter itself were assayed in vitro by using a minimal transcription system and in vivo by assaying beta-galactosidase synthesized from marR::lacZ fusions. Purified MarA and MalE-SoxS proteins stimulated mar transcription about 6- and 15-fold, respectively, when the RNA polymerase/DNA ratio was 1. Purified MarA bound as a monomer to a 16-bp "marbox" located 69 to 54 nucleotides upstream of a putative RNA initiation site. Deletion of the marbox reduced MarA-mar binding 100-fold, abolished the stimulatory effects of MarA and SoxS on transcription in vitro, and reduced marR::lacZ synthesis about 4-fold in vivo. Deletion of upstream DNA adjoining the marbox reduced MarA binding efficiency 30-fold and transcriptional activation 2- to 3-fold, providing evidence for an accessory marbox. Although MarA and the mar operon repressor, MarR, bound to independent sites, they competed for promoter DNA in band shift experiments. Assays of marR::lacZ transcriptional fusions in marRAB deletion or soxRS deletion strains showed that the superoxide generator paraquat stimulates mar transcription via soxRS and that salicylate stimulates mar transcription both by antagonizing MarR and by a MarR-independent mechanism. Thus, transcription of the marRAB operon is autorepressed by MarR and autoactivated by MarA at a site that also can be activated by SoxS.
PMCID: PMC177928  PMID: 8636021
20.  Repressor mutations in the marRAB operon that activate oxidative stress genes and multiple antibiotic resistance in Escherichia coli. 
Journal of Bacteriology  1994;176(1):143-148.
Resistance to multiple antibiotics and certain oxidative stress compounds was conferred by three independently selected mutations (marR1, soxQ1, and cfxB1) that mapped to 34 min on the Escherichia coli chromosome. Mutations at this locus can activate the marRAB operon, in which marR encodes a putative repressor of mar transcription and marA encodes a putative transcriptional activator of defense genes against antibiotics and oxidants. Overexpression of the wild-type MarR protein reversed the phenotypes (antibiotic resistance and increased antioxidant enzyme synthesis) of all three mutants. DNA sequence analysis showed that, like marR1, the other two mutations were alterations of marR: a 285-bp deletion in cfxB1 and a GC-->AT transition at codon 70 (Ala-->Thr) in soxQ1. All three mutations cause increased amounts of mar-specific RNA, which supports the hypothesis that MarR has a repressor function in the expression of the marRAB operon. The level of mar RNA was further induced by tetracycline in both the marR1 and soxQ1 strains but not in the cfxB1 deletion mutant. In the cfxB1 strain, the level of expression of a truncated RNA, with or without tetracycline exposure, was the same as the fully induced level in the other two mutants. Overproduction of MarR in the cfxB1 strain repressed the transcription of the truncated RNA and restored transcriptional inducibility by tetracycline. Thus, induction of the marRAB operon results from the relief of the repression exerted by MarR. The marRAB operon evidently activates both antibiotic resistance and oxidative stress genes.
PMCID: PMC205025  PMID: 8282690
21.  The Periplasmic Protein MppA Requires an Additional Mutated Locus To Repress marA Expression in Escherichia coli 
Journal of Bacteriology  2003;185(4):1465-1469.
Escherichia coli strain TP985, which has an insertional mutation in the gene for the periplasmic murein tripeptide binding protein MppA, was previously reported to overproduce MarA and exhibit a multiple-antibiotic resistance (Mar) phenotype (H. Li and J. T. Park, J. Bacteriol. 181:4842-4847, 1999). We found that TP985 contained a previously unrecognized marR mutation which was responsible for the Mar phenotype. Transduction of the mppA mutation from TP985 to another wild-type strain did not affect antibiotic susceptibility. Overproduction of MppA repressed marA transcription in TP985 but not in other mppA or marR mutants. Therefore, TP985 contains an additional unknown mutation(s) that facilitates the repression of marA expression by MppA.
PMCID: PMC142866  PMID: 12562820
22.  Tunable Stochastic Pulsing in the Escherichia coli Multiple Antibiotic Resistance Network from Interlinked Positive and Negative Feedback Loops 
PLoS Computational Biology  2013;9(9):e1003229.
Cells live in uncertain, dynamic environments and have many mechanisms for sensing and responding to changes in their surroundings. However, sudden fluctuations in the environment can be catastrophic to a population if it relies solely on sensory responses, which have a delay associated with them. Cells can reconcile these effects by using a tunable stochastic response, where in the absence of a stressor they create phenotypic diversity within an isogenic population, but use a deterministic response when stressors are sensed. Here, we develop a stochastic model of the multiple antibiotic resistance network of Escherichia coli and show that it can produce tunable stochastic pulses in the activator MarA. In particular, we show that a combination of interlinked positive and negative feedback loops plays an important role in setting the dynamics of the stochastic pulses. Negative feedback produces a pulsatile response that is tunable, while positive feedback serves to amplify the effect. Our simulations show that the uninduced native network is in a parameter regime that is of low cost to the cell (taxing resistance mechanisms are expressed infrequently) and also elevated noise strength (phenotypic variability is high). The stochastic pulsing can be tuned by MarA induction such that variability is decreased once stresses are sensed, avoiding the detrimental effects of noise when an optimal MarA concentration is needed. We further show that variability in the expression of MarA can act as a bet hedging mechanism, allowing for survival in time-varying stress environments, however this effect is tunable to allow for a fully induced, deterministic response in the presence of a stressor.
Author Summary
Cells can sense their environment and respond to changes, however the sudden appearance of a stressor can be catastrophic if the time it takes to sense and initiate a response is slow relative to the action of a stressor. A possible solution is to couple a sensory response with a stochastic, random approach. In the absence of stress, a random subset of cells expresses resistance genes, ensuring that if a stressor appears there will be some cells that are able to survive and regenerate the population; once stress is sensed all cells should respond by expressing resistance genes. Such an approach is particularly advantageous when resistance mechanisms are taxing to the cell because it limits their expression when no stress is present. We studied this phenomenon computationally using a model of the multiple antibiotic resistance activator, MarA. MarA controls over 40 resistance genes and can be induced by many harmful compounds. We show that when uninduced, the gene regulatory network controlling MarA is capable of producing stochastic pulses that can serve to hedge against sudden changes in the environment with minimal cost to the population. When induced, MarA expression is elevated and has low variability to ensure a uniform response.
PMCID: PMC3784492  PMID: 24086119
23.  Genetic relationship between soxRS and mar loci in promoting multiple antibiotic resistance in Escherichia coli. 
Multiple antibiotic resistance in Escherichia coli has typically been associated with mutations at the mar locus, located at 34 min on the E. coli chromosome. A new mutant, marC, isolated on the basis of a Mar phenotype but which maps to the soxRS (encoding the regulators of the superoxide stress response) locus located at 92 min, is described here. This mutant shares several features with a known constitutive allele of the soxRS gene, prompting the conclusion that it is a highly active allele of this gene. The marC mutation has thus been given the designation soxR201. This new mutant was used to examine the relationship between the mar and sox loci in promoting antibiotic resistance. The results of these studies indicate that full antibiotic resistance resulting from the soxR201 mutation is partially dependent on an intact mar locus and is associated with an increase in the steady-state level of mar-specific mRNA. In addition, paraquat treatment of wild-type cells is shown to increase the level of antibiotic resistance in a dose-dependent manner that requires an intact soxRS locus. Conversely, overexpression of MarA from a multicopy plasmid results in weak activation of a superoxide stress response target gene. These findings are consistent with a model in which the regulatory factors encoded by the marA and soxS genes control the expression of overlapping sets of target genes, with MarA preferentially acting on targets involved with antibiotic resistance and SoxS directed primarily towards components of the superoxide stress response. Furthermore, compounds frequently used to induce the superoxide stress response, including paraquat, menadione, and phenazine methosulfate, differ with respect to the amount of protection provided against them by the antibiotic resistance response.
PMCID: PMC284635  PMID: 7986007
24.  The Periplasmic Murein Peptide-Binding Protein MppA Is a Negative Regulator of Multiple Antibiotic Resistance in Escherichia coli 
Journal of Bacteriology  1999;181(16):4842-4847.
MppA is a periplasmic binding protein in Escherichia coli essential for uptake of the cell wall murein tripeptide l-alanyl-γ-d-glutamyl-meso-diaminopimelate. We have found serendipitously that E. coli K-12 strains carrying a null mutation in mppA exhibit increased resistance to a wide spectrum of antibiotics and to cyclohexane. Normal sensitivity of the mppA mutant to these agents is restored by mppA expressed from a plasmid. As is observed in the multiple antibiotic resistance phenotype in E. coli cells, the mppA null mutant overproduces the transcriptional activator, MarA, resulting in expression of the membrane-bound AcrAB proteins that function as a drug efflux pump. Reduced production of OmpF similar to that observed in the multiple antibiotic resistance phenotype is also seen in the mppA mutant. These and other data reported herein indicate that MppA functions upstream of MarA in a signal transduction pathway to negatively regulate the expression of marA and hence of the MarA-driven multiple antibiotic resistance. Overproduction of cytoplasmic GadA and GadB and of several unidentified cytoplasmic membrane proteins as well as reduction in the amount of the outer membrane protein, OmpP, in the mppA null mutant indicate that MppA regulates a number of genes in addition to those already known to be controlled by MarA.
PMCID: PMC93970  PMID: 10438753
25.  Cross-resistance to fluoroquinolones in multiple-antibiotic-resistant (Mar) Escherichia coli selected by tetracycline or chloramphenicol: decreased drug accumulation associated with membrane changes in addition to OmpF reduction. 
Chromosomal multiple-antibiotic-resistant (Mar) mutants of Escherichia coli, selected on agar containing low concentrations of tetracycline or chloramphenicol, were 6- to 18-fold less susceptible to the fluoroquinolones than were their wild-type E. coli K-12 or E. coli C parental strains. The frequency of emergence of such mutants was at least 1,000-fold higher than that of those selected by the fluoroquinolone norfloxacin directly. When Mar mutants, but not wild-type cells, were plated on norfloxacin, mutants resistant to high levels of norfloxacin (2 micrograms/ml) appeared at a relatively high (approximately 10(-7] frequency. In addition to decreased amounts of OmpF, Mar mutants had other outer membrane protein changes and were four- to eightfold less susceptible to fluoroquinolones than was an ompF::Tn5 mutant lacking only OmpF. Accumulation of [3H]norfloxacin was more than threefold lower in the Mar mutants than in wild-type cells and twofold lower than in the OmpF-deficient derivative. These differences were not attributable to a change in the endogenous active efflux system for norfloxacin in E. coli. Norfloxacin-induced inhibition of DNA synthesis was threefold lower in intact cells of a Mar mutant than in susceptible cells, but this difference was not seen in toluene-permeabilized cells. Insertion of Tn5 into marA (min 34.05 on the chromosome) led to a return of the wild-type patterns of norfloxacin accumulation, fluoroquinolone and other antimicrobial agent susceptibilities, and outer membrane protein profile, including partial restoration of OmpF. These findings together suggest that marA-dependent fluoroquinolone resistance is linked to decreased cell permeability, only part of which can be accounted for by the reduction in OmpF. Once mutated to marA, cells can achieve high levels of quinolone resistance at a relatively high frequency.
PMCID: PMC172647  PMID: 2679373

Results 1-25 (844498)