Search tips
Search criteria

Results 1-25 (1216014)

Clipboard (0)

Related Articles

1.  Surface engineering of iron oxide nanoparticles for targeted cancer therapy 
Accounts of chemical research  2011;44(10):853-862.
Nanotechnology provides a flexible platform for the development of effective therapeutic nanomaterials that can interact specifically with a target in a biological system and provoke a desired biological response. Of the nanomaterials studied, iron oxide nanoparticles have emerged as one of top candidates for cancer therapy due to their intrinsic superparamagnetism that enables no-invasive magnetic resonance imaging (MRI) and biodegradability favorable for in vivo application. A therapeutic superparamagnetic iron oxide nanoparticle (SPION) typically consists of three primary components: an iron oxide nanoparticle core that serves as both a carrier for therapeutics and contrast agent for MRI, a coating on the iron oxide nanoparticle that promotes favorable interactions between the SPION and biological system, and a therapeutic payload that performs designated function in vivo. Often, a targeting ligand is also included in the design that recognizes the receptors over-expressed on cancer cells. The body is a highly complex system that imposes multiple physiological and cellular barriers to foreign objects. Thus, the success of a therapeutic SPION largely relies on the proper design of the iron oxide core to ensure MRI detectability and more critically, the coating to render the ability to bypass these barriers.
Strategies to bypass the physiological barriers such as liver, kidneys, and spleen, involve tuning the overall size and surface chemistry of the SPION to maximize blood half-life and facilitate the navigation in the body. Strategies to bypass cellular barriers include the use of targeting agents to maximize uptake of the SPION by cancer cells, and employing materials that promote desired intracellular trafficking and enable controlled drug release.
The payload can be genes, proteins, chemotherapy drugs, or a combination of them. Each therapeutic requires a specific coating design to maximize the loading and achieve effective delivery and release. In this Account, we discuss the primary design parameters in developing therapeutic SPIONs with a focus on surface coating design to overcome the barriers imposed by the body’s defense system and provide examples of how these design parameters have been implemented to produce therapeutic SPIONs for specific therapeutic applications.
Although there are still challenges to be addressed, SPIONs show great promise in successful diagnosis and treatment of the most devastating cancers. Once critical design parameters have been optimized, these nanoparticles, combined with imaging modalities, can serve as a truly multi-functional theranostic agent that not only performs a therapeutic function, but provides instant treatment feedback for the physician to adjust the treatment plan.
PMCID: PMC3192288  PMID: 21528865
2.  Surface-Engineered Magnetic Nanoparticle Platforms for Cancer Imaging and Therapy 
Accounts of chemical research  2011;44(10):883-892.
Enormous efforts have been made toward translating nanotechnology into medical practice, including cancer management. The approaches have generally been classifiable into two categories--those for diagnosis and those for therapy. The targets for diagnostic probes and therapy are often the same, however, and separate approaches to develop diagnostic and therapeutic agents can miss opportunities to improve the efficiency and effectiveness of both. A close and continuous linkage between therapy and diagnosis is also important, because a patient’s diagnosis/prognosis will evolve during treatment.
The unique physical properties of nanomaterials enable them to serve as 1) bases for superior imaging probes to locate and report cancerous lesions, and 2) vehicles to deliver therapeutics preferentially to those lesions. These technologies for probes and vehicles have converged in the current efforts to develop nano-theranostics—that is, nanoplatforms with both imaging and therapeutic functionalities. These latest multimodal platforms are highly versatile and valuable components of the emerging beneficial trend toward personalized medicine, which emphasizes tailoring practices to individual needs so as to optimize outcomes. Unlike conventional methods, imaging and therapeutic functions are seamlessly unified in nano-theranostics, thereby permitting updates to diagnosis/prognosis along with treatment, and enabling opportunities to switch to alternative, possibly more suitable, regimens.
Magnetic nanoparticles, especially superparamagnetic iron oxide nanoparticles (hereafter referred to as IONPs), have long been studied as contrast agents for magnetic resonance imaging (MRI). Owing to recent progress in synthesis and surface modification, many new avenues have opened, though, for this class of biomaterials. The idea is to conceptualize the nanoparticles not as merely tiny magnetic crystals, but rather as platforms with large surface-to-volume ratios. By taking advantage of the well developed surface chemistry of these materials, one can load a wide range of functionalities, such as targeting, imaging and therapeutic features, onto their surfaces. This makes magnetic nanoparticles excellent scaffolds to construct theranostic agents and has attracted many efforts toward this goal.
In this account we will summarize the progress made in our recent studies. We will introduce the surface engineering techniques that we and others have developed, with an emphasis on how the techniques affect the role of nanoparticles as imaging or therapeutic agents.
PMCID: PMC3166427  PMID: 21548618
3.  Nano/microparticles and ultrasound contrast agents 
World Journal of Radiology  2013;5(12):468-471.
Microbubbles have been used for many years now in clinical practice as contrast agents in ultrasound imaging. Recently, their therapeutic applications have also attracted more attention. However, the short circulation time (minutes) and relatively large size (two to ten micrometers) of currently used commercial microbubbles do not allow effective extravasation into tumor tissue, preventing efficient tumor targeting. Fortunately, more multifunctional and theranostic nanoparticles with some special advantages over the traditional microbubbles have been widely investigated and explored for biomedical applications. The way to synthesize an ideal ultrasound contrast agent based on nanoparticles in order to achieve an expected effect on contrast imaging is a key technique. Currently a number of nanomaterials, including liposomes, polymers, micelles, dendrimers, emulsions, quantum dots, solid nanoparticles etc., have already been applied to pre or clinical trials. Multifunctional and theranostic nanoparticles with some special advantages, such as the tumor-targeted (passive or active), multi-mode contrast agents (magnetic resonance imaging, ultrasonography or fluorescence), carrier or enhancer of drug delivery, and combined chemo or thermal therapy etc., are rapidly gaining popularity and have shown a promising application in the field of cancer treatment. In this mini review, the trends and the advances of multifunctional and theranostic nanoparticles are briefly discussed.
PMCID: PMC3874503  PMID: 24379933
Ultrasound contrast agent; Microbubble; Nanoparticle; Imaging; Nanomaterial
4.  Multifunctional Peptide-Conjugated Hybrid Silica Nanoparticles for Photodynamic Therapy and MRI 
Theranostics  2012;2(9):889-904.
Photodynamic therapy (PDT) is an emerging theranostic modality for various cancer as well as non-cancer diseases. Its efficiency is mainly based on a selective accumulation of PDT and imaging agents in tumor tissue. The vascular effect is widely accepted to play a major role in tumor eradication by PDT. To promote this vascular effect, we previously demonstrated the interest of using an active- targeting strategy targeting neuropilin-1 (NRP-1), mainly over-expressed by tumor angiogenic vessels. For an integrated vascular-targeted PDT with magnetic resonance imaging (MRI) of cancer, we developed multifunctional gadolinium-based nanoparticles consisting of a surface-localized tumor vasculature targeting NRP-1 peptide and polysiloxane nanoparticles with gadolinium chelated by DOTA derivatives on the surface and a chlorin as photosensitizer. The nanoparticles were surface-functionalized with hydrophilic DOTA chelates and also used as a scaffold for the targeting peptide grafting. In vitro investigations demonstrated the ability of multifunctional nanoparticles to preserve the photophysical properties of the encapsulated photosensitizer and to confer photosensitivity to MDA-MB-231 cancer cells related to photosensitizer concentration and light dose. Using binding test, we revealed the ability of peptide-functionalized nanoparticles to target NRP-1 recombinant protein. Importantly, after intravenous injection of the multifunctional nanoparticles in rats bearing intracranial U87 glioblastoma, a positive MRI contrast enhancement was specifically observed in tumor tissue. Real-time MRI analysis revealed the ability of the targeting peptide to confer specific intratumoral retention of the multifunctional nanoparticles.
PMCID: PMC3475218  PMID: 23082101
Targeted PDT; neuropilin-1; brain tumor; MRI; functionalized theranostic nanoparticles
5.  Multifunctional polymeric nanoparticles doubly loaded with SPION and ceftiofur retain their physical and biological properties 
Advances in nanostructure materials are leading to novel strategies for drug delivery and targeting, contrast media for magnetic resonance imaging (MRI), agents for hyperthermia and nanocarriers. Superparamagnetic iron oxide nanoparticles (SPIONs) are useful for all of these applications, and in drug-release systems, SPIONs allow for the localization, direction and concentration of drugs, providing a broad range of therapeutic applications. In this work, we developed and characterized polymeric nanoparticles based on poly (3-hydroxybutyric acid-co-hydroxyvaleric acid) (PHBV) functionalized with SPIONs and/or the antibiotic ceftiofur. These nanoparticles can be used in multiple biomedical applications, and the hybrid SPION–ceftiofur nanoparticles (PHBV/SPION/CEF) can serve as a multifunctional platform for the diagnosis and treatment of cancer and its associated bacterial infections.
Morphological examination using transmission electron microscopy (TEM) showed nanoparticles with a spherical shape and a core-shell structure. The particle size was evaluated using dynamic light scattering (DLS), which revealed a diameter of 243.0 ± 17 nm. The efficiency of encapsulation (45.5 ± 0.6% w/v) of these polymeric nanoparticles was high, and their components were evaluated using spectroscopy. UV–VIS, FTIR and DSC showed that all of the nanoparticles contained the desired components, and these compounds interacted to form a nanocomposite. Using the agar diffusion method and live/dead bacterial viability assays, we demonstrated that these nanoparticles have antimicrobial properties against Escherichia coli, and they retain their magnetic properties as measured using a vibrating sample magnetometer (VSM). Cytotoxicity was assessed in HepG2 cells using live/dead viability assays and MTS, and these assays showed low cytotoxicity with IC50 > 10 mg/mL nanoparticles.
Our results indicate that hybrid and multifunctional PHBV/SPION/CEF nanoparticles are suitable as a superparamagnetic drug delivery system that can guide, concentrate and site–specifically release drugs with antibacterial activity.
Electronic supplementary material
The online version of this article (doi:10.1186/s12951-015-0077-5) contains supplementary material, which is available to authorized users.
PMCID: PMC4334767  PMID: 25886018
PHBV; SPION; Ceftiofur; Polymeric nanoparticles; Drug delivery; Superparamagnetic nanoparticles
6.  VCAM-1-targeted core/shell nanoparticles for selective adhesion and delivery to endothelial cells with lipopolysaccharide-induced inflammation under shear flow and cellular magnetic resonance imaging in vitro 
Multifunctional nanomaterials with unique magnetic and luminescent properties have broad potential in biological applications. Because of the overexpression of vascular cell adhesion molecule-1 (VCAM-1) receptors in inflammatory endothelial cells as compared with normal endothelial cells, an anti-VCAM-1 monoclonal antibody can be used as a targeting ligand. Herein we describe the development of multifunctional core-shell Fe3O4@SiO2 nanoparticles with the ability to target inflammatory endothelial cells via VCAM-1, magnetism, and fluorescence imaging, with efficient magnetic resonance imaging contrast characteristics. Superparamagnetic iron oxide and fluorescein isothiocyanate (FITC) were loaded successfully inside the nanoparticle core and the silica shell, respectively, creating VCAM-1-targeted Fe3O4@SiO2(FITC) nanoparticles that were characterized by scanning electron microscopy, transmission electron microscopy, fluorescence spectrometry, zeta potential assay, and fluorescence microscopy. The VCAM-1-targeted Fe3O4@SiO2(FITC) nanoparticles typically had a diameter of 355 ± 37 nm, showed superparamagnetic behavior at room temperature, and cumulative and targeted adhesion to an inflammatory subline of human umbilical vein endothelial cells (HUVEC-CS) activated by lipopolysaccharide. Further, our data show that adhesion of VCAM-1-targeted Fe3O4@SiO2(FITC) nanoparticles to inflammatory HUVEC-CS depended on both shear stress and duration of exposure to stress. Analysis of internalization into HUVEC-CS showed that the efficiency of delivery of VCAM-1-targeted Fe3O4@SiO2(FITC) nanoparticles was also significantly greater than that of nontargeted Fe3O4@SiO2(FITC)-NH2 nanoparticles. Magnetic resonance images showed that the superparamagnetic iron oxide cores of the VCAM-1-targeted Fe3O4@SiO2(FITC) nanoparticles could also act as a contrast agent for magnetic resonance imaging. Taken together, the cumulative adhesion and uptake potential of these VCAM-1-targeted Fe3O4@SiO2(FITC) nanoparticles targeted to inflammatory endothelial cells could be used in the transfer of therapeutic drugs/genes into these cells or for diagnosis of vascular disease at the molecular and cellular levels in the future.
PMCID: PMC3658441  PMID: 23696701
silica nanoparticles; vascular cell adhesion molecule-1; endothelial cells; adhesion; magnetic resonance imaging
7.  Molecular Imaging of Pancreatic Cancer in an Animal Model Using Targeted Multifunctional Nanoparticles 
Gastroenterology  2009;136(5):1514-25.e2.
Background & Aims
Identification of a ligand/receptor system that enables functionalized nanoparticles to efficiently target pancreatic cancer holds great promise for the development of novel approaches for the detection and treatment of pancreatic cancer. Urokinase plasminogen activator receptor (uPAR), a cellular receptor that is highly expressed in pancreatic cancer and tumor stromal cells, is an excellent surface molecule for receptor-targeted imaging of pancreatic cancer using multifunctional nanoparticles.
The uPAR-targeted dual-modality molecular imaging nanoparticle probe is designed and prepared by conjugating a near-infrared dye-labeled amino-terminal fragment of the receptor binding domain of urokinase plasminogen activator to the surface of functionalized magnetic iron oxide nanoparticles.
We have shown that the systemic delivery of uPAR-targeted nanoparticles leads to their selective accumulation within tumors of orthotopically xenografted human pancreatic cancer in nude mice. The uPAR-targeted nanoparticle probe binds to and is subsequently internalized by uPAR-expressing tumor cells and tumor-associated stromal cells, which facilitates the intratumoral distribution of the nanoparticles and increases the amount and retention of the nanoparticles in a tumor mass. Imaging properties of the nanoparticles enable in vivo optical and magnetic resonance imaging of uPAR-elevated pancreatic cancer lesions.
Targeting uPAR using biodegradable multifunctional nanoparticles allows for the selective delivery of the nanoparticles into primary and metastatic pancreatic cancer lesions. This novel receptor-targeted nanoparticle is a potential molecular imaging agent for the detection of pancreatic cancer.
PMCID: PMC3651919  PMID: 19208341
8.  Bio-functionalized dense-silica nanoparticles for MR/NIRF imaging of CD146 in gastric cancer 
Nano dense-silica (dSiO2) has many advantages such as adjustable core–shell structure, multiple drug delivery, and controllable release behavior. Improving the gastric tumor-specific targeting efficiency based on the development of various strategies is crucial for anti-cancer drug delivery systems.
Superparamagnetic iron oxide nanoparticles (SPION) were coated with dSiO2 as core–shell nanoparticles, and labeled with near infra-red fluorescence (NIRF) dye 800ZW (excitation wavelength: 778 nm/emission wavelength: 806 nm) and anti-CD146 monoclonal antibody YY146 for magnetic resonance (MR)/NIRF imaging study in xenograft gastric cancer model. The morphology and the size of pre- and postlabeling SPION@dSiO2 core–shell nanoparticles were characterized using transmission electron microscopy. Iron content in SPION@dSiO2 nanoparticles was measured by inductively coupled plasma optical emission spectrometry. Fluorescence microscopy and fluorescence-activated cell sorter studies were carried out to confirm the binding specificity of YY146 and 800ZW–SPION@dSiO2–YY146 on MKN45 cells. In vivo and in vitro NIRF imaging, control (nanoparticles only) and blocking studies, and histology were executed on MKN45 tumor-bearing nude mice to estimate the affinity of 800ZW–SPION@dSiO2–YY146 to target tumor CD146.
800ZW–SPION@dSiO2–YY146 nanoparticles were uniformly spherical in shape and dispersed evenly in a cell culture medium. The diameter of the nanoparticle was 20–30 nm with 15 nm SPION core and ~10 nm SiO2 shell, and the final concentration was 1.7 nmol/mL. Transverse relaxivity of SPION@dSiO2 dispersed in water was measured to be 110.57 mM−1·s−1. Fluorescence activated cell sorter analysis of the nanoparticles in MKN45 cells showed 14-fold binding of 800ZW–SPION@dSiO2–YY146 more than the control group 800ZW–SPION@dSiO2. Series of NIRF imaging post intravenous injection of 800ZW–SPION@dSiO2–YY146 demonstrated that the MKN45 xenograft tumor model could be clearly identified as early as a time point of 30 minutes postinjection. Quantitative analysis revealed that the tumor uptake peaked at 24 hours postinjection.
This is the first successful study of functional nanoparticles for MR/NIRF imaging of cell surface glycoprotein CD146 in gastric cancer model. Our results suggest that 800ZW–SPION@dSiO2–YY146 nanoparticles will be applicable in tumor for image-guided therapy/surgery.
PMCID: PMC4309778  PMID: 25653520
SPION; nanotechnology; EMT; SPION@dSiO2; xenograft; gastric cancer
9.  Tumor-targeted drug delivery and MRI contrast enhancement by chlorotoxin-conjugated iron oxide nanoparticles 
Nanomedicine (London, England)  2008;3(4):495-505.
This study examines the capabilities of an actively targeting superparamagnetic nanoparticle to specifically deliver therapeutic and magnetic resonance imaging contrast agents to cancer cells.
Materials & methods
Iron oxide nanoparticles were synthesized and conjugated to both a chemotherapeutic agent, methotrexate, and a targeting ligand, chlorotoxin, through a poly(ethylene glycol) linker. Cytotoxicity of this nanoparticle conjugate was evaluated by Alamar Blue cell viability assays, while tumor cell specificity was examined in vitro and in vivo by magnetic resonance imaging.
Results & discussion
Characterization of these multifunctional nanoparticles confirms the successful attachment of both drug and targeting ligands. The targeting nanoparticle demonstrated preferential accumulation and increased cytotoxicity in tumor cells. Furthermore, prolonged retention of these nanoparticles was observed within tumors in vivo.
The improved specificity, extended particle retention, and increased cytotoxicity toward tumor cells demonstrated by this multifunctional nanoparticle system suggest that it possesses potential for applications in cancer diagnosis and treatment.
PMCID: PMC2890026  PMID: 18694312
iron oxide; nanoparticle; chlorotoxin; methotrexate; tumor; drug delivery; magnetic resonance imaging
10.  Co-association of methotrexate and SPIONs into anti-CD64 antibody-conjugated PLGA nanoparticles for theranostic application 
Rheumatoid arthritis (RA) is an autoimmune disease with severe consequences for the quality of life of sufferers. Regrettably, the inflammatory process involved remains unclear, and finding successful therapies as well as new means for its early diagnosis have proved to be daunting tasks. As macrophages are strongly associated with RA inflammation, effective diagnosis and therapy may encompass the ability to target these cells. In this work, a new approach for targeted therapy and imaging of RA was developed based on the use of multifunctional polymeric nanoparticles.
Poly(lactic-co-glycolic acid) nanoparticles were prepared using a single emulsion-evaporation method and comprisaed the co-association of superparamagnetic iron oxide nanoparticles (SPIONs) and methotrexate. The nanoparticles were further functionalized with an antibody against the macrophage-specific receptor, CD64, which is overexpressed at sites of RA. The devised nanoparticles were characterized for mean particle size, polydispersity index, zeta potential, and morphology, as well as the association of SPIONs, methotrexate, and the anti-CD64 antibody. Lastly, the cytotoxicity of the developed nanoparticles was assessed in RAW 264.7 cells using standard MTT and LDH assays.
The nanoparticles had a mean diameter in the range of 130–200 nm and zeta potential values ranging from −32 mV to −16 mV. Association with either methotrexate or SPIONs did not significantly affect the properties of the nanoparticles. Conjugation with the anti-CD64 antibody, in turn, caused a slight increase in size and surface charge. Transmission electron microscopy confirmed the association of SPIONs within the poly(lactic-co-glycolic acid) matrix. Both anti-CD64 and methotrexate association were confirmed by Fourier transform infrared spectroscopy, and quantified yielding values as high as 36% and 79%, respectively. In vitro toxicity studies confirmed the methotrexate-loaded nanosystem to be more effective than the free drug.
Multifunctional anti-CD64-conjugated poly(lactic-co-glycolic acid) nanoparticles for the combined delivery of methotrexate and SPIONs were successfully prepared and characterized. This nanosystem has the potential to provide a new theranostic approach for the management of RA.
PMCID: PMC4211909  PMID: 25364249
FcγRI; methotrexate; poly(lactic-co-glycolic acid); superparamagnetic iron oxide nanoparticles; targeted drug delivery
11.  Nanotechnology 
Executive Summary
Due to continuing advances in the development of structures, devices, and systems with a length of about 1 to 100 nanometres (nm) (1 nm is one billionth of a metre), the Medical Advisory Secretariat conducted a horizon scanning appraisal of nanotechnologies as new and emerging technologies, including an assessment of the possibly disruptive impact of future nanotechnologies.
The National Cancer Institute (NCI) in the United States proclaimed a 2015 challenge goal of eliminating suffering and death from cancer. To help meet this goal, the NCI is engaged in a concerted effort to introduce nanotechnology “to radically change the way we diagnose, treat and prevent cancer.” It is the NCI’s position that “melding nanotechnology and cancer research and development efforts will have a profound, disruptive effect on how we diagnose, treat, and prevent cancer.”
Thus, this appraisal sought to determine the systemic effects of nanotechnologies that target, image and deliver drugs, for example, with respect to health human resources, training, and new specialties; and to assess the current status of these nanotechnologies and their projected timeline to clinical utilization.
Clinical Need: Target Population and Condition
Cancer is a heterogeneous set of many malignant diseases. In each sex, 3 sites account for over one-half of all cancers. In women, these are the breast (28%), colorectum (13%) and lungs (12%). In men, these are the prostate (28%), lungs (15%), and the colorectum (13%).
It is estimated that 246,000 people in Ontario (2% of the population) have been diagnosed with cancer within the past 10 years and are still alive. Most were diagnosed with cancer of the breast (21%), prostate (20%), or colon or rectum (13%).
The number of new cancer cases diagnosed each year in Ontario is expected to increase from about 53,000 in 2001 to 80,000 in 2015. This represents more than a 50% increase in new cases over this period. An aging population, population growth, and rising cancer risk are thought to be the main factors that will contribute to the projected increase in the number of new cases.
The Technology Being Reviewed - Medical Advisory Secretariat Definition of Nanotechnology
First-Generation Nanotechnologies
Early application of nanotechnology-enabled products involved drug reformulation to deliver some otherwise toxic drugs (e.g., antifungal and anticancer agents) in a safer and more effective manner.
Examples of first-generation nanodevices include the following:
albumin bound nanoparticles;
gadolinium chelate for magnetic resonance imaging (MRI);
iron oxide particles for MRI;
silver nanoparticles (antibacterial wound dressing); and
nanoparticulate dental restoratives.
First-generation nanodevices have been in use for several years; therefore, they are not the focus of this report.
Second-Generation Nanotechnologies
Second-generation nanotechnologies are more sophisticated than first- generation nanotechnologies, due to novel molecular engineering that enables the devices to target, image, deliver a therapeutic agent, and monitor therapeutic efficacy in real time. Details and examples of second-generation nanodevices are discussed in the following sections of this report.
Review Strategy
The questions asked were as follows:
What is the status of these multifunctional nanotechnologies? That is, what is the projected timeline to clinical utilization?
What are the systemic effects of multifunctional nanodevices with integrated applications that target, image, and deliver drugs? That is, what are the implications of the emergence of nanotechnology on health human resources training, new specialties, etc.?
The Medical Advisory Secretariat used its usual search techniques to conduct the literature review by searching relevant databases. Outcomes of interest were improved imaging, improved sensitivity or specificity, improved response rates to therapeutic agents, and decreased toxicity.
The search yielded 1 health technology assessment on nanotechnology by The Centre for Technology Assessment TA-Swiss and, in the grey literature, a technology review by RAND. These, in addition to data from the National Cancer Institute (United States) formed the basis for the conclusions of the review.
With respect to the question as to how soon until nanotechnology is used in patient care, overall, the use of second-generation nanodevices, (e.g., quantum dots [QDs]), nanoshells, dendrimers) that can potentially target, image, and deliver drugs; and image cell response to therapy in real time are still in the preclinical benchwork stage.
Table 1 summarizes the projected timelines to clinical utilization.
Summary of Timelines to Clinical Use*
NCI refers to National Cancer Institute; QD, quantum dot.
Medical Advisory Secretariat Estimated Timeline for Ontario
Upon synthesizing the estimated timelines from the NCI, the Swiss technology assessment and the RAND reports (Figure 1), it appears that:
the clinical use of separate imaging and therapeutic nanodevices is estimated to start occurring around 2010;
the clinical use of combined imaging and therapeutic nanodevices is estimated to start occurring around 2020;
changes in the way disease is diagnosed, treated and monitored are anticipated; and
the full (and realistic) extent of these changes within the next 10 to 20 years is uncertain.
Medical Advisory Secretariat Estimated Timeline for the Clinical Use of Second-Generation Nanodevices in Ontario
With respect to the question on potential systemic effects of second-generation nanodevices (i.e., the implications of the emergence of these nanodevices on health human resources training, new specialties etc.), Table 2 summarizes the findings from the review.
Potential Systemic Effects Caused by Second Generation Nanodevices*
MRI indicates magnetic resonance imaging; PSA, prostate-specific antigen; QD, quantum dot.
Uncertainties Not Addressed in the Literature
The United States National Nanotechnology Initiative (NNI) funds a variety of research in the economic, ethical, legal, and cultural implications of the use of nanotechnology, as well as the implications for science, education and quality of life.
There are many uncertainties that are sparsely or not addressed at all in the literature regarding second generation nanodevices. These include the following:
long-term stability and toxicology of nanodevices;
cost-effectiveness of nanodevices;
refinement of specific targeting;
effects on hospitals, physician/nurse training, creation/removal of specialties; and
that pertaining to the question, where does disease begin if therapy is applied before the symptoms have appeared?
PMCID: PMC3379172  PMID: 23074489
12.  PEG-Mediated Synthesis of Highly Dispersive Multifunctional Superparamagnetic Nanoparticles: Their Physicochemical Properties and Function In Vivo 
ACS nano  2010;4(4):2402-2410.
Multifunctional superparamagnetic nanoparticles have been developed for a wide range of applications in nanomedicine, such as serving as tumor targeted drug carriers and molecular imaging agents. To function in vivo, the development of these novel materials must overcome several challenging requirements including biocompatibility, stability in physiological solutions, non-toxicity and the ability to traverse biological barriers. Here we report a PEG-mediated synthesis process to produce well-dispersed, ultrafine, and highly stable iron oxide nanoparticles for in vivo applications. Utilizing a biocompatible PEG coating bearing amine functional groups, the produced nanoparticles serve as an effective platform with the ability to incorporate a variety of targeting, therapeutic or imaging ligands. In this study, we demonstrated tumor-specific accumulation of these nanoparticles through both magnetic resonance and optical imaging after conjugation with chlorotoxin, a peptide with high affinity toward tumors of the neuroectodermal origin, and Cy5.5, a near-infrared fluorescent dye. Furthermore, we performed preliminary biodistribution and toxicity assessments of these nanoparticles in wild-type mice through histological analysis of clearance organs and hematology assay, and the results demonstrated the relative biocompatibility of these nanoparticles.
PMCID: PMC2860962  PMID: 20232826
iron oxide nanoparticle; nanomedicine; cancer; MRI; optical imaging; targeting; chlorotoxin; PEG
13.  Theranostic Nanoshells: From Probe Design to Imaging and Treatment of Cancer 
Accounts of chemical research  2011;44(10):936-946.
Recent advances in theranostics have expanded our ability to design and construct multifunctional nanoparticles that will ultimately allow us to image and treat diseases in a single clinical procedure. Theranostic nanoparticles, combining targeting, therapeutic and diagnostic functions within a single nanoscale complex, have emerged as a result of this confluence of nanoscience and biomedicine. The theranostic capabilities of gold nanoshells -spherical, silica core, gold shell nanoparticles- have attracted tremendous attention over the past decade as nanoshells have emerged as a promising tool for cancer therapy and bioimaging enhancement. This account examines the design and synthesis of nanoshell-based theranostic agents, their plasmon-derived optical properties and their corresponding applications. Nanoshells illuminated with resonant light are either strong optical absorbers or scatterers, properties which give rise to their unique capabilities. In this account, we discuss the underlying physical principles contributing to the photothermal response of nanoshells. We elucidate the photophysics of nanoshell-induced fluorescence enhancement of weak near-infrared fluorophores. We then describe the application of nanoshells as a contrast agent for optical coherence tomography of breast carcinoma cells in vivo. We also examine the recent progress of nanoshells as a multimodal theranostic probe for near-infrared fluorescence and magnetic resonance imaging (MRI) combined with photothermal ablation of cancer cells. The design and preparation of nanoshell complexes is discussed, and their ability to enhance the photoluminescence of fluorophores while incorporating MR contrast is described. We show the theranostic potential of the multimodal nanoshells in vivo for imaging subcutaneous breast cancer tumors in animal models and their biodistribution in various tissues.
We then discuss the potential of nanoshells as light-triggered gene therapy vectors. The plasmonic properties of nanoshells make them highly effective as light controlled delivery vectors, adding temporal control to the spatial control characteristic of nanoparticle-based gene therapy approaches. We describe the fabrication of DNA-conjugated nanoshell complexes and compare the efficiency of light-induced and thermally-induced DNA release of DNA. We examine light-triggered release of DAPI (4',6-diamidino-2-phenylindole) molecules, which bind reversibly to double-stranded DNA, to visualize intracellular light-induced release. Finally, we look at future prospects of nanoshell-based theranostics, the potential impact and near-term challenges of theranostic nanomedicine in the next decade.
PMCID: PMC3888233  PMID: 21612199
14.  Theranostic nanoparticles based on bioreducible polyethylenimine-coated iron oxide for reduction-responsive gene delivery and magnetic resonance imaging 
Theranostic nanoparticles based on superparamagnetic iron oxide (SPIO) have a great promise for tumor diagnosis and gene therapy. However, the availability of theranostic nanoparticles with efficient gene transfection and minimal toxicity remains a big challenge. In this study, we construct an intelligent SPIO-based nanoparticle comprising a SPIO inner core and a disulfide-containing polyethylenimine (SSPEI) outer layer, which is referred to as a SSPEI-SPIO nanoparticle, for redox-triggered gene release in response to an intracellular reducing environment. We reveal that SSPEI-SPIO nanoparticles are capable of binding genes to form nano-complexes and mediating a facilitated gene release in the presence of dithiothreitol (5–20 mM), thereby leading to high transfection efficiency against different cancer cells. The SSPEI-SPIO nanoparticles are also able to deliver small interfering RNA (siRNA) for the silencing of human telomerase reverse transcriptase genes in HepG2 cells, causing their apoptosis and growth inhibition. Further, the nanoparticles are applicable as T2-negative contrast agents for magnetic resonance (MR) imaging of a tumor xenografted in a nude mouse. Importantly, SSPEI-SPIO nanoparticles have relatively low cytotoxicity in vitro at a high concentration of 100 μg/mL. The results of this study demonstrate the utility of a disulfide-containing cationic polymer-decorated SPIO nanoparticle as highly potent and low-toxic theranostic nano-system for specific nucleic acid delivery inside cancer cells.
PMCID: PMC4099417  PMID: 25045265
nanoparticles; SSPEI; hTERT; disulfide; RNA interference; tumor; MR imaging
15.  Integrin Targeting for Tumor Optical Imaging 
Theranostics  2011;1:102-126.
Optical imaging has emerged as a powerful modality for studying molecular recognitions and molecular imaging in a noninvasive, sensitive, and real-time way. Some advantages of optical imaging include cost-effectiveness, convenience, and non-ionization safety as well as complementation with other imaging modalities such as positron emission tomography (PET), single-photon emission computed tomography (SPECT), and magnetic resonance imaging (MRI). Over the past decade, considerable advances have been made in tumor optical imaging by targeting integrin receptors in preclinical studies. This review has emphasized the construction and evaluation of diverse integrin targeting agents for optical imaging of tumors in mouse models. They mainly include some near-infrared fluorescent dye-RGD peptide conjugates, their multivalent analogs, and nanoparticle conjugates for targeting integrin αvβ3. Some compounds targeting other integrin subtypes such as α4β1 and α3 for tumor optical imaging have also been included. Both in vitro and in vivo studies have revealed some promising integrin-targeting optical agents which have further enhanced our understanding of integrin expression and targeting in cancer biology as well as related anticancer drug discovery. Especially, some integrin-targeted multifunctional optical agents including nanoparticle-based optical agents can multiplex optical imaging with other imaging modalities and targeted therapy, serving as an attractive type of theranostics for simultaneous imaging and targeted therapy. Continued efforts to discover and develop novel, innovative integrin-based optical agents with improved targeting specificity and imaging sensitivity hold great promises for improving cancer early detection, diagnosis, and targeted therapy in clinic.
PMCID: PMC3086617  PMID: 21546996
optical imaging; near-infrared fluorescence; multivalent RGD peptides; multifunctional probes; nanoparticle-based optical agents.
16.  Magnetic Iron Oxide Nanoparticles for Multimodal Imaging and Therapy of Cancer 
Superparamagnetic iron oxide nanoparticles (SPION) have emerged as an MRI contrast agent for tumor imaging due to their efficacy and safety. Their utility has been proven in clinical applications with a series of marketed SPION-based contrast agents. Extensive research has been performed to study various strategies that could improve SPION by tailoring the surface chemistry and by applying additional therapeutic functionality. Research into the dual-modal contrast uses of SPION has developed because these applications can save time and effort by reducing the number of imaging sessions. In addition to multimodal strategies, efforts have been made to develop multifunctional nanoparticles that carry both diagnostic and therapeutic cargos specifically for cancer. This review provides an overview of recent advances in multimodality imaging agents and focuses on iron oxide based nanoparticles and their theranostic applications for cancer. Furthermore, we discuss the physiochemical properties and compare different synthesis methods of SPION for the development of multimodal contrast agents.
PMCID: PMC3759893  PMID: 23912234
SPION; multimodal; multifunctional; theranostics; MRI; CT; SPECT; PET
17.  Development of Receptor Targeted Magnetic Iron Oxide Nanoparticles for Efficient Drug Delivery and Tumor Imaging 
The development of multifunctional nanoparticles that have dual capabilities of tumor imaging and delivering therapeutic agents into tumor cells holds great promises for novel approaches for tumor imaging and therapy. We have engineered urokinase plasminogen activator receptor (uPAR) targeted biodegradable nanoparticles using a size uniform and amphiphilic polymer-coated magnetic iron oxide (IO) nanoparticle conjugated with the amino-terminal fragment (ATF) of urokinase plasminogen activator (uPA), which is a high affinity natural ligand for uPAR. We further developed methods to encapsulate hydrophobic chemotherapeutic drugs into the polymer layer on the IO nanoparticles, making these targeted magnetic resonance imaging (MRI) sensitive nanoparticles drug delivery vehicles. Using a fluorescent drug doxorubicin (Dox) as a model system, we showed that this hydrophobic drug can be efficiently encapsulated into the uPAR-targeted IO nanoparticles. This class of Dox-loaded nanoparticles has a compact size and is stable in pH 7.4 buffer. However, encapsulated Doxcan be released from the nanoparticles at pH 4.0 to 5.0 within 2 hrs. In comparison with the effect of equivalent dosage of free drug or non-targeted IO-Dox nanoparticles, uPAR-targeted IO-Dox nanoparticles deliver higher levels of Dox into breast cancer cells and produce a stronger inhibitory effect on tumor cell growth. Importantly, Dox-loaded IO nanoparticles maintain their T2 MRI contrast effect after being internalized into the tumor cells due to their significant susceptibility effect in the cells, indicating that this drug delivery nanoparticle has the potential to be used as targeted therapeutic imaging probes for monitoring the drug delivery using MRI.
PMCID: PMC4139059  PMID: 25152701
Magnetic Iron Oxide Nanoparticles; uPAR; Targeted Nanoparticle; Breast Cancer; Drug Delivery Nanoparticle; Doxorubicin
18.  Subtle cytotoxicity and genotoxicity differences in superparamagnetic iron oxide nanoparticles coated with various functional groups 
Superparamagnetic iron oxide nanoparticles (SPIONs) have been widely utilized for the diagnosis and therapy of specific diseases, as magnetic resonance imaging (MRI) contrast agents and drug-delivery carriers, due to their easy transportation to targeted areas by an external magnetic field. For such biomedical applications, SPIONs must have multifunctional characteristics, including optimized size and modified surface. However, the biofunctionality and biocompatibility of SPIONs with various surface functional groups of different sizes have yet to be elucidated clearly. Therefore, it is important to carefully monitor the cytotoxicity and genotoxicity of SPIONs that are surfaced-modified with various functional groups of different sizes. In this study, we evaluated SPIONs with diameters of approximately 10 nm and 100~150 nm, containing different surface functional groups. SPIONs were covered with −O− groups, so-called bare SPIONs. Following this, they were modified with three different functional groups – hydroxyl (−OH), carboxylic (−COOH), and amine (−NH2) groups – by coating their surfaces with tetraethyl orthosilicate (TEOS), (3-aminopropyl)trimethoxysilane (APTMS), TEOS-APTMS, or citrate, which imparted different surface charges and sizes to the particles. The effects of SPIONs coated with these functional groups on mitochondrial activity, intracellular accumulation of reactive oxygen species, membrane integrity, and DNA stability in L-929 fibroblasts were determined by water-soluble tetrazolium, 2′,7′-dichlorodihydrofluorescein, lactate dehydrogenase, and comet assays, respectively. Our toxicological observations suggest that the functional groups and sizes of SPIONs are critical determinants of cellular responses, degrees of cytotoxicity and genotoxicity, and potential mechanisms of toxicity. Nanoparticles with various surface modifications and of different sizes induced slight, but possibly meaningful, changes in cell cytotoxicity and genotoxicity, which would be significantly valuable in further studies of bioconjugation and cell interaction for drug delivery, cell culture, and cancer-targeting applications.
PMCID: PMC3254266  PMID: 22238510
superparamagnetic iron oxide nanoparticles; surface functional groups; cytotoxicity; genotoxicity
19.  Induced Clustered Nanoconfinement of Superparamagnetic Iron Oxide in Biodegradable Nanoparticles Enhances Transverse Relaxivity for Targeted Theranostics 
Combined therapeutic and diagnostic agents, “theranostics” are emerging valuable tools for noninvasive imaging and drug delivery. Here, we report on a solid biodegradable multifunctional nanoparticle that combines both features.
Poly(lactide-co-glycolide) nanoparticles were engineered to confine superparamagnetic iron oxide contrast for magnetic resonance imaging while enabling controlled drug delivery and targeting to specific cells. To achieve this dual modality, fatty acids were used as anchors for surface ligands and for encapsulated iron oxide in the polymer matrix.
We demonstrate that fatty acid modified iron oxide prolonged retention of the contrast agent in the polymer matrix during degradative release of drug. Antibody-fatty acid surface modification facilitated cellular targeting and subsequent internalization in cells while inducing clustering of encapsulated fatty-acid modified superparamagnetic iron oxide during particle formulation. This induced clustered confinement led to an aggregation within the nanoparticle and, hence, higher transverse relaxivity, r2, (294 mM−1 s−1) compared with nanoparticles without fatty-acid ligands (160 mM−1 s−1) and higher than commercially available superparamagnetic iron oxide nanoparticles (89 mM−1 s−1).
Clustering of superparamagnetic iron oxide in poly(lactide-co-glycolide) did not affect the controlled release of encapsulated drugs such as methotrexate or clodronate and their subsequent pharmacological activity, thus highlighting the full theranostic capability of our system.
PMCID: PMC3834165  PMID: 23401099
PLGA; iron oxide; clustered; targeted; methotrexate; clodronate
20.  Magnetic Nanoparticles for Cancer Diagnosis and Therapy 
Pharmaceutical research  2012;29(5):1180-1188.
Nanotechnology is evolving as a new field that has a potentially high research and clinical impact. Medicine, in particular, could benefit from nanotechnology, due to emerging applications for noninvasive imaging and therapy. One important nanotechnological platform that has shown promise includes the so-called iron oxide nanoparticles. With specific relevance to cancer therapy, iron oxide nanoparticle-based therapy represents an important alternative to conventional chemotherapy, radiation, or surgery. Iron oxide nanoparticles are usually composed of three main components: an iron core, a polymer coating, and functional moieties. The biodegradable iron core can be designed to be superparamagnetic. This is particularly important, if the nanoparticles are to be used as a contrast agent for noninvasive magnetic resonance imaging (MRI). Surrounding the iron core is generally a polymer coating, which not only serves as a protective layer but also is a very important component for transforming nanoparticles into biomedical nanotools for in vivo applications. Finally, different moieties attached to the coating serve as targeting macromolecules, therapeutics payloads, or additional imaging tags. Despite the development of several nanoparticles for biomedical applications, we believe that iron oxide nanoparticles are still the most promising platform that can transform nanotechnology into a conventional medical discipline.
PMCID: PMC3734862  PMID: 22274558
cancer; diagnosis; drug delivery; gene delivery; iron oxide nanoparticle; magnetic nanoparticle; molecular imaging; MRI; nanomedicine; siRNA; therapy
21.  Multifunctional iron platinum stealth immunomicelles: targeted detection of human prostate cancer cells using both fluorescence and magnetic resonance imaging 
Superparamagnetic iron oxide nanoparticles (SPIONs) are the most common type of contrast agents used in contrast agent-enhanced magnetic resonance imaging (MRI). Still, there is a great deal of room for improvement, and nanoparticles with increased MRI relaxivities are needed to increase the contrast enhancement in MRI applied to various medical conditions including cancer. We report the synthesis of superparamagnetic iron platinum nanoparticles (SIPPs) and subsequent encapsulation using PEGylated phospholipids to create stealth immunomicelles (DSPE-SIPPs) that can be specifically targeted to human prostate cancer cell lines and detected using both MRI and fluorescence imaging. SIPP cores and DSPE-SIPPs were 8.5 ± 1.6 nm and 42.9 ± 8.2 nm in diameter, respectively, and the SIPPs had a magnetic moment of 120 A m2/kg iron. J591, a monoclonal antibody against prostate specific membrane antigen (PSMA), was conjugated to the DSPE-SIPPs (J591-DSPE-SIPPs), and specific targeting of J591-DSPE-SIPPs to PSMA-expressing human prostate cancer cell lines was demonstrated using fluorescence confocal microscopy. The transverse relaxivity of the DSPE-SIPPs, measured at 4.7 Tesla, was 300.6 ± 8.5 s−1 mM−1, which is 13-fold better than commercially available SPIONs (23.8 ± 6.9 s−1 mM−1) and ~3-fold better than reported relaxivities for Feridex® and Resovist®. Our data suggest that J591-DSPE-SIPPs specifically target human prostate cancer cells in vitro, are superior contrast agents in T2-weighted MRI, and can be detected using fluorescence imaging. To our knowledge, this is the first report on the synthesis of multifunctional SIPP micelles and using SIPPs for the specific detection of prostate cancer.
PMCID: PMC3223933  PMID: 22121333
Iron platinum; Micelle; Prostate cancer; Contrast agent; Magnetic resonance imaging; Fluorescent nanoparticle; Nanomedicine
22.  Design and Application of Magnetic-based Theranostic Nanoparticle Systems 
Recently, magnetic-based theranostic nanoparticle (MBTN) systems have been studied, researched, and applied extensively to detect and treat various diseases including cancer. Theranostic nanoparticles are advantageous in that the diagnosis and treatment of a disease can be performed in a single setting using combinational strategies of targeting, imaging, and/or therapy. Of these theranostic strategies, magnetic-based systems containing magnetic nanoparticles (MNPs) have gained popularity because of their unique ability to be used in magnetic resonance imaging, magnetic targeting, hyperthermia, and controlled drug release. To increase their effectiveness, MNPs have been decorated with a wide variety of materials to improve their biocompatibility, carry therapeutic payloads, encapsulate/bind imaging agents, and provide functional groups for conjugation of biomolecules that provide receptor-mediated targeting of the disease. This review summarizes recent patents involving various polymer coatings, imaging agents, therapeutic agents, targeting mechanisms, and applications along with the major requirements and challenges faced in using MBTN for disease management.
PMCID: PMC3686518  PMID: 23795343
magnetic nanoparticles; polymeric shell; imaging agents; theranostics; therapeutic agents; hyperthermia
23.  Molecular Imaging with Theranostic Nanoparticles 
Accounts of chemical research  2011;44(10):1050-1060.
Nanoparticles offer diagnostic and therapeutic capabilities impossible with small molecules or micro-scale tools. As molecular biology merges with medical imaging to form the field of molecular imaging, nanoparticle imaging is increasingly common with both therapeutic and diagnostic applications. The term theranostic indicates technology with concurrent and complementary diagnostic and therapeutic capabilities. When performed with sub-micron materials, the field may be termed theranostic nanomedicine. Although nanoparticles have been FDA-approved for clinical use as transport vehicles for nearly 15 years, full translation of their theranostic potential is incomplete. Still, remarkable successes with nanoparticles have been realized in the areas of drug delivery and magnetic resonance imaging. Emerging applications include image-guided resection, optical/photoacoustic imaging in vivo, contrast-enhanced ultrasound, and thermoablative therapy.
Diagnosis with nanoparticles in molecular imaging involves correlating signal to a phenotype. The disease’s size, stage, and biochemical signature can be gleaned from the location and intensity of nanoparticle signal emanating from a living subject. Therapy with NP uses the image for resection or delivery of small molecule or RNA thererapeutic. Ablation of the affected area is also possible via heat or radioactivity.
The ideal theranostic NP: (1) selectively and rapidly accumulates in diseased tissue, (2) reports biochemical and morphological characteristics of the area, (3) delivers a non-invasive therapeutic, and (4) is safe and biodegrades with non-toxic byproducts. Above is a schematic of such a system which contains a central imaging core (yellow) surrounded by small molecule therapeutics (red). The system targets via ligands such as IgG (pink) and is protected from immune scavengers by a cloak of protective polymer (green). While no nanoparticle has achieved all of the above features, many NPs do fulfill one or more. While the most clinically translatable nanoparticles have been used in the field of magnetic resonance imaging, other types are quickly becoming more biocompatible by overcoming toxicity and biodistribution concerns. The document details diagnostic imaging and therapeutic uses of nanoparticles. We propose five main types of nanoparticles with concurrent diagnostic and thereapeutic uses and offer examples of each.
PMCID: PMC3196845  PMID: 21919457
Theranostic; Nanoparticle; Molecular Imaging
24.  Effects of Mesoporous Silica Coating and Post-Synthetic Treatment on the Transverse Relaxivity of Iron Oxide Nanoparticles 
Mesoporous silica nanoparticles have the capacity to load and deliver therapeutic cargo and incorporate imaging modalities, making them prominent candidates for theranostic devices. One of the most widespread imaging agents utilized in this and other theranostic platforms is nanoscale superparamagnetic iron oxide. Although several core-shell magnetic mesoporous silica nanoparticles presented in the literature have provided high T2 contrast in vitro and in vivo, there is ambiguity surrounding which parameters lead to enhanced contrast. Additionally, there is a need to understand the behavior of these imaging agents over time in biologically relevant environments. Herein, we present a systematic analysis of how the transverse relaxivity (r2) of magnetic mesoporous silica nanoparticles is influenced by nanoparticle diameter, iron oxide nanoparticle core synthesis, and the use of a hydrothermal treatment. This work demonstrates that samples which did not undergo a hydrothermal treatment experienced a drop in r2 (75% of original r2 within 8 days of water storage), while samples with hydrothermal treatment maintained roughly the same r2 for over 30 days in water. Our results suggest that iron oxide oxidation is the cause of the r2 loss, and this oxidation can be prevented both during synthesis and storage by the use of deoxygenated conditions during nanoparticle synthesis. The hydrothermal treatment also provides colloidal stability, even in acidic and highly salted solutions, and a resistance against acid degradation of the iron oxide nanoparticle core. The results of this study show the promise of multifunctional mesoporous silica nanoparticles but will also likely inspire further investigation into multiples types of theranostic devices, taking into consideration their behavior over time and in relevant biological environments.
PMCID: PMC3694606  PMID: 23814377
transverse relaxivity; mesoporous silica; iron oxide; nanoparticles; hydrothermal treatment
25.  Simulating Magnetic Nanoparticle Behavior in Low-field MRI under Transverse Rotating Fields and Imposed Fluid Flow 
In the presence of alternating-sinusoidal or rotating magnetic fields, magnetic nanoparticles will act to realign their magnetic moment with the applied magnetic field. The realignment is characterized by the nanoparticle’s time constant, τ. As the magnetic field frequency is increased, the nanoparticle’s magnetic moment lags the applied magnetic field at a constant angle for a given frequency, Ω, in rad/s. Associated with this misalignment is a power dissipation that increases the bulk magnetic fluid’s temperature which has been utilized as a method of magnetic nanoparticle hyperthermia, particularly suited for cancer in low-perfusion tissue (e.g., breast) where temperature increases of between 4°C and 7°C above the ambient in vivo temperature cause tumor hyperthermia. This work examines the rise in the magnetic fluid’s temperature in the MRI environment which is characterized by a large DC field, B0. Theoretical analysis and simulation is used to predict the effect of both alternating-sinusoidal and rotating magnetic fields transverse to B0. Results are presented for the expected temperature increase in small tumors (~1 cm radius) over an appropriate range of magnetic fluid concentrations (0.002 to 0.01 solid volume fraction) and nanoparticle radii (1 to 10 nm). The results indicate that significant heating can take place, even in low-field MRI systems where magnetic fluid saturation is not significant, with careful The goal of this work is to examine, by means of analysis and simulation, the concept of interactive fluid magnetization using the dynamic behavior of superparamagnetic iron oxide nanoparticle suspensions in the MRI environment. In addition to the usual magnetic fields associated with MRI, a rotating magnetic field is applied transverse to the main B0 field of the MRI. Additional or modified magnetic fields have been previously proposed for hyperthermia and targeted drug delivery within MRI. Analytical predictions and numerical simulations of the transverse rotating magnetic field in the presence of B0 are investigated to demonstrate the effect of Ω, the rotating field frequency, and the magnetic field amplitude on the fluid suspension magnetization. The transverse magnetization due to the rotating transverse field shows strong dependence on the characteristic time constant of the fluid suspension, τ. The analysis shows that as the rotating field frequency increases so that Ωτ approaches unity, the transverse fluid magnetization vector is significantly non-aligned with the applied rotating field and the magnetization’s magnitude is a strong function of the field frequency. In this frequency range, the fluid’s transverse magnetization is controlled by the applied field which is determined by the operator. The phenomenon, which is due to the physical rotation of the magnetic nanoparticles in the suspension, is demonstrated analytically when the nanoparticles are present in high concentrations (1 to 3% solid volume fractions) more typical of hyperthermia rather than in clinical imaging applications, and in low MRI field strengths (such as open MRI systems), where the magnetic nanoparticles are not magnetically saturated. The effect of imposed Poiseuille flow in a planar channel geometry and changing nanoparticle concentration is examined. The work represents the first known attempt to analyze the dynamic behavior of magnetic nanoparticles in the MRI environment including the effects of the magnetic nanoparticle spin-velocity. It is shown that the magnitude of the transverse magnetization is a strong function of the rotating transverse field frequency. Interactive fluid magnetization effects are predicted due to non-uniform fluid magnetization in planar Poiseuille flow with high nanoparticle concentrations.
PMCID: PMC2901184  PMID: 20625540
Magnetic nanoparticles; MRI; rotating magnetic field; interactive magnetization; magnetic particle imaging

Results 1-25 (1216014)