PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (710034)

Clipboard (0)
None

Related Articles

1.  Effects of Community-Wide Vaccination with PCV-7 on Pneumococcal Nasopharyngeal Carriage in The Gambia: A Cluster-Randomized Trial 
PLoS Medicine  2011;8(10):e1001107.
In a cluster-randomized trial conducted in Gambian villages, Anna Roca and colleagues find that vaccination of children with pneumococcal conjugate vaccines reduced vaccine-type pneumococcal carriage even among nonvaccinated older children and adults.
Background
Introduction of pneumococcal conjugate vaccines (PCVs) of limited valency is justified in Africa by the high burden of pneumococcal disease. Long-term beneficial effects of PCVs may be countered by serotype replacement. We aimed to determine the impact of PCV-7 vaccination on pneumococcal carriage in rural Gambia.
Methods and Findings
A cluster-randomized (by village) trial of the impact of PCV-7 on pneumococcal nasopharyngeal carriage was conducted in 21 Gambian villages between December 2003 to June 2008 (5,441 inhabitants in 2006). Analysis was complemented with data obtained before vaccination. Because efficacy of PCV-9 in young Gambian children had been shown, it was considered unethical not to give PCV-7 to young children in all of the study villages. PCV-7 was given to children below 30 mo of age and to those born during the trial in all study villages. Villages were randomized (older children and adults) to receive one dose of PCV-7 (11 vaccinated villages) or meningococcal serogroup C conjugate vaccine (10 control villages). Cross-sectional surveys (CSSs) to collect nasopharyngeal swabs were conducted before vaccination (2,094 samples in the baseline CSS), and 4–6, 12, and 22 mo after vaccination (1,168, 1,210, and 446 samples in CSS-1, -2, and -3, respectively).
A time trend analysis showed a marked fall in the prevalence of vaccine-type pneumococcal carriage in all age groups following vaccination (from 23.7% and 26.8% in the baseline CSS to 7.1% and 8.5% in CSS-1, in vaccinated and control villages, respectively). The prevalence of vaccine-type pneumococcal carriage was lower in vaccinated than in control villages among older children (5 y to <15 y of age) and adults (≥15 y of age) at CSS-2 (odds ratio [OR] = 0.15 [95% CI 0.04–0.57] and OR = 0.32 [95% CI 0.10–0.98], respectively) and at CSS-3 (OR = 0.37 [95% CI 0.15–0.90] for older children, and 0% versus 7.6% for adults in vaccinated and control villages, respectively). Differences in the prevalence of non-vaccine-type pneumococcal carriage between vaccinated and control villages were small.
Conclusions
Vaccination of Gambian children reduced vaccine-type pneumococcal carriage across all age groups, indicating a “herd effect” in non-vaccinated older children and adults. No significant serotype replacement was detected.
Please see later in the article for the Editors' Summary
Editors' Summary
Background
The prevention of pneumococcal disease, especially in children in developing countries, is a major international public health priority. Despite all the international attention on the UN's Millennium Development Goal 4—to reduce deaths in children under five years by two-thirds between 1990 and 2015—pneumonia, sepsis, and meningitis together compose more than 25% of the 10 million deaths occurring in children less than five years of age. Streptococcus pneumoniae is a leading bacterial cause of these diseases, and the World Health Organization estimates that approximately 800,000 children die each year of invasive pneumococcal disease.
Pneumococcal conjugate vaccines are currently available and protect against the serotypes that most commonly cause invasive pneumococcal disease in young children in North America and Europe. Such vaccines have been highly successful in reducing the incidence of invasive pneumococcal disease in both vaccinated children and in the non-vaccinated older population by reducing nasopharyngeal carriage (presence of pneumococcal bacteria in the back of the nose) in vaccinated infants, resulting in decreased transmission to contacts—the so-called herd effect. However, few countries with the highest burden of invasive pneumococcal disease, especially those in sub-Saharan Africa, have introduced the vaccine into their national immunization programs.
Why Was This Study Done?
The features of pneumococcal nasopharyngeal carriage and invasive pneumococcal disease in sub-Saharan Africa are different than in other regions. Therefore, careful evaluation of the immune effects of vaccination requires long-term, longitudinal studies. As an alternative to such long-term observational studies, and to anticipate the potential long-term effects of the introduction of pneumococcal conjugate vaccination in sub-Saharan Africa, the researchers conducted a cluster-randomized (by village) trial in The Gambia in which the whole populations of some villages were immunized with the vaccine PCV-7, and other villages received a control.
What Did the Researchers Do and Find?
With full consent from communities, the researchers randomized 21 similar villages in a rural region of western Gambia to receive pneumococcal conjugate vaccine or a control—meningococcal serogroup C conjugated vaccine, which is unlikely to affect pneumococcal carriage rates. For ethical reasons, the researchers only randomized residents aged over 30 months—all young infants received PCV-7, as a similar vaccine had already been shown to be effective in young infants. Before immunization began, the researchers took nasopharyngeal swabs from a random selection of village residents to determine the baseline pneumococcal carriage rates of both the serotypes of pneumococci covered by the vaccine (vaccine types, VTs) and the serotypes of pneumococci not covered in the vaccine (non-vaccine types, NVTs). The researchers then took nasopharyngeal swabs from a random sample of 1,200 of village residents in both groups of villages in cross-sectional surveys at 4–6, 12, and 22 months after vaccination. Villagers and laboratory staff were unaware of which vaccine was which (that is, they were blinded).
Before immunization, the overall prevalence of pneumococcal carriage in both groups was high, at 71.1%, and decreased with age. After vaccination, the overall prevalence of pneumococcal carriage in all three surveys was similar between vaccinated and control villages, showing a marked fall. However, the prevalence of carriage of VT pneumococci was significantly lower in vaccinated than in control villages in all surveys for all age groups. The prevalence of carriage of NVT pneumococci was similar in vaccinated and in control villages, except for a slightly higher prevalence of NVT pneumococci among vaccinated communities in adults at 4–6 months after vaccination. The researchers also found that the overall prevalence of pneumococcal carriage fell markedly after vaccination and reached minimum levels at 12 months in both study arms and in all age groups.
What Do These Findings Mean?
These findings show that vaccination of young Gambian children reduced carriage of VT pneumococci in vaccinated children but also in vaccinated and non-vaccinated older children and adults, revealing a potential herd effect from vaccination of young children. Furthermore, the immunological pressure induced by vaccinating whole communities did not lead to a community-wide increase in carriage of NVT pneumococci during a two-year period after vaccination. The researchers plan to conduct more long-term follow-up studies to determine nasopharyngeal carriage in these communities.
Additional Information
Please access these websites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1001107.
The World Health Organization has information about pneumococcus
The US Centers for Disease Control and Prevention provides information about pneumococcal conjugate vaccination
doi:10.1371/journal.pmed.1001107
PMCID: PMC3196470  PMID: 22028630
2.  Effect of Pneumococcal Conjugate Vaccination on Serotype-Specific Carriage and Invasive Disease in England: A Cross-Sectional Study 
PLoS Medicine  2011;8(4):e1001017.
A cross sectional study by Stefan Flasche and coworkers document the serotype replacement of Streptococcus pneumoniae that has occurred in England since the introduction of PCV7 vaccination.
Background
We investigated the effect of the 7-valent pneumococcal conjugate vaccine (PCV7) programme in England on serotype-specific carriage and invasive disease to help understand its role in serotype replacement and predict the impact of higher valency vaccines.
Methods and Findings
Nasopharyngeal swabs were taken from children <5 y old and family members (n = 400) 2 y after introduction of PCV7 into routine immunization programs. Proportions carrying Streptococcus pneumoniae and serotype distribution among carried isolates were compared with a similar population prior to PCV7 introduction. Serotype-specific case∶carrier ratios (CCRs) were estimated using national data on invasive disease. In vaccinated children and their contacts vaccine-type (VT) carriage decreased, but was offset by an increase in non-VT carriage, with no significant overall change in carriage prevalence, odds ratio 1.06 (95% confidence interval 0.76–1.49). The lower CCRs of the replacing serotypes resulted in a net reduction in invasive disease in children. The additional serotypes covered by higher valency vaccines had low carriage but high disease prevalence. Serotype 11C emerged as predominant in carriage but caused no invasive disease whereas 8, 12F, and 22F emerged in disease but had very low carriage prevalence.
Conclusion
Because the additional serotypes included in PCV10/13 have high CCRs but low carriage prevalence, vaccinating against them is likely to significantly reduce invasive disease with less risk of serotype replacement. However, a few serotypes with high CCRs could mitigate the benefits of higher valency vaccines. Assessment of the effect of PCV on carriage as well as invasive disease should be part of enhanced surveillance activities for PCVs.
Please see later in the article for the Editors' Summary
Editors' Summary
Background
Pneumococcal diseases—major causes of illness and death in children and adults worldwide—are caused by Streptococcus pneumoniae, a bacterium that often colonizes the nasopharynx (the area of the throat behind the nose). Carriage of S. pneumoniae bacteria does not necessarily cause disease. However, these bacteria can cause local, noninvasive diseases such as ear infections and sinusitis and, more rarely, they can spread into the lungs, the bloodstream, or the covering of the brain, where they cause pneumonia, septicemia, and meningitis, respectively. Although these invasive pneumococcal diseases (IPDs) can be successfully treated if administered early, they can be fatal. Consequently, it is better to protect people against IPDs through vaccination than risk infection. Vaccination primes the immune system to recognize and attack disease-causing organisms (pathogens) rapidly and effectively by exposing it to weakened or dead pathogens or to pathogen molecules (antigens) that it recognizes as foreign.
Why Was This Study Done?
There are more than 90 S. pneumoniae variants or “serotypes” characterized by different polysaccharide (complex sugar) coats, which trigger the immune response against S. pneumoniae and determine each serotype's propensity to cause IPD. The pneumococcal conjugate vaccine PCV7 contains polysaccharides (linked to a protein carrier) from the seven serotypes mainly responsible for IPD in the US in 2000 when routine childhood PCV7 vaccination was introduced in that country. PCV7 prevents both IPD caused by the serotypes it contains and carriage of these serotypes, which means that, after vaccination, previously uncommon, nonvaccine serotypes can colonize the nasopharynx. If these serotypes have a high invasiveness potential, then “serotype replacement” could reduce the benefits of vaccination. In this cross-sectional study (a study that investigates the relationship between a disease and an intervention in a population at one time point), the researchers investigate the effect of the UK PCV7 vaccination program (which began in 2006) on serotype-specific carriage and IPD in England to understand the role of PCV7 in serotype replacement and to predict the likely impact of vaccines containing additional serotypes (higher valency vaccines).
What Did the Researchers Do and Find?
The researchers examined nasopharyngeal swabs taken from PCV7-vaccinated children and their families for S. pneumoniae, determined the serotype of any bacteria they found, and compared the proportion of people carrying S. pneumoniae (carrier prevalence) and the distribution of serotypes in this study population and in a similar population that was studied in 2000/2001, before the PCV vaccination program began. Overall, there was no statistically significant change in carrier prevalence, but carriage of vaccine serotypes decreased in vaccinated children and their contacts whereas carriage of nonvaccine serotypes increased. The serotype-specific case-to-carrier ratios (CCRs; a measure of serotype invasiveness that was estimated using national IPD data) of the replacing serotypes were generally lower than those of the original serotypes, which resulted in a net reduction in IPD in children. Moreover, before PCV7 vaccination began, PCV7-included serotypes were responsible for similar proportions of pneumococcal carriage and disease; afterwards, the additional serotypes present in the higher valency vaccines PVC10 and PVC13 were responsible for a higher proportion of disease than carriage. Finally, three serotypes not present in the higher valency vaccines with outstandingly high CCRs (high invasiveness potential) are identified.
What Do These Findings Mean?
These findings document the serotype replacement of S. pneumoniae that has occurred in England since the introduction of PCV7 vaccination and highlight the importance of assessing the effects of pneumococcal vaccines on carriage as well as on IPDs. Because the additional serotypes included in PCV10 and PCV13 have high CCRs but low carriage prevalence and because most of the potential replacement serotypes have low CCRs, these findings suggest that the introduction of higher valency vaccines should further reduce the occurrence of invasive disease with limited risk of additional serotype replacement. However, the emergence of a few serotypes that have high CCRs but are not included in PCV10 and PCV13 might mitigate the benefits of higher valency vaccines. In other words, although the recent introduction of PCV13 into UK vaccination schedules is likely to have an incremental benefit on the reduction of IPD compared to PCV7, this benefit might be offset by increases in the carriage of some high CCR serotypes. These serotypes should be considered for inclusion in future vaccines.
Additional Information
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1001017.
The US Centers for Disease Control and Prevention provides information for patients and health professionals on all aspects of pneumococcal disease and pneumococcal vaccination
The US National Foundation for Infectious Diseases has a fact sheet on pneumococcal diseases
The UK Health Protection Agency provides information on pneumococcal disease and on pneumococcal vaccines
The World Health Organization also provides information on pneumococcal vaccines
MedlinePlus has links to further information about pneumococcal infections (in English and Spanish)
doi:10.1371/journal.pmed.1001017
PMCID: PMC3071372  PMID: 21483718
3.  Nasopharyngeal Carriage of Streptococcus pneumoniae in Healthy Children: Implications for the Use of Heptavalent Pnemococcal Conjugate Vaccine 
Emerging Infectious Diseases  2002;8(5):479-484.
We assessed the prevalence of Streptococcus pneumoniae serotypes in the nasopharynx of healthy children, antimicrobial susceptibility patterns, risk factors for carriage, and the coverage of heptavalent pneumococcal conjugate vaccine. In 2,799 healthy infants and children, the S. pneumoniae carrier rate was 8.6% (serotypes 3, 19F, 23F, 19A, 6B, and 14 were most common). Most pneumococci (69.4%) were resistant to one or more antimicrobial classes. The rate of penicillin resistance was low (9.1%); macrolide resistance was high (52.1%). Overall, 63.2% of the isolates belonged to strains covered by the heptavalent pneumococcal vaccine. This percentage was higher in children <2 years old (73.1%) and in those >2-5 years old(68.9%). Sinusitis in the previous 3 months was the only risk factor for carrier status; acute otitis media was the only risk factor for the carriage of penicillin-resistant S. pneumoniae. Most the isolated strains are covered by the heptavalent conjugate vaccine, especially in the first years of life, suggesting that its use could reduce the incidence of pneumococcal disease.
doi:10.3201/eid0805.010235
PMCID: PMC2732490  PMID: 11996682
Streptococcus pneumoniae; nasopharyngeal carriage; epidemiology; conjugate vaccine; children
4.  Pneumococcal Carriage and Antibiotic Resistance in Young Children before 13-Valent Conjugate Vaccine 
Background
We sought to measure trends in Streptococcus pneumoniae (SP) carriage and antibiotic resistance in young children in Massachusetts communities after widespread adoption of heptavalent pneumococcal conjugate vaccine (PCV7) and before the introduction of the 13-valent pneumococcal conjugate vaccine (PCV13).
Methods
We conducted a cross-sectional study including collection of questionnaire data and nasopharyngeal specimens among children <7 years in primary care practices from 8 Massachusetts communities during the winter season of 2008–9 and compared with to similar studies performed in 2001, 2003–4, and 2006–7. Antimicrobial susceptibility testing and serotyping were performed on pneumococcal isolates, and risk factors for colonization in recent seasons (2006–07 and 2008–09) were evaluated.
Results
We collected nasopharyngeal specimens from 1,011 children, 290 (29%) of whom were colonized with pneumococcus. Non-PCV7 serotypes accounted for 98% of pneumococcal isolates, most commonly 19A (14%), 6C (11%), and 15B/C (11%). In 2008–09, newly-targeted PCV13 serotypes accounted for 20% of carriage isolates and 41% of penicillin non-susceptible S. pneumoniae (PNSP). In multivariate models, younger age, child care, young siblings, and upper respiratory illness remained predictors of pneumococcal carriage, despite near-complete serotype replacement. Only young age and child care were significantly associated with PNSP carriage.
Conclusions
Serotype replacement post-PCV7 is essentially complete and has been sustained in young children, with the relatively virulent 19A being the most common serotype. Predictors of carriage remained similar despite serotype replacement. PCV13 may reduce 19A and decrease antibiotic-resistant strains, but monitoring for new serotype replacement is warranted.
doi:10.1097/INF.0b013e31824214ac
PMCID: PMC3288953  PMID: 22173142
Streptococcus pneumoniae; pneumococcal conjugate vaccine; antibiotic resistance; serotype; colonization
5.  Pneumococcal nasopharyngeal carriage in children following heptavalent pneumococcal conjugate vaccination in infancy 
Archives of Disease in Childhood  2003;88(3):211-214.
Aims: To ascertain whether the reduction in nasopharyngeal carriage of vaccine serotypes induced by pneumococcal conjugate vaccine (PnCV) administered to infants persists beyond the age of 2 years.
Methods: Non-randomised, unblinded controlled study of 2–5 year old children who had received three doses of heptavalent PnCV (7VPnCV) in infancy and 23-valent pneumococcal polysaccharide vaccine at 13 months, and unimmunised controls. Nasopharyngeal swabs were taken in summer (150 vaccinated subjects, 126 controls) and winter (143 vaccinated subjects, 188 controls). The swabs were cultured and serotyped for Streptococcus pneumoniae.
Results: Carriage rates (vaccinated subjects: 24.7% and 43.4%; controls: 27.0% and 41.0%, in summer and winter respectively) and carriage of vaccine serotypes (subjects: 10.0% and 30.0%; controls: 13.5% and 31.5%, in summer and winter respectively) were similar in the two groups.
Conclusions: Effects of vaccination in infancy on rates of nasal carriage of pneumococcus and serotype replacement in children living in a largely unvaccinated population are no longer evident by 2–5 years of age.
doi:10.1136/adc.88.3.211
PMCID: PMC1719498  PMID: 12598380
6.  Short- and Long-Term Effects of Pneumococcal Conjugate Vaccination of Children on Penicillin Resistance 
Recent observations have shown that wide-scale vaccination with pneumococcal conjugate vaccines was associated with a reduction in invasive disease, supporting the expectation that vaccination could help reduce carriage of Streptococcus pneumoniae and control the spread of resistant strains. However, it is too early to assess whether these effects can be sustained in the long term. Here, we used mathematical modeling to investigate time changes in pneumococcal colonization and resistance induced by conjugate vaccination in an environment where antibiotic exposure is high and resistance is widespread. According to model predictions, vaccination induced a decrease in carriage of vaccine-type pneumococci to very low levels, typically in 10 to 15 years under epidemiologically realistic conditions. Almost simultaneously, non-vaccine-type pneumococci spread in the community. Consequently, while there was a short-term decrease in the overall carriage rate, it was followed after a few years by a renewed, although limited, increase. Vaccination with a heptavalent vaccine did not affect the extent to which antibiotic resistance was selected: in all cases, the distribution of resistance levels peaked at high levels (MIC > 2 μg/ml) after 20 years. With a vaccine optimally designed to include all serotypes currently exhibiting decreased susceptibility to penicillin G, the selection of resistance was slowed down, although not prevented. These results suggest that because of serotype replacement, the effects of vaccination observed today may not be sustained in the long term. As a consequence, vaccination alone may not be successful in controlling selection for resistance in S. pneumoniae.
doi:10.1128/AAC.48.6.2206-2213.2004
PMCID: PMC415598  PMID: 15155223
7.  Indirect Effect of 7-Valent Pneumococcal Conjugate Vaccine on Pneumococcal Carriage in Newborns in Rural Gambia: A Randomised Controlled Trial 
PLoS ONE  2012;7(11):e49143.
Background
Gambian infants frequently acquire Streptococcus pneumoniae soon after birth. We investigated the indirect effect of 7-valent pneumococcal conjugate vaccine (PCV-7) on pneumococcal acquisition in newborn Gambian babies.
Methods
Twenty-one villages were randomised to receive PCV-7 to all subjects (11 vaccinated villages) or to infants aged 2–30 months (10 control villages). Other control villagers received Meningococcal C conjugate vaccine. From 328 babies born during the trial, nasopharyngeal swabs were collected after birth, then weekly until 8 weeks of age when they received their first dose of PCV-7. Pneumococcal carriage and acquisition rates were compared between the study arms and with a baseline study.
Results
57.4% of 2245 swabs were positive for S. pneumoniae. Overall carriage was similar in both arms. In vaccinated villages fewer infants carried pneumococci of vaccine serotypes (VT) (16.9% [31/184] vs. 37.5% [54/144], p<0.001) and more carried pneumococci of non-vaccine serotypes (NVT) (80.9% [149/184] vs. 75.7% [109/144], p = 0.246). Infants from vaccinated villages had a significantly lower acquisition rate of VT (HR 0.39 [0.26–0.58], p<0.001) and increased acquisition of NVT (HR 1.16 [0.87–1.56], p = 0.312). VT carriage (51.6% vs. 37.5%, p = 031 in control and 46.1% vs. 16.8%, p<0.001 in vaccinated villages) and acquisition rates (HR 0.68 [0.50–0.92], p = 0.013 in control villages and HR 0.31 [0.19–0.50], p<.001 in vaccinated villages) were significantly lower in both study arms than in the baseline study. NVT carriage (63.2% vs. 75.7%, p = 0.037 in control and 67.2% vs. 75.3%, p = 0.005 in vaccinated villages) and acquisition rates (HR 1.48 [1.06–2.06], p = 0.022) and (HR 1.52 [1.11–2.10], p = 0.010 respectively) were significantly higher.
Conclusion
PCV-7 significantly reduced carriage of VT pneumococci in unvaccinated infants. This indirect effect likely originated from both the child and adult vaccinated populations. Increased carriage of NVT pneumococci needs ongoing monitoring.
Trial Registration
ISRCTN Register 51695599
doi:10.1371/journal.pone.0049143
PMCID: PMC3504064  PMID: 23185303
8.  Effect of Seven-Valent Pneumococcal Conjugate Vaccine on Staphylococcus aureus Colonisation in a Randomised Controlled Trial 
PLoS ONE  2011;6(6):e20229.
Background
Heptavalent pneumococcal conjugate vaccine (PCV7) shifts nasopharyngeal colonisation with vaccine serotype pneumococci towards nonvaccine serotypes. Because of the reported negative association of vaccine serotype pneumococci and Staphylococcus aureus in the nasopharynx, we explored the effect of PCV7 on nasopharyngeal colonisation with S. aureus in children and parents.
Methodology/Principal Findings
This study was part of a randomised controlled trial on the effect of PCV7 on pneumococcal carriage, enrolling healthy newborns who were randomly assigned (1∶1∶1) to receive PCV7 (1) at 2 and 4 months of age (2) at 2, 4 and 11 months or (3) no PCV7 (controls). Nasopharyngeal colonisation of S. aureus was a planned secondary outcome. Nasopharyngeal swabs were obtained from all children over a 2-year period with 6-months interval and from one parent at the child's age of 12 and 24 months and cultured for Streptococcus pneumoniae and S. aureus. Between July 2005 and February 2006, 1005 children were enrolled and received either 2-doses of PCV7 (n = 336), 2+1-doses (336) or no dose (n = 333) before PCV7 implementation in the Dutch national immunization program. S. aureus colonisation had doubled in children in the 2+1-dose group at 12 months of age compared with unvaccinated controls (10.1% versus 5.0%; p = 0.019). A negative association for co-colonisation of S. pneumoniae and S. aureus was observed for both vaccine serotype (adjusted odds ratio (aOR) 0.53, 95% confidence interval (CI) 0.38–0.74) and nonvaccine serotype pneumococci (aOR 0.67, 95% CI 0.52–0.88).
Conclusions/Significance
PCV7 induces a temporary increase in S. aureus colonisation in children around 12 months of age after a 2+1-dose PCV7 schedule. The potential clinical consequences are unknown and monitoring is warranted.
Trial Registration
ClinicalTrials.gov NCT00189020
doi:10.1371/journal.pone.0020229
PMCID: PMC3112202  PMID: 21695210
9.  Effectiveness and cost-effectiveness of general immunisation of infants and young children with the heptavalent conjugated pneumococcal vaccine 
Background
The European Agency for the Evaluation of Medicinal Products (EMEA) granted market authorisation to the heptavalent pneumococcal vaccine Prevenar (Wyeth) in the year 2001. The indication of Prevenar is the active immunisation of infants and young children under the age of two against invasive disease caused by Streptococcus pneumonia serotypes 4, 6B, 9V, 14, 18C, 19F and 23F. At the time of this study the German vaccination scheme advises the immunisation with Prevenar only for children at high risk.
Objectives
The objective of the study is first to determine the efficacy and effectiveness of the immunisation of all children with the heptavalent conjugated pneumococcal vaccine in Germany and second, whether a general recommendation for vaccination of all children would be cost-effective.
Methods
A systematic literature search was performed in 29 relevant databases for the period of January 1999 to June 2004. Thus 1,884 articles were identified which were then assessed according to predefined selection criteria.
Results
There is evidence for the medical effectiveness of Prevenar against invasive pneumococcal disease caused by the covered serotypes from a major double-blinded RCT undertaken in California. The vaccine shows lower values of effectiveness against otitis media and pneumonia. The values for effectiveness of the vaccine in Germany are below the data for California because of the different incidence of Serotypes. The cost-effectiveness rates for an immunisation of all children with Prevenar vary across different countries. One reason - besides different Health Systems - can be seen in the uncertainty about the duration of protection, another in the assumption on regional serotype coverage of the vaccine. From the healthcare payers' perspective a general vaccination of all children in Germany is not cost-effective, from a societal perspective the benefits from vaccination could prevail the cost. The actual price of the vaccine (if financed by the Healthcare Payer, 2004) has dropped and is lower than the assumed price in the German cost-effectiveness study. This fact could raise the cost-effectiveness-ratio of a general immunisation.
Discussion
The low evidence of information on the herd immunity effect of pneumococcal immunisation, the occurrence on serotype-replacement phenomenon and the effects on the prevalence of antibiotic-resistant strains shall be considered when deciding whether the pneumococcal vaccination for all infants and young children should be added to the German vaccination scheme. There is also little information on the duration of vaccine effectiveness and regional effectiveness because of different serotype incidence. The economic models thus incorporate some uncertainties.
Conclusion
At present, relatively few pneumococcal strains in Germany show antibiotic resistance. This situation shall further be observed while improving the data evidence for future decisions (epidemiologic data of incidence of pneumococcal diseases and serotyping of pneumococcal bacteria). From the economic perspective no distinct recommendation to add the conjugated vaccination for all children to the German vaccination scheme can be given. This situation may change if the price for the vaccine further decreases. Furthermore a future cost-effectiveness analysis for Germany should incorporate the effects of the replacement phenomenon, the herd immunisation effects and the effects of the vaccination on the antibiotic-resistant pneumococcal strains.
PMCID: PMC3011321  PMID: 21289926
10.  Epidemiology and risk factors for Staphylococcus aureus colonization in children in the post-PCV7 era 
Background
The incidence of community-associated methicillin-resistant Staphylococcus aureus (MRSA) has risen dramatically in the U.S., particularly among children. Although Streptococcus pneumoniae colonization has been inversely associated with S. aureus colonization in unvaccinated children, this and other risk factors for S. aureus carriage have not been assessed following widespread use of the heptavalent pneumococcal conjugate vaccine (PCV7). Our objectives were to (1) determine the prevalence of S. aureus and MRSA colonization in young children in the context of widespread use of PCV7; and (2) examine risk factors for S. aureus colonization in the post-PCV7 era, including the absence of vaccine-type S. pneumoniae colonization.
Methods
Swabs of the anterior nares (S. aureus) were obtained from children enrolled in an ongoing study of nasopharyngeal pneumococcal colonization of healthy children in 8 Massachusetts communities. Children 3 months to <7 years of age seen for well child or sick visits in primary care offices from 11/03–4/04 and 10/06–4/07 were enrolled. S. aureus was identified and antibiotic susceptibility testing was performed. Epidemiologic risk factors for S. aureus colonization were collected from parent surveys and chart reviews, along with data on pneumococcal colonization. Multivariate mixed model analyses were performed to identify factors associated with S. aureus colonization.
Results
Among 1,968 children, the mean age (SD) was 2.7 (1.8) years, 32% received an antibiotic in the past 2 months, 2% were colonized with PCV7 strains and 24% were colonized with non-PCV7 strains. The prevalence of S. aureus colonization remained stable between 2003–04 and 2006–07 (14.6% vs. 14.1%), while MRSA colonization remained low (0.2% vs. 0.9%, p = 0.09). Although absence of pneumococcal colonization was not significantly associated with S. aureus colonization, age (6–11 mo vs. ≥5 yrs, OR 0.39 [95% CI 0.24–0.64]; 1–1.99 yrs vs. ≥5 yrs, OR 0.35 [0.23–0.54]; 2–2.99 yrs vs. ≥5 yrs, OR 0.45 [0.28–0.73]; 3–3.99 yrs vs. ≥5 yrs, OR 0.53 [0.33–0.86]) and recent antibiotic use were significant predictors in multivariate models.
Conclusion
In Massachusetts, S. aureus and MRSA colonization remained stable from 2003–04 to 2006–07 among children <7 years despite widespread use of pneumococcal conjugate vaccine. S. aureus nasal colonization varies by age and is inversely correlated with recent antibiotic use.
doi:10.1186/1471-2334-9-110
PMCID: PMC2716346  PMID: 19594890
11.  Epidemiology of nasopharyngeal carriage of respiratory bacterial pathogens in children and adults: cross-sectional surveys in a population with high rates of pneumococcal disease 
BMC Infectious Diseases  2010;10:304.
Background
To determine the prevalence of carriage of respiratory bacterial pathogens, and the risk factors for and serotype distribution of pneumococcal carriage in an Australian Aboriginal population.
Methods
Surveys of nasopharyngeal carriage of Streptococcus pneumoniae, non-typeable Haemophilus influenzae, and Moraxella catarrhalis were conducted among adults (≥16 years) and children (2 to 15 years) in four rural communities in 2002 and 2004. Infant seven-valent pneumococcal conjugate vaccine (7PCV) with booster 23-valent pneumococcal polysaccharide vaccine was introduced in 2001. Standard microbiological methods were used.
Results
At the time of the 2002 survey, 94% of eligible children had received catch-up pneumococcal vaccination. 324 adults (538 examinations) and 218 children (350 examinations) were enrolled. Pneumococcal carriage prevalence was 26% (95% CI, 22-30) among adults and 67% (95% CI, 62-72) among children. Carriage of non-typeable H. influenzae among adults and children was 23% (95% CI, 19-27) and 57% (95% CI, 52-63) respectively and for M. catarrhalis, 17% (95% CI, 14-21) and 74% (95% CI, 69-78) respectively. Adult pneumococcal carriage was associated with increasing age (p = 0.0005 test of trend), concurrent carriage of non-typeable H. influenzae (Odds ratio [OR] 6.74; 95% CI, 4.06-11.2) or M. catarrhalis (OR 3.27; 95% CI, 1.97-5.45), male sex (OR 2.21; 95% CI, 1.31-3.73), rhinorrhoea (OR 1.66; 95% CI, 1.05-2.64), and frequent exposure to outside fires (OR 6.89; 95% CI, 1.87-25.4). Among children, pneumococcal carriage was associated with decreasing age (p < 0.0001 test of trend), and carriage of non-typeable H. influenzae (OR 9.34; 95% CI, 4.71-18.5) or M. catarrhalis (OR 2.67; 95% CI, 1.34-5.33). Excluding an outbreak of serotype 1 in children, the percentages of serotypes included in 7, 10, and 13PCV were 23%, 23%, and 29% (adults) and 22%, 24%, and 40% (2-15 years). Dominance of serotype 16F, and persistent 19F and 6B carriage three years after initiation of 7PCV is noteworthy.
Conclusions
Population-based carriage of S. pneumoniae, non-typeable H. influenzae, and M. catarrhalis was high in this Australian Aboriginal population. Reducing smoke exposure may reduce pneumococcal carriage. The indirect effects of 10 or 13PCV, above those of 7PCV, among adults in this population may be limited.
doi:10.1186/1471-2334-10-304
PMCID: PMC2974682  PMID: 20969800
12.  Nasopharyngeal Carriage Rate and Serotypes of Streptococcus pneumoniae and Antimicrobial Susceptibility in Healthy Korean Children Younger than 5 Years Old: Focus on Influence of Pneumococcal Conjugate Vaccination 
Infection & Chemotherapy  2013;45(1):76-84.
Background
Even after pneumococcal vaccination introduction, Streptococcus pneumoniae (pneumoccocus) is still an important cause of respiratory and invasive severe infection. Pneumococcus is resided in nasal mucosa and local or systemic infection begins with the nasal mucosa damage. We studied the indirect effect of pneumococcal conjugate vaccine (PCV) on pneumococcal nasopharyngeal carriage rates, serotypes and antimicrobial susceptibility between vaccinate and non-vaccinated children.
Materials and Methods
From January 2010 to October 2010, 379 healthy children under 5 years old from three university hospitals were recruited. Fully vaccinated children over 3 time doses of PCV and children with no vaccination history of PCV were enrolled, and nasopharyngeal aspirations were obtained from these children. Serotypes using multibead serotyping assay with multiplex PCR and antimicrobial susceptibility was analyzed. Antimicrobial susceptibilities were determined by the CLIS guideline.
Results
Two hundred seventy six children were received pneumococcal vaccination while 103 were not. 137 pneumococci were isolated from nasopharyngeal aspiration specimens. Nasal carriage rate was significantly low in vaccinated group (P-value; 0.001). Nasopharyngeal carriage rate was 28.6% (79/276) in vaccinate group and 56.3% (58/103) in non-vaccinated group. Among those vaccinated group, 13.0% (36/276) of the serotypes were vaccine or vaccine related type with the most common type 19F. In contrast, 31.1% (32/103) of the serotypes in non vaccinated group were vaccine or vaccine related type with the most common type 6A. The resistant rate of penicillin was 90.5%. For antimicrobial susceptibility, amoxicillin and amoxicillin/clavulanate showed high susceptibility (73.0%), but 19F and 19A serotypes were all resistant against amoxicillin.
Conclusions
High nasopharyngeal carriage rate in non vaccinated group corresponded to the result of past study. However, 19F and 19A still came up as problematic serotypes with a high carriage rate and antimicrobial resistance in both vaccinated and non vaccinated groups. Also, this study showed that the resistance rate of primary oral antimicrobial agents was increased in compared to past. For solving these problems, the selective antimicrobial use with establishment of high dose amoxicillin/clavulanate regimen and active PCV immunization should be needed. Furthermore, pneumococcal carriage and serotype study concerning with antimicrobial susceptibility should be conducted in the future in 10 or 13-valent PCV received children.
doi:10.3947/ic.2013.45.1.76
PMCID: PMC3780942  PMID: 24265953
Streptococcus pneumoniae; Serotype; Pneumococcal conjugate vaccine; Oral antimicrobial; Antimicrobial resistance
13.  Serotype-Specific Changes in Invasive Pneumococcal Disease after Pneumococcal Conjugate Vaccine Introduction: A Pooled Analysis of Multiple Surveillance Sites 
PLoS Medicine  2013;10(9):e1001517.
In a pooled analysis of data collected from invasive pneumococcal disease surveillance databases, Daniel Feikin and colleagues examine serotype replacement after the introduction of 7-valent pneumococcal conjugate vaccine (PCV7) into national immunization programs.
Please see later in the article for the Editors' Summary
Background
Vaccine-serotype (VT) invasive pneumococcal disease (IPD) rates declined substantially following introduction of 7-valent pneumococcal conjugate vaccine (PCV7) into national immunization programs. Increases in non-vaccine-serotype (NVT) IPD rates occurred in some sites, presumably representing serotype replacement. We used a standardized approach to describe serotype-specific IPD changes among multiple sites after PCV7 introduction.
Methods and Findings
Of 32 IPD surveillance datasets received, we identified 21 eligible databases with rate data ≥2 years before and ≥1 year after PCV7 introduction. Expected annual rates of IPD absent PCV7 introduction were estimated by extrapolation using either Poisson regression modeling of pre-PCV7 rates or averaging pre-PCV7 rates. To estimate whether changes in rates had occurred following PCV7 introduction, we calculated site specific rate ratios by dividing observed by expected IPD rates for each post-PCV7 year. We calculated summary rate ratios (RRs) using random effects meta-analysis. For children <5 years old, overall IPD decreased by year 1 post-PCV7 (RR 0·55, 95% CI 0·46–0·65) and remained relatively stable through year 7 (RR 0·49, 95% CI 0·35–0·68). Point estimates for VT IPD decreased annually through year 7 (RR 0·03, 95% CI 0·01–0·10), while NVT IPD increased (year 7 RR 2·81, 95% CI 2·12–3·71). Among adults, decreases in overall IPD also occurred but were smaller and more variable by site than among children. At year 7 after introduction, significant reductions were observed (18–49 year-olds [RR 0·52, 95% CI 0·29–0·91], 50–64 year-olds [RR 0·84, 95% CI 0·77–0·93], and ≥65 year-olds [RR 0·74, 95% CI 0·58–0·95]).
Conclusions
Consistent and significant decreases in both overall and VT IPD in children occurred quickly and were sustained for 7 years after PCV7 introduction, supporting use of PCVs. Increases in NVT IPD occurred in most sites, with variable magnitude. These findings may not represent the experience in low-income countries or the effects after introduction of higher valency PCVs. High-quality, population-based surveillance of serotype-specific IPD rates is needed to monitor vaccine impact as more countries, including low-income countries, introduce PCVs and as higher valency PCVs are used.
Please see later in the article for the Editors' Summary
Editors’ Summary
Background
Pneumococcal disease–a major cause of illness and death in children and adults worldwide–is caused by Streptococcus pneumoniae, a bacterium that often colonizes the nose and throat harmlessly. Unfortunately, S. pneumoniae occasionally spreads into the lungs, bloodstream, or covering of the brain, where it causes pneumonia, septicemia, and meningitis, respectively. These invasive pneumococcal diseases (IPDs) can usually be successfully treated with antibiotics but can be fatal. Consequently, it is better to avoid infection through vaccination. Vaccination primes the immune system to recognize and attack disease-causing organisms (pathogens) rapidly and effectively by exposing it to weakened or dead pathogens or to pathogen molecules that it recognizes as foreign (antigens). Because there are more than 90 S. pneumoniae variants or “serotypes,” each characterized by a different antigenic polysaccharide (complex sugar) coat, vaccines that protect against S. pneumoniae have to include multiple serotypes. Thus, the pneumococcal conjugate vaccine PCV7, which was introduced into the US infant immunization regimen in 2000, contains polysaccharides from the seven S. pneumoniae serotypes mainly responsible for IPD in the US at that time.
Why Was This Study Done?
Vaccination with PCV7 was subsequently introduced in several other high- and middle-income countries, and IPD caused by the serotypes included in the vaccine declined substantially in children and in adults (because of reduced bacterial transmission and herd protection) in the US and virtually all these countries. However, increases in IPD caused by non-vaccine serotypes occurred in some settings, presumably because of “serotype replacement.” PCV7 prevents both IPD caused by the serotypes it contains and carriage of these serotypes. Consequently, after vaccination, previously less common, non-vaccine serotypes can colonize the nose and throat, some of which can cause IPD. In July 2010, a World Health Organization expert consultation on serotype replacement called for a comprehensive analysis of the magnitude and variability of pneumococcal serotype replacement following PCV7 use to help guide the introduction of PCVs in low-income countries, where most pneumococcal deaths occur. In this pooled analysis of data from multiple surveillance sites, the researchers investigate serotype-specific changes in IPD after PCV7 introduction using a standardized approach.
What Did the Researchers Do and Find?
The researchers identified 21 databases that had data about the rate of IPD for at least 2 years before and 1 year after PCV7 introduction. They estimated whether changes in IPD rates had occurred after PCV7 introduction by calculating site-specific rate ratios–the observed IPD rate for each post-PCV7 year divided by the expected IPD rate in the absence of PCV7 extrapolated from the pre-PCV7 rate. Finally, they used a statistical approach (random effects meta-analysis) to estimate summary (pooled) rate ratios. For children under 5 years old, the overall number of observed cases of IPD in the first year after the introduction of PCV7 was about half the expected number; this reduction in IPD continued through year 7 after PCV7 introduction. Notably, the rate of IPD caused by the S. pneumonia serotypes in PCV7 decreased every year, but the rate of IPD caused by non-vaccine serotypes increased annually. By year 7, the number of cases of IPD caused by non-vaccine serotypes was 3-fold higher than expected, but was still smaller than the decrease in vaccine serotypes, thereby leading to the decrease in overall IPD. Finally, smaller decreases in overall IPD also occurred among adults but occurred later than in children 2 years or more after PCV7 introduction.
What Do These Findings Mean?
These findings show that consistent, rapid, and sustained decreases in overall IPD and in IPD caused by serotypes included in PCV7 occurred in children and thus support the use of PCVs. The small increases in IPD caused by non-vaccine serotypes that these findings reveal are likely to be the result of serotype replacement, but changes in antibiotic use and other factors may also be involved. These findings have several important limitations, however. For example, PCV7 is no longer made and extrapolation of these results to newer PCV10 and PCV13 formulations should be done cautiously. On the other hand, many of the serotypes causing serotype replacement after PCV7 are included in these higher valency vaccines. Moreover, because the data analyzed in this study mainly came from high-income countries, these findings may not be generalizable to low-income countries. Nevertheless, based on their analysis, the researchers make recommendations for the collection and analysis of IPD surveillance data that should allow valid interpretations of the effect of PCVs on IPD to be made, an important requisite for making sound policy decisions about vaccination against pneumococcal disease.
Additional Information
Please access these websites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1001517.
The US Centers for Disease Control and Prevention provides information for patients and health professionals on all aspects of pneumococcal disease and pneumococcal vaccination, including personal stories
Public Health England provides information on pneumococcal disease and on pneumococcal vaccines
The World Health Organization also provides information on pneumococcal vaccines
The not-for-profit Immunization Action Coalition has information on pneumococcal disease, including personal stories
MedlinePlus has links to further information about pneumococcal infections (in English and Spanish)
The International Vaccine Access Center at Johns Hopkins Bloomberg School of Public Health has more information on introduction of pneumococcal conjugate vaccines in low-income countries
doi:10.1371/journal.pmed.1001517
PMCID: PMC3782411  PMID: 24086113
14.  HEPTAVALENT PNEUMOCOCCAL CONJUGATE VACCINE IMMUNOGENICITY IN VERY-LOW-BIRTH-WEIGHT, PREMATURE INFANTS 
Background
The heptavalent pneumococcal-CRM197 conjugate vaccine (PCV-7) has been incompletely studied in very-low-birth-weight (VLBW, ≤1500 grams) infants.
Objective
To assess PCV-7 immunogenicity in VLBW, premature infants. We hypothesized that the frequency of post-vaccine antibody concentrations ≥0.15 µg/mL would vary directly with birth weight.
Methods
This was a multi-center observational study. Infants 401–1500 grams birth weight and <32 0/7 weeks gestation, stratified by birth weight, were enrolled from 9 NICHD Neonatal Research Network centers. Infants received PCV-7 at 2, 4 and 6 months after birth and had blood drawn 4–6 weeks following the third dose. Antibodies against the 7 vaccine serotypes were measured by enzyme-linked immunosorbent assay.
Results
Of 369 enrolled infants, 244 completed their primary vaccine series by 8 months and had serum obtained. Subjects were 27.8 ± 2.2 (mean ± standard deviation) weeks gestation and 1008 ± 282 grams birth weight. Twenty-six percent had bronchopulmonary dysplasia and 16% had received postnatal glucocorticoids. Infants 1001–1500 grams birth weight were more likely than those 401–1000 grams to achieve antibody concentrations ≥0.15 µg/mL against the least two immunogenic serotypes (6B: 96% v. 85%, P = 0.003 and 23F: 97% v. 88%, P = 0.009). In multiple logistic regression analysis, lower birth weight, postnatal glucocorticoid use, lower weight at blood draw and Caucasian race were each independently associated with antibody concentrations <0.35 µg/mL against serotypes 6B and/or 23F.
Conclusion
When compared with larger premature infants, infants weighing ≤1000 grams at birth have similar antibody responses to most, but not all, PCV-7 vaccine serotypes.
doi:10.1097/INF.0b013e3181d264a6
PMCID: PMC2949965  PMID: 20234331
Infant, premature; infant, very low birth weight; pneumococcal vaccines; immunization; vaccines
15.  Continued Impact of Pneumococcal Conjugate Vaccine on Carriage in Young Children 
Pediatrics  2009;124(1):e1-11.
OBJECTIVES
The goals were to assess serial changes in Streptococcus pneumoniae serotypes and antibiotic resistance in young children and to evaluate whether risk factors for carriage have been altered by heptavalent pneumococcal conjugate vaccine (PCV7).
METHODS
Nasopharyngeal specimens and questionnaire/medical record data were obtained from children 3 months to <7 years of age in primary care practices in 16 Massachusetts communities during the winter seasons of 2000–2001 and 2003–2004 and in 8 communities in 2006–2007. Antimicrobial susceptibility testing and serotyping were performed with S pneumoniae isolates.
RESULTS
We collected 678, 988, and 972 specimens during the sampling periods in 2000–2001, 2003–2004, and 2006–2007, respectively. Carriage of non-PCV7 serotypes increased from 15% to 19% and 29% (P < .001), with vaccine serotypes decreasing to 3% of carried serotypes in 2006–2007. The relative contribution of several non-PCV7 serotypes, including 19A, 35B, and 23A, increased across sampling periods. By 2007, commonly carried serotypes included 19A (16%), 6A (12%), 15B/C (11%), 35B (9%), and 11A (8%), and high-prevalence serotypes seemed to have greater proportions of penicillin nonsusceptibility. In multivariate models, common predictors of pneumococcal carriage, such as child care attendance, upper respiratory tract infection, and the presence of young siblings, persisted.
CONCLUSIONS
The virtual disappearance of vaccine serotypes in S pneumoniae carriage has occurred in young children, with rapid replacement with penicillin-nonsusceptible nonvaccine serotypes, particularly 19A and 35B. Except for the age group at highest risk, previous predictors of carriage, such as child care attendance and the presence of young siblings, have not been changed by the vaccine.
doi:10.1542/peds.2008-3099
PMCID: PMC2782668  PMID: 19564254
Streptococcus pneumoniae; pneumococcal conjugate vaccine; antibiotic resistance; serotype; colonization
16.  Optimal Serotype Compositions for Pneumococcal Conjugate Vaccination under Serotype Replacement 
PLoS Computational Biology  2014;10(2):e1003477.
Pneumococcal conjugate vaccination has proved highly effective in eliminating vaccine-type pneumococcal carriage and disease. However, the potential adverse effects of serotype replacement remain a major concern when implementing routine childhood pneumococcal conjugate vaccination programmes. Applying a concise predictive model, we present a ready-to-use quantitative tool to investigate the implications of serotype replacement on the net effectiveness of vaccination against invasive pneumococcal disease (IPD) and to guide in the selection of optimal vaccine serotype compositions. We utilise pre-vaccination data on pneumococcal carriage and IPD and assume partial or complete elimination of vaccine-type carriage, its replacement by non-vaccine-type carriage, and stable case-to-carrier ratios (probability of IPD per carriage episode). The model predicts that the post-vaccination IPD incidences in Finland for currently available vaccine serotype compositions can eventually decrease among the target age group of children <5 years of age by 75%. However, due to replacement through herd effects, the decrease among the older population is predicted to be much less (20–40%). We introduce a sequential algorithm for the search of optimal serotype compositions and assess the robustness of inferences to uncertainties in data and assumptions about carriage and IPD. The optimal serotype composition depends on the age group of interest and some serotypes may be highly beneficial vaccine types in one age category (e.g. 6B in children), while being disadvantageous in another. The net effectiveness will be improved only if the added serotype has a higher case-to-carrier ratio than the average case-to-carrier ratio of the current non-vaccine types and the degree of improvement in effectiveness depends on the carriage incidence of the serotype. The serotype compositions of currently available pneumococcal vaccines are not optimal and the effectiveness of vaccination in the population at large could be improved by including new serotypes in the vaccine (e.g. 22 and 9N).
Author Summary
The bacterial pathogen Streptococcus pneumoniae (pneumococcus) is a major contributor to child mortality worldwide. Hence, effective pneumococcal vaccination programmes are globally among the most cost-effective public health interventions. Three different conjugate vaccine compositions, targeting 7, 10 or 13 pneumococcal serotypes, have been used in infant vaccination programmes. The use of these vaccines has both decreased the disease burden and changed the patterns of pneumococcal carriage in locations where they have been in use. However, due to serotype replacement, where the lost vaccine serotype carriage is replaced by carriage of the non-vaccine serotypes, the net effect of vaccination on the disease burden has generally been milder than expected. Here, we apply a concise model for serotype replacement and present a ready-to-use tool for the prediction of patterns in post-vaccination pneumococcal incidence of carriage and invasive disease. We introduce a sequential algorithm for the identification of the most optimal additional serotypes to current vaccine formulations and demonstrate how differences in the invasiveness across serotypes imply that the disease incidence may either decrease or increase after vaccination. The methods we outline have direct relevance in decision making while reviewing the performance of the current pneumococcal vaccination programmes.
doi:10.1371/journal.pcbi.1003477
PMCID: PMC3923658  PMID: 24550722
17.  Comparison of the Prevalence of Common Bacterial Pathogens in the Oropharynx and Nasopharynx of Gambian Infants 
PLoS ONE  2013;8(9):e75558.
Background
CRM- based pneumococcal conjugate vaccines generally have little impact on the overall prevalence of pneumococcal carriage because of serotype replacement. In contrast, protein vaccines could substantially reduce the overall prevalence of pneumococcal carriage with potential microbiological and clinical consequences. Therefore, trials of pneumococcal protein vaccines need to evaluate their impact on carriage of other potentially pathogenic bacteria in addition to the pneumococcus.
Methods
As a prelude to a trial of an investigational pneumococcal vaccine containing pneumococcal polysaccharide conjugates and pneumococcal proteins, the prevalence of carriage of Streptococcus pneumoniae, Haemophilus influenzae, Moraxella species and Staphylococcus aureus in the nasopharynx of 1030 Gambian infants (median age 35 weeks) was determined. An oropharyngeal swab was obtained at the same time from the first 371 infants enrolled. Standard microbiological techniques were used to evaluate the bacterial flora of the pharynx and to compare that found in the oropharynx and in the nasopharynx.
Results
The overall pneumococcal carriage rate was high. Isolation rates of S. pneumoniae and Moraxella species were significantly higher using nasopharyngeal rather than oropharyngeal swabs (76.1% [95% CI 73.4%,78.7%] vs. 21.3% [95% CI 17.2%,25.8%] and 48.9% [95% CI 45.8%, 52.0%] vs. 20.5% % [95% CI 16.5%,25.0%] respectively). In contrast, S. aureus and H. influenzae were isolated more frequently from oropharyngeal than from nasopharyngeal swabs (65.0% [95% CI 59.9%, 69.8%] vs. 33.6% [95% CI 30.7%, 36.5%] and 31.8% [95% CI 16.5%, 25.0%] vs. 22.4% [95% CI 19.9%, 25.1%] respectively). No group A β haemolytic streptococci were isolated.
Conclusion
Collection of an oropharyngeal swab in addition to a nasopharyngeal swab will provide little additional information on the impact of a novel pneumococcal vaccine on pneumococcal carriage but it might provide additional, valuable information on the impact of the vaccine on the overall microbiota of the pharynx.
doi:10.1371/journal.pone.0075558
PMCID: PMC3781055  PMID: 24086570
18.  Association between early bacterial carriage and otitis media in Aboriginal and non-Aboriginal children in a semi-arid area of Western Australia: a cohort study 
BMC Infectious Diseases  2012;12:366.
Background
Streptococcus pneumoniae (Pnc), nontypeable Haemophilus influenzae (NTHi) and Moraxella catarrhalis (Mcat) are the most important bacterial pathogens associated with otitis media (OM). Previous studies have suggested that early upper respiratory tract (URT) bacterial carriage may increase risk of subsequent OM. We investigated associations between early onset of URT bacterial carriage and subsequent diagnosis of OM in Aboriginal and non-Aboriginal children living in the Kalgoorlie-Boulder region located in a semi-arid zone of Western Australia.
Methods
Aboriginal and non-Aboriginal children who had nasopharyngeal aspirates collected at age 1- < 3 months and at least one clinical examination for OM by an ear, nose and throat specialist before age 2 years were included in this analysis. Tympanometry to detect middle ear effusion was also performed at 2- to 6-monthly scheduled field visits from age 3 months. Multivariate regression models were used to investigate the relationship between early carriage and subsequent diagnosis of OM controlling for environmental factors.
Results
Carriage rates of Pnc, NTHi and Mcat at age 1- < 3 months were 45%, 29% and 48%, respectively, in 66 Aboriginal children and 14%, 5% and 18% in 146 non-Aboriginal children. OM was diagnosed at least once in 71% of Aboriginal children and 43% of non-Aboriginal children. After controlling for age, sex, presence of other bacteria and environmental factors, early nasopharyngeal carriage of NTHi increased the risk of subsequent OM (odds ratio = 3.70, 95% CI 1.22-11.23) in Aboriginal children, while Mcat increased the risk of OM in non-Aboriginal children (odds ratio = 2.63, 95% CI 1.32-5.23). Early carriage of Pnc was not associated with increased risk of OM.
Conclusion
Early NTHi carriage in Aboriginal children and Mcat in non-Aboriginal children is associated with increased risk of OM independent of environmental factors. In addition to addressing environmental risk factors for carriage such as overcrowding and exposure to environmental tobacco smoke, early administration of pneumococcal-Haemophilus influenzae D protein conjugate vaccine to reduce bacterial carriage in infants, may be beneficial for Aboriginal children; such an approach is currently being evaluated in Australia.
doi:10.1186/1471-2334-12-366
PMCID: PMC3546895  PMID: 23256870
Otitis media; Aboriginal; Streptococcus pneumoniae; Haemophilus influenzae; Moraxella catarrhalis
19.  Nasopharyngeal carriage, serotype distribution and antimicrobial resistance of Streptococcus pneumoniae among children from Brazil before the introduction of the 10-valent conjugate vaccine 
BMC Infectious Diseases  2013;13:318.
Background
Streptococcus pneumoniae remains a major cause of childhood morbidity and mortality worldwide. Nasopharyngeal colonization plays an important role in the development and transmission of pneumococcal diseases, and infants and young children are considered to be the main reservoir of this pathogen. The aim of this study was to evaluate the rates and characteristics associated with nasopharyngeal carriage, the distribution of serotypes and the antimicrobial resistance profiles of Streptococcus pneumoniae among children in a large metropolitan area in Brazil before the introduction of the 10-valent pneumococcal conjugate vaccine.
Methods
Between March and June 2010, nasopharyngeal swabs were collected from 242 children aged <6 years attending one day care center and the emergency room of a pediatric hospital. Pneumococcal isolates were identified by conventional methods and serotypes were determined by a sequential multiplex PCR assay and/or the Quellung reaction. The antimicrobial susceptibilities of the pneumococci were assessed by the disk diffusion method. MICs for erythromycin and penicillin were also performed. Erythromycin resistance genes were investigated by PCR.
Results
The overall colonization rate was 49.2% and it was considerably higher among children in the day care center. Pneumococcal carriage was more common among day care attenders and cohabitants with young siblings. The most prevalent serotypes were 6B, 19F, 6A, 14, 15C and 23F, which accounted for 61.2% of the isolates. All isolates were susceptible to clindamycin, levofloxacin, rifampicin and vancomycin. The highest rate of non-susceptibility was observed for sulphamethoxazole-trimethoprim (51.2%). Penicillin non-susceptible pneumococci (PNSP) accounted for 27.3% of the isolates (MICs of 0.12-4 μg/ml). Penicillin non-susceptibility was strongly associated with serotypes 14 and 23F. Hospital attendance and the presence of respiratory or general symptoms were frequently associated with PNSP carriage. The two erythromycin-resistant isolates (MICs of 2 and 4 μg/ml) belonged to serotype 6A, presented the M phenotype and harbored the mef(A/E) gene.
Conclusions
Correlations between serotypes, settings and penicillin non-susceptibility were observed. Serotypes coverage projected for the 10-valent pneumococcal conjugate vaccine was low (45.5%), but pointed out the potential reduction of PNSP nasopharyngeal colonization by nearly 20%.
doi:10.1186/1471-2334-13-318
PMCID: PMC3718621  PMID: 23849314
Streptococcus pneumoniae; Nasopharyngeal carriage; Serotypes; Antimicrobial resistance; Pneumococcal conjugate vaccines
20.  Macrolide resistance determinants among Streptococcus pneumoniae isolates from carriers in Central Greece 
BMC Infectious Diseases  2012;12:255.
Background
We sought to characterize the temporal trends in nasopharyngeal carriage of macrolide-resistant pneumococci during a period with increased heptavalent pneumococcal conjugate vaccine (PCV7) coverage in Central Greece.
Methods
Streptococcus pneumoniae isolates were recovered from 2649 nasopharyngeal samples obtained from day-care center attendees in Central Greece during 2005–2009. A phenotypic and genotypic analysis of the isolates was performed, including the identification of macrolide resistance genes mef(A), subclasses mef(A) and mef(E), as well as erm(B).
Results
Of the 1105 typeable S. pneumoniae isolates, 265 (24%) were macrolide-resistant; 22% in 2005, 33.3% in 2006, 23.7% in 2007, and 20.5% in 2009 (P=0.398). Among these macrolide-resistant pneumococci, 28.5% possessed erm(B), 24.3% erm(B)+mef(E), 41.8% mef(E), and 5.3% mef(A). A mef gene as the sole resistance determinant was carried by 31% of macrolide-resistant isolates belonging to PCV7 serotypes and 75.8% of the non-PCV7 serotypes. Across the 4 annual surveillances, pneumococci carrying mef(A) gradually disappeared, whereas serotype 19F isolates carrying both erm(B) and mef(E) persisted without significant yearly fluctuations. Among isolates belonging to non-PCV7 serotypes, macrolide-resistance was observed in those of serotypes 6A, 19A, 10A, 15A, 15B/C, 35F, 35A, and 24F. In 2009, ie 5 years after the introduction of PCV7 in our country, 59% of macrolide-resistant pneumococci belonged to non-PCV7 serotypes.
Conclusions
Across the study period, the annual frequency of macrolide-resistant isolates did not change significantly, but in 2009 a marked shift to non-PCV7 serotypes occurred. Overall, more than half of the macrolide-resistant isolates possessed erm(B) either alone or in combination with mef(E). erm(B) dominated among isolates belonging to PCV7 serotypes, but not among those of non-PCV7 serotypes.
doi:10.1186/1471-2334-12-255
PMCID: PMC3484024  PMID: 23057516
21.  Nasopharyngeal carriage rate of Streptococcus pneumoniae in Ugandan children with sickle cell disease 
BMC Research Notes  2012;5:28.
Background
Nasopharyngeal carriage of Streptococcus pneumoniae is a determinant for invasive pneumococcal disease, which often complicates homozygous sickle cell disease. Here, we determined the nasopharyngeal carriage rate of S. pneumoniae in Ugandan children with homozygous sickle cell disease, who attended the outpatient Sickle Cell Clinic at Mulago National Referral hospital in Kampala, Uganda.
Results
S. pneumoniae occurred in 27 of the 81 children with homozygous sickle cell disease (giving a carriage rate of 33%, 27/81). Twenty three children were previously hospitalized of whom S. pneumoniae occurred in only two (9%, 2/23), while among the 58 who were not previously hospitalized it occurred in 25 (43%, 25/58, χ2 = 8.8, p = 0.003), meaning there is an association between high carriage rate and no hospitalization. Two children previously immunized with the pneumococcal conjugate vaccine did not carry the organism. Prior antimicrobial usage was reported in 53 children (65%, 53/81). There was high resistance of pneumococci to penicillin (100%, 27/27) and trimethoprime-sulfamethoxazole (97%, 26/27), but low resistance to other antimicrobials. Of the 70 children without sickle cell disease, S. pneumoniae occurred in 38 (54%, 38/70) of whom 43 were males and 27 females (53% males, 23/43, and 56% females, 15/27).
Conclusion
Nasopharyngeal carriage of penicillin resistant pneumococci in Ugandan children with homozygous sickle cell disease is high. While nasopharyngeal carriage of S. pneumoniae is a determinant for invasive pneumococcal disease, pneumococcal bacteremia is reportedly low in Ugandan children with sickle cell disease. Studies on the contribution of high carriage rates to invasive pneumococcal disease in these children will be helpful. This is the first report on pneumococcal carriage rate in Ugandan children with sickle cell disease.
doi:10.1186/1756-0500-5-28
PMCID: PMC3283489  PMID: 22243524
22.  Identifying an appropriate PCV for use in Senegal, recent insights concerning Streptococcus pneumoniae NP carriage and IPD in Dakar 
BMC Infectious Diseases  2014;14(1):627.
Background
Since 2000, the Global Alliance for Vaccines and Immunization (GAVI) and WHO have supported the introduction of the Pneumococcal Conjugate Vaccine (PCV) in the immunization programs of developing countries. The highest pneumococcal nasopharyngeal carriage rates have been reported (40-60%) in these countries, and the highest incidence and case fatality rates of pneumococcal infections have been demonstrated in Africa.
Methods
Studies concerning nasopharyngeal pneumococcal carriage and pneumococcal infection in children less than 5 years old were conducted in Dakar from 2007 to 2008. Serotype, antibiotic susceptibility and minimum inhibitory concentrations were determined. In addition, among 17 overall publications, 6 manuscripts of the Senegalese literature published from 1972 to 2013 were selected for data comparisons.
Results
Among the 264 children observed, 132 (50%) children generated a nasopharyngeal (NP) positive culture with Streptococcus pneumoniae. The five most prevalent serotypes, were 6B (9%), 19 F (9%), 23 F (7.6%), 14 (7.6%) and 6A (6.8%). Fifteen percent of the strains (20/132) showed reduced susceptibility to penicillin and 3% (4/132) showed reduced susceptibility to anti-pneumococcal fluoroquinolones. Among the 196 suspected pneumococcal infections, 62 (31.6%) Streptococcus pneumoniae were isolated. Serogroup 1 was the most prevalent serotype (21.3%), followed by 6B (14.9%), 23 F (14.9%) and 5 (8.5%). Vaccine coverage for PCV-7, PCV-10 and PCV-13, were 36.2% (17/47), 66% (31/47) and 70.2% (33/47) respectively. Reduced susceptibility to penicillin and anti-pneumococcal fluoroquinolones was 6.4% and 4.3%, respectively, and the overall lethality was 42.4% (14/33).
Conclusions
This study confirms a high rate of carriage and disease caused by Streptococcus pneumoniae serotypes contained within the current generation of pneumococcal conjugate vaccines and consistent with reports from other countries in sub-Saharan Africa prior to PCV introduction. Antimicrobial resistance in this small unselected sample confirms a low rate of antibiotic resistance. Case-fatality is high. Introduction of a high valency pneumococcal vaccine should be a priority for health planners with the establishment of an effective surveillance system to monitor post vaccine changes.
doi:10.1186/s12879-014-0627-8
PMCID: PMC4258793  PMID: 25471219
Streptococcus pneumoniae; Nasopharyngeal carriage; Invasive pneumococcal disease; Serotypes; Antibiotic resistance; Children; Sub-Saharan Africa; Senegal
23.  Streptococcus pneumoniae Clonal Complex 199: Genetic Diversity and Tissue-Specific Virulence 
PLoS ONE  2011;6(4):e18649.
Streptococcus pneumoniae is an important cause of otitis media and invasive disease. Since introduction of the heptavalent pneumococcal conjugate vaccine, there has been an increase in replacement disease due to serotype 19A clonal complex (CC)199 isolates. The goals of this study were to 1) describe genetic diversity among nineteen CC199 isolates from carriage, middle ear, blood, and cerebrospinal fluid, 2) compare CC199 19A (n = 3) and 15B/C (n = 2) isolates in the chinchilla model for pneumococcal disease, and 3) identify accessory genes associated with tissue-specific disease among a larger collection of S. pneumoniae isolates. CC199 isolates were analyzed by comparative genome hybridization. One hundred and twenty-seven genes were variably present. The CC199 phylogeny split into two main clades, one comprised predominantly of carriage isolates and another of disease isolates. Ability to colonize and cause disease did not differ by serotype in the chinchilla model. However, isolates from the disease clade were associated with faster time to bacteremia compared to carriage clade isolates. One 19A isolate exhibited hypervirulence. Twelve tissue-specific genes/regions were identified by correspondence analysis. After screening a diverse collection of 326 isolates, spr0282 was associated with carriage. Four genes/regions, SP0163, SP0463, SPN05002 and RD8a were associated with middle ear isolates. SPN05002 also associated with blood and CSF, while RD8a associated with blood isolates. The hypervirulent isolate's genome was sequenced using the Solexa paired-end sequencing platform and compared to that of a reference serotype 19A isolate, revealing the presence of a novel 20 kb region with sequence similarity to bacteriophage genes. Genetic factors other than serotype may modulate virulence potential in CC199. These studies have implications for the long-term effectiveness of conjugate vaccines. Ideally, future vaccines would target common proteins to effectively reduce carriage and disease in the vaccinated population.
doi:10.1371/journal.pone.0018649
PMCID: PMC3077395  PMID: 21533186
24.  Phenotypic and Genotypic Characterization of Streptococcus pneumoniae Strains Colonizing Children Attending Day-Care Centers in Norway▿  
Journal of Clinical Microbiology  2008;46(8):2508-2518.
A cross-sectional study of nasopharyngeal colonization with Streptococcus pneumoniae was performed among 573 children attending 29 day-care centers (DCCs) in Norway prior to the start of mass vaccination with the heptavalent pneumococcal conjugate vaccine (PCV-7). A sensitive sampling method was employed, including transport in an enrichment broth and serotyping of pneumococci directly from the broth, in addition to traditional single-colony isolation from blood agar plates. The prevalence of carriage was high, peaking at 88.7% in 2-year-olds. More than one serotype was isolated from 12.7% of the carriers. Of 509 isolates obtained, 227 (44.6%) belonged to the PCV-7 serotypes. Penicillin nonsusceptibility was rare (1.8% of the isolates). Nonsusceptibility to erythromycin (5.9%), clindamycin (2.0%), and tetracycline (5.5%) was associated with PCV-7 serotypes (P < 0.001). Multilocus sequence typing was performed on the whole strain collection, revealing 102 sequence types (STs), of which 31 (30.4%) were novel. Eleven isolates (2.2%) belonged to the England14-9 clone, and 19 isolates (3.7%) belonged to, or were single-locus variants of, the Portugal19F-21 clone. The pneumococcal populations within the DCCs were composed of a majority of isolates with STs shared between the DCCs and a minority of isolates with STs unique for each DCC. The highest numbers of different STs, including novel STs, were found within the most frequent serotypes. Our study indicates that carriage of S. pneumoniae is highly prevalent among children in Norwegian DCCs, with a genetically diverse pneumococcal population consisting of unique microepidemic DCC populations.
doi:10.1128/JCM.02296-07
PMCID: PMC2519506  PMID: 18524970
25.  Blood stream infection is associated with altered heptavalent pneumococcal conjugate vaccine immune responses in very low birth weight infants 
Objective
Sepsis in older children and adults modifies immune system function. We compared serotype-specific antibody responses to heptavalent pneumococcal conjugate vaccine (PCV7) in very low birth weight infants (<1500g,VLBW) with and without blood stream infection (BSI) during their birth hospitalization.
Patients and Methods
Retrospective analysis of prospectively collected data for the Neonatal Research Network study of PCV7 responses among VLBWs. Infants received PCV7 at 2, 4, and 6 months after birth with blood drawn 4–6 weeks after 3rd dose. Serotype antibodies were compared between infants with or without a history of BSI. Regression models were constructed with birth-weight groups and other confounding factors identified in the primary study.
Results
244 infants completed the vaccine series and had serum antibody available; 82 had BSI. After adjustment, BSI was not associated with reduced odds of serum antibody ≥0.35μg/mL.
Conclusions
BSI was not associated with reduced odds of WHO-defined protective PCV7 responses in VLBWs.
doi:10.1038/jp.2013.5
PMCID: PMC3722279  PMID: 23370608
VLBW; immune response; vaccine; sepsis; blood stream infection

Results 1-25 (710034)