PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (1148334)

Clipboard (0)
None

Related Articles

1.  Long-term synaptic plasticity in cerebellar stellate cells 
Cerebellum (London, England)  2008;7(4):559-562.
Inhibitory transmission controls the action potential firing rate and pattern of Purkinje cell activity in the cerebellum. A long-term change in inhibitory transmission is likely to have a profound effect on the activity of cerebellar neuronal circuits. However little is known about how neuronal activity regulates synaptic transmission in GABAergic inhibitory interneurons (stellate/basket cells) in the cerebellar cortex. We have examined how glutamate released from parallel fibres (the axons of granule cells) influences postsynaptic AMPA receptors in stellate cells and modulates GABA release from these neurons. First, we found that burst stimulation of presynaptic parallel fibres changes the subunit composition of post-synaptic AMPA receptors from GluR2-lacking to GluR2-containing receptors. This switch reduces the Ca2+ permeability of AMPA receptors and the EPSP amplitude, and prolongs the duration of the synaptic current, producing a qualitative change in synaptic transmission. This switch in AMPA receptor phenotype can be induced by activation of extrasynaptic NMDA receptors and involves PICK1 and the activation of PKC. Second, activation of presynaptic NMDA receptors triggers a lasting increase in GABA release from stellate cells. These changes may provide a cellular mechanism underlying associative learning involving the cerebellum.
doi:10.1007/s12311-008-0057-5
PMCID: PMC3132174  PMID: 18855095
2.  Purkinje cell NMDA receptors assume a key role in synaptic gain control in the mature cerebellum 
A classic view in cerebellar physiology holds that Purkinje cells do not express functional N-methyl-D-aspartate (NMDA) receptors and that, therefore, postsynaptic NMDA receptors are not involved in the induction of long-term depression (LTD) at parallel fiber (PF) to Purkinje cell synapses. Recently, it has been demonstrated that functional NMDA receptors are postsynaptically expressed at climbing fiber (CF) to Purkinje cell synapses in mice, reaching full expression levels at about 2 months after birth. Here, we show that in the mature mouse cerebellum LTD (induced by paired PF and CF activation), but not long-term potentiation (LTP; PF stimulation alone) at PF to Purkinje cell synapses is blocked by bath application of the NMDA receptor antagonist D-APV. A blockade of LTD, but not LTP, was also observed when the non-competitive NMDA channel blocker MK-801 was added to the patch-pipette saline, suggesting that postsynaptically expressed NMDA receptors are required for LTD induction. Using confocal calcium imaging, we show that CF-evoked calcium transients in dendritic spines are reduced in the presence of D-APV. This observation confirms that NMDA receptor signaling occurs at CF synapses, and suggests that NMDA receptor-mediated calcium transients at the CF input site might contribute to LTD induction. Finally, we performed dendritic patch-clamp recordings from rat Purkinje cells. Dendritically recorded CF responses were reduced when D-APV was bath-applied. Together, these data suggest that the late developmental expression of postsynaptic NMDA receptors at CF synapses onto Purkinje cells is associated with a switch towards an NMDA receptor-dependent LTD induction mechanism.
doi:10.1523/JNEUROSCI.4344-10.2010
PMCID: PMC2990192  PMID: 21068337
calcium; climbing fiber; long-term depression; long-term potentiation; parallel fiber; synaptic plasticity
3.  Vesicular GABA release delays the onset of the Purkinje cell terminal depolarization without affecting tissue swelling in cerebellar slices during simulated ischemia 
Neuroscience  2010;168(1):108-117.
Neurosteroids that can enhance GABAA receptor sensitivity protect cerebellar Purkinje cells against transient episodes of global brain ischemia, but little is known about how ischemia affects GABAergic transmission onto Purkinje cells. Here we use patch-clamp recording from Purkinje cells in acutely prepared slices of rat cerebellum to determine how ischemia affects GABAergic signaling to Purkinje cells. In voltage-clamped Purkinje cells, exposing slices to solutions designed to simulate brain ischemia caused an early, partial suppression of the frequency of spontaneous inhibitory post synaptic currents (sIPSCs), but after 5-8 minutes GABA accumulated in the extracellular space around Purkinje cells, generating a large (~17 nS), sustained GABAA receptor-mediated conductance. The sustained GABAA conductance occurred in parallel with an even larger (~117 nS) glutamate receptor-mediated conductance, but blocking GABAA receptors did not affect the timing or magnitude of the glutamate conductance, and blocking glutamate receptors did not affect the timing or magnitude of the GABAA conductance. Despite the lack of interaction between GABA and glutamate, blocking GABAA receptors significantly accelerated the onset of the Purkinje cell “ischemic” depolarization (ID), as assessed with current-clamp recordings from Purkinje cells or field potential recordings in the dendritic field of the Purkinje cells. The Purkinje cell ID occurred ~2 minutes prior to the sustained glutamate release under control conditions and a further 1-2 minutes earlier when GABAA receptors were blocked. Tissue swelling, as assessed by monitoring light transmittance through the slice, peaked just after the ID, prior to the sustained glutamate release, but was not affected by blocking GABAA receptors. These data indicate that ischemia induces the Purkinje cell ID and tissue swelling prior to glutamate release, and that blocking GABAA receptors accelerates the onset of the ID without affecting tissue swelling. Taken together these data may explain why Purkinje cells are one of the most ischemia sensitive neurons in the brain despite lacking NMDA receptors, and why neurosteroids that enhance GABAA receptor function protect Purkinje cells against transient episodes of global brain ischemia.
doi:10.1016/j.neuroscience.2010.03.009
PMCID: PMC4007153  PMID: 20226232
4.  Presynaptic NMDA Receptors Mediate IPSC Potentiation at GABAergic Synapses in Developing Rat Neocortex 
PLoS ONE  2011;6(2):e17311.
Background
NMDA receptors are traditionally viewed as being located postsynaptically, at both synaptic and extrasynaptic locations. However, both anatomical and physiological studies have indicated the presence of NMDA receptors located presynaptically. Physiological studies of presynaptic NMDA receptors on neocortical GABAergic terminals and their possible role in synaptic plasticity are lacking.
Methodology/Principal Findings
We report here that presynaptic NMDA receptors are present on GABAergic terminals in developing (postnatal day (PND) 12-15) but not older (PND21-25) rat frontal cortex. Using MK-801 in the recording pipette to block postsynaptic NMDA receptors, evoked and miniature IPSCs were recorded in layer II/III pyramidal cells in the presence of AMPA/KA receptor antagonists. Bath application of NMDA or NMDA receptor antagonists produced increases and decreases in mIPSC frequency, respectively. Physiologically patterned stimulation (10 bursts of 10 stimuli at 25 Hz delivered at 1.25 Hz) induced potentiation at inhibitory synapses in PND12-15 animals. This consisted of an initial rapid, large increase in IPSC amplitude followed by a significant but smaller persistent increase. Similar changes were not observed in PND21-25 animals. When 20 mM BAPTA was included in the recording pipette, potentiation was still observed in the PND12-15 group indicating that postsynaptic increases in calcium were not required. Potentiation was not observed when patterned stimulation was given in the presence of D-APV or the NR2B subunit antagonist Ro25-6981.
Conclusions/Significance
The present results indicate that presynaptic NMDA receptors modulate GABA release onto neocortical pyramidal cells. Presynaptic NR2B subunit containing NMDA receptors are also involved in potentiation at developing GABAergic synapses in rat frontal cortex. Modulation of inhibitory GABAergic synapses by presynaptic NMDA receptors may be important for proper functioning of local cortical networks during development.
doi:10.1371/journal.pone.0017311
PMCID: PMC3041804  PMID: 21365001
5.  Presynaptic AMPA and Kainate receptors increase the size of GABAergic terminals and enhance GABA release 
Neuropharmacology  2007;52(8):1631-1640.
SUMMARY
In the developing cerebellum, NMDA receptors promote the maturation of axonal terminals of inhibitory interneurons. We compared the effects of AMPA/kainate receptor agonists in cultured cerebellar cells from GAD65-eGFP mice. Both AMPA and kainate augmented granule cell survival without affecting interneurons. The action of kainate was blocked by an AMPA but not by a NMDA receptor antagonist, suggesting AMPA receptor involvement. AMPA and kainate increased the size of the GABAergic terminals and the action of kainate was insensitive to NMDA blockers. Whole cell recordings in granule neurons revealed that chronic treatments for 5 days with kainate as well as NMDA decreased AMPA receptors expression while interneuronal kainate receptors were depressed by kainate treatment. Acute kainate applications increased mIPSCs frequency in both granule neurons and interneurons and this effect was only partially blocked by an AMPA receptor antagonist. In contrast to what was reported for NMDA, chronic treatments with kainate induced a significant decrease of the basal mIPSCs frequency but increased the acute action of kainate on mIPSCs. Direct recordings from presynaptic GABAergic terminals suggest that AMPA and kainate receptors are present in developing GABAergic terminals and their activation affect the size of GABAergic terminals and spontaneous GABA release.
doi:10.1016/j.neuropharm.2007.03.010
PMCID: PMC2048687  PMID: 17493642
cerebellum; survival; synapses; interneuron; patch-clamp; eGFP
6.  Current and Calcium Responses to Local Activation of Axonal NMDA Receptors in Developing Cerebellar Molecular Layer Interneurons 
PLoS ONE  2012;7(6):e39983.
In developing cerebellar molecular layer interneurons (MLIs), NMDA increases spontaneous GABA release. This effect had been attributed to either direct activation of presynaptic NMDA receptors (preNMDARs) or an indirect pathway involving activation of somato-dendritic NMDARs followed by passive spread of somatic depolarization along the axon and activation of axonal voltage dependent Ca2+ channels (VDCCs). Using Ca2+ imaging and electrophysiology, we searched for preNMDARs by uncaging NMDAR agonists either broadly throughout the whole field or locally at specific axonal locations. Releasing either NMDA or glutamate in the presence of NBQX using short laser pulses elicited current transients that were highly sensitive to the location of the spot and restricted to a small number of varicosities. The signal was abolished in the presence of high Mg2+ or by the addition of APV. Similar paradigms yielded restricted Ca2+ transients in interneurons loaded with a Ca2+ indicator. We found that the synaptic effects of NMDA were not inhibited by blocking VDCCs but were impaired in the presence of the ryanodine receptor antagonist dantrolene. Furthermore, in voltage clamped cells, bath applied NMDA triggers Ca2+ elevations and induces neurotransmitter release in the axonal compartment. Our results suggest the existence of preNMDARs in developing MLIs and propose their involvement in the NMDA-evoked increase in GABA release by triggering a Ca2+-induced Ca2+ release process mediated by presynaptic Ca2+ stores. Such a mechanism is likely to exert a crucial role in various forms of Ca2+-mediated synaptic plasticity.
doi:10.1371/journal.pone.0039983
PMCID: PMC3384623  PMID: 22761940
7.  Caldendrin–Jacob: A Protein Liaison That Couples NMDA Receptor Signalling to the Nucleus 
PLoS Biology  2008;6(2):e34.
NMDA (N-methyl-D-aspartate) receptors and calcium can exert multiple and very divergent effects within neuronal cells, thereby impacting opposing occurrences such as synaptic plasticity and neuronal degeneration. The neuronal Ca2+ sensor Caldendrin is a postsynaptic density component with high similarity to calmodulin. Jacob, a recently identified Caldendrin binding partner, is a novel protein abundantly expressed in limbic brain and cerebral cortex. Strictly depending upon activation of NMDA-type glutamate receptors, Jacob is recruited to neuronal nuclei, resulting in a rapid stripping of synaptic contacts and in a drastically altered morphology of the dendritic tree. Jacob's nuclear trafficking from distal dendrites crucially requires the classical Importin pathway. Caldendrin binds to Jacob's nuclear localization signal in a Ca2+-dependent manner, thereby controlling Jacob's extranuclear localization by competing with the binding of Importin-α to Jacob's nuclear localization signal. This competition requires sustained synapto-dendritic Ca2+ levels, which presumably cannot be achieved by activation of extrasynaptic NMDA receptors, but are confined to Ca2+ microdomains such as postsynaptic spines. Extrasynaptic NMDA receptors, as opposed to their synaptic counterparts, trigger the cAMP response element-binding protein (CREB) shut-off pathway, and cell death. We found that nuclear knockdown of Jacob prevents CREB shut-off after extrasynaptic NMDA receptor activation, whereas its nuclear overexpression induces CREB shut-off without NMDA receptor stimulation. Importantly, nuclear knockdown of Jacob attenuates NMDA-induced loss of synaptic contacts, and neuronal degeneration. This defines a novel mechanism of synapse-to-nucleus communication via a synaptic Ca2+-sensor protein, which links the activity of NMDA receptors to nuclear signalling events involved in modelling synapto-dendritic input and NMDA receptor–induced cellular degeneration.
Author Summary
Long-lasting changes in communication between nerve cells require the regulation of gene expression. The influx of calcium ions into the cell, particularly through membrane protein called NMDA receptors, plays a crucial role in this process by determining the type of gene expression induced. NMDA receptors can exert multiple and very divergent effects within neuronal cells by impacting opposing phenomena such as synaptic plasticity and neuronal degeneration. We identified a protein termed Jacob that appears to play a pivotal role in such processes by entering the nucleus in response to NMDA receptor activation and controlling gene expression that governs cell survival and the stability of synaptic cell contacts. Removal of Jacob from the nucleus protects neurons from NMDA receptor–induced cell death and increases phosphorylation of the transcription factor CREB, whereas the opposite occurs after targeting Jacob exclusively to the nucleus. The work defines a novel pathway of synapse-to-nucleus communication involved in modelling synapto-dendritic input and NMDA receptor–induced cellular degeneration.
A new signaling mechanism from NMDA receptors to the nucleus plays an important role in the phosphorylation of the transcription factor CREB and neuronal cell survival.
doi:10.1371/journal.pbio.0060034
PMCID: PMC2253627  PMID: 18303947
8.  Tonic facilitation of glutamate release by presynaptic NR2B-containing NMDA receptors is increased in the entorhinal cortex of chronically epileptic rats 
We have previously shown that when postsynaptic NMDA receptors are blocked, the frequency, but not amplitude of spontaneous excitatory postsynaptic currents (sEPSCs) at synapses in the entorhinal cortex is reduced by NMDA receptor antagonists, demonstrating that glutamate release is tonically facilitated by presynaptic NMDA autoreceptors. In the present study, we recorded sEPSCs using whole cell voltage clamp in neurones in layer V in slices of the rat entorhinal cortex. Using specific antagonists for NR2A (NVP-AAM077) and NR2B (Ro 25-6981) subunit containing receptors, we confirmed that in slices from juvenile rats (4-6 weeks) the autoreceptor is predominantly of the NR1-NR2B sub-type. In older (4-6 months) control animals the effect of the NR2B antagonist was less marked, suggesting a decline in autoreceptor function with development. In slices from rats (aged 4-6 months) exhibiting spontaneous recurrent seizures induced with a lithium-pilocarpine protocol, Ro 25-6981 again robustly reduced sEPSC frequency. The effect was equal to or greater than that seen in the juvenile slices, and much more pronounced than that seen in the age matched control animals. In all three groups, the NR2A antagonist was without effect on sEPSCs. These results suggest that there is a developmental decrease in NMDA autoreceptor function, which is reversed in a chronic epileptic condition. The enhanced autoreceptor function may contribute to seizure susceptibility and epileptogenesis in temporal lobe structures.
doi:10.1523/JNEUROSCI.4413-05.2006
PMCID: PMC2504723  PMID: 16407536
NMDA; NR2B receptors; presynaptic; glutamate; entorhinal; chronic epilepsy
9.  Pregnenolone Sulfate Increases Glutamate Release at Neonatal Climbing Fiber-to-Purkinje Cell Synapses 
Neuroscience  2010;175:24-36.
Development of cerebellar Purkinje cells (PCs) is modulated by neuroactive steroids. Developing hippocampal pyramidal neurons retrogradely release a pregnenolone sulfate (PregS)-like neurosteroid that may contribute to glutamatergic synapse stabilization. We hypothesized that PregS could exert a similar effect on developing PCs. To test this hypothesis, we performed whole-cell patch-clamp recordings from PCs in acute cerebellar vermis slices from neonatal rats. PregS induced a robust (~3,000 %) and reversible increase in AMPA receptor-mediated miniature excitatory postsynaptic current (AMPA-mEPSC) frequency without affecting the amplitude, time-to-rise, or half-width of these events. PregS also increased the frequency of GABAA receptor-mediated miniature postsynaptic currents but to a significantly lesser extent (<100%). The PregS-induced increase of AMPA-mEPSC frequency was not significantly decreased by antagonists of receptors (NMDA, glycine, α7 nicotinic acetylcholine, and σ1) that have been shown to modulate glutamatergic transmission at PCs and/or mediate the actions of PregS on neurotransmitter release. Ca2+ chelation experiments suggested that PregS acts by increasing presynaptic terminal [Ca2+]i, an effect that is independent of voltage-gated Ca2+ channels, but is blocked by the antagonist of transient receptor potential (TRP) channels, La3+. PregS also increased the amplitude of EPSCs evoked by climbing fiber (CF) stimulation and decreased the paired-pulse ratio of these events. Neither CF- nor parallel fiber- evoked EPSCs were affected by PregS in slices from juvenile rats. These results suggest that glutamate release at CF-to-PC synapses is an important target of PregS in the neonatal cerebellar cortex, an effect that may play a role in the refinement of these synapses.
doi:10.1016/j.neuroscience.2010.11.063
PMCID: PMC3029476  PMID: 21130844
neurosteroid; cerebellar cortex; synaptic transmission; development; Purkinje cell; climbing fiber
10.  Competing Presynaptic and Postsynaptic Effects of Ethanol on Cerebellar Purkinje Neurons 
Background
Ethanol has actions on cerebellar Purkinje neurons that can result either in a net excitation or in inhibition of neuronal activity. The present study examines the interplay of presynaptic and postsynaptic mechanisms to determine the net effect of ethanol on the neuronal firing rate of cerebellar Purkinje neurons.
Methods
Whole-cell voltage-clamp recording of miniature inhibitory postsynaptic currents (mIPSCs) from Purkinje neurons in cerebellar slices was used to examine the effect of ethanol on presynapticsynaptic release of γ-aminobutyric acid (GABA) and glutamate. Extracellular recording was used to examine the net action of both presynaptic and postsynaptic effects of ethanol on the firing rate of Purkinje neurons.
Results
Under whole-cell voltage clamp, the frequency of bicuculline-sensitive miniature post-synaptic currents (mIPSCs) was increased dose-dependently by 25, 50, and 100 mM ethanol without any change in amplitude or decay time. Despite this evidence of increased release of GABA by ethanol, application of 50 mM ethanol caused an increase in firing in some neurons and a decrease in firing in others with a nonrandom distribution. When both glutamatergic and GABAergic influences were removed by simultaneous application of 6-cyano-7-nitroquinoxaline-2,3-dione and picrotoxin, respectively, ethanol caused only an increase in firing rate.
Conclusions
These data are consistent with a dual action of ethanol on cerebellar Purkinje neuron activity. Specifically, ethanol acts presynaptically to increase inhibition by release of GABA, while simultaneously acting postsynaptically to increase intrinsic excitatory drive.
doi:10.1111/j.1530-0277.2006.00167.x
PMCID: PMC2949273  PMID: 16899043
Ethanol; GABA; Glutamate; mIPSC; Presynaptic; Postsynaptic; Intrinsic Drive
11.  AMPA receptor-mediated presynaptic inhibition at cerebellar GABAergic synapses: a characterization of molecular mechanisms 
The European journal of neuroscience  2004;19(9):2464-2474.
A major subtype of glutamate receptors, AMPA receptors (AMPARs), are generally thought to mediate excitation at mammalian central synapses via the ionotropic action of ligand-gated channel opening. It has recently emerged, however, that synaptic activation of AMPARs by glutamate released from the climbing fibre input elicits not only postsynaptic excitation but also presynaptic inhibition of GABAergic transmission onto Purkinje cells in the cerebellar cortex. Although presynaptic inhibition is critical for information processing at central synapses, the molecular mechanisms by which AMPARs take part in such actions are not known. This study therefore aimed at further examining the properties of AMPAR-mediated presynaptic inhibition at GABAergic synapses in the rat cerebellum. Our data provide evidence that the climbing fibre-induced inhibition of GABA release from interneurons depends on AMPAR-mediated activation of GTP-binding proteins coupled with down-regulation of presynaptic voltage-dependent Ca2+ channels. A Gi/o-protein inhibitor, N-ethylmaleimide, selectively abolished the AMPAR-mediated presynaptic inhibition at cerebellar GABAergic synapses but did not affect AMPAR-mediated excitatory actions on Purkinje cells. Furthermore, both Gi/o-coupled receptor agonists, baclofen and DCG-IV, and the P/Q-type calcium channel blocker ω-agatoxin IVA markedly occluded the AMPAR-mediated inhibition of GABAergic transmission. Conversely, AMPAR activation inhibited action potential-triggered Ca2+ influx into individual axonal boutons of cerebellar GABAergic interneurons. By suppressing the inhibitory inputs to Purkinje cells, the AMPAR-mediated presynaptic inhibition could thus provide a feed-forward mechanism for the information flow from the cerebellar cortex.
doi:10.1111/j.0953-816X.2004.03347.x
PMCID: PMC3387903  PMID: 15128400
AMPA-type glutamate receptor; cerebellum; GABAergic inhibitory synapse; presynaptic inhibition; rat
12.  Involvement of pre- and postsynaptic NMDA receptors at local circuit interneuron connections in rat neocortex 
Neuroscience  2013;228(C):179-189.
Highlights
► We investigated the involvement of NMDA receptors in synaptic transmission. ► The voltage dependency of EPSPs was target interneuron dependent. ► Postsynaptic NMDA receptors contributed to EPSPs elicited in interneurons studied. ► Blocking NMDA receptors abolished non-conventional voltage dependency. ► Presynaptic NMDA receptors modulate inhibition in pyramidal cells.
To investigate the involvement of N-Methyl-D-aspartate (NMDA) receptors in local neocortical synaptic transmission, dual whole-cell recordings – combined with biocytin labelling – were obtained from bitufted adapting, multipolar adapting or multipolar non-adapting interneurons and pyramidal cells in layers II–V of rat (postnatal days 17–22) sensorimotor cortex. The voltage dependency of the amplitude of Excitatory postsynaptic potentials (EPSPs) received by the three types of interneuron appeared to coincide with the interneuron subclass; upon depolarisation, EPSPs received by multipolar non-adapting interneurons either decreased in amplitude or appeared insensitive, multipolar adapting interneuron EPSP amplitudes increased or appeared insensitive, whereas bitufted interneuron EPSP amplitudes increased or decreased. Connections were challenged with the NMDA receptor antagonist d-(−)-2-amino-5-phosphonopentanoic acid (d-AP5) (50 μM) revealing NMDA receptors to contribute to EPSPs received by all cell types, this also abolished the non-conventional voltage dependency. Reciprocal connections were frequent between pyramidal cells and multipolar interneurons, and inhibitory postsynaptic potentials (IPSPs) elicited in pyramidal cells by both multipolar adapting and multipolar non-adapting interneurons were sensitive to a significant reduction in amplitude by d-AP5. The involvement of presynaptic NMDA receptors was indicated by coefficient of variation analysis and an increase in the failures of transmission. Furthermore, by loading MK-801 into the pre- or postsynaptic neurons, we observed that a reduction in inhibition requires presynaptic and not postsynaptic NMDA receptors. These results suggest that NMDA receptors possess pre- and postsynaptic roles at selective neocortical synapses that are probably important in governing spike-timing and information flow.
doi:10.1016/j.neuroscience.2012.10.012
PMCID: PMC3546165  PMID: 23079623
AHP, after-hyperpolarisation; CV−2, inverse square of the coefficient of variation; d-AP5, d-(−)-2-amino-5-phosphonopentanoic acid; HW, width at half-amplitude; MK-801, (5S,10R)-(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine maleate; PB, phosphate buffer; PPR, paired-pulse ratio; RT, rise time; EPSP; IPSP; interneuron; NMDA; synapse; cortex
13.  A quantitative method to assess extrasynaptic NMDA receptor function in the protective effect of synaptic activity against neurotoxicity 
BMC Neuroscience  2008;9:11.
Background
Extrasynaptic NMDA receptors couple to a CREB shut-off pathway and cause cell death, whereas synaptic NMDA receptors and nuclear calcium signaling promote CREB-mediated transcription and neuronal survival. The distribution of NMDA receptors (synaptic versus extrasynaptic) may be an important parameter that determines the susceptibility of neurons to toxic insults. Changes in receptor surface expression towards more extrasynaptic NMDA receptors may lead to neurodegeneration, whereas a reduction of extrasynaptic NMDA receptors may render neurons more resistant to death. A quantitative assessment of extrasynaptic NMDA receptors in individual neurons is needed in order to investigate the role of NMDA receptor distribution in neuronal survival and death.
Results
Here we refined and verified a protocol previously used to isolate the effects of extrasynaptic NMDA receptors using the NMDA receptor open channel blocker, MK-801. Using this method we investigated the possibility that the known neuroprotective shield built up in hippocampal neurons after a period of action potential bursting and stimulation of synaptic NMDA receptors is due to signal-induced trafficking of extrasynaptic NMDA receptors or a reduction in extrasynaptic NMDA receptor function. We found that extrasynaptic NMDA receptor-mediated calcium responses and whole cell currents recorded under voltage clamp were surprisingly invariable and did not change even after prolonged (16 to 24 hours) periods of bursting and synaptic NMDA receptor activation. Averaging a large number of calcium imaging traces yielded a small (6%) reduction of extrasynaptic NMDA receptor-mediated responses in hippocampal neurons that were pretreated with prolonged bursting.
Conclusion
The slight reduction in extrasynaptic NMDA receptor function following action potential bursting and synaptic NMDA receptor stimulation could contribute to but is unlikely to fully account for activity-dependent neuroprotection. Other factors, in particular calcium signaling to the nucleus and the induction of survival promoting genes are more likely to mediate acquired neuroprotection.
doi:10.1186/1471-2202-9-11
PMCID: PMC2267199  PMID: 18218077
14.  Subcellular compartment-specific molecular diversity of pre- and postsynaptic GABAB-activated GIRK channels in Purkinje cells 
Journal of neurochemistry  2009;110(4):1363-1376.
Activation of G protein-gated inwardly-rectifying K+ (GIRK or Kir3) channels by metabotropic gamma-aminobutyric acid (B) (GABAB) receptors is an essential signalling pathway controlling neuronal excitability and synaptic transmission in the brain. To investigate the relationship between GIRK channel subunits and GABAB receptors in cerebellar Purkinje cells at post- and pre-synaptic sites, we used biochemical, functional and immunohistochemical techniques. Co-immunoprecipitation analysis demonstrated that GIRK subunits are co-assembled with GABAB receptors in the cerebellum. Immunoelectron microscopy showed that the subunit composition of GIRK channels in Purkinje cell spines is compartment-dependent. Thus, at extrasynaptic sites GIRK channels are formed by GIRK1/GIRK2/GIRK3, postsynaptic densities contain GIRK2/GIRK3 and dendritic shafts contain GIRK1/GIRK3. The postsynaptic association of GIRK subunits with GABAB receptors in Purkinje cells is supported by the subcellular regulation of the ion channel and the receptor in mutant mice. At presynaptic sites, GIRK channels localized to parallel fibre terminals are formed by GIRK1/GIRK2/GIRK3 and co-localize with GABAB receptors. Consistent with this morphological evidence we demonstrate their functional interaction at axon terminals in the cerebellum by showing that GIRK channels play a role in the inhibition of glutamate release by GABAB receptors. The association of GIRK channels and GABAB receptors with excitatory synapses at both post- and presynaptic sites indicates their intimate involvement in the modulation of glutamatergic neurotransmission in the cerebellum.
doi:10.1111/j.1471-4159.2009.06229.x
PMCID: PMC2774143  PMID: 19558451
potassium channels; immunohistochemistry; subunit composition; electron microscopy; cerebellum; glutamate release
15.  Glutamatergic inputs and glutamate-releasing immature inhibitory inputs activate a shared postsynaptic receptor population in lateral superior olive 
Neuroscience  2011;196:285-296.
Principal cells of the lateral superior olive (LSO) compute interaural intensity differences by comparing converging excitatory and inhibitory inputs. The excitatory input carries information from the ipsilateral ear and the inhibitory input carries information from the contralateral ear. Throughout life, the excitatory input pathway releases glutamate. In adulthood, the inhibitory input pathway releases glycine. During a period of major developmental refinement in the LSO, however, synaptic terminals of the immature inhibitory input pathway release not only glycine, but also GABA and glutamate. To determine whether glutamate released by terminals in either pathway could spill over to activate postsynaptic NMDA receptors under the other pathway, we made whole-cell recordings from LSO principal cells in acute slices of neonatal rat brainstem bathed in the use-dependent NMDA receptor antagonist MK-801, and stimulated in the two opposing pathways. We found that during the first postnatal week glutamate spillover occurs bidirectionally from both immature excitatory terminals and immature inhibitory terminals. We further found that a population of postsynaptic NMDA receptors is shared: glutamate released from either pathway can diffuse to and activate these receptors. We suggest that these shared receptors contain the GluN2B subunit and are located extrasynaptically.
doi:10.1016/j.neuroscience.2011.08.060
PMCID: PMC3797087  PMID: 21907763 CAMSID: cams3488
16.  Activation of group I mGlu receptors contributes to facilitation of NMDA receptor membrane current in spinal dorsal horn neurons after hind paw inflammation in rats 
European journal of pharmacology  2011;670(2-3):509-518.
The interaction between the group I metabotropic glutamate (mGlu) receptors and N-methyl-D-aspartate (NMDA) receptors plays a critical role in spinal hyperexcitability and hyperalgesia. The cellular mechanisms underlying this interaction remain unknown. Utilizing an ex vivo spinal slice preparation from young adult rats, we investigated the group I mGlu receptor modulation of NMDA receptor-mediated current in superficial dorsal horn neurons by patch clamp recording after complete Freund’s adjuvant (CFA)-induced hind paw inflammation. We show that NMDA receptor-mediated dorsal root stimulation-evoked EPSC (eEPSC) and NMDA-induced current was enhanced in the inflamed rats, compared to naïve rats and this effect was attenuated by AIDA (1 mM), a group I mGlu receptor antagonist. There were also increases in the frequency and amplitude of miniature excitatory postsynaptic currents in the presence of tetrodotoxin, suggesting enhanced presynaptic glutamate release probability and postsynaptic membrane responsiveness in inflamed rats. DHPG (10 µM), a selective group I mGlu receptor agonist, further facilitated NMDA receptor-mediated eEPSC and NMDA-induced current in inflamed rats. The DHPG-produced facilitation of NMDA-induced current was blocked by intracellular dialysis of GDP-beta-S (1 mM), a G protein antagonist, and BAPTA (15 mM), an intracellular calcium chelating agent; and by pretreatment with U73,122 (10 µM), a PLC inhibitor, or 2-APB (100 µM), an IP3-receptor antagonist. These findings support the hypothesis that signal transduction coupling between group I mGlu receptors and NMDA receptors underlies the activation of NMDA receptors in spinal hyperexcitability and hyperalgesia.
doi:10.1016/j.ejphar.2011.09.009
PMCID: PMC3220411  PMID: 21951968
N-methyl-D-aspartate receptors; Metabotropic glutamate receptors; Spinal cord slice; Electrophysiology; Pain; Hyperexcitability
17.  In developing hippocampal neurons, NR2B-containing NMDA receptors can mediate signalling to neuronal survival and synaptic potentiation, as well as neuronal death 
Neuroscience  2008;158(1):334-343.
It has been suggested that NR2B-containing NMDA receptors have a selective tendency to promote pro-death signalling and synaptic depression, compared to the survival promoting, synapse potentiating properties of NR2A-containing NMDA receptors. A preferential localization of NR2A-containing NMDA receptors at the synapse in maturing neurons could thus explain differences in synaptic vs. extrasynaptic NMDA receptor signalling.
We have investigated whether NMDA receptors can mediate signalling to survival, death, and synaptic potentiation, in neurons at a developmental stage prior to significant NR2A expression and subunit-specific differences between synaptic and extrasynaptic NMDA receptors. We show that in developing hippocampal neurons, the progressive reduction in sensitivity of NMDA receptor currents to the NR2B antagonist ifenprodil applies to both synaptic and extrasynaptic locations. However, the reduction is less acute in extrasynaptic currents, indicating that NR2A does partition preferentially, but not exclusively, into synaptic locations at DIV>12. We then studied NMDA receptor signalling at DIV10, when both synaptic and extrasynaptic NMDA receptors are both overwhelmingly and equally NR2B-dominated. To analyse pro-survival signalling we studied the influence of synaptic NMDA receptor activity on staurosporine-induced apoptosis. Blockade of spontaneous NMDAR activity with MK-801, or ifenprodil exacerbated the apoptotic insult. Furthermore, MK-801 and ifenprodil both antagonized neuroprotection promoted by enhancing synaptic activity. Pro-death signalling induced by a toxic dose of NMDA is also blocked by NR2B-specific antagonists. Using a cell culture model of synaptic NMDA receptor-dependent synaptic potentiation, we find that this is mediated exclusively by NR2B-containing NMDARs, as implicated by NR2B-specific antagonists and the use of selective vs. non-selective doses of the NR2A-preferring antagonist NVP-AAM077.
Therefore, within a single neuron, NR2B-NMDA receptors are able to mediate both survival and death signalling, as well as model of NMDA receptor-dependent synaptic potentiation. In this instance, subunit differences cannot account for the dichotomous nature of NMDA receptor signalling.
doi:10.1016/j.neuroscience.2008.01.080
PMCID: PMC2635533  PMID: 18378405
Apoptosis; necrosis; extrasynaptic; neuroprotection; NR2A
18.  Altered sensitivity of cerebellar granule cells to glutamate receptor overactivation in the Cln3Δex7/8-knock-in mouse model of juvenile neuronal ceroid lipofuscinosis 
Neurochemistry international  2011;58(6):648-655.
The juvenile onset form of neuronal ceroid lipofuscinoses (JNCL) is a recessively inherited lysosomal storage disorder characterized by progressive neurodegeneration. JNCL results from mutations in the CLN3 gene that encodes a lysosomal membrane protein with unknown function.
Utilizing a Cln3-knock-out mouse model of JNCL that was created on the 129S6/SvEv genetic background, we have previously demonstrated that CLN3-deficient cerebellar granule cells (CGCs) have a selectively increased sensitivity to AMPA-type glutamate receptor-mediated toxicity. Our recent findings that CGCs from 129S6/SvEv and C57BL/6J wild type (WT) mice have significant differences in glutamate receptor expression and in excitotoxic vulnerability indicated that the genetic background possibly have a strong influence on how glutamate receptor function is dysregulated in CLN3-deficient neurons. Indeed, here we show that in the Cln3Δex7/8-knock-in mouse model, that is on the C57BL/6J genetic background, mimics the most frequent mutation observed in JNCL patients and considered a null mutant, the sensitivity of CGCs to both AMPA- and NMDA-type glutamate receptor overactivations is altered. Cultured wild type and Cln3Δex7/8 CGCs were equally sensitive to AMPA toxicity after 2 or 3 weeks in vitro, whereas the subunit-selective AMPA receptor agonist, CPW-399, induced significantly more cell death in mature, 3-week-old Cln3Δex7/8 cultures. NMDA receptor-mediated toxicity changed during in vitro development: Cln3Δex7/8 CGCs were less sensitive to high concentration of NMDA after 2 weeks in culture but became more vulnerable than their WT counterparts after 3 weeks in vitro.
Abnormally altered glutamate receptor function in the cerebellum may result in motor deficits, and we confirmed that 7-week-old Cln3Δex7/8 mice, similarly to Cln3-knock-out mice, have a motor coordination deficit as measured by an accelerating rotarod.
Our results demonstrate altered glutamate receptor function in Cln3Δex7/8 neurons and suggest that both AMPA and NMDA receptors are potential therapeutic targets in JNCL.
doi:10.1016/j.neuint.2011.02.003
PMCID: PMC3164971  PMID: 21315126
juvenile neuronal ceroid lipofuscinoses; Batten disease; Cln3; cerebellar granule cells; AMPA receptor; NMDA receptor
19.  Direct pharmacological monitoring of the developmental switch in NMDA receptor subunit composition using TCN 213, a GluN2A-selective, glycine-dependent antagonist 
British Journal of Pharmacology  2012;166(3):924-937.
BACKGROUND AND PURPOSE
Developmental switches in NMDA receptor subunit expression have been inferred from studies of GluN2 expression levels, changes in kinetics of glutamatergic synaptic currents and sensitivity of NMDA receptor-mediated currents to selective GluN2B antagonists. Here we use TCN 213, a novel GluN2A-selective antagonist to identify the presence of this subunit in functional NMDA receptors in developing cortical neurones.
EXPERIMENTAL APPROACH
Two-electrode voltage-clamp (TEVC) recordings were made from Xenopus laevis oocytes to determine the pharmacological activity of TCN 213 at recombinant NMDA receptors. TCN 213 antagonism was studied in cultures of primary cortical neurones, assessing the NMDA receptor dependency of NMDA-induced excitotoxicity and monitoring developmental switches in NMDA receptor subunit composition.
KEY RESULTS
TCN 213 antagonism of GluN1/GluN2A NMDA receptors was dependent on glycine but independent of glutamate concentrations in external recording solutions. Antagonism by TCN 213 was surmountable and gave a Schild plot with unity slope. TCN 213 block of GluN1/GluN2B NMDA receptor-mediated currents was negligible. In cortical neurones, at a early developmental stage predominantly expressing GluN2B-containing NMDA receptors, TCN 213 failed to antagonize NMDA receptor-mediated currents or to prevent GluN2B-dependent, NMDA-induced excitoxicity. In older cultures (DIV 14) or in neurones transfected with GluN2A subunits, TCN 213 antagonized NMDA-evoked currents. Block by TCN 213 of NMDA currents inversely correlated with block by ifenprodil, a selective GluN2B antagonist.
CONCLUSIONS AND IMPLICATIONS
TCN 213 selectively blocked GluN1/GluN2A over GluN1/GluN2B NMDA receptors allowing direct dissection of functional NMDA receptors and pharmacological profiling of developmental changes in native NMDA receptor subunit composition.
doi:10.1111/j.1476-5381.2011.01748.x
PMCID: PMC3417419  PMID: 22022974
NMDA; glutamate; glycine; antagonism; oocyte; two-electrode voltage clamp; electrophysiology; neurotoxicity; development
20.  Direct pharmacological monitoring of the developmental switch in NMDA receptor subunit composition using TCN 213, a GluN2A-selective, glycine-dependent antagonist 
British Journal of Pharmacology  2012;166(3):924-937.
BACKGROUND AND PURPOSE
Developmental switches in NMDA receptor subunit expression have been inferred from studies of GluN2 expression levels, changes in kinetics of glutamatergic synaptic currents and sensitivity of NMDA receptor-mediated currents to selective GluN2B antagonists. Here we use TCN 213, a novel GluN2A-selective antagonist to identify the presence of this subunit in functional NMDA receptors in developing cortical neurones.
EXPERIMENTAL APPROACH
Two-electrode voltage-clamp (TEVC) recordings were made from Xenopus laevis oocytes to determine the pharmacological activity of TCN 213 at recombinant NMDA receptors. TCN 213 antagonism was studied in cultures of primary cortical neurones, assessing the NMDA receptor dependency of NMDA-induced excitotoxicity and monitoring developmental switches in NMDA receptor subunit composition.
KEY RESULTS
TCN 213 antagonism of GluN1/GluN2A NMDA receptors was dependent on glycine but independent of glutamate concentrations in external recording solutions. Antagonism by TCN 213 was surmountable and gave a Schild plot with unity slope. TCN 213 block of GluN1/GluN2B NMDA receptor-mediated currents was negligible. In cortical neurones, at a early developmental stage predominantly expressing GluN2B-containing NMDA receptors, TCN 213 failed to antagonize NMDA receptor-mediated currents or to prevent GluN2B-dependent, NMDA-induced excitoxicity. In older cultures (DIV 14) or in neurones transfected with GluN2A subunits, TCN 213 antagonized NMDA-evoked currents. Block by TCN 213 of NMDA currents inversely correlated with block by ifenprodil, a selective GluN2B antagonist.
CONCLUSIONS AND IMPLICATIONS
TCN 213 selectively blocked GluN1/GluN2A over GluN1/GluN2B NMDA receptors allowing direct dissection of functional NMDA receptors and pharmacological profiling of developmental changes in native NMDA receptor subunit composition.
doi:10.1111/j.1476-5381.2011.01748.x
PMCID: PMC3417419  PMID: 22022974
NMDA; glutamate; glycine; antagonism; oocyte; two-electrode voltage clamp; electrophysiology; neurotoxicity; development
21.  SYNAPTIC NMDA RECEPTOR-MEDIATED CURRENTS IN ANTERIOR PIRIFORM CORTEX ARE REDUCED IN THE ADULT FRAGILE X MOUSE 
Neuroscience  2012;221:170-181.
Fragile X syndrome is a neurodevelopmental condition caused by the transcriptional silencing of the fragile X mental retardation 1 (FMR1) gene. The Fmr1-KO mouse exhibits age-dependent deficits in long term potentiation (LTP) at association (ASSN) synapses in anterior piriform cortex (APC). To investigate the mechanisms for this, whole-cell voltage-clamp recordings of ASSN stimulation-evoked synaptic currents were made in APC of slices from adult Fmr1-KO and WT mice, using the competitive NMDA receptor antagonist, CPP, to distinguish currents mediated by NMDA and AMPA receptors. NMDA/AMPA current ratios were lower in Fmr1-KO mice than in WT mice, at ages ranging from three to 18 months. Since amplitude and frequency of miniature excitatory postsynaptic currents (mEPSCs) mediated by AMPA receptors were no different in Fmr1-KO and WT mice at these ages, the results suggest that NMDA receptor-mediated currents are selectively reduced in Fmr1-KO mice. Analyses of voltage-dependence and decay kinetics of NMDA receptor-mediated currents did not reveal differences between Fmr1-KO and WT mice, suggesting that reduced NMDA currents in Fmr1-KO mice are due to fewer synaptic receptors rather than differences in receptor subunit composition. Reduced NMDA receptor signaling may help to explain the LTP deficit seen at APC ASSN synapses in Fmr1-KO mice at 6–18 months of age, but does not explain normal LTP at these synapses in mice 3–6 months old. Evoked currents and mEPSCs were also examined in senescent Fmr1-KO and WT mice at 24–28 months of age. NMDA/AMPA ratios were similar in senescent WT and Fmr1-KO mice, due to a decrease in the ratio in the WT mice, without significant change in AMPA receptor-mediated mEPSCs.
doi:10.1016/j.neuroscience.2012.06.052
PMCID: PMC3424403  PMID: 22750206
Fmr1; FMRP; olfactory cortex; glutamate; long-term potentiation
22.  NMDA Receptors Mediate Synaptic Competition in Culture 
PLoS ONE  2011;6(9):e24423.
Background
Activity through NMDA type glutamate receptors sculpts connectivity in the developing nervous system. This topic is typically studied in the visual system in vivo, where activity of inputs can be differentially regulated, but in which individual synapses are difficult to visualize and mechanisms governing synaptic competition can be difficult to ascertain. Here, we develop a model of NMDA-receptor dependent synaptic competition in dissociated cultured hippocampal neurons.
Methodology/Principal Findings
GluN1 -/- (KO) mouse hippocampal neurons lacking the essential NMDA receptor subunit were cultured alone or cultured in defined ratios with wild type (WT) neurons. The absence of functional NMDA receptors did not alter neuron survival. Synapse development was assessed by immunofluorescence for postsynaptic PSD-95 family scaffold and apposed presynaptic vesicular glutamate transporter VGlut1. Synapse density was specifically enhanced onto minority wild type neurons co-cultured with a majority of GluN1 -/- neighbour neurons, both relative to the GluN1 -/- neighbours and relative to sister pure wild type cultures. This form of synaptic competition was dependent on NMDA receptor activity and not conferred by the mere physical presence of GluN1. In contrast to these results in 10% WT and 90% KO co-cultures, synapse density did not differ by genotype in 50% WT and 50% KO co-cultures or in 90% WT and 10% KO co-cultures.
Conclusions/Significance
The enhanced synaptic density onto NMDA receptor-competent neurons in minority coculture with GluN1 -/- neurons represents a cell culture paradigm for studying synaptic competition. Mechanisms involved may include a retrograde ‘reward’ signal generated by WT neurons, although in this paradigm there was no ‘punishment’ signal against GluN1 -/- neurons. Cell culture assays involving such defined circuits may help uncover the rules and mechanisms of activity-dependent synaptic competition in the developing nervous system.
doi:10.1371/journal.pone.0024423
PMCID: PMC3174173  PMID: 21935408
23.  Spinal NMDA Receptors and Nociception-evoked Release of Primary Afferent Substance P 
Neuroscience  2008;152(1):119-127.
Dorsal horn NMDA receptors contribute significantly to spinal nociceptive processing through an effect postsynaptic to non-primary glutamatergic axons, and perhaps presynaptic to the primary afferent terminals. The present study sought to examine the regulatory effects of NMDA receptors on primary afferent release of SP, as measured by neurokinin 1 receptor (NK1r) internalization in the spinal dorsal horn of rats. The effects of intrathecal NMDA alone or in combination with D-serine (a glycine site agonist) was initially examined on basal levels of NK1r internalization. NMDA alone or when co-administered with D-serine failed to induce NK1r internalization, whereas activation of spinal TRPV1 receptors by capsaicin resulted in a notable NK1r internalization. To determine whether NMDA receptor activation could potentiate NK1r internalization or pain behavior induced by a peripheral noxious stimulus, intrathecal NMDA was given prior to an intraplantar injection of formalin. NMDA did not alter the formalin-induced NK1r internalization nor did it enhance the formalin paw flinching behavior. To further characterize the effects of presynaptic NMDA receptors, the NMDA antagonists AP-5 and MK-801 were intrathecally administered to assess their regulatory effects on formalin-induced NK1r internalization and pain behavior. AP-5 had no effect on formalin-induced NK1r internalization, whereas MK-801 produced only a modest reduction. Both antagonists, however, reduced the formalin paw flinching behavior. In subsequent in vitro experiments, perfusion of NMDA in spinal cord slice preparations did not evoke basal release of SP or calcitonin gene-related peptide (CGRP). Likewise, perfusion of NMDA did not enhance capsaicin-evoked release of the two peptides. These results suggest that presynaptic NMDA receptors in the spinal cord play little if any role on the primary afferent release of SP.
doi:10.1016/j.neuroscience.2007.11.037
PMCID: PMC2730522  PMID: 18222611
Neurokinin 1 receptor; internalization; dorsal horn; glutamate; C-fiber
24.  Cell-type Specific Development of NMDA Receptors in the Interneurons of Rat Prefrontal Cortex 
In the prefrontal cortex, N-methyl-D-aspartic acid (NMDA) receptors are critical not only for normal prefrontal functions but also for the pathological processes of schizophrenia. Little is known, however, about the developmental properties of NMDA receptors in the functionally diverse subpopulations of interneurons. We investigated the developmental changes of NMDA receptors in rat prefrontal interneurons using patch clamp recording in cortical slices. We found that fast-spiking (FS) interneurons exhibited properties of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and NMDA currents distinct from those in regular spiking (RS) and low-threshold spiking (LTS) interneurons, particularly during the adolescent period. In juvenile animals, most (73%) of the FS cells demonstrated both AMPA and NMDA currents. The NMDA currents, however, gradually became undetectable during cortical development, with most (74%) of the FS cells exhibiting no NMDA current in adults. In contrast, AMPA and NMDA currents in RS and LTS interneurons were relatively stable, without significant changes from juveniles to adults. Moreover, even in FS cells with NMDA currents, the NMDA/AMPA ratio dramatically decreased during the adolescent period but returned to juvenile level in adults, compared to the relatively stable ratios in RS and LTS interneurons. These data suggest that FS interneurons in the PFC undergo dramatic changes in glutamatergic receptors during the adolescent period. These properties may make FS cells particularly sensitive and vulnerable to epigenetic stimulation, thus contributing to the onset of many psychiatric disorders, including schizophrenia.
doi:10.1038/npp.2009.20
PMCID: PMC2730038  PMID: 19242405
cerebral cortex; GABAergic interneurons; glutamatergic receptors; psychiatric disorders; schizophrenia
25.  Characterization of AMPA Receptors Targeted by the Climbing Fiber Transmitter Mediating Presynaptic Inhibition of GABAergic Transmission at Cerebellar Interneuron-Purkinje Cell Synapses 
The climbing fiber (CF) neurotransmitter not only excites the postsynaptic Purkinje cell (PC) but also suppresses GABA release from inhibitory interneurons converging onto the same PC depending on AMPA-type glutamate receptor (AMPAR) activation. Although the CF-/AMPAR-mediated inhibition of GABA release provides a likely mechanism boosting the CF input-derived excitation, how the CF transmitter reaches target AMPARs to elicit this action remains unknown. Here, we report that the CF transmitter diffused from its release sites directly targets GluR2/GluR3 AMPARs on interneuron terminals to inhibit GABA release. A weak GluR3-AMPAR agonist, bromohomoibotenic acid, produced excitatory currents in the postsynaptic PCs without presynaptic inhibitory effect on GABAergic transmission. Conversely, a specific inhibitor of the GluR2-lacking/Ca2+-permeable AMPARs, philanthotoxin-433, did not affect the CF-induced inhibition but suppressed AMPAR-mediated currents in Bergmann glia. A low-affinity GluR antagonist, γ-d-glutamylglycine, or retardation of neurotransmitter diffusion by dextran reduced the inhibitory action of CF-stimulation, whereas blockade of glutamate transporters enhanced the CF-induced inhibition. The results suggest that the CF transmitter released after repeated stimulation overwhelms local glutamate uptake and thereby diffuses from the release site to reach GluR2/GluR3 AMPARs on nearby interneuron terminals. Double immunostaining showed that GluR2/3 subunits and glutamate decarboxylase or synaptophysin are colocalized at the perisomatic GABAergic processes surrounding PCs. Finally, electron microscopy detected specific immunoreactivity for GluR2/3 at the presynaptic terminals of symmetric axosomatic synapses on the PC. These findings demonstrate that the CF transmitter directly inhibits GABA release from interneurons to the PC, relying on extrasynaptic diffusion and local heterogeneity in AMPAR subunit compositions.
doi:10.1523/JNEUROSCI.4894-05.2006
PMCID: PMC3375000  PMID: 16495455
AMPA-type glutamate receptor; GABA; climbing fiber; basket cell; Bergmann glia; Purkinje cell; presynaptic inhibition; glutamate transporters; cerebellum

Results 1-25 (1148334)