Search tips
Search criteria

Results 1-25 (1073676)

Clipboard (0)

Related Articles

1.  A rapid form of activity-dependent recovery from short-term synaptic depression in the intensity pathway of the auditory brainstem 
Biological Cybernetics  2011;104(3):209-223.
Short-term synaptic plasticity acts as a time- and firing rate-dependent filter that mediates the transmission of information across synapses. In the avian auditory brainstem, specific forms of plasticity are expressed at different terminals of the same auditory nerve fibers and contribute to the divergence of acoustic timing and intensity information. To identify key differences in the plasticity properties, we made patch-clamp recordings from neurons in the cochlear nucleus responsible for intensity coding, nucleus angularis, and measured the time course of the recovery of excitatory postsynaptic currents following short-term synaptic depression. These synaptic responses showed a very rapid recovery, following a bi-exponential time course with a fast time constant of ~40 ms and a dependence on the presynaptic activity levels, resulting in a crossing over of the recovery trajectories following high-rate versus low-rate stimulation trains. We also show that the recorded recovery in the intensity pathway differs from similar recordings in the timing pathway, specifically the cochlear nucleus magnocellularis, in two ways: (1) a fast recovery that was not due to recovery from postsynaptic receptor desensitization and (2) a recovery trajectory that was characterized by a non-monotonic bump that may be due in part to facilitation mechanisms more prevalent in the intensity pathway. We tested whether a previously proposed model of synaptic transmission based on vesicle depletion and sequential steps of vesicle replenishment could account for the recovery responses, and found it was insufficient, suggesting an activity-dependent feedback mechanism is present. We propose that the rapid recovery following depression allows improved coding of natural auditory signals that often consist of sound bursts separated by short gaps.
PMCID: PMC3257163  PMID: 21409439
Auditory nerve; Cochlear nucleus; Angularis; Magnocellularis; Short-term depression; Short-term facilitation; Vesicle cycling
2.  High Bandwidth Synaptic Communication and Frequency Tracking in Human Neocortex 
PLoS Biology  2014;12(11):e1002007.
Because of fast recovery from synaptic depression and fast-initiated action potentials, neuronal information transfer can have a substantially higher bandwidth in human neocortical circuits than in those of rodents.
Neuronal firing, synaptic transmission, and its plasticity form the building blocks for processing and storage of information in the brain. It is unknown whether adult human synapses are more efficient in transferring information between neurons than rodent synapses. To test this, we recorded from connected pairs of pyramidal neurons in acute brain slices of adult human and mouse temporal cortex and probed the dynamical properties of use-dependent plasticity. We found that human synaptic connections were purely depressing and that they recovered three to four times more swiftly from depression than synapses in rodent neocortex. Thereby, during realistic spike trains, the temporal resolution of synaptic information exchange in human synapses substantially surpasses that in mice. Using information theory, we calculate that information transfer between human pyramidal neurons exceeds that of mouse pyramidal neurons by four to nine times, well into the beta and gamma frequency range. In addition, we found that human principal cells tracked fine temporal features, conveyed in received synaptic inputs, at a wider bandwidth than for rodents. Action potential firing probability was reliably phase-locked to input transients up to 1,000 cycles/s because of a steep onset of action potentials in human pyramidal neurons during spike trains, unlike in rodent neurons. Our data show that, in contrast to the widely held views of limited information transfer in rodent depressing synapses, fast recovering synapses of human neurons can actually transfer substantial amounts of information during spike trains. In addition, human pyramidal neurons are equipped to encode high synaptic information content. Thus, adult human cortical microcircuits relay information at a wider bandwidth than rodent microcircuits.
Author Summary
Our ability to think, memorize information, and act appropriately depends on circuits of connected neurons in the brain. In these circuits, neurons pass information to each other using electric pulses (action potentials) that cause the release of chemical neurotransmitters, which alter the membrane electric potential of receiving neurons. Based on the inputs neurons receive, they decide whether to transmit action potentials to other neurons in the circuit to pass on information. During sequences of repeated information transfer, synaptic connections between two neurons temporarily become weaker by synaptic depression. Our knowledge of neuronal information transfer is based on rodent neurons. The properties of synaptic information transfer and synaptic depression in humans are not known. Here, we show that adult human neurons can transfer information with up to ten times higher rates than mouse neurons, because of a three to four times faster recovery from depression. Furthermore, we found that human neurons can respond faster to synaptic inputs, owing to faster initiation of action potentials. Human neurons can thereby reliably encode high input frequencies in their output. Thus, neuronal information transfer can have a substantially higher bandwidth in human neocortical circuits than in rodent brains.
PMCID: PMC4244038  PMID: 25422947
3.  Cell-type specific short-term plasticity at auditory nerve synapses controls feed-forward inhibition in the dorsal cochlear nucleus 
Feed-forward inhibition (FFI) represents a powerful mechanism by which control of the timing and fidelity of action potentials in local synaptic circuits of various brain regions is achieved. In the cochlear nucleus, the auditory nerve provides excitation to both principal neurons and inhibitory interneurons. Here, we investigated the synaptic circuit associated with fusiform cells (FCs), principal neurons of the dorsal cochlear nucleus (DCN) that receive excitation from auditory nerve fibers and inhibition from tuberculoventral cells (TVCs) on their basal dendrites in the deep layer of DCN. Despite the importance of these inputs in regulating fusiform cell firing behavior, the mechanisms determining the balance of excitation and FFI in this circuit are not well understood. Therefore, we examined the timing and plasticity of auditory nerve driven FFI onto FCs. We find that in some FCs, excitatory and inhibitory components of FFI had the same stimulation thresholds indicating they could be triggered by activation of the same fibers. In other FCs, excitation and inhibition exhibit different stimulus thresholds, suggesting FCs and TVCs might be activated by different sets of fibers. In addition, we find that during repetitive activation, synapses formed by the auditory nerve onto TVCs and FCs exhibit distinct modes of short-term plasticity. Feed-forward inhibitory post-synaptic currents (IPSCs) in FCs exhibit short-term depression because of prominent synaptic depression at the auditory nerve-TVC synapse. Depression of this feedforward inhibitory input causes a shift in the balance of fusiform cell synaptic input towards greater excitation and suggests that fusiform cell spike output will be enhanced by physiological patterns of auditory nerve activity.
PMCID: PMC4081852  PMID: 25071459
dorsal cochlear nucleus; auditory nerve; synaptic transmission; synaptic plasticity; feedforward inhibition
4.  Short-Term Synaptic Depression Is Topographically Distributed in the Cochlear Nucleus of the Chicken 
The Journal of Neuroscience  2014;34(4):1314-1324.
In the auditory system, sounds are processed in parallel frequency-tuned circuits, beginning in the cochlea. Activity of auditory nerve fibers reflects this frequency-specific topographic pattern, known as tonotopy, and imparts frequency tuning onto their postsynaptic target neurons in the cochlear nucleus. In birds, cochlear nucleus magnocellularis (NM) neurons encode the temporal properties of acoustic stimuli by “locking” discharges to a particular phase of the input signal. Physiological specializations exist in gradients corresponding to the tonotopic axis in NM that reflect the characteristic frequency (CF) of their auditory nerve fiber inputs. One feature of NM neurons that has not been investigated across the tonotopic axis is short-term synaptic plasticity. NM offers a rather homogeneous population of neurons with a distinct topographical distribution of synaptic properties that is ideal for the investigation of specialized synaptic plasticity. Here we demonstrate for the first time that short-term synaptic depression (STD) is expressed topographically, where unitary high CF synapses are more robust with repeated stimulation. Correspondingly, high CF synapses drive spiking more reliably than their low CF counterparts. We show that postsynaptic AMPA receptor desensitization does not contribute to the observed difference in STD. Further, rate of recovery from depression, a presynaptic property, does not differ tonotopically. Rather, we show that another presynaptic feature, readily releasable pool (RRP) size, is tonotopically distributed and inversely correlated with vesicle release probability. Mathematical model results demonstrate that these properties of vesicle dynamics are sufficient to explain the observed tonotopic distribution of STD.
PMCID: PMC3898291  PMID: 24453322
tonotopy; topographic map; synaptic plasticity; short-term synaptic depression; release probability; readily releasable pool
5.  A Tale of Two Stories: Astrocyte Regulation of Synaptic Depression and Facilitation 
PLoS Computational Biology  2011;7(12):e1002293.
Short-term presynaptic plasticity designates variations of the amplitude of synaptic information transfer whereby the amount of neurotransmitter released upon presynaptic stimulation changes over seconds as a function of the neuronal firing activity. While a consensus has emerged that the resulting decrease (depression) and/or increase (facilitation) of the synapse strength are crucial to neuronal computations, their modes of expression in vivo remain unclear. Recent experimental studies have reported that glial cells, particularly astrocytes in the hippocampus, are able to modulate short-term plasticity but the mechanism of such a modulation is poorly understood. Here, we investigate the characteristics of short-term plasticity modulation by astrocytes using a biophysically realistic computational model. Mean-field analysis of the model, supported by intensive numerical simulations, unravels that astrocytes may mediate counterintuitive effects. Depending on the expressed presynaptic signaling pathways, astrocytes may globally inhibit or potentiate the synapse: the amount of released neurotransmitter in the presence of the astrocyte is transiently smaller or larger than in its absence. But this global effect usually coexists with the opposite local effect on paired pulses: with release-decreasing astrocytes most paired pulses become facilitated, namely the amount of neurotransmitter released upon spike i+1 is larger than that at spike i, while paired-pulse depression becomes prominent under release-increasing astrocytes. Moreover, we show that the frequency of astrocytic intracellular Ca2+ oscillations controls the effects of the astrocyte on short-term synaptic plasticity. Our model explains several experimental observations yet unsolved, and uncovers astrocytic gliotransmission as a possible transient switch between short-term paired-pulse depression and facilitation. This possibility has deep implications on the processing of neuronal spikes and resulting information transfer at synapses.
Author Summary
Synaptic plasticity is the capacity of a preexisting connection between two neurons to change in strength as a function of neuronal activity. Because it admittedly underlies learning and memory, the elucidation of its constituting mechanisms is of crucial importance in many aspects of normal and pathological brain function. Short-term presynaptic plasticity refers to changes occurring over short time scales (milliseconds to seconds) that are mediated by frequency-dependent modifications of the amount of neurotransmitter released by presynaptic stimulation. Recent experiments have reported that glial cells, especially hippocampal astrocytes, can modulate short-term plasticity, but the mechanism of such modulation is poorly understood. Here, we explore a plausible form of modulation of short-term plasticity by astrocytes using a biophysically realistic computational model. Our analysis indicates that astrocytes could simultaneously affect synaptic release in two ways. First, they either decrease or increase the overall synaptic release of neurotransmitter. Second, for stimuli that are delivered as pairs within short intervals, they systematically increase or decrease the synaptic response to the second one. Hence, our model suggests that astrocytes could transiently trigger switches between paired-pulse depression and facilitation. This property explains several challenging experimental observations and has a deep impact on our understanding of synaptic information transfer.
PMCID: PMC3228793  PMID: 22162957
6.  Short-term synaptic plasticity and intensity coding 
Hearing research  2011;279(1-2):13-21.
Alterations in synaptic strength over short time scales, termed short-term synaptic plasticity, can gate the flow of information through neural circuits. Different information can be extracted from the same presynaptic spike train depending on the activity- and time-dependent properties of the plasticity at a given synapse. The parallel processing in the brain stem auditory pathways provides an excellent model system for investigating the functional implications of short-term plasticity in neural coding. We review recent evidence that short-term plasticity differs in different pathways with a special emphasis on the ‘intensity’ pathway. While short-term depression dominates the ‘timing’ pathway, the intensity pathway is characterized by a balance of short-term depression and facilitation that allows linear transmission of rate-coded intensity information. Target-specific regulation of presynaptic plasticity mechanisms underlies the differential expression of depression and facilitation. The potential contribution of short-term plasticity to different aspects of ‘intensity’-related information processing, such as interaural level/intensity difference coding, amplitude modulation coding, and intensity-dependent gain control coding, is discussed.
PMCID: PMC3210195  PMID: 21397676
7.  Factors Influencing Short-term Synaptic Plasticity in the Avian Cochlear Nucleus Magnocellularis 
Journal of Experimental Neuroscience  2015;9(Suppl 2):11-24.
Defined as reduced neural responses during high rates of activity, synaptic depression is a form of short-term plasticity important for the temporal filtering of sound. In the avian cochlear nucleus magnocellularis (NM), an auditory brainstem structure, mechanisms regulating short-term synaptic depression include pre-, post-, and extrasynaptic factors. Using varied paired-pulse stimulus intervals, we found that the time course of synaptic depression lasts up to four seconds at late-developing NM synapses. Synaptic depression was largely reliant on exogenous Ca2+-dependent probability of presynaptic neurotransmitter release, and to a lesser extent, on the desensitization of postsynaptic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-type glutamate receptor (AMPA-R). Interestingly, although extrasynaptic glutamate clearance did not play a significant role in regulating synaptic depression, blocking glutamate clearance at early-developing synapses altered synaptic dynamics, changing responses from depression to facilitation. These results suggest a developmental shift in the relative reliance on pre-, post-, and extrasynaptic factors in regulating short-term synaptic plasticity in NM.
PMCID: PMC4620996  PMID: 26527054
AMPA receptors; desensitization; development; glutamate transporters; nucleus magnocellularis; short-term synaptic depression
8.  LTS and FS Inhibitory Interneurons, Short-Term Synaptic Plasticity, and Cortical Circuit Dynamics 
PLoS Computational Biology  2011;7(10):e1002248.
Somatostatin-expressing, low threshold-spiking (LTS) cells and fast-spiking (FS) cells are two common subtypes of inhibitory neocortical interneuron. Excitatory synapses from regular-spiking (RS) pyramidal neurons to LTS cells strongly facilitate when activated repetitively, whereas RS-to-FS synapses depress. This suggests that LTS neurons may be especially relevant at high rate regimes and protect cortical circuits against over-excitation and seizures. However, the inhibitory synapses from LTS cells usually depress, which may reduce their effectiveness at high rates. We ask: by which mechanisms and at what firing rates do LTS neurons control the activity of cortical circuits responding to thalamic input, and how is control by LTS neurons different from that of FS neurons? We study rate models of circuits that include RS cells and LTS and FS inhibitory cells with short-term synaptic plasticity. LTS neurons shift the RS firing-rate vs. current curve to the right at high rates and reduce its slope at low rates; the LTS effect is delayed and prolonged. FS neurons always shift the curve to the right and affect RS firing transiently. In an RS-LTS-FS network, FS neurons reach a quiescent state if they receive weak input, LTS neurons are quiescent if RS neurons receive weak input, and both FS and RS populations are active if they both receive large inputs. In general, FS neurons tend to follow the spiking of RS neurons much more closely than LTS neurons. A novel type of facilitation-induced slow oscillations is observed above the LTS firing threshold with a frequency determined by the time scale of recovery from facilitation. To conclude, contrary to earlier proposals, LTS neurons affect the transient and steady state responses of cortical circuits over a range of firing rates, not only during the high rate regime; LTS neurons protect against over-activation about as well as FS neurons.
Author Summary
The brain consists of circuits of neurons that signal to one another via synapses. There are two classes of neurons: excitatory cells, which cause other neurons to become more active, and inhibitory neurons, which cause other neurons to become less active. It is thought that the activity of excitatory neurons is kept in check largely by inhibitory neurons; when such an inhibitory “brake” fails, a seizure can result. Inhibitory neurons of the low-threshold spiking (LTS) subtype can potentially fulfill this braking, or anticonvulsant, role because the synaptic input to these neurons facilitates, i.e., those neurons are active when excitatory neurons are strongly active. Using a computational model we show that, because the synaptic output of LTS neurons onto excitatory neurons depresses (decreases with activity), the ability of LTS neurons to prevent strong cortical activity and seizures is not qualitatively larger than that of inhibitory neurons of another subtype, the fast-spiking (FS) cells. Furthermore, short-term (∼one second) changes in the strength of synapses to and from LTS interneurons allow them to shape the behavior of cortical circuits even at modest rates of activity, and an RS-LTS-FS circuit is capable of producing slow oscillations, on the time scale of these short-term changes.
PMCID: PMC3203067  PMID: 22046121
9.  Developmental Changes in Short-Term Plasticity at the Rat Calyx of Held Synapse 
The calyx of Held synapse of the medial nucleus of the trapezoid body functions as a relay synapse in the auditory brainstem. In vivo recordings have shown that this synapse displays low release probability and that the average size of synaptic potentials does not depend on recent history. We used a ventral approach to make in vivo extracellular recordings from the calyx of Held synapse in rats aged postnatal day 4 (P4) to P29 to study the developmental changes that allow this synapse to function as a relay. Between P4 and P8, we observed evidence for the presence of large short-term depression, which was counteracted by short-term facilitation at short intervals. Major changes occurred in the last few days before the onset of hearing for air-borne sounds, which happened at P13. The bursting pattern changed into a primary-like pattern, the amount of depression and facilitation decreased strongly, and the decay of facilitation became much faster. Whereas short-term plasticity was the most important cause of variability in the size of the synaptic potentials in immature animals, its role became minor around hearing onset and afterward. Similar developmental changes were observed during stimulation experiments both in brain slices and in vivo following cochlear ablation. Our data suggest that the strong reduction in release probability and the speedup of the decay of synaptic facilitation that happen just before hearing onset are important events in the transformation of the calyx of Held synapse into an auditory relay synapse.
PMCID: PMC4314708  PMID: 21832200
10.  Interactions between behaviorally relevant rhythms and synaptic plasticity alter coding in the piriform cortex 
The Journal of Neuroscience  2012;32(18):6092-6104.
Understanding how neural and behavioral timescales interact to influence cortical activity and stimulus coding is an important issue in sensory neuroscience. In air-breathing animals, voluntary changes in respiratory frequency alter the temporal patterning olfactory input. In the olfactory bulb, these behavioral timescales are reflected in the temporal properties of mitral/tufted (M/T) cell spike trains. As the odor information contained in these spike trains is relayed from the bulb to the cortex, interactions between presynaptic spike timing and short-term synaptic plasticity dictate how stimulus features are represented in cortical spike trains. Here we demonstrate how the timescales associated with respiratory frequency, spike timing and short-term synaptic plasticity interact to shape cortical responses. Specifically, we quantified the timescales of short-term synaptic facilitation and depression at excitatory synapses between bulbar M/T cells and cortical neurons in slices of mouse olfactory cortex. We then used these results to generate simulated M/T population synaptic currents that were injected into real cortical neurons. M/T population inputs were modulated at frequencies consistent with passive respiration or active sniffing. We show how the differential recruitment of short-term plasticity at breathing versus sniffing frequencies alters cortical spike responses. For inputs at sniffing frequencies, cortical neurons linearly encoded increases in presynaptic firing rates with increased phase locked, firing rates. In contrast, at passive breathing frequencies, cortical responses saturated with changes in presynaptic rate. Our results suggest that changes in respiratory behavior can gate the transfer of stimulus information between the olfactory bulb and cortex.
PMCID: PMC3363286  PMID: 22553016
11.  Auditory nerve inputs to cochlear nucleus neurons studied with cross-correlation 
Neuroscience  2008;154(1):127-138.
The strength of synapses between auditory nerve (AN) fibers and ventral cochlear nucleus (VCN) neurons is an important factor in determining the nature of neural integration in VCN neurons of different response types. Synaptic strength was analyzed using cross-correlation of spike trains recorded simultaneously from an AN fiber and a VCN neuron in anesthetized cats. VCN neurons were classified as chopper, primarylike, and onset using previously defined criteria, although onset neurons usually were not analyzed because of their low discharge rates. The correlograms showed an excitatory peak (EP), consistent with monosynaptic excitation, in AN-VCN pairs with similar best frequencies (49% 24/49 of pairs with best frequencies within ±5%). Chopper and primarylike neurons showed similar EPs, except that the primarylike neurons had shorter latencies and shorter-duration EPs. Large EPs consistent with endbulb terminals on spherical bushy cells were not observed, probably because of the low probability of recording from one. The small EPs observed in primarylike neurons, presumably spherical bushy cells, could be derived from small terminals that accompany endbulbs on these cells. EPs on chopper or primarylike-with-notch neurons were consistent with the smaller synaptic terminals on multipolar and globular bushy cells. Unexpectedly, EPs were observed only at sound levels within about 20 dB of threshold, showing that VCN responses to steady tones shift from a 1:1 relationship between AN and VCN spikes at low sound levels to a more autonomous mode of firing at high levels. In the high level mode, the pattern of output spikes seems to be determined by the properties of the postsynaptic spike generator rather than the input spike patterns. The EP amplitudes did not change significantly when the presynaptic spike was preceded by either a short or long interspike interval, suggesting that synaptic depression and facilitation have little effect under the conditions studied here.
PMCID: PMC2478560  PMID: 18343587
cross-correlation; ventral cochlear nucleus; synaptic strength
12.  Endbulb synaptic depression within the range of presynaptic spontaneous firing and its impact on the firing reliability of cochlear nucleus bushy neurons 
Hearing research  2010;270(1-2):101-109.
The majority of auditory nerve fibers exhibit prominent spontaneous activity in the absence of sound. More than half of all auditory nerve fibers in CBA mice have spontaneous firing rates higher than spikes/sec, and some fibers exceeding 100 spikes/sec. We tested whether and to what extent endbulb synapses are depressed by activity between 10 and 100 Hz, within the spontaneous firing rates of auditory nerve fibers. In contrast to rate-dependent depression seen at rates >100 Hz, we found that the extent of depression was essentially rate-independent (~35%) between 10 and 100 Hz. Neither cyclothiazide nor γ-D-glutamylglycine altered the rate-independent depression, arguing against receptor desensitization and/or vesicle depletion as major contributors for the depression. When endbulb synaptic transmission was more than half-blocked with the P/Q Ca2+ channel blocker ω-agatoxin IVA, depression during 25 and 100 Hz trains was significantly attenuated, indicating P/Q Ca2+ channel inactivation may contribute to low frequency synaptic depression. Following conditioning with a 100 Hz Poisson train, the EPSC paired pulse ratio was increased, suggesting a reduced release probability. This in turn should reduce subsequent depletion-based synaptic depression at higher activation rates. To probe whether this conditioning of the synapse improves the reliability of postsynaptic responses, we tested the firing reliability of bushy neurons to 200 Hz stimulation after conditioning the endbulb with a 25 Hz or 100 Hz stimulus train. Although immediately following the conditioning train, bushy cells responded to minimal suprathreshold stimulation less reliably, the firing reliability eventually settled to the same level (<50%) regardless of the presence or absence of the preconditioning. However, when multiple presynaptic fibers were activated simultaneously, the postsynaptic response reliability did not drop significantly below 90%. These results suggest that single endbulb terminals do not reliably trigger action potentials in bushy cells under “normal” operating conditions. We conclude that the endbulb synapses are chronically depressed even by low rates of spontaneous activity, and are more resistant to further depression when challenged with a higher rate of activity. However, there seems to be no beneficial effect as assessed by the firing reliability of postsynaptic neurons for transmitting information about higher rates of activity.
PMCID: PMC2997871  PMID: 20850512
synaptic depression; endbulb of Held; auditory; spontaneous activity; firing reliability
13.  Skipped-Stimulus Approach Reveals That Short-Term Plasticity Dominates Synaptic Strength during Ongoing Activity 
The Journal of Neuroscience  2015;35(21):8297-8307.
All synapses show activity-dependent changes in strength, which affect the fidelity of postsynaptic spiking. This is particularly important at auditory nerve synapses, where the presence and timing of spikes carry information about a sound's structure, which must be passed along for proper processing. However, it is not clear how synaptic plasticity influences spiking during ongoing activity. Under these conditions, conventional analyses erroneously suggest that synaptic plasticity has no influence on EPSC amplitude or spiking. Therefore, we developed new approaches to study how ongoing activity influences synaptic strength, using voltage- and current-clamp recordings from bushy cells in brain slices from mouse anteroventral cochlear nucleus. We applied identical trains of stimuli, except for one skipped stimulus, and found that EPSC amplitude was affected for 60 ms following a skipped stimulus. We further showed that the initial probability of release, calcium-dependent mechanisms of recovery, and desensitization all play a role even during ongoing activity. Current-clamp experiments indicated that these processes had a significant effect on postsynaptic spiking, as did the refractory period to a smaller extent. Thus short-term plasticity has real, important functional consequences.
PMCID: PMC4444548  PMID: 26019343
depression; endbulb; short-term plasticity; synapse
14.  Stochastic Properties of Neurotransmitter Release Expand the Dynamic Range of Synapses 
The Journal of Neuroscience  2013;33(36):14406-14416.
Release of neurotransmitter is an inherently random process, which could degrade the reliability of postsynaptic spiking, even at relatively large synapses. This is particularly important at auditory synapses, where the rate and precise timing of spikes carry information about sounds. However, the functional consequences of the stochastic properties of release are unknown. We addressed this issue at the mouse endbulb of Held synapse, which is formed by auditory nerve fibers onto bushy cells (BCs) in the anteroventral cochlear nucleus. We used voltage clamp to characterize synaptic variability. Dynamic clamp was used to compare BC spiking with stochastic or deterministic synaptic input. The stochastic component increased the responsiveness of the BC to conductances that were on average subthreshold, thereby increasing the dynamic range of the synapse. This had the benefit that BCs relayed auditory nerve activity even when synapses showed significant depression during rapid activity. However, the precision of spike timing decreased with stochastic conductances, suggesting a trade-off between encoding information in spike timing versus probability. These effects were confirmed in fiber stimulation experiments, indicating that they are physiologically relevant, and that synaptic randomness, dynamic range, and jitter are causally related.
PMCID: PMC3761050  PMID: 24005293
15.  Emergence of coordinated plasticity in the cochlear nucleus and cerebellum 
The Journal of Neuroscience  2012;32(23):7862-7868.
Synapses formed by one cell type onto another cell type tend to show characteristic short-term plasticity, which varies from facilitating to depressing depending on the particular system. Within a population of synapses, plasticity can also be variable, and it is unknown how this plasticity is determined on a cell-by-cell level. We have investigated this in the mouse cochlear nucleus, where auditory nerve (AN) fibers contact bushy cells (BCs) at synapses called “endbulbs of Held”. Synapses formed by different AN fibers onto one BC had plasticity that was more similar than would be expected at random. Experiments using MK-801 indicated that this resulted in part from similarity in the presynaptic probability of release. This similarity was not present in immature synapses, but emerged after the onset of hearing. In addition, this phenomenon also occurred at excitatory synapses in the cerebellum. This indicates that postsynaptic cells coordinate the plasticity of their inputs, which suggests that plasticity is of fundamental importance to synaptic function.
PMCID: PMC3378049  PMID: 22674262
16.  Synaptic Plasticity Can Produce and Enhance Direction Selectivity 
PLoS Computational Biology  2008;4(2):e32.
The discrimination of the direction of movement of sensory images is critical to the control of many animal behaviors. We propose a parsimonious model of motion processing that generates direction selective responses using short-term synaptic depression and can reproduce salient features of direction selectivity found in a population of neurons in the midbrain of the weakly electric fish Eigenmannia virescens. The model achieves direction selectivity with an elementary Reichardt motion detector: information from spatially separated receptive fields converges onto a neuron via dynamically different pathways. In the model, these differences arise from convergence of information through distinct synapses that either exhibit or do not exhibit short-term synaptic depression—short-term depression produces phase-advances relative to nondepressing synapses. Short-term depression is modeled using two state-variables, a fast process with a time constant on the order of tens to hundreds of milliseconds, and a slow process with a time constant on the order of seconds to tens of seconds. These processes correspond to naturally occurring time constants observed at synapses that exhibit short-term depression. Inclusion of the fast process is sufficient for the generation of temporal disparities that are necessary for direction selectivity in the elementary Reichardt circuit. The addition of the slow process can enhance direction selectivity over time for stimuli that are sustained for periods of seconds or more. Transient (i.e., short-duration) stimuli do not evoke the slow process and therefore do not elicit enhanced direction selectivity. The addition of a sustained global, synchronous oscillation in the gamma frequency range can, however, drive the slow process and enhance direction selectivity to transient stimuli. This enhancement effect does not, however, occur for all combinations of model parameters. The ratio of depressing and nondepressing synapses determines the effects of the addition of the global synchronous oscillation on direction selectivity. These ingredients, short-term depression, spatial convergence, and gamma-band oscillations, are ubiquitous in sensory systems and may be used in Reichardt-style circuits for the generation and enhancement of a variety of biologically relevant spatiotemporal computations.
Author Summary
Short-term synaptic plasticity is ubiquitous in brain circuits, but its function in sensorimotor processing remains unclear. We propose a parsimonious model of motion processing using short-term depression to produce directionally selective responses. In the model circuit, information from two spatially separated receptive fields is combined after being asymmetrically processed by synapses that either exhibit short-term synaptic depression or do not. Motion in a preferred direction leads to a constructive interaction between the two channels; motion in the opposite direction does not. The model represents short-term synaptic depression as two processes with distinct time constants. The faster process alone suffices to generate direction selectivity in the circuit. The slow process, in contrast, can enhance direction selectivity to sustained stimuli. Therefore, the slow process mediates a form of attentional shift from alert, where the neuron responds more vigorously, to discriminating, where the neuron responds more selectively with fewer spikes. This explains a previously observed enhancement of direction selectivity in weakly electric fish in the presence of global synchronous gamma-band oscillations. These findings suggest a mechanistic connection between gamma-band oscillations and attention.
PMCID: PMC2242823  PMID: 18282087
17.  NMDA Receptors Mediate Stimulus-Timing-Dependent Plasticity and Neural Synchrony in the Dorsal Cochlear Nucleus 
Auditory information relayed by auditory nerve fibers and somatosensory information relayed by granule cell parallel fibers converge on the fusiform cells (FCs) of the dorsal cochlear nucleus, the first brain station of the auditory pathway. In vitro, parallel fiber synapses on FCs exhibit spike-timing-dependent plasticity with Hebbian learning rules, partially mediated by the NMDA receptor (NMDAr). Well-timed bimodal auditory-somatosensory stimulation, in vivo equivalent of spike-timing-dependent plasticity, can induce stimulus-timing-dependent plasticity (StTDP) of the FCs spontaneous and tone-evoked firing rates. In healthy guinea pigs, the resulting distribution of StTDP learning rules across a FC neural population is dominated by a Hebbian profile while anti-Hebbian, suppressive and enhancing LRs are less frequent. In this study, we investigate in vivo, the NMDAr contribution to FC baseline activity and long term plasticity. We find that blocking the NMDAr decreases the synchronization of FC- spontaneous activity and mediates differential modulation of FC rate-level functions such that low, and high threshold units are more likely to increase, and decrease, respectively, their maximum amplitudes. Three significant alterations in mean learning-rule profiles were identified: transitions from an initial Hebbian profile towards (1) an anti-Hebbian; (2) a suppressive profile; and (3) transitions from an anti-Hebbian to a Hebbian profile. FC units preserving their learning rules showed instead, NMDAr-dependent plasticity to unimodal acoustic stimulation, with persistent depression of tone-evoked responses changing to persistent enhancement following the NMDAr antagonist. These results reveal a crucial role of the NMDAr in mediating FC baseline activity and long-term plasticity which have important implications for signal processing and auditory pathologies related to maladaptive plasticity of dorsal cochlear nucleus circuitry.
PMCID: PMC4653590  PMID: 26622224
NMDA receptors; dorsal cochlear nucleus; neural plasticity; stimulus-timing-dependent plasticity; neural synchrony; tinnitus; mechanisms of neural plasticity
18.  Emergence of Connectivity Motifs in Networks of Model Neurons with Short- and Long-Term Plastic Synapses 
PLoS ONE  2014;9(1):e84626.
Recent experimental data from the rodent cerebral cortex and olfactory bulb indicate that specific connectivity motifs are correlated with short-term dynamics of excitatory synaptic transmission. It was observed that neurons with short-term facilitating synapses form predominantly reciprocal pairwise connections, while neurons with short-term depressing synapses form predominantly unidirectional pairwise connections. The cause of these structural differences in excitatory synaptic microcircuits is unknown. We show that these connectivity motifs emerge in networks of model neurons, from the interactions between short-term synaptic dynamics (SD) and long-term spike-timing dependent plasticity (STDP). While the impact of STDP on SD was shown in simultaneous neuronal pair recordings in vitro, the mutual interactions between STDP and SD in large networks are still the subject of intense research. Our approach combines an SD phenomenological model with an STDP model that faithfully captures long-term plasticity dependence on both spike times and frequency. As a proof of concept, we first simulate and analyze recurrent networks of spiking neurons with random initial connection efficacies and where synapses are either all short-term facilitating or all depressing. For identical external inputs to the network, and as a direct consequence of internally generated activity, we find that networks with depressing synapses evolve unidirectional connectivity motifs, while networks with facilitating synapses evolve reciprocal connectivity motifs. We then show that the same results hold for heterogeneous networks, including both facilitating and depressing synapses. This does not contradict a recent theory that proposes that motifs are shaped by external inputs, but rather complements it by examining the role of both the external inputs and the internally generated network activity. Our study highlights the conditions under which SD-STDP might explain the correlation between facilitation and reciprocal connectivity motifs, as well as between depression and unidirectional motifs.
PMCID: PMC3893143  PMID: 24454735
19.  A Computational Model of Cellular Mechanisms of Temporal Coding in the Medial Geniculate Body (MGB) 
PLoS ONE  2011;6(12):e29375.
Acoustic stimuli are often represented in the early auditory pathway as patterns of neural activity synchronized to time-varying features. This phase-locking predominates until the level of the medial geniculate body (MGB), where previous studies have identified two main, largely segregated response types: Stimulus-synchronized responses faithfully preserve the temporal coding from its afferent inputs, and Non-synchronized responses, which are not phase locked to the inputs, represent changes in temporal modulation by a rate code. The cellular mechanisms underlying this transformation from phase-locked to rate code are not well understood. We use a computational model of a MGB thalamocortical neuron to test the hypothesis that these response classes arise from inferior colliculus (IC) excitatory afferents with divergent properties similar to those observed in brain slice studies. Large-conductance inputs exhibiting synaptic depression preserved input synchrony as short as 12.5 ms interclick intervals, while maintaining low firing rates and low-pass filtering responses. By contrast, small-conductance inputs with Mixed plasticity (depression of AMPA-receptor component and facilitation of NMDA-receptor component) desynchronized afferent inputs, generated a click-rate dependent increase in firing rate, and high-pass filtered the inputs. Synaptic inputs with facilitation often permitted band-pass synchrony along with band-pass rate tuning. These responses could be tuned by changes in membrane potential, strength of the NMDA component, and characteristics of synaptic plasticity. These results demonstrate how the same synchronized input spike trains from the inferior colliculus can be transformed into different representations of temporal modulation by divergent synaptic properties.
PMCID: PMC3241713  PMID: 22195049
20.  Intrinsic Stability of Temporally Shifted Spike-Timing Dependent Plasticity 
PLoS Computational Biology  2010;6(11):e1000961.
Spike-timing dependent plasticity (STDP), a widespread synaptic modification mechanism, is sensitive to correlations between presynaptic spike trains and it generates competition among synapses. However, STDP has an inherent instability because strong synapses are more likely to be strengthened than weak ones, causing them to grow in strength until some biophysical limit is reached. Through simulations and analytic calculations, we show that a small temporal shift in the STDP window that causes synchronous, or nearly synchronous, pre- and postsynaptic action potentials to induce long-term depression can stabilize synaptic strengths. Shifted STDP also stabilizes the postsynaptic firing rate and can implement both Hebbian and anti-Hebbian forms of competitive synaptic plasticity. Interestingly, the overall level of inhibition determines whether plasticity is Hebbian or anti-Hebbian. Even a random symmetric jitter of a few milliseconds in the STDP window can stabilize synaptic strengths while retaining these features. The same results hold for a shifted version of the more recent “triplet” model of STDP. Our results indicate that the detailed shape of the STDP window function near the transition from depression to potentiation is of the utmost importance in determining the consequences of STDP, suggesting that this region warrants further experimental study.
Author Summary
Synaptic plasticity is believed to be a fundamental mechanism of learning and memory. In spike-timing dependent synaptic plasticity (STDP), the temporal order of pre- and postsynaptic spiking across a synapse determines whether it is strengthened or weakened. STDP can induce competition between the different inputs synapsing onto a neuron, which is crucial for the formation of functional neuronal circuits. However, strong synaptic competition is often incompatible with inherent synaptic stability. Synaptic modification by STDP is controlled by a so-called temporal window function that determines how synaptic modification depends on spike timing. We show that a small shift, or random jitter, in the conventional temporal window function used for STDP that is compatible with the underlying molecular kinetics of STDP, can both stabilize synapses and maintain competition. The outcome of the competition is determined by the level of inhibitory input to the postsynaptic neuron. We conclude that the detailed shape of the temporal window function is critical in determining the functional consequences of STDP and thus deserves further experimental study.
PMCID: PMC2973812  PMID: 21079671
21.  Spectral Analysis of Input Spike Trains by Spike-Timing-Dependent Plasticity 
PLoS Computational Biology  2012;8(7):e1002584.
Spike-timing-dependent plasticity (STDP) has been observed in many brain areas such as sensory cortices, where it is hypothesized to structure synaptic connections between neurons. Previous studies have demonstrated how STDP can capture spiking information at short timescales using specific input configurations, such as coincident spiking, spike patterns and oscillatory spike trains. However, the corresponding computation in the case of arbitrary input signals is still unclear. This paper provides an overarching picture of the algorithm inherent to STDP, tying together many previous results for commonly used models of pairwise STDP. For a single neuron with plastic excitatory synapses, we show how STDP performs a spectral analysis on the temporal cross-correlograms between its afferent spike trains. The postsynaptic responses and STDP learning window determine kernel functions that specify how the neuron “sees” the input correlations. We thus denote this unsupervised learning scheme as ‘kernel spectral component analysis’ (kSCA). In particular, the whole input correlation structure must be considered since all plastic synapses compete with each other. We find that kSCA is enhanced when weight-dependent STDP induces gradual synaptic competition. For a spiking neuron with a “linear” response and pairwise STDP alone, we find that kSCA resembles principal component analysis (PCA). However, plain STDP does not isolate correlation sources in general, e.g., when they are mixed among the input spike trains. In other words, it does not perform independent component analysis (ICA). Tuning the neuron to a single correlation source can be achieved when STDP is paired with a homeostatic mechanism that reinforces the competition between synaptic inputs. Our results suggest that neuronal networks equipped with STDP can process signals encoded in the transient spiking activity at the timescales of tens of milliseconds for usual STDP.
Author Summary
Tuning feature extraction of sensory stimuli is an important function for synaptic plasticity models. A widely studied example is the development of orientation preference in the primary visual cortex, which can emerge using moving bars in the visual field. A crucial point is the decomposition of stimuli into basic information tokens, e.g., selecting individual bars even though they are presented in overlapping pairs (vertical and horizontal). Among classical unsupervised learning models, independent component analysis (ICA) is capable of isolating basic tokens, whereas principal component analysis (PCA) cannot. This paper focuses on spike-timing-dependent plasticity (STDP), whose functional implications for neural information processing have been intensively studied both theoretically and experimentally in the last decade. Following recent studies demonstrating that STDP can perform ICA for specific cases, we show how STDP relates to PCA or ICA, and in particular explains the conditions under which it switches between them. Here information at the neuronal level is assumed to be encoded in temporal cross-correlograms of spike trains. We find that a linear spiking neuron equipped with pairwise STDP requires additional mechanisms, such as a homeostatic regulation of its output firing, in order to separate mixed correlation sources and thus perform ICA.
PMCID: PMC3390410  PMID: 22792056
22.  Temporal Coding by Cochlear Nucleus Bushy Cells in DBA/2J Mice with Early Onset Hearing Loss 
The bushy cells of the anterior ventral cochlear nucleus (AVCN) preserve or improve the temporal coding of sound information arriving from auditory nerve fibers (ANF). The critical cellular mechanisms entailed in this process include the specialized nerve terminals, the endbulbs of Held, and the membrane conductance configuration of the bushy cell. In one strain of mice (DBA/2J), an early-onset hearing loss can cause a reduction in neurotransmitter release probability, and a smaller and slower spontaneous miniature excitatory postsynaptic current (EPSC) at the endbulb synapse. In the present study, by using a brain slice preparation, we tested the hypothesis that these changes in synaptic transmission would degrade the transmission of timing information from the ANF to the AVCN bushy neuron. We show that the electrical excitability of bushy cells in hearing-impaired old DBA mice was different from that in young, normal-hearing DBA mice. We found an increase in the action potential (AP) firing threshold with current injection; a larger AP afterhyperpolarization; and an increase in the number of spikes produced by large depolarizing currents. We also tested the temporal precision of bushy cell responses to high-frequency stimulation of the ANF. The standard deviation of spikes (spike jitter) produced by ANF-evoked excitatory postsynaptic potentials (EPSPs) was largely unaffected in old DBA mice. However, spike entrainment during a 100-Hz volley of EPSPs was significantly reduced. This was not a limitation of the ability of bushy cells to fire APs at this stimulus frequency, because entrainment to trains of current pulses was unaffected. Moreover, the decrease in entrainment is not attributable to increased synaptic depression. Surprisingly, the spike latency was 0.46 ms shorter in old DBA mice, and was apparently attributable to a faster conduction velocity, since the evoked excitatory postsynaptic current (EPSC) latency was shorter in old DBA mice as well. We also tested the contribution of the low-voltage-activated K+ conductance (gKLV) on the spike latency by using dynamic clamp. Alteration in gKLV had little effect on the spike latency. To test whether these changes in DBA mice were simply a result of continued postnatal maturation, we repeated the experiments in CBA mice, a strain that shows normal hearing thresholds through this age range. CBA mice exhibited no reduction in entrainment or increased spike jitter with age. We conclude that the ability of AVCN bushy neurons to reliably follow ANF EPSPs is compromised in a frequency-dependent fashion in hearing-impaired mice. This effect can be best explained by an increase in spike threshold.
PMCID: PMC1785302  PMID: 17066341
auditory; spike reliability; entrainment; deafness; endbulb of Held
23.  Temporal Coding by Cochlear Nucleus Bushy Cells in DBA/2J Mice with Early Onset Hearing Loss 
The bushy cells of the anterior ventral cochlear nucleus (AVCN) preserve or improve the temporal coding of sound information arriving from auditory nerve fibers (ANF). The critical cellular mechanisms entailed in this process include the specialized nerve terminals, the endbulbs of Held, and the membrane conductance configuration of the bushy cell. In one strain of mice (DBA/2J), an early-onset hearing loss can cause a reduction in neurotransmitter release probability, and a smaller and slower spontaneous miniature excitatory postsynaptic current (EPSC) at the endbulb synapse. In the present study, by using a brain slice preparation, we tested the hypothesis that these changes in synaptic transmission would degrade the transmission of timing information from the ANF to the AVCN bushy neuron. We show that the electrical excitability of bushy cells in hearing-impaired old DBA mice was different from that in young, normal-hearing DBA mice. We found an increase in the action potential (AP) firing threshold with current injection; a larger AP afterhyperpolarization; and an increase in the number of spikes produced by large depolarizing currents. We also tested the temporal precision of bushy cell responses to high-frequency stimulation of the ANF. The standard deviation of spikes (spike jitter) produced by ANF-evoked excitatory postsynaptic potentials (EPSPs) was largely unaffected in old DBA mice. However, spike entrainment during a 100-Hz volley of EPSPs was significantly reduced. This was not a limitation of the ability of bushy cells to fire APs at this stimulus frequency, because entrainment to trains of current pulses was unaffected. Moreover, the decrease in entrainment is not attributable to increased synaptic depression. Surprisingly, the spike latency was 0.46 ms shorter in old DBA mice, and was apparently attributable to a faster conduction velocity, since the evoked excitatory postsynaptic current (EPSC) latency was shorter in old DBA mice as well. We also tested the contribution of the low-voltage-activated K+ conductance (gKLV) on the spike latency by using dynamic clamp. Alteration in gKLV had little effect on the spike latency. To test whether these changes in DBA mice were simply a result of continued postnatal maturation, we repeated the experiments in CBA mice, a strain that shows normal hearing thresholds through this age range. CBA mice exhibited no reduction in entrainment or increased spike jitter with age. We conclude that the ability of AVCN bushy neurons to reliably follow ANF EPSPs is compromised in a frequency-dependent fashion in hearing-impaired mice. This effect can be best explained by an increase in spike threshold.
PMCID: PMC1785302  PMID: 17066341
auditory; spike reliability; entrainment; deafness; endbulb of Held
24.  Noise over-exposure alters long-term somatosensory-auditory processing in the dorsal cochlear nucleus – possible basis for tinnitus-related hyperactivity? 
The dorsal cochlear nucleus (DCN) is the first neural site of bimodal auditory-somatosensory integration. Previous studies have shown that stimulation of somatosensory pathways results in immediate suppression or enhancement of subsequent acoustically-evoked discharges. In the unimpaired auditory system suppression predominates. However, damage to the auditory input pathway leads to enhancement of excitatory somatosensory inputs to the cochlear nucleus, changing their effects on DCN neurons (Zeng et al., 2009; Shore et al., 2008). Given the well described connection between the somatosensory system and tinnitus in patients we sought to determine if plastic changes in long lasting bimodal somatosensory-auditory processing accompany tinnitus. Here we demonstrate for the first time in vivo long-term effects of somatosensory inputs on acoustically-evoked discharges of DCN neurons in guinea pigs. The effects of trigeminal nucleus stimulation are compared between normal-hearing animals and animals overexposed with narrow band noise and behaviorally tested for tinnitus. The noise exposure resulted in a temporary threshold shift (TTS) in auditory brainstem responses but a persistent increase in spontaneous and sound-evoked DCN unit firing rates and increased steepness of rate-level functions (RLFs). Rate increases were especially prominent in buildup units. The long-term somatosensory enhancement of sound-evoked responses was strengthened while suppressive effects diminished in noise-exposed animals, especially those that developed tinnitus. Damage to the auditory nerve (ANF) is postulated to trigger compensatory long-term synaptic plasticity of somatosensory inputs that might be an important underlying mechanism for tinnitus generation.
PMCID: PMC3567464  PMID: 22302808
25.  Auditory synapses to song premotor neurons are gated off during vocalization in zebra finches 
eLife  null;3:e01833.
Songbirds use auditory feedback to learn and maintain their songs, but how feedback interacts with vocal motor circuitry remains unclear. A potential site for this interaction is the song premotor nucleus HVC, which receives auditory input and contains neurons (HVCX cells) that innervate an anterior forebrain pathway (AFP) important to feedback-dependent vocal plasticity. Although the singing-related output of HVCX cells is unaltered by distorted auditory feedback (DAF), deafening gradually weakens synapses on HVCX cells, raising the possibility that they integrate feedback only at subthreshold levels during singing. Using intracellular recordings in singing zebra finches, we found that DAF failed to perturb singing-related synaptic activity of HVCX cells, although many of these cells responded to auditory stimuli in non-singing states. Moreover, in vivo multiphoton imaging revealed that deafening-induced changes to HVCX synapses require intact AFP output. These findings support a model in which the AFP accesses feedback independent of HVC.
eLife digest
Whenever we speak, sing, or play a musical instrument, we use auditory feedback to fine-tune our movements to achieve the sound that we want. This same process is used by songbirds to learn and maintain their songs. As juvenile birds practice singing, they compare their vocalizations with their father’s song, which they will previously have stored in memory, and continually tweak their own song until the two versions match.
It has been suggested that auditory feedback is integrated with song motor commands—the instructions from the brain to move the muscles required for singing—in a region of the songbird brain called the song premotor nucleus HVC. The structure of certain neurons in this region, known as HVCX cells, rapidly changes when a bird is deafened, which suggests that these HVCX cells detect auditory feedback.
Hamaguchi et al. have now tested this idea by using fine electrodes to record the signals in HVCX cells in male zebra finches as they sang. The cells changed their activity patterns whenever the birds changed their vocalizations. By contrast, these patterns did not change when the birds heard a distorted version of their own song played back to them as they sang. This suggests that HVCX cells are insensitive to auditory feedback, and that they mainly encode song motor commands instead.
If HVCX cells don’t detect feedback, then why does deafening affect them? HVCX cells send signals indirectly to a brain region called the LMAN (which is short for the lateral magnocellular nucleus of the anterior nidopallium). Normally, if a bird becomes deaf, the quality of their song begins to deteriorate, but this deterioration can be prevented by destroying the LMAN. Hamaguchi et al. used high resolution imaging to show that destroying the LMAN also prevents deafening from altering the structure of HVCX cells. Again, this suggests that auditory feedback is not relayed from the HVC to the LMAN; instead the flow of information is in the opposite direction.
This surprising finding—namely, that HVCX cells do not integrate auditory feedback and song motor commands—raises the question of which brain region is in fact responsible for this process. Further experiments will be required to identify the underlying circuitry in the brains of songbirds.
PMCID: PMC3927426  PMID: 24550254
zebra finch; auditory feedback; sensorimotor; birdsong; other

Results 1-25 (1073676)