PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (677715)

Clipboard (0)
None

Related Articles

1.  Caveolin-1 tumor-promoting role in human melanoma 
Caveolin-1 (Cav-1), a member of the caveolin family, regulates caveolae-associated signaling proteins, which are involved in many biological processes, including cancer development. Cav-1 was found to exert a complex and ambiguous role as oncogene or tumor suppressor depending on the cellular microenvironment. Here we investigated Cav-1 expression and function in a panel of melanomas, finding its expression in all the cell lines. The exception was the primary vertical melanoma cell line, WM983A, characterized by the lack of Cav-1, and then utilized as a recipient for Cav-1 gene transduction to address a series of functional studies. The alleged yet controversial role of phospho-Cav-1 on cell regulation was also tested by transducing the non phosphorylatable Cav-1Y14A mutant. Wild type Cav-1, but not mutated Cav-1Y14A, increased tumorigenicity as indicated by enhanced proliferation, migration, invasion and capacity of forming foci in semisolid medium. Accordingly, Cav-1 silencing inhibited melanoma cell growth reducing some of the typical traits of malignancy. Finally, we detected a secreted fraction of Cav-1 associated with cell released microvesicular particles able to stimulate in vitro anchorage independence, migration and invasion in a paracrine/autocrine fashion and, more important, competent to convey metastatic asset from the donor melanoma to the less aggressive recipient cell line. A direct correlation between Cav-1 levels, the amount of MV released in the culture medium and MMP-9 expression was also observed.
doi:10.1002/ijc.24451
PMCID: PMC2805039  PMID: 19521982
Melanoma; Caveolin-1; microvesicles; tumorigenicity
2.  CpG island shore methylation regulates caveolin-1 expression in breast cancer 
Oncogene  2012;32(38):4519-4528.
Caveolin-1 (Cav1) is an integral membrane, scaffolding protein found in plasma membrane invaginations (caveolae). Cav1 regulates multiple cancer-associated processes. In breast cancer, a tumor suppressive role for Cav1 has been suggested; however, Cav1 is frequently overexpressed in aggressive breast cancer subtypes, suggesting an oncogenic function in advanced-stage disease. To further delineate Cav1 function in breast cancer progression, we evaluated its expression levels among a panel of cell lines representing a spectrum of breast cancer phenotypes. In basal-like (the most aggressive BC subtype) breast cancer cells, Cav1 was consistently upregulated, and positively correlated with increased cell proliferation, anchorage-independent growth, and migration and invasion. To identify mechanisms of Cav1 gene regulation, we compared DNA methylation levels within promoter ‘CpG islands' (CGIs) with ‘CGI shores', recently described regions that flank CGIs with less CG-density. Integration of genome-wide DNA methylation profiles (‘methylomes') with Cav1 expression in 30 breast cancer cell lines showed that differential methylation of CGI shores, but not CGIs, significantly regulated Cav1 expression. In breast cancer cell lines having low Cav1 expression (despite promoter CGI hypomethylation), we found that treatment with a DNA methyltransferase inhibitor induced Cav1 expression via CGI shore demethylation. In addition, further methylome assessments revealed that breast cancer aggressiveness associated with Cav1 CGI shore methylation levels, with shore hypermethylation in minimally aggressive, luminal breast cancer cells and shore hypomethylation in highly aggressive, basal-like cells. Cav1 CGI shore methylation was also observed in human breast tumors, and overall survival rates of breast cancer patients lacking estrogen receptor α (ERα) negatively correlated with Cav1 expression. Based on this first study of Cav1 (a potential oncogene) CGI shore methylation, we suggest this phenomenon may represent a new prognostic marker for ERα-negative, basal-like breast cancer.
doi:10.1038/onc.2012.474
PMCID: PMC3787796  PMID: 23128390
Cav1; CpG island shore; DNA methylation; breast cancer
3.  Caveolin-3 Associates with and Affects the Function of Hyperpolarization-Activated Cyclic Nucleotide-Gated Channel 4† 
Biochemistry  2008;47(47):12312-12318.
Targeting of ion channels to caveolae, a subset of lipid rafts, allow cells to respond efficiently to extracellular signals. Hyperpolarization-activated cyclic nucleotide-gated channel (HCN) 4 is a major subunit for the cardiac pacemaker. Caveolin-3 (Cav3), abundantly expressed in muscle cells, is responsible for forming caveolae. P104L, a Cav3 mutant, has a dominant negative effect on wild type (WT) Cav3 and associates with limb-girdle muscular dystrophy and cardiomyopathy. HCN4 was previously shown to localize to lipid rafts, but how caveolae regulate the function of HCN4 is unknown. We hypothesize that Cav3 associates with HCN4 and regulates the function of HCN4 channel. In this study, we applied whole-cell patch clamp analysis, immunostaining, biotinylation, and immunoprecipitation methods to investigate this hypothesis. The immunoprecipitation results indicated an association of HCN4 and Cav3 in the heart and in HEK293 cells. Our immunostaining results showed that HCN4 colocalized with Cav3 but only partially colocalized with P104L in HEK293 cells. Transient expression of Cav3, but not P104L, in HEK 293 cells stably expressing HCN4 caused a 45% increase in HCN4 current (IHCN4) density. Transient expression of P104L caused a two-fold increase in the activation time constant for IHCN4 and shifted the voltage of the steady-state inactivation to a more negative potential. We conclude that HCN4 associates with Cav3 to form a HCN4 macromolecular complex. Our results indicated that disruption of caveolae using P104L alters HCN4 function and could cause a reduction of cardiac pacemaker activity.
PMCID: PMC2803323  PMID: 19238754
4.  Differential Impact of Caveolae and Caveolin-1 Scaffolds on The Membrane Raft Proteome* 
Molecular & Cellular Proteomics : MCP  2011;10(10):M110.007146.
Caveolae, a class of cholesterol-rich lipid rafts, are smooth invaginations of the plasma membrane whose formation in nonmuscle cells requires caveolin-1 (Cav1). The recent demonstration that Cav1-associated cavin proteins, in particular PTRF/cavin-1, are also required for caveolae formation supports a functional role for Cav1 independently of caveolae. In tumor cells deficient for Golgi β-1,6N-acetylglucosaminyltransferase V (Mgat5), reduced Cav1 expression is associated not with caveolae but with oligomerized Cav1 domains, or scaffolds, that functionally regulate receptor signaling and raft-dependent endocytosis. Using subdiffraction-limit microscopy, we show that Cav1 scaffolds are homogenous subdiffraction-limit sized structures whose size distribution differs from that of Cav1 in caveolae expressing cells. These cell lines displaying differing Cav1/caveolae phenotypes are effective tools for probing the structure and composition of caveolae. Using stable isotope labeling by amino acids in cell culture, we are able to quantitatively distinguish the composition of caveolae from the background of detergent-resistant membrane proteins and show that the presence of caveolae enriches the protein composition of detergent-resistant membrane, including the recruitment of multiple heterotrimeric G-protein subunits. These data were further supported by analysis of immuno-isolated Cav1 domains and of methyl-β-cyclodextrin-disrupted detergent-resistant membrane. Our data show that loss of caveolae results in a dramatic change to the membrane raft proteome and that this change is independent of Cav1 expression. The proteomics data, in combination with subdiffraction-limit microscopy, indicates that noncaveolar Cav1 domains, or scaffolds are structurally and functionally distinct from caveolae and differentially impact on the molecular composition of lipid rafts.
doi:10.1074/mcp.M110.007146
PMCID: PMC3205860  PMID: 21753190
5.  Anti-caveolin-1 Antibodies As Anti-Prostate Cancer Therapeutics 
Hybridoma  2012;31(2):77-86.
Caveolae are critical cell surface structures important in coordinated cell signaling and endocytosis. One of the major proteins of caveolae is caveolin 1 (Cav-1). Cellular levels of Cav-1 are associated with cancer progression. In prostate cancer cells, levels of Cav-1 are positively correlated with tumor progression and metastasis. Cav-1 can be secreted by prostate cancer cells into the microenvironment and triggers proliferation and anti-apoptosis of the tumor and tumor endothelial cells. Clinical studies have shown increased serum Cav-1 levels in patients with poor prognosis. In tissue culture and animal model experiments, blocking secreted Cav-1 by polyclonal antibodies inhibits tumor cell growth. Cav-1 is therefore a potential therapeutic target for prostate cancer treatment. In this study, we used Cav-1 knock-out mice as hosts to produce monoclonal anti-Cav-1 antibodies. A total of 11 hybridoma cell lines were selected for their ability to produce antibodies that bound GST-Cav-1 but not GST on glutathione-coated ELISA plates. Further screening with ELISAs using GST-Cav-1 fragments on GSH-coated plates classified these antibodies into four groups: N1-31 with five antibodies binds the far N-terminus between amino acids 1 and 31; N32-80 with three antibodies binds between amino acids 32 and 80; CSD with two antibodies potentially bind the scaffolding domain (amino acids 80-101); and Cav-1-C with 1 antibody binds parts of the C-terminal half. Binding affinities (Kd) of these antibodies to soluble Cav-1 ranged from 10−11 to 10−8 M. Binding competition experiments revealed that these antibodies recognized a total of six different epitopes on Cav-1. Potency of these antibodies to neutralize Cav-1-mediated signaling pathways in cultured cells and in animal models will be tested. A selected monoclonal antibody will then be humanized and be further developed into a potential anti-prostate cancer therapeutic.
doi:10.1089/hyb.2011.0100
PMCID: PMC3326273  PMID: 22509911
6.  Identification of a novel prostate cancer biomarker, caveolin-1: Implications and potential clinical benefit 
While prostate cancer is a common disease in men, it is uncommonly life-threatening. To better understand this phenomenon, tumor biologists have sought to elucidate the mechanisms that contribute to the development of virulent prostate cancer. The recent discovery that caveolin-1 (Cav-1) functions as an important oncogene involved in prostate cancer progression reflects the success of this effort. Cav-1 is a major structural coat protein of caveolae, specialized plasma membrane invaginations involved in multiple cellular functions, including molecular transport, cell adhesion, and signal transduction. Cav-1 is aberrantly overexpressed in human prostate cancer, with higher levels evident in metastatic versus primary sites. Intracellular Cav-1 promotes cell survival through activation of Akt and enhancement of additional growth factor pro-survival pathways. Cav-1 is also secreted as a biologically active molecule that promotes cell survival and angiogenesis within the tumor microenvironment. Secreted Cav-1 can be reproducibly detected in peripheral blood using a sensitive and specific immunoassay. Cav-1 levels distinguish men with prostate cancer from normal controls, and preoperative Cav-1 levels predict which patients are at highest risk for relapse following radical prostatectomy for localized disease. Thus, secreted Cav-1 is a promising biomarker in identifying clinically significant prostate cancer.
PMCID: PMC3004586  PMID: 21188102
caveolin-1; prostate cancer; biomarker
7.  CAV1 Inhibits Metastatic Potential in Melanomas through Suppression of the Integrin/Src/FAK Signaling Pathway 
Cancer research  2010;70(19):7489-7499.
Caveolin-1 (CAV1) is the main structural component of Caveolae which are plasma membrane invaginations that participate in vesicular trafficking and signal transduction events. Although evidence has recently accumulated describing the function of CAV1 in several cancer types, its role in melanoma tumor formation and progression remains poorly explored. Here, by employing B16F10 melanoma cells as an experimental system, we directly explore the function of CAV1 in melanoma tumor growth and metastasis. We first show that CAV1 expression promotes proliferation, while it suppresses migration and invasion of B16F10 cells in vitro. When orthotopically implanted in the skin of mice, B16F10 cells expressing CAV1 form tumors that are similar in size to their control counterparts. An experimental metastasis assay demonstrates that CAV1 expression suppresses the ability of B16F10 cells to form lung metastases in C57Bl/6 syngeneic mice. Additionally, CAV1 protein and mRNA levels are found to be significantly reduced in human metastatic melanoma cell lines and human tissue from metastatic lesions. Finally, we demonstrate that following integrin activation, B16F10 cells expressing CAV1 display reduced expression levels and activity of FAK and Src proteins. Furthermore, CAV1 expression markedly reduces the expression of integrin β3 in B16F10 melanoma cells. In summary, our findings provide experimental evidence that CAV1 may function as an antimetastatic gene in malignant melanoma.
doi:10.1158/0008-5472.CAN-10-0900
PMCID: PMC2948597  PMID: 20709760
8.  Caveolin-1-Deficient Mice Show Defects in Innate Immunity and Inflammatory Immune Response during Salmonella enterica Serovar Typhimurium Infection▿ †  
Infection and Immunity  2006;74(12):6665-6674.
A number of studies have shown an association of pathogens with caveolae. To this date, however, there are no studies showing a role for caveolin-1 in modulating immune responses against pathogens. Interestingly, expression of caveolin-1 has been shown to occur in a regulated manner in immune cells in response to lipopolysaccharide (LPS). Here, we sought to determine the role of caveolin-1 (Cav-1) expression in Salmonella pathogenesis. Cav-1−/− mice displayed a significant decrease in survival when challenged with Salmonella enterica serovar Typhimurium. Spleen and tissue burdens were significantly higher in Cav-1−/− mice. However, infection of Cav-1−/− macrophages with serovar Typhimurium did not result in differences in bacterial invasion. In addition, Cav-1−/− mice displayed increased production of inflammatory cytokines, chemokines, and nitric oxide. Regardless of this, Cav-1−/− mice were unable to control the systemic infection of Salmonella. The increased chemokine production in Cav-1−/− mice resulted in greater infiltration of neutrophils into granulomas but did not alter the number of granulomas present. This was accompanied by increased necrosis in the liver. However, Cav-1−/− macrophages displayed increased inflammatory responses and increased nitric oxide production in vitro in response to Salmonella LPS. These results show that caveolin-1 plays a key role in regulating anti-inflammatory responses in macrophages. Taken together, these data suggest that the increased production of toxic mediators from macrophages lacking caveolin-1 is likely to be responsible for the marked susceptibility of caveolin-1-deficient mice to S. enterica serovar Typhimurium.
doi:10.1128/IAI.00949-06
PMCID: PMC1698056  PMID: 16982844
9.  A genetic polymorphism in the CAV1 gene associates with the development of bronchiolitis obliterans syndrome after lung transplantation 
Background
Caveolin 1 (Cav-1) is the primary structural component of cell membrane invaginations called 'caveolae'. Expression of Cav-1 is implicated in the pathogenesis of pulmonary fibrosis. Genetic polymorphisms in the CAV1 gene influence the function of Cav-1 in malignancies and associate with renal allograft fibrosis. Chronic allograft rejection after lung transplantation, called 'bronchiolitis obliterans syndrome' (BOS), is also characterised by the development of fibrosis.
In this study, we investigated whether CAV1 genotypes associate with BOS and whether Cav-1 serum levels are influenced by the CAV1 genotype and can be used as a biomarker to predict the development of BOS.
Methods
Twenty lung transplant recipients with BOS (BOSpos), ninety without BOS (BOSneg) and four hundred twenty-two healthy individuals donated DNA samples. Four SNPs in CAV1 were genotyped. Serial Cav-1 serum levels were measured in a matched cohort of 10 BOSpos patients and 10 BOSneg patients. Furthermore, single-time point Cav-1 serum levels were measured in 33 unmatched BOSneg patients and 60 healthy controls.
Results
Homozygosity of the minor allele of rs3807989 was associated with an increased risk for BOS (odds ratio: 6.13; P = 0.0013). The median Cav-1 serum level was significantly higher in the BOSpos patients than in the matched BOSneg patients (P = 0.026). Longitudinal analysis did not show changes in Cav-1 serum levels over time in both groups. The median Cav-1 serum level in the group of 43 BOSneg patients was lower than that in the healthy control group (P = 0.046).
In lung transplant recipients, homozygosity of the minor allele of rs3807989 and rs3807994 was associated with increased Cav-1 serum levels.
Conclusion
In lung transplant recipients, the CAV1 SNP rs3807989 was associated with the development of BOS and Cav-1 serum levels were influenced by the CAV1 genotype.
doi:10.1186/1755-1536-4-24
PMCID: PMC3215956  PMID: 22040717
caveolin 1; genetic polymorphism; serum; lung transplantation; bronchiolitis obliterans syndrome
10.  Epidermal growth factor receptor and caveolin-1 coexpression identifies adult supratentorial ependymomas with rapid unfavorable outcomes 
Neuro-Oncology  2010;13(2):176-183.
Supratentorial ependymomas account for a minority of intracranial ependymomas, which still have uncertain prognostic markers. Among them, epidermal growth factor receptor (EGFR) overexpression correlates with a poor prognosis. In glioblastoma cells, EGFR function has been reported to be regulated by its migration from cell membrane infoldings called caveolae and by its colocalization with the caveolae-associated protein caveolin-1 (cav-1). Therefore, we decided to investigate cav-1 expression and coexpression with EGFR in a series of adult intracranial ependymomas. We analyzed 22 adult supratentorial ependymomas and compared tumor grades as determined by the WHO classification and patient survival rates with the expression of EGFR, cav-1, and p53 and the values of the proliferation marker Ki-67, all tested by immunohistochemistry; in addition, we investigated the mutational profile of cav-1. The results demonstrate that the tumor grade is directly correlated with EGFR, Ki-67, and cav-1 expression only, whereas (by univariate analysis) the expression of all the studied markers, as well as the tumor histological grade, significantly correlated with the patient's overall survival (OS). By multivariate analysis using the Cox proportional hazards model, among all variables considered, cav-1 was the only independent prognostic marker related to OS (relative risk = 13.92; P = .013). Among grade II ependymomas, only cav-1 correlated with poor OS (P = .011), distinguishing 2 distinct subgroups of tumors with different outcomes despite sharing identical grading. All the patients studied carried wild-type cav-1 sequences, demonstrating that cav-1 overexpression is not driven by activating mutations, as previously reported in other tumor types. Interestingly, after stratifying all cases into 4 distinct groups according to cav-1 and EGFR expression (cav-1+/EGFR+, cav-1−/EGFR−, cav-1+/EGFR−, and cav-1−/EGFR+), the coexpression of cav-1 and EGFR identified a subset of patients with definitively poor prognoses. Further studies are needed to support this evidence on a larger scale and to clarify how cav-1 and EGFR interaction can influence tumor aggressiveness.
doi:10.1093/neuonc/noq160
PMCID: PMC3064620  PMID: 21059755
caveolin-1; EGFR; ependymomas; IHC; survival
11.  Auto-stimulatory action of secreted caveolin-1 on the proliferation of Ewing’s sarcoma cells 
International Journal of Oncology  2011;38(5):1259-1265.
Caveolin-1 (CAV1) is highly expressed in Ewing’s sarcoma (EWS). We previously showed that increased cellular CAV1 is associated with the regulation of the tumorigenicity, drug resistance and metastatic ability of EWS cells. Because several studies reported that melanoma and prostate cancer cells, which express relatively high CAV1 levels, secrete CAV1, and that secreted CAV1 is associated with tumor progression, our study explored the possibility that EWS cells also secreted CAV1 and that secreted CAV1 may contribute to EWS pathobiology. Results from experiments involving the ectopic expression of a Myc-tagged CAV1 protein in EWS cells as well as the supplementation of culture media with purified CAV1 protein followed by its intracellular localization using immunofluorescence demonstrated that EWS cells secrete CAV1, that they are able to take up the secreted protein, and that extracellular CAV1 enhances EWS cell proliferation. These findings strongly support the notion that secreted CAV1 may also contribute to the malignant properties of EWS.
doi:10.3892/ijo.2011.963
PMCID: PMC3335731  PMID: 21373757
caveolin-1; cell proliferation; Ewing’s sarcoma; protein secretion; protein uptake
12.  Caveolin-1 Single Nucleotide Polymorphism in Antineutrophil Cytoplasmic Antibody Associated Vasculitis 
PLoS ONE  2013;8(7):e69022.
Objective
Immunosuppression is cornerstone treatment of antineutrophil cytoplasmic antibody associated vasculitis (AAV) but is later complicated by infection, cancer, cardiovascular and chronic kidney disease. Caveolin-1 is an essential structural protein for small cell membrane invaginations known as caveolae. Its functional role has been associated with these complications. For the first time, caveolin-1 (CAV1) gene variation is studied in AAV.
Methods
CAV1 single nucleotide polymorphism rs4730751 was analysed in genomic DNA from 187 white patients with AAV from Birmingham, United Kingdom. The primary outcome measure was the composite endpoint of time to all-cause mortality or renal replacement therapy. Secondary endpoints included time to all-cause mortality, death from sepsis or vascular disease, cancer and renal replacement therapy. Validation of results was sought from 589 white AAV patients, from two European cohorts.
Results
The primary outcome occurred in 41.7% of Birmingham patients. In a multivariate model, non-CC genotype variation at the studied single nucleotide polymorphism was associated with increased risk from: the primary outcome measure [HR 1.86; 95% CI: 1.14-3.04; p=0.013], all-cause mortality [HR:1.83; 95% CI: 1.02-3.27; p=0.042], death from infection [HR:3.71; 95% CI: 1.28-10.77; p=0.016], death from vascular disease [HR:3.13; 95% CI: 1.07-9.10; p=0.037], and cancer [HR:5.55; 95% CI: 1.59-19.31; p=0.007]. In the validation cohort, the primary outcome rate was far lower (10.4%); no association between genotype and the studied endpoints was evident.
Conclusions
The presence of a CC genotype in Birmingham is associated with protection from adverse outcomes of immunosuppression treated AAV. Lack of replication in the European cohort may have resulted from low clinical event rates. These findings are worthy of further study in larger cohorts.
doi:10.1371/journal.pone.0069022
PMCID: PMC3716813  PMID: 23894397
13.  MMTV promoter–regulated caveolin-1 overexpression yields defective parenchymal epithelia in multiple exocrine organs of transgenic mice 
Experimental and molecular pathology  2010;89(1):10.1016/j.yexmp.2010.03.009.
Caveolin-1 (Cav-1) is a major structural protein of caveolae, specialized plasma membrane invaginations that are involved in a cell-specific fashion in diverse cell activities such as molecular transport, cell adhesion, and signal transduction. In normal adult mammals, Cav-1 expression is abundant in mesenchyme-derived cells but relatively low in epithelial parenchyma. However, epithelial Cav-1 overexpression is associated with development and/or progression of many carcinomas. In this study, we generated and characterized a transgenic mouse model of Cav-1 overexpression under the control of a mouse mammary tumor virus (MMTV) long terminal repeat promoter, which is predominantly expressed in specific epithelial cells. The MMTVcav-1+ transgenic mice were fertile, and females bore litters of normal-size with no obvious developmental abnormalities. However, by age 11 months, the MMTVcav-1+ mice demonstrated overtly different phenotypes in multiple exocrine organs when compared with their nontransgenic MMTVcav-1− littermates. Cav-1 overexpression in MMTVcav-1+ mice produced organ-specific abnormalities, including hypotrophy of mammary glandular epithelia, bronchiolar epithelial hyperplasia and atypia, mucous-cell hyperplasia in salivary glands, elongated hair follicles and dermal thickening in the skin, and reduced accumulation of enzymogen granules in pancreatic acinar cells. In addition, the MMTVcav-1+ transgenic mice tended to have a greater incidence of malignant tumors, including lung and liver carcinomas and lymphoma, than their MMTVcav-1− littermates. Our results indicate that Cav-1 overexpression causes organ-specific, age-related epithelial disorders and suggest the potential for increased susceptibility to carcinogenesis.
doi:10.1016/j.yexmp.2010.03.009
PMCID: PMC3881545  PMID: 20399205
MMTV-promoter; Cav-1 overexpression; parenchymal epithelia; exocrine organs
14.  Involvement of Caveolin-1 in Repair of DNA Damage through Both Homologous Recombination and Non-Homologous End Joining 
PLoS ONE  2010;5(8):e12055.
Background
Caveolin-1 (Cav-1), the major component of caveolae, is a 21–24 kDa integral membrane protein that interacts with a number of signaling molecules. By acting as a scaffolding protein, Cav-1 plays crucial roles in the regulation of various physiologic and patho-physiologic processes including oncogenic transformation and tumorigenesis, and tumor invasion and metastasis.
Methodology/Principal Findings
In the present study we sought to explore the role of Cav-1 in response to DNA damage and the mechanism involved. We found that the level of Cav-1 was up-regulated rapidly in cells treated with ionizing radiation. The up-regulation of Cav-1 following DNA damage occurred only in cells expressing endogenous Cav-1, and was associated with the activation of DNA damage response pathways. Furthermore, we demonstrated that the expression of Cav-1 protected cells against DNA damage through modulating the activities of both the homologous recombination (HR) and non-homologous end joining (NHEJ) repair systems, as evidenced by the inhibitory effects of the Cav-1-targeted siRNA on cell survival, HR frequency, phosphorylation of DNA-dependent protein kinase (DNA-PK), and nuclear translocation of epidermal growth factor receptor (EGFR) following DNA damage, and by the stimulatory effect of the forced expression of Cav-1 on NHEJ frequency.
Conclusion/Significance
Our results indicate that Cav-1 may play a critical role in sensing genotoxic stress and in orchestrating the response of cells to DNA damage through regulating the important molecules involved in maintaining genomic integrity.
doi:10.1371/journal.pone.0012055
PMCID: PMC2917373  PMID: 20700465
15.  Loss of Caveolin-1 Gene Expression Accelerates the Development of Dysplastic Mammary Lesions in Tumor-Prone Transgenic Mice 
Molecular Biology of the Cell  2003;14(3):1027-1042.
Caveolin-1 is the principal structural component of caveolae microdomains, which represent a subcompartment of the plasma membrane. Several independent lines of evidence support the notion that caveolin-1 functions as a suppressor of cell transformation. For example, the human CAV-1 gene maps to a suspected tumor suppressor locus (D7S522/7q31.1) that is frequently deleted in a number of carcinomas, including breast cancers. In addition, up to 16% of human breast cancers harbor a dominant-negative mutation, P132L, in the CAV-1 gene. Despite these genetic associations, the tumor suppressor role of caveolin-1 still remains controversial. To directly assess the in vivo transformation suppressor activity of the caveolin-1 gene, we interbred Cav-1 (−/−) null mice with tumor-prone transgenic mice (MMTV-PyMT) that normally develop multifocal dysplastic lesions throughout the entire mammary tree. Herein, we show that loss of caveolin-1 gene expression dramatically accelerates the development of these multifocal dysplastic mammary lesions. At 3 wk of age, loss of caveolin-1 resulted in an approximately twofold increase in the number of lesions (foci per gland; 3.3 ± 1.0 vs. 7.0 ± 1.2) and an approximately five- to sixfold increase in the total area occupied by these lesions. Similar results were obtained at 4 wk of age. However, complete loss of caveolin-1 was required to accelerate the appearance of these dysplastic mammary lesions, because Cav-1 (+/−) heterozygous mice did not show any increases in foci development. We also show that loss of caveolin-1 increases the extent and the histological grade of these mammary lesions and facilitates the development of papillary projections in the mammary ducts. Finally, we demonstrate that cyclin D1 expression levels are dramatically elevated in Cav-1 (−/−) null mammary lesions, consistent with the accelerated appearance and growth of these dysplastic foci. This is the first in vivo demonstration that caveolin-1 can function as a transformation suppressor gene.
doi:10.1091/mbc.E02-08-0503
PMCID: PMC151577  PMID: 12631721
16.  Caveolin-2-deficient mice show increased sensitivity to endotoxemia 
Cell Cycle  2011;10(13):2151-2161.
Caveolin proteins are structural components of caveolae and are involved in the regulation of many biological processes. Recent studies have shown that caveolin-1 modulates inflammatory responses and is important for sepsis development. In the present study, we show that caveolin-1 and caveolin-2 have opposite roles in lipopolysaccharide (LPS)-induced sepsis using caveolin-deficient (Cav-1-/- and Cav-2-/-) mice for each of these proteins. While Cav-1-/- mice displayed delayed mortality following challenge with LPS, Cav-2-/- mice were more sensitive to LPS compared to wild-type (WT). With Cav-2-/- mice, this effect was associated with increased intestinal injury and increased intestinal permeability. This negative outcome was also correlated with enhanced expression of iNOS in intestinal epithelial cells, and enhanced production of nitric oxide (NO). By contrast, Cav-1-/- mice demonstrated a decrease in iNOS expression with decreased NO production, but no alteration in intestinal permeability. The differential expression of iNOS was associated with a significant increase in STAT-1 activation in these mice. Intestinal cells of Cav-2-/- mice showed increased phosphorylation of STAT-1 at tyrosine 701 compared to wild-type. However, Cav-1-/- mice-derived intestinal cells showed decreased levels of phosphorylation of STAT-1 at tyrosine 701. Since caveolin-2 is almost completely absent in Cav-1-/- mice, we conclude that it is not just the absence of caveolin-2 that is responsible for the observed effects, but that the balance between caveolin-1 and caveolin-2 is important for iNOS expression and ultimately for sepsis outcome.
doi:10.4161/cc.10.13.16234
PMCID: PMC3154364  PMID: 21670588
caveolin; sepsis; nitric oxide; lipopolysaccharide; permeability; endotoxemia; inflammation
17.  Caveolin-1 modulates the ability of Ewing's sarcoma to metastasize 
Molecular cancer research : MCR  2010;8(11):1489-1500.
Metastasis is the final stage of tumor progression and is thought to be responsible for up to 90% of deaths associated with solid tumors. Caveolin-1 (CAV1) regulates multiple cancer-associated processes related to malignant tumor progression. In the present study we tested the hypothesis that CAV1 modulates the metastatic ability of ESFT cells. First, we analyzed the expression of CAV1 by immunostaining a tissue microarray containing 43 paraffin-embedded ESFT tumors with known EWS translocations. Even though no evidence was found for a significant association between CAV1 expression and stage, size or tumor site, all metastatic samples (10/10) had significantly high CAV1 expression, suggesting that high CAV1 content could positively contribute to enhance ESFT metastasis. To determine the effect of CAV1 on the migratory and invasive capabilities of ESFT cells, we knocked down CAV1 expression in TC252 and A673 cells by stably transfecting a previously validated shRNA construct. In vitro, migration and invasion assays showed that, for both cell lines CAV1 knocked-down cells migrated and invaded significantly less (p≤0.01) than control cells. Moreover, control A673 cells introduced into Balb/c nude mice by tail vein injection strongly colonized the lungs. In contrast, animals injected with CAV1 knocked-down cells showed either no incidence of metastasis or developed lung metastases after a significant delay (P<0.0001). Finally, we show that the molecular mechanisms by which CAV1 carries out its key role in regulating ESFT metastasis involve MMP production and activation as well as the control of the expression of SPARC, a known determinant of lung colonization.
doi:10.1158/1541-7786.MCR-10-0060
PMCID: PMC3679656  PMID: 21106507
18.  Overexpression of caveolins in Caenorhabditis elegans induces changes in egg-laying and fecundity 
Caveolae are small plasma membrane-associated invaginations that are enriched in proteins of the caveolin family in addition to, sphingolipids, glycosphingolipids and cholesterol. Caveolae have been implicated in several endocytic and trafficking mechanisms. Mutations in caveolins have been shown to cause disease and caveolae offer one site for pathogen entry. The Caenorhabditis elegans genome encodes two caveolins (cav-1 and cav-2); we have shown that these two proteins have distinct expression patterns. CAV-1 is found in the majority of cells in embryos and in the body-wall muscles, neurons and germ line of adult worms. CAV-2 is expressed in the intestine and is required for apical lipid trafficking. In the course of our studies, we generated several constructs to overexpress caveolins in C. elegans. Here we show that overexpression of cav-1 protects against the decrease in brood size associated with the effects of heat shock and the presence of extrachromosomal arrays in heat-shocked animals. Furthermore, we show that overexpression of cav-2 in the nervous system increases the rate of egg-laying and total number of eggs laid.
PMCID: PMC2775226  PMID: 19907693
caveolin; caveolae; Caenorhabditis elegans; heat-shock; overexpression; fecundity; eggs; temperature
19.  Biomechanical remodeling of the microenvironment by stromal Caveolin-1 favors tumor invasion and metastasis 
Cell  2011;146(1):148-163.
Summary
Mechanotransduction, a key determinant of tissue homeostasis and tumor progression, is driven by intercellular adhesions, cell contractility and forces generated with the microenvironment, dependent on extracellular matrix composition, organization and compliance. Caveolin-1 (Cav1) favors cell elongation in 3D cultures and promotes Rho-and force-dependent contraction, matrix alignment and microenvironment stiffening through regulation of p190RhoGAP. In turn, microenvironment remodeling by Cav1-fibroblasts forces cell elongation. Cav1-deficient mice have disorganized stromal tissue architecture. Stroma associated with human carcinomas and melanoma metastases is enriched in Cav1-expressing carcinoma-associated fibroblasts (CAFs). Cav1 expression in breast CAFs correlates with low survival, and Cav1 depletion in CAFs decreases CAF contractility. Consistently, fibroblast expression of Cav1, through p190RhoGAP regulation, favors directional migration and invasiveness of carcinoma cells in vitro. In vivo, stromal Cav1 remodels peri- and intratumoral microenvironments to facilitate tumor invasion, correlating with increased metastatic potency. Thus, Cav1 modulates tissue responses through force-dependent architectural regulation of the microenvironment.
doi:10.1016/j.cell.2011.05.040
PMCID: PMC3244213  PMID: 21729786
Caveolin-1; stiffness; mechanotransduction; cell-derived matrices; cell motility; microenvironment; tumor stroma
20.  Caveolin-2-Deficient Mice Show Evidence of Severe Pulmonary Dysfunction without Disruption of Caveolae 
Molecular and Cellular Biology  2002;22(7):2329-2344.
Caveolin-2 is a member of the caveolin gene family with no known function. Although caveolin-2 is coexpressed and heterooligomerizes with caveolin-1 in many cell types (most notably adipocytes and endothelial cells), caveolin-2 has traditionally been considered the dispensable structural partner of the widely studied caveolin-1. We now directly address the functional significance of caveolin-2 by genetically targeting the caveolin-2 locus (Cav-2) in mice. In the absence of caveolin-2 protein expression, caveolae still form and caveolin-1 maintains its localization in plasma membrane caveolae, although in certain tissues caveolin-1 is partially destabilized and shows modestly diminished protein levels. Despite an intact caveolar membrane system, the Cav-2-null lung parenchyma shows hypercellularity, with thickened alveolar septa and an increase in the number of endothelial cells. As a result of these pathological changes, these Cav-2-null mice are markedly exercise intolerant. Interestingly, these Cav-2-null phenotypes are identical to the ones we and others have recently reported for Cav-1-null mice. As caveolin-2 expression is also severely reduced in Cav-1-null mice, we conclude that caveolin-2 deficiency is the clear culprit in this lung disorder. Our analysis of several different phenotypes observed in caveolin-1-deficient mice (i.e., abnormal vascular responses and altered lipid homeostasis) reveals that Cav-2-null mice do not show any of these other phenotypes, indicating a selective role for caveolin-2 in lung function. Taken together, our data show for the first time a specific role for caveolin-2 in mammalian physiology independent of caveolin-1.
doi:10.1128/MCB.22.7.2329-2344.2002
PMCID: PMC133690  PMID: 11884617
21.  Cardiac-specific overexpression of caveolin-3 induces endogenous cardiac protection by mimicking ischemic preconditioning 
Circulation  2008;118(19):1979-1988.
Background
Caveolae, lipid-rich microdomains of the sarcolemma, localize and enrich cardiac protective signaling molecules. Caveolin-3 (Cav-3), the dominant isoform in cardiac myocytes, is a determinant of caveolae formation. We hypothesized that cardiac myocyte-specific overexpression of Cav-3 would enhance the formation of caveolae and augment cardiac protection in vivo.
Methods and Results
Ischemic preconditioning (IPC) in vivo increased formation of caveolae. Adenovirus for Cav-3 increased caveolar formation and phosphorylation of survival kinases in cardiac myocytes. A transgenic (TG) mouse with cardiac myocyte-specific overexpression of Cav-3 (Cav-3 OE) showed enhanced formation of caveolae on the sarcolemma. Cav-3 OE mice subjected to ischemia/reperfusion injury had a significantly reduced infarct size relative to TGneg mice. Endogenous cardiac protection in Cav-3 OE mice was similar to wild-type mice undergoing IPC; no increased protection was observed in preconditioned Cav-3 OE mice. Cav-3 knockout mice did not show endogenous protection and showed no protection in response to IPC. Cav-3 OE mouse hearts had increased basal Akt and GSK3β phosphorylation comparable to wild-type mice exposed to IPC. Wortmannin, a PI3K inhibitor, attenuated basal phosphorylation of Akt and GSK3β and blocked cardiac protection in Cav-3 OE mice. Cav-3 OE mice had improved functional recovery and reduced apoptosis at 24 h of reperfusion.
Conclusion
Expression of caveolin-3 is both necessary and sufficient for cardiac protection, a conclusion that unites long-standing ultrastructural and molecular observations in the ischemic heart. The current results indicate that increased expression of caveolins, apparently via actions that depend on PI3K, has the potential to protect hearts exposed to ischemia-reperfusion injury.
doi:10.1161/CIRCULATIONAHA.108.788331
PMCID: PMC2676165  PMID: 18936328
heart; cardiac protection; myocardial ischemia; caveolae; caveolin
22.  Functional Analysis of Secreted Caveolin-1 in Mouse Models of Prostate Cancer Progression 
Molecular cancer research : MCR  2009;7(9):1446-1455.
Previously, we reported that caveolin-1 (cav-1) is overexpressed in metastatic prostate cancer and that virulent prostate cancer cells secrete biologically active cav-1. We also showed that cav-1 expression leads to prosurvival activities through maintenance of activated Akt and that cav-1 is taken up by other cav-1–negative tumor cells and/or endothelial cells, leading to stimulation of angiogenic activities through PI-3-K-Akt-eNOS signaling. To analyze the functional consequences of cav-1 overexpression on the development and progression of prostate cancer in vivo, we generated PBcav-1 transgenic mice. Adult male PBcav-1 mice showed significantly increased prostatic wet weight and higher incidence of epithelial hyperplasia compared with nontransgenic littermates. Increased immunostaining for cav-1, proliferative cell nuclear antigen, P-Akt, and reduced nuclear p27Kip1 staining occurred in PBcav-1 hyperplastic prostatic lesions. PBcav-1 mice showed increased resistance to castration-induced prostatic regression and elevated serum cav-1 levels compared with nontransgenic littermates. Intraprostatic injection of androgen-sensitive, cav-1–secreting RM-9 mouse prostate cancer cells resulted in tumors that were larger in PBcav-1 mice than in nontransgenic littermates (P = 0.04). Tail vein inoculation of RM-9 cells produced significantly more experimental lung metastases in PBcav-1 males than in nontransgenic male littermates (P = 0.001), and in cav-1+/+ mice than in cav-1−/− mice (P = 0.041). Combination treatment with surgical castration and systemic cav-1 antibody dramatically reduced the number of experimental metastases. These experimental data suggest a causal association of secreted cav-1 and prostate cancer growth and progression.
doi:10.1158/1541-7786.MCR-09-0071
PMCID: PMC2887686  PMID: 19737975
23.  Caveolin 1 and Caveolin 2 are associated with breast cancer basal-like and triple-negative immunophenotype 
British Journal of Cancer  2008;99(2):327-334.
Caveolin-1 (CAV1) and caveolin 2 (CAV2) are the principal structural proteins of caveolae, sphingolipid and cholesterol-rich invaginations of the plasma membrane involved in vesicular trafficking and signal transduction. Over the recent years there has been controversy about their role in breast cancer and their suitability as markers of basal-like phenotype. Caveolin-1 and CAV2 protein expression was assessed on a tissue microarray containing 880 unselected invasive breast cancer cases, by means of immunohistochemistry. Caveolin-1 and CAV2 expression was observed in 13.4 and 5.9% of all breast cancer, respectively. Their expression was strongly associated with high histological grade, lack of steroid hormone receptor positivity (ER and PR), and expression of basal markers (basal cytokeratins, P63, P-cadherin). Furthermore, there was a significant association between CAV1 and CAV2 expression and basal-like phenotype. On univariate analysis only CAV2 had a prognostic impact on breast cancer-specific survival; however, this was not independent from other traditional markers on multivariate analysis. Our results demonstrate that both CAV1 and CAV2 are associated with basal-like phenotype. Further studies are warranted to determine whether they play an oncogenic role in basal-like/triple-negative breast cancer development or are just surrogate markers for this subgroup.
doi:10.1038/sj.bjc.6604463
PMCID: PMC2480981  PMID: 18612310
caveolin 1; caveolin 2; immunohistochemistry; breast; basal-like
24.  Caveolin-1 Expression Level in Cancer Associated Fibroblasts Predicts Outcome in Gastric Cancer 
PLoS ONE  2013;8(3):e59102.
Aims
Altered expression of epithelial or stromal caveolin-1 (Cav-1) is observed in various types of human cancers. However, the clinical significance of Cav-1 expression in gastric cancer (GC) remains largely unknown. The present study aims to explore the clinicopathological significance and prognostic value of both tumor cells and cancer associated fibroblasts (CAFs) Cav-1 in GC.
Methods and Results
Quantum dots immunofluorescence histochemistry was performed to examine the expression of Cav-1 in 20 cases of gastritis without intestinal metaplasia (IM), 20 cases of gastritis with IM and 286 cases of GC. Positive rates of epithelial Cav-1 in gastritis without IM, gastritis with IM and GC showed a decreasing trend (P = 0.012). Low expression of Cav-1 in CAFs but not in tumor cells was an independent predictor of poor prognosis in GC patients (P = 0.034 and 0.005 respectively in disease free survival and overall survival). Cav-1 level in tumor cells and CAFs showed no significant correlation with classic clinicopathological features.
Conclusions
Loss of epithelial Cav-1 may promote malignant progression and low CAFs Cav-1 level herald worse outcome of GC patient, suggesting CAFs Cav-1 may be a candidate therapeutic target and a useful prognostic marker of GC.
doi:10.1371/journal.pone.0059102
PMCID: PMC3602462  PMID: 23527097
25.  Role of caveolin-1 in the regulation of the vascular shear stress response 
Journal of Clinical Investigation  2006;116(5):1222-1225.
In blood vessels, endothelia are submitted to constant shear effects and are, under normal conditions, capable of responding to any variation in hemodynamic forces. Caveolae — 50- to 100-nm plasma membrane invaginations present at the surface of terminally differentiated cells and particularly enriched in ECs — are composed of a high sphingolipid and cholesterol content and the protein caveolin-1 (Cav-1). Previous studies have suggested that caveolae and endothelial Cav-1 may regulate the vascular response to altered shear stress. In this issue of the JCI, Yu et al. have examined the role of Cav-1/caveolae in the regulation of flow-induced alterations (i.e., mechanotransduction) in vessels from wild-type mice, Cav-1–deficient mice, and Cav-1–deficient mice re-expressing Cav-1 only in ECs. Their data suggest that caveolae/Cav-1 may act as sensors of altered shear stress and that they also organize the signaling response in stimulated ECs (see the related article beginning on page 1284).
doi:10.1172/JCI28509
PMCID: PMC1451214  PMID: 16670766

Results 1-25 (677715)