PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (1253058)

Clipboard (0)
None

Related Articles

1.  Berberine Protects against Neuronal Damage via Suppression of Glia-Mediated Inflammation in Traumatic Brain Injury 
PLoS ONE  2014;9(12):e115694.
Traumatic brain injury (TBI) triggers a series of neuroinflammatory processes that contribute to evolution of neuronal injury. The present study investigated the neuroprotective effects and anti-inflammatory actions of berberine, an isoquinoline alkaloid, in both in vitro and in vivo TBI models. Mice subjected to controlled cortical impact injury were injected with berberine (10 mg·kg−1) or vehicle 10 min after injury. In addition to behavioral studies and histology analysis, blood-brain barrier (BBB) permeability and brain water content were determined. Expression of PI3K/Akt and Erk signaling and inflammatory mediators were also analyzed. The protective effect of berberine was also investigated in cultured neurons either subjected to stretch injury or exposed to conditioned media with activated microglia. Berberine significantly attenuated functional deficits and brain damage associated with TBI up to day 28 post-injury. Berberine also reduced neuronal death, apoptosis, BBB permeability, and brain edema at day 1 post-injury. These changes coincided with a marked reduction in leukocyte infiltration, microglial activation, matrix metalloproteinase-9 activity, and expression of inflammatory mediators. Berberine had no effect on Akt or Erk 1/2 phosphorylation. In mixed glial cultures, berberine reduced TLR4/MyD88/NF-κB signaling. Berberine also attenuated neuronal death induced by microglial conditioned media; however, it did not directly protect cultured neurons subjected to stretch injury. Moreover, administration of berberine at 3 h post-injury also reduced TBI-induced neuronal damage, apoptosis and inflammation in vivo. Berberine reduces TBI-induced brain damage by limiting the production of inflammatory mediators by glial cells, rather than by a direct neuroprotective effect.
doi:10.1371/journal.pone.0115694
PMCID: PMC4278716  PMID: 25546475
2.  Curcumin attenuates acute inflammatory injury by inhibiting the TLR4/MyD88/NF-κB signaling pathway in experimental traumatic brain injury 
Background
Traumatic brain injury (TBI) initiates a neuroinflammatory cascade that contributes to substantial neuronal damage and behavioral impairment, and Toll-like receptor 4 (TLR4) is an important mediator of thiscascade. In the current study, we tested the hypothesis that curcumin, a phytochemical compound with potent anti-inflammatory properties that is extracted from the rhizome Curcuma longa, alleviates acute inflammatory injury mediated by TLR4 following TBI.
Methods
Neurological function, brain water content and cytokine levels were tested in TLR4-/- mice subjected to weight-drop contusion injury. Wild-type (WT) mice were injected intraperitoneally with different concentrations of curcumin or vehicle 15 minutes after TBI. At 24 hours post-injury, the activation of microglia/macrophages and TLR4 was detected by immunohistochemistry; neuronal apoptosis was measured by FJB and TUNEL staining; cytokines were assayed by ELISA; and TLR4, MyD88 and NF-κB levels were measured by Western blotting. In vitro, a co-culture system comprised of microglia and neurons was treated with curcumin following lipopolysaccharide (LPS) stimulation. TLR4 expression and morphological activation in microglia and morphological damage to neurons were detected by immunohistochemistry 24 hours post-stimulation.
Results
The protein expression of TLR4 in pericontusional tissue reached a maximum at 24 hours post-TBI. Compared with WT mice, TLR4-/- mice showed attenuated functional impairment, brain edema and cytokine release post-TBI. In addition to improvement in the above aspects, 100 mg/kg curcumin treatment post-TBI significantly reduced the number of TLR4-positive microglia/macrophages as well as inflammatory mediator release and neuronal apoptosis in WT mice. Furthermore, Western blot analysis indicated that the levels of TLR4 and its known downstream effectors (MyD88, and NF-κB) were also decreased after curcumin treatment. Similar outcomes were observed in the microglia and neuron co-culture following treatment with curcumin after LPS stimulation. LPS increased TLR4 immunoreactivity and morphological activation in microglia and increased neuronal apoptosis, whereas curcumin normalized this upregulation. The increased protein levels of TLR4, MyD88 and NF-κB in microglia were attenuated by curcumin treatment.
Conclusions
Our results suggest that post-injury, curcumin administration may improve patient outcome by reducing acute activation of microglia/macrophages and neuronal apoptosis through a mechanism involving the TLR4/MyD88/NF-κB signaling pathway in microglia/macrophages in TBI.
doi:10.1186/1742-2094-11-59
PMCID: PMC3986937  PMID: 24669820
Toll-like receptor 4; Curcumin; Traumatic brain injury; Inflammation
3.  Wogonin Induces Reactive Oxygen Species Production and Cell Apoptosis in Human Glioma Cancer Cells 
Glioma is the most common primary adult brain tumor with poor prognosis because of the ease of spreading tumor cells to other regions of the brain. Cell apoptosis is frequently targeted for developing anti-cancer drugs. In the present study, we have assessed wogonin, a flavonoid compound isolated from Scutellaria baicalensis Georgi, induced ROS generation, endoplasmic reticulum (ER) stress and cell apoptosis. Wogonin induced cell death in two different human glioma cells, such as U251 and U87 cells but not in human primary astrocytes (IC 50 > 100 μM). Wogonin-induced apoptotic cell death in glioma cells was measured by propidine iodine (PI) analysis, Tunnel assay and Annexin V staining methods. Furthermore, wogonin also induced caspase-9 and caspase-3 activation as well as up-regulation of cleaved PARP expression. Moreover, treatment of wogonin also increased a number of signature ER stress markers glucose-regulated protein (GRP)-78, GRP-94, Calpain I, and phosphorylation of eukaryotic initiation factor-2α (eIF2α). Treatment of human glioma cells with wogonin was found to induce reactive oxygen species (ROS) generation. Wogonin induced ER stress-related protein expression and cell apoptosis was reduced by the ROS inhibitors apocynin and NAC (N-acetylcysteine). The present study provides evidence to support the fact that wogonin induces human glioma cell apoptosis mediated ROS generation, ER stress activation and cell apoptosis.
doi:10.3390/ijms13089877
PMCID: PMC3431834  PMID: 22949836
ROS; apoptosis; wogonin; glioma; ER stress
4.  Absence of TLR4 Reduces Neurovascular Unit and Secondary Inflammatory Process after Traumatic Brain Injury in Mice 
PLoS ONE  2013;8(3):e57208.
Background
Traumatic brain injury (TBI) initiates a neuroinflammatory cascade that contributes to neuronal damage and behavioral impairment. Toll-like receptors (TLRs) are signaling receptors in the innate immune system, although emerging evidence indicates their role in brain injury. We have therefore investigated the role played by TLR4 signaling pathway in the development of mechanisms of secondary inflammatory process in traumatic brain injury (TBI) differ in mice that lack a functional TLR4 signaling pathway.
Methods/Principal Findings
Controlled cortical impact injury was performed on TLR4 knockout (KO) mice (C57BL/10ScNJ) and wild-type (WT) mice (C57BL/10ScNJ). TBI outcome was evaluated by determination of infarct volume and assessment of neurological scores. Brains were collected at 24 h after TBI. When compared to WT mice, TLR4 KO mice had lower infarct volumes and better outcomes in neurological and behavioral tests (evaluated by EBST and rotarod test). Mice that lacked TLR4 had minor expression of TBI-induced GFAP, Chymase, Tryptase, IL-1β, iNOS, PARP and Nitrotyrosine mediators implicated in brain damage. The translocation of expression of p-JNK, IκB-α and NF-κB pathway were also lower in brains from TLR4 KO mice. When compared to WT mice, resulted in significant augmentation of all the above described parameters. In addition, apoptosis levels in TLR4 KO mice had minor expression of Bax while on the contrary with Bcl-2.
Conclusions/Significance
Our results clearly demonstrated that absence of TLR4 reduces the development of neuroinflammation, tissues injury events associated with brain trauma and may play a neuroprotective role in TBI in mice.
doi:10.1371/journal.pone.0057208
PMCID: PMC3610903  PMID: 23555560
5.  Valproate Administered after Traumatic Brain Injury Provides Neuroprotection and Improves Cognitive Function in Rats 
PLoS ONE  2010;5(6):e11383.
Background
Traumatic brain injury (TBI) initiates a complex series of neurochemical and signaling changes that lead to pathological events including neuronal hyperactivity, excessive glutamate release, inflammation, increased blood-brain barrier (BBB) permeability and cerebral edema, altered gene expression, and neuronal dysfunction. It is believed that a drug combination, or a single drug acting on multiple targets, may be an effective strategy to treat TBI. Valproate, a widely used antiepileptic drug, has a number of targets including GABA transaminase, voltage-gated sodium channels, glycogen synthase kinase (GSK)-3, and histone deacetylases (HDACs), and therefore may attenuate a number of TBI-associated pathologies.
Methodology/Principal Findings
Using a rodent model of TBI, we tested if post-injury administration of valproate can decrease BBB permeability, reduce neural damage and improve cognitive outcome. Dose-response studies revealed that systemic administration of 400 mg/kg (i.p.), but not 15, 30, 60 or 100 mg/kg, increases histone H3 and H4 acetylation, and reduces GSK-3 activity, in the hippocampus. Thirty min post-injury administration of 400 mg/kg valproate improved BBB integrity as indicated by a reduction in Evans Blue dye extravasation. Consistent with its dose response to inhibit GSK-3 and HDACs, valproate at 400 mg/kg, but not 100 mg/kg, reduced TBI-associated hippocampal dendritic damage, lessened cortical contusion volume, and improved motor function and spatial memory. These behavioral improvements were not observed when SAHA (suberoylanilide hydroxamic acid), a selective HDAC inhibitor, was administered.
Conclusion/Significance
Our findings indicate that valproate given soon after TBI can be neuroprotective. As clinically proven interventions that can be used to minimize the damage following TBI are not currently available, the findings from this report support the further testing of valproate as an acute therapeutic strategy.
doi:10.1371/journal.pone.0011383
PMCID: PMC2894851  PMID: 20614021
6.  Suppression of acute proinflammatory cytokine and chemokine upregulation by post-injury administration of a novel small molecule improves long-term neurologic outcome in a mouse model of traumatic brain injury 
Background
Traumatic brain injury (TBI) with its associated morbidity is a major area of unmet medical need that lacks effective therapies. TBI initiates a neuroinflammatory cascade characterized by activation of astrocytes and microglia, and increased production of immune mediators including proinflammatory cytokines and chemokines. This inflammatory response contributes both to the acute pathologic processes following TBI including cerebral edema, in addition to longer-term neuronal damage and cognitive impairment. However, activated glia also play a neuroprotective and reparative role in recovery from injury. Thus, potential therapeutic strategies targeting the neuroinflammatory cascade must use careful dosing considerations, such as amount of drug and timing of administration post injury, in order not to interfere with the reparative contribution of activated glia.
Methods
We tested the hypothesis that attenuation of the acute increase in proinflammatory cytokines and chemokines following TBI would decrease neurologic injury and improve functional neurologic outcome. We used the small molecule experimental therapeutic, Minozac (Mzc), to suppress TBI-induced up-regulation of glial activation and proinflammatory cytokines back towards basal levels. Mzc was administered in a clinically relevant time window post-injury in a murine closed-skull, cortical impact model of TBI. Mzc effects on the acute increase in brain cytokine and chemokine levels were measured as well as the effect on neuronal injury and neurobehavioral function.
Results
Administration of Mzc (5 mg/kg) at 3 h and 9 h post-TBI attenuates the acute increase in proinflammatory cytokine and chemokine levels, reduces astrocyte activation, and the longer term neurologic injury, and neurobehavioral deficits measured by Y maze performance over a 28-day recovery period. Mzc-treated animals also have no significant increase in brain water content (edema), a major cause of the neurologic morbidity associated with TBI.
Conclusion
These results support the hypothesis that proinflammatory cytokines contribute to a glial activation cycle that produces neuronal dysfunction or injury following TBI. The improvement in long-term functional neurologic outcome following suppression of cytokine upregulation in a clinically relevant therapeutic window indicates that selective targeting of neuroinflammation may lead to novel therapies for the major neurologic morbidities resulting from head injury, and indicates the potential of Mzc as a future therapeutic for TBI.
doi:10.1186/1742-2094-5-28
PMCID: PMC2483713  PMID: 18590543
7.  Wogonin modulates hydroperoxide-induced apoptosis via PI3K/Akt pathway in retinal pigment epithelium cells 
Diagnostic Pathology  2014;9:154.
Background
Oxidative stress causes the defects of retinal pigment epithelial (RPE) cells that contribute to age-related macular degeneration (AMD). This study was conducted to determine whether wogonin could prevent H2O2-induced oxidative stress in RPE cells.
Methods
A RPE cell line, ARPE-19, was obtained for the cell model. ARPE-19 cells were pre-treated with various concentrations of wogonin for 24 h before being exposed to H2O2 for 2 h to induce oxidative stress. Cell metabolic activity was measured using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Cellular apoptosis was quantified by the flow cytometry. Protein level was assed by western blot.
Results
The RPE cells exposed to to 200 mM H2O2 demonstrated a significant depression in the cell viability; whereas pre-treatment with 50 and 100 mmol/l wogonin could significantly improve the cell viability in a dose-dependent manner. The proportion of PI-positive cells was increased significantly in RPE cells treated with H2O2 alone; whereas pretreatment with 100 mM wogonin significantly reduced H2O2 -induced RPE cell death rate. In protein level, the wogonin use could reduce the level of p-Akt significantly and this is the possible mechanism of the antioxidant effect of wogonin.
Conclusions
Our study showed that wogonin pre-treatment can protect RPE cells from H2O2-induced apoptosis. This suggests potential effect of wogonin in the prevention of retinal diseases associated with H2O2-induced oxidative stress such as AMD.
Virtual Slides
The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/13000_2014_154
doi:10.1186/s13000-014-0154-3
PMCID: PMC4335665  PMID: 25432585
Age-related macular degeneration; Hydrogen peroxide; Oxidative stress; Retinal pigment epithelial cell; ARPE-19
8.  Scutellaria extract and wogonin inhibit tumor-mediated induction of Treg cells via inhibition of TGF-β1 activity 
A number of studies have implicated tumor-induced Treg cell activity in the sub-optimal response to therapeutic vaccines. Development of neo-adjuvant strategies targeting Treg cells is therefore imperative. Scutellaria extracts or constituent flavonoids have shown encouraging efficacy against various tumors, including gliomas, in both pre-clinical and clinical studies. We report here, for the first time, that Scutellaria ocmulgee leaf extract (SocL) and flavonoid wogonin could inhibit TGF-β1-induced Treg activity in malignant gliomas. F344 rats, subcutaneously transplanted with F98 gliomas, were treated with SocL. There was a significant inhibition of intra-tumoral TGF-β1 and Treg cell frequency as well as peripheral blood TGF-β1 levels in SocL-treated animals compared to the controls. SocL extract and wogonin also inhibited glioma-induced, TGF-β1-mediated Treg activity in vitro. SocL extract and wogonin also inhibited the secretion of IL-10 in Treg culture; whereas the level of IL-2 was either unchanged or marginally enhanced. We also observed an inhibition of Smad-3, GSK-3β and ERK1/2 signaling by SocL and wogonin in Treg cells, while phosphorylation of P38 MAPK was considerably enhanced, indicating that SocL or wogonin could inhibit the T cells’ response to TGF-β1 via modulation of both Smad and non-Smad signaling pathways. Overall, this study suggests that Scutellaria can potentially reverse tumor-mediated immune suppression via inhibition of TGF-β1 secretion as well as via inhibition of T cells’ response to TGF-β1. This may provide an opportunity for developing a novel adjuvant therapeutic strategy for malignant gliomas, combining Scutellaria with immunotherapy and chemo/radio-therapeutic regimen, which could potentially improve the disease outcome.
doi:10.1007/s00262-011-1130-3
PMCID: PMC3903381  PMID: 22057676
Scutellaria; Flavonoids; Wogonin; TGF-β; Regulatory T cells; Glioma
9.  Wogonin Induced Calreticulin/Annexin A1 Exposure Dictates the Immunogenicity of Cancer Cells in a PERK/AKT Dependent Manner 
PLoS ONE  2012;7(12):e50811.
In response to ionizing irradiation and certain chemotherapeutic agents, dying tumor cells elicit a potent anticancer immune response. However, the potential effect of wogonin (5,7-dihydroxy-8-methoxyflavone) on cancer immunogenicity has not been studied. Here we demonstrated for the first time that wogonin elicits a potent antitumor immunity effect by inducing the translocation of calreticulin (CRT) and Annexin A1 to cell plasma membrane as well as the release of high-mobility group protein 1 (HMGB1) and ATP. Signal pathways involved in this process were studied. We found that wogonin-induced reactive oxygen species (ROS) production causes an endoplasmic reticulum (ER) stress response, including the phosphorylation of PERK (PKR-like endoplasmic reticulum kinase)/PKR (protein kinase R) and eIF2α (eukaryotic initiation factor 2α), which served as upstream signal for the activation of phosphoinositide 3-kinase (PI3K)/AKT, inducing calreticulin (CRT)/Annexin A1 cell membrane translocation. P22/CHP, a Ca2+-binding protein, was associated with CRT and was required for CRT translocation to cell membrane. The releases of HMGB1 and ATP from wogonin treated MFC cells, alone or together with other possible factors, activated dendritic cells and induced cytokine releases. In vivo study confirmed that immunization with wogonin-pretreated tumor cells vaccination significantly inhibited homoplastic grafted gastric tumor growth in mice and a possible inflammatory response was involved. In conclusion, the activation of PI3K pathway elicited by ER stress induced CRT/Annexin A1 translocation (“eat me” signal) and HMGB1 release, mediating wogonin-induced immunity of tumor cell vaccine. This indicated that wogonin is a novel effective candidate of immunotherapy against gastric tumor.
doi:10.1371/journal.pone.0050811
PMCID: PMC3520942  PMID: 23251389
10.  Administration of S-nitrosoglutathione after traumatic brain injury protects the neurovascular unit and reduces secondary injury in a rat model of controlled cortical impact 
Background
Traumatic brain injury (TBI) is a major cause of preventable death and serious morbidity in young adults. This complex pathological condition is characterized by significant blood brain barrier (BBB) leakage that stems from cerebral ischemia, inflammation, and redox imbalances in the traumatic penumbra of the injured brain. Once trauma has occurred, combating these exacerbations is the keystone of an effective TBI therapy. Following other brain injuries, nitric oxide modulators such as S-nitrosoglutathione (GSNO) maintain not only redox balance but also inhibit the mechanisms of secondary injury. Therefore, we tested whether GSNO shows efficacy in a rat model of experimental TBI.
Methods
TBI was induced by controlled cortical impact (CCI) in adult male rats. GSNO (50 μg/kg body weight) was administered at two hours after CCI. GSNO-treated injured animals (CCI+GSNO group) were compared with vehicle-treated injured animals (CCI+VEH group) in terms of tissue morphology, BBB leakage, edema, inflammation, cell death, and neurological deficit.
Results
Treatment of the TBI animals with GSNO reduced BBB disruption as evidenced by decreased Evan's blue extravasation across brain, infiltration/activation of macrophages (ED1 positive cells), and reduced expression of ICAM-1 and MMP-9. The GSNO treatment also restored CCI-mediated reduced expression of BBB integrity proteins ZO-1 and occludin. GSNO-mediated improvements in tissue histology shown by reduction of lesion size and decreased loss of both myelin (measured by LFB staining) and neurons (assayed by TUNEL) further support the efficacy of GSNO therapy. GSNO-mediated reduced expression of iNOS in macrophages as well as decreased neuronal cell death may be responsible for the histological improvement and reduced exacerbations. In addition to these biochemical and histological improvements, GSNO-treated injured animals recovered neurobehavioral functions as evaluated by the rotarod task and neurological score measurements.
Conclusion
GSNO is a promising candidate to be evaluated in humans after brain trauma because it not only protects the traumatic penumbra from secondary injury and improves overall tissue structure but also maintains the integrity of BBB and reduces neurologic deficits following CCI in a rat model of experimental TBI.
doi:10.1186/1742-2094-6-32
PMCID: PMC2777134  PMID: 19889224
11.  Progesterone protects blood-brain barrier function and improves neurological outcome following traumatic brain injury in rats 
Inflammatory responses are associated with blood-brain barrier (BBB) dysfunction and neurological deficits following traumatic brain injury (TBI). The aim of the present study was to investigate the effects of progesterone on the expression of the inflammatory mediators prostaglandin E2 (PGE2), cyclooxygenase-2 (COX-2), nuclear factor κB (NF-κB) and tumor necrosis factor-α (TNF-α) in the brain, BBB permeability, cerebral edema and neurological outcome, as well as to explore the mechanism of its neuroprotective effect. In this study, male rats were randomly divided into three groups: a sham-operated group (SHAM), a TBI group (TBI) and a progesterone treatment group (TBI-PROG). The TBI model was established using a modified Feeney’s weight-dropping method. Brain samples were extracted 24 h following injury. The expression levels of COX-2 and NF-κB were examined using immunohistochemistry, whilst the expression levels of PGE2 and TNF-α were detected by enzyme-linked immunosorbent assay. BBB permeability was analyzed using Evans blue and cerebral edema was determined using the dry-wet method. The neurological outcome was evaluated using the modified neurological severity score test. The results revealed that progesterone treatment significantly reduced post-injury inflammatory response, brain edema and Evans blue dye extravasation, and improved neurological scores compared with those in the TBI group. In conclusion, the inhibition of inflammation may be an important mechanism by which progesterone protects the BBB and improves neurological outcome.
doi:10.3892/etm.2014.1840
PMCID: PMC4113529  PMID: 25120639
progesterone; traumatic brain injury; blood-brain barrier; neurological function
12.  Ghrelin Prevents Disruption of the Blood–Brain Barrier after Traumatic Brain Injury 
Journal of Neurotrauma  2012;29(2):385-393.
Abstract
Significant effort has been focused on reducing neuronal damage from post-traumatic brain injury (TBI) inflammation and blood–brain barrier (BBB)-mediated edema. The orexigenic hormone ghrelin decreases inflammation in sepsis models, and has recently been shown to be neuroprotective following subarachnoid hemorrhage. We hypothesized that ghrelin modulates cerebral vascular permeability and mediates BBB breakdown following TBI. Using a weight-drop model, TBI was created in three groups of mice: sham, TBI, and TBI/ghrelin. The BBB was investigated by examining its permeability to FITC-dextran and through quantification of perivascualar aquaporin-4 (AQP-4). Finally, we immunoblotted for serum S100B as a marker of brain injury. Compared to sham, TBI caused significant histologic neuronal degeneration, increases in vascular permeability, perivascular expression of AQP-4, and serum levels of S100B. Treatment with ghrelin mitigated these effects; after TBI, ghrelin-treated mice had vascular permeability and perivascular AQP-4 and S100B levels that were similar to sham. Our data suggest that ghrelin prevents BBB disruption after TBI. This is evident by a decrease in vascular permeability that is linked to a decrease in AQP-4. This decrease in vascular permeability may diminish post-TBI brain tissue damage was evident by decreased S100B.
doi:10.1089/neu.2011.2053
PMCID: PMC3279718  PMID: 21939391
aquaporin-4; blood–brain barrier; ghrelin; traumatic brain injury
13.  Salidroside Improves Behavioral and Histological Outcomes and Reduces Apoptosis via PI3K/Akt Signaling after Experimental Traumatic Brain Injury 
PLoS ONE  2012;7(9):e45763.
Background
Traumatic brain injury (TBI) induces a complex sequence of apopototic cascades that contribute to secondary tissue damage. The aim of this study was to investigate the effects of salidroside, a phenolic glycoside with potent anti-apoptotic properties, on behavioral and histological outcomes, brain edema, and apoptosis following experimental TBI and the possible involvement of the phosphoinositide 3-kinase/protein kinase B (PI3K)/Akt signaling pathway.
Methodology/Principal Findings
Mice subjected to controlled cortical impact injury received intraperitoneal salidroside (20, or 50 mg/kg) or vehicle injection 10 min after injury. Behavioral studies, histology analysis and brain water content assessment were performed. Levels of PI3K/Akt signaling-related molecules, apoptosis-related proteins, cytochrome C (CytoC), and Smac/DIABLO were also analyzed. LY294002, a PI3K inhibitor, was administered to examine the mechanism of protection. The protective effect of salidroside was also investigated in primary cultured neurons subjected to stretch injury. Treatment with 20 mg/kg salidroside_significantly improved functional recovery and reduced brain tissue damage up to post-injury day 28. Salidroside_also significantly reduced neuronal death, apoptosis, and brain edema at day 1. These changes were associated with significant decreases in cleaved caspase-3, CytoC, and Smac/DIABLO at days 1 and 3. Salidroside increased phosphorylation of Akt on Ser473 and the mitochondrial Bcl-2/Bax ratio at day 1, and enhanced phosphorylation of Akt on Thr308 at day 3. This beneficial effect was abolished by pre-injection of LY294002. Moreover, delayed administration of salidroside at 3 or 6 h post-injury reduced neuronal damage at day 1. Salidroside treatment also decreased neuronal vulnerability to stretch-induced injury in vitro.
Conclusions/Significance
Post-injury salidroside improved long-term behavioral and histological outcomes and reduced brain edema and apoptosis following TBI, at least partially via the PI3K/Akt signaling pathway.
doi:10.1371/journal.pone.0045763
PMCID: PMC3454376  PMID: 23029230
14.  INTERLEUKIN 6 MEDIATES NEUROINFLAMMATION AND MOTOR COORDINATION DEFICITS AFTER MILD TRAUMATIC BRAIN INJURY AND BRIEF HYPOXIA IN MICE 
Shock (Augusta, Ga.)  2013;40(6):471-475.
Traumatic brain injury (TBI) is a leading cause of mortality and disability. Acute postinjury insults after TBI, such as hypoxia, contribute to secondary brain injury and worse clinical outcomes. The functional and neuroinflammatory effects of brief episodes of hypoxia experienced following TBI have not been evaluated. Our previous studies have identified interleukin 6 (IL-6) as a potential mediator of mild TBI–induced pathology. In the present study, we sought to determine the effects of brief hypoxia on mild TBI and whether IL-6 played a role in the neuroinflammatory and functional deficits after injury. A murine model of mild TBI was induced by a weight drop (500 g from 1.5 cm). After injury, mice were exposed to immediate hypoxia (Fio2 = 15.1%) or normoxia (Fio2 = 21%) for 30 min. Serum and brain samples were analyzed for inflammatory cytokines 24 h after TBI. Neuron-specific enolase was measured as a serum biomarker of brain injury. Evaluation of motor coordination was performed for 5 days after TBI using a rotarod device. In some animals, anti–IL-6 was administered following TBI and hypoxia to neutralize systemic IL-6. Mice undergoing TBI had significant increases in brain injury. Exposure to brief hypoxia after TBI resulted in a more than 5-fold increase in serum neuron-specific enolase. This increase was associated with increases in serum and brain cytokine expression, suggesting that brief hypoxia exacerbates systemic and brain inflammation. Neutralization of IL-6 suppressed postinjury neuroinflammation and neuronal injury. In addition, TBI and hypoxia induced significant motor coordination deficits that were completely abrogated by IL-6 blockade. Exposure to hypoxia after TBI induces neuroinflammation and brain injury. These changes can be mitigated by neutralization of systemic IL-6. Interleukin 6 blockade also corrected the TBI-induced deficit in motor coordination. These data suggest that systemic IL-6 modulates the degree of neuroinflammation and contributes to reduced motor coordination after mild TBI.
doi:10.1097/SHK.0000000000000037
PMCID: PMC4218737  PMID: 24088994
Traumatic brain injury; neuroinflammation; motor coordination; hypoxia; trauma; inflammation
15.  Flavones induce neutrophil apoptosis by down-regulation of Mcl-1 via a proteasomal-dependent pathway 
The FASEB Journal  2013;27(3):1084-1094.
Neutrophil apoptosis and subsequent nonphlogistic clearance by surrounding phagocytes are key to the successful resolution of neutrophilic inflammation, with dysregulated apoptosis reported in multiple human inflammatory diseases. Enhancing neutrophil apoptosis has proresolution and anti-inflammatory effects in preclinical models of inflammation. Here we investigate the ability of the flavones apigenin, luteolin, and wogonin to induce neutrophil apoptosis in vitro and resolve neutrophilic inflammation in vivo. Human neutrophil apoptosis was assessed morphologically and by flow cytometry following incubation with apigenin, luteolin, and wogonin. All three flavones induced time- and concentration-dependent neutrophil apoptosis (apigenin, EC50=12.2 μM; luteolin, EC50=14.6 μM; and wogonin, EC50=28.9 μM). Induction of apoptosis was caspase dependent, as it was blocked by the broad-spectrum caspase inhibitor Q-VD-OPh and was associated with both caspase-3 and caspase-9 activation. Flavone-induced apoptosis was preceded by down-regulation of the prosurvival protein Mcl-1, with proteasomal inhibition preventing flavone-induced Mcl-1 down-regulation and apoptosis. The flavones abrogated the survival effects of mediators that prolong neutrophil life span, including lipoteichoic acid, peptidoglycan, dexamethasone, and granulocyte-macrophage colony stimulating factor, by driving apoptosis. Furthermore, wogonin enhanced resolution of established neutrophilic inflammation in a zebrafish model of sterile tissue injury. Wogonin-induced resolution was dependent on apoptosis in vivo as it was blocked by caspase inhibition. Our data show that the flavones induce neutrophil apoptosis and have potential as neutrophil apoptosis-inducing anti-inflammatory, proresolution agents.—Lucas, C. D., Allen, K. C., Dorward, D. A., Hoodless, L. J., Melrose, L. A., Marwick, J. A., Tucker, C. S., Haslett, C., Duffin, R., Rossi, A. G. Flavones induce neutrophil apoptosis by down-regulation of Mcl-1 via a proteasomal-dependent pathway.
doi:10.1096/fj.12-218990
PMCID: PMC3574292  PMID: 23195034
inflammation; resolution; polyphenols
16.  Genomic profile of Toll-like receptor pathways in traumatically brain-injured mice: effect of exogenous progesterone 
Background
Traumatic brain injury (TBI) causes acute inflammatory responses that result in an enduring cascade of secondary neuronal loss and behavioral impairments. It has been reported that progesterone (PROG) can inhibit the increase of some inflammatory cytokines and inflammation-related factors induced by TBI. Toll-like receptors (TLRs) play a critical role in the induction and regulation of immune/inflammatory responses. Therefore, in the present study, we examined the genomic profiles of TLR-mediated pathways in traumatically injured brain and PROG's effects on these genes.
Methods
Bilateral cortical impact injury to the medial frontal cortex was induced in C57BL/6J mice. PROG was injected (i.p., 16 mg/kg body weight) at 1 and 6 h after surgery. Twenty-four hours post-surgery, mice were killed and peri-contusional brain tissue was harvested for genomic detection and protein measurement. RT-PCR arrays were used to measure the mRNA of 84 genes in TLR-mediated pathways. Western blot, ELISA and immunohistochemistry were used to confirm the protein expression of genes of interest.
Results
We found that 2 TLRs (TLR1 and 2), 5 adaptor/interacting proteins (CD14, MD-1, HSPA1a, PGRP and Ticam2) and 13 target genes (Ccl2, Csf3, IL1a, IL1b, IL1r1, IL6, IL-10, TNFa, Tnfrsf1a, Cebpb, Clec4e, Ptgs2 and Cxcl10) were significantly up-regulated after injury. Administration of PROG significantly down-regulated three of the 13 increased target genes after TBI (Ccl-2, IL-1b and Cxcl-10), but did not inhibit the expression of any of the detected TLRs and adaptor/interacting proteins. Rather, PROG up-regulated the expression of one TLR (TLR9), 5 adaptor/interacting proteins, 5 effectors and 10 downstream target genes. We confirmed that Ccl-2, Cxcl-10, TLR2 and TLR9 proteins were expressed in brain tissue, a finding consistent with our observations of mRNA expression.
Conclusion
The results demonstrate that TBI can increase gene expression in TLR-mediated pathways. PROG does not down-regulate the increased TLRs or their adaptor proteins in traumatically injured brain. Reduction of the observed inflammatory cytokines by PROG does not appear to be the result of inhibiting TLRs or their adaptors in the acute stage of TBI.
doi:10.1186/1742-2094-8-42
PMCID: PMC3098165  PMID: 21549006
Toll-like receptors; progesterone; traumatic brain injury; inflammation; mouse
17.  S-Nitrosoglutathione reduces oxidative injury and promotes mechanisms of neurorepair following traumatic brain injury in rats 
Background
Traumatic brain injury (TBI) induces primary and secondary damage in both the endothelium and the brain parenchyma, collectively termed the neurovascular unit. While neurons die quickly by necrosis, a vicious cycle of secondary injury in endothelial cells exacerbates the initial injury in the neurovascular unit following TBI. In activated endothelial cells, excessive superoxide reacts with nitric oxide (NO) to form peroxynitrite. Peroxynitrite has been implicated in blood brain barrier (BBB) leakage, altered metabolic function, and neurobehavioral impairment. S-nitrosoglutathione (GSNO), a nitrosylation-based signaling molecule, was reported not only to reduce brain levels of peroxynitrite and oxidative metabolites but also to improve neurological function in TBI, stroke, and spinal cord injury. Therefore, we investigated whether GSNO promotes the neurorepair process by reducing the levels of peroxynitrite and the degree of oxidative injury.
Methods
TBI was induced by controlled cortical impact (CCI) in adult male rats. GSNO or 3-Morpholino-sydnonimine (SIN-1) (50 μg/kg body weight) was administered orally two hours following CCI. The same dose was repeated daily until endpoints. GSNO-treated (GSNO group) or SIN-1-treated (SIN-1 group) injured animals were compared with vehicle-treated injured animals (TBI group) and vehicle-treated sham-operated animals (Sham group) in terms of peroxynitrite, NO, glutathione (GSH), lipid peroxidation, blood brain barrier (BBB) leakage, edema, inflammation, tissue structure, axon/myelin integrity, and neurotrophic factors.
Results
SIN-1 treatment of TBI increased whereas GSNO treatment decreased peroxynitrite, lipid peroxides/aldehydes, BBB leakage, inflammation and edema in a short-term treatment (4-48 hours). GSNO also reduced brain infarctions and enhanced the levels of NO and GSH. In a long-term treatment (14 days), GSNO protected axonal integrity, maintained myelin levels, promoted synaptic plasticity, and enhanced the expression of neurotrophic factors.
Conclusion
Our findings indicate the participation of peroxynitrite in the pathobiology of TBI. GSNO treatment of TBI not only reduces peroxynitrite but also protects the integrity of the neurovascular unit, indicating that GSNO blunts the deleterious effects of peroxynitrite. A long-term treatment of TBI with the same low dose of GSNO promotes synaptic plasticity and enhances the expression of neurotrophic factors. These results support that GSNO reduces the levels of oxidative metabolites, protects the neurovascular unit, and promotes neurorepair mechanisms in TBI.
doi:10.1186/1742-2094-8-78
PMCID: PMC3158546  PMID: 21733162
18.  Toll-Like Receptor 2 Impairs Host Defense in Gram-Negative Sepsis Caused by Burkholderia pseudomallei (Melioidosis) 
PLoS Medicine  2007;4(7):e248.
Background
Toll-like receptors (TLRs) are essential in host defense against pathogens by virtue of their capacity to detect microbes and initiate the immune response. TLR2 is seen as the most important receptor for gram-positive bacteria, while TLR4 is regarded as the gram-negative TLR. Melioidosis is a severe infection caused by the gram-negative bacterium, Burkholderia pseudomallei, that is endemic in Southeast Asia. We aimed to characterize the expression and function of TLRs in septic melioidosis.
Methods and Findings
Patient studies: 34 patients with melioidosis demonstrated increased expression of CD14, TLR1, TLR2, and TLR4 on the cell surfaces of monocytes and granulocytes, and increased CD14, TLR1, TLR2, TLR4, LY96 (also known as MD-2), TLR5, and TLR10 mRNA levels in purified monocytes and granulocytes when compared with healthy controls. In vitro experiments: Whole-blood and alveolar macrophages obtained from TLR2 and TLR4 knockout (KO) mice were less responsive to B. pseudomallei in vitro, whereas in the reverse experiment, transfection of HEK293 cells with either TLR2 or TLR4 rendered these cells responsive to this bacterium. In addition, the lipopolysaccharide (LPS) of B. pseudomallei signals through TLR2 and not through TLR4. Mouse studies: Surprisingly, TLR4 KO mice were indistinguishable from wild-type mice with respect to bacterial outgrowth and survival in experimentally induced melioidosis. In contrast, TLR2 KO mice displayed a markedly improved host defenses as reflected by a strong survival advantage together with decreased bacterial loads, reduced lung inflammation, and less distant-organ injury.
Conclusions
Patients with melioidosis displayed an up-regulation of multiple TLRs in peripheral blood monocytes and granulocytes. Although both TLR2 and TLR4 contribute to cellular responsiveness to B. pseudomallei in vitro, TLR2 detects the LPS of B. pseudomallei, and only TLR2 impacts on the immune response of the intact host in vivo. Inhibition of TLR2 may be a novel treatment strategy in melioidosis.
Willem Wiersinga and colleagues find up-regulation of multiple Toll-like receptors (TLRs) in peripheral blood cells of patients with melioidosis. However, only TLR2 had an effect on the immune response in a mouse model.
Editors' Summary
Background.
Melioidosis is a severe tropical infection caused by the bacterium Burkholderia pseudomallei. This soil-dwelling pathogen (disease-causing organism) enters the body through cuts, by swallowed contaminated water, or by inhaled contaminated dust. Here, it can cause a severe lung infection or spread into the blood stream and around the body, where it causes widespread inflammation (sepsis) and organ failure. Untreated septic melioidosis is usually fatal. Even with antibiotic therapy, half the people who develop it in Thailand (a hot spot for melioidosis) die. B. pseudomallei is a “gram-negative” bacterium. That is, it is surrounded by a membrane that stops it taking up a stain used to detect bacteria. This membrane contains a molecule called lipopolysaccharide (LPS). Proteins on immune system cells called Toll-like receptors (TLRs), of which there are many, recognize LPS and other surface molecules common to different pathogens and tell the cells to make cytokines. These cytokines stimulate the immune system to kill the pathogen but also cause inflammation, the underlying problem in septic melioidosis and other forms of sepsis. In other words, TLRs are two-edged swords—they provide an essential first-line defense against pathogens, but cause life-threatening inflammation if overstimulated.
Why Was This Study Done?
It isn't known which TLRs are involved in melioidosis. TLR4 normally detects LPS, but the surface of B. pseudomallei also carries molecules that interact with TLR2. Understanding how B. pseudomallei interacts with TLRs might suggest new, more effective ways to treat septic melioidosis. Better remedies for this disease are badly needed because, as well as the infections it causes in the community, the US Centers for Disease Control and Prevention has identified B. pseudomallei as a potential bioterrorism agent. In this study, the researchers have characterized the expression and function of TLRs in septic melioidosis using human, in vitro (test tube), and animal approaches.
What Did the Researchers Do and Find?
The researchers isolated monocytes and granulocytes (immune system cells involved in first-line defenses against pathogens) from patients with melioidosis and from healthy people. The patients' cells made more TLR1, TLR2, TLR4, and CD14 (a protein that enhances the activation of immune system cells by LPS) than those of the healthy controls and more of the mRNAs encoding several other TLRs. Next, the researchers tested the ability of heat-killed B. pseudomallei to induce the release of TNFα (a cytokine produced in response to TLR signaling) from macrophages (immune system cells that swallow up pathogens) isolated from wild-type mice and from mice lacking TLR2 or TLR4. Macrophages isolated from wild-type mice made more TNFα than those from TLR2- or TLR4-deficient mice. In addition, a human kidney cell line engineered to express CD14/TLR2 or CD14/TLR4 but not the parent cell line released IL8 (another cytokine) when stimulated with heat-killed B. pseudomallei. Other experiments in these human cell lines showed that LPS purified from B. pseudomallei signals through TLR2 but not through TLR4. Finally, the researchers tested the ability of TLR2- and TLR4-deficient mice to survive after infection with live B. pseudomallei. Compared with TLR4-deficient or wild-type mice, the TLR2-deficient mice had a strong survival advantage, a lower bacterial load, reduced lung inflammation, and less organ damage.
What Do These Findings Mean?
These findings show that people with melioidosis have increased expression of several TLRs, any one of which might cause the sepsis associated with B. pseudomallei infection. The in vitro findings indicate that TLR2 and TLR4 both contribute to the responsiveness of immune cells to B. pseudomallei in test tubes, but that only TLR2 detects the LPS of this bacterium. This unexpected result—TLR4 normally responds to LPS—might indicate that there is something unique about the LPS of B. pseudomallei. Finally, the survival of TLR2-deficient mice after infection with B. pseudomallei suggests that TLR2-mediated dysregulation of the immune system in response to invasive B. pseudomallei might cause septic melioidosis. Although these results need confirming in people, they suggest that inhibition of TLR2 in combination with antibiotic therapy might improve outcomes for people with melioidosis.
Additional Information.
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.0040248.
Information is available from the US Centers for Disease Control and Prevention on melioidosis (in English and Spanish)
The UK Health Protection Agency provides information for the public and health professionals on melioidosis
Wikipedia has pages on melioidosis and on Toll-like receptors (note: Wikipedia is a free online encyclopedia that anyone can edit; available in several languages)
The MedlinePlus encyclopedia contains a page on sepsis (in English and Spanish)
doi:10.1371/journal.pmed.0040248
PMCID: PMC1950213  PMID: 17676990
19.  Vascular relaxation induced by Eucommiae Ulmoides Oliv. and its compounds Oroxylin A and wogonin: implications on their cytoprotection action 
The vascular relaxation action of Eucommiae Ulmoides Oliv. also known as Duzhong has been seen on arteries of the heart such as the aorta and the coronary artery which are elastic in nature. Duzhong is historically an active ingredient commonly used in hypertensive herbal prescriptions in China. This work investigated the vasodilating effect of Duzhong and its compounds (wogonin 10 μM and oroxylin-A) in the isolated intact rat heart, perfused retrograde according the method of Langendorff and the cytoprotective effect in EA.hy926 cell lines Coronary perfusion pressure was monitored with a pressure transducer connected to a side-arm of the aortic perfusion cannula. Duzhong induced vasorelaxation in a dose dependent manner, on precontracting the vessels with endothelin-1, Duzhong 10 mg/ml, wogonin 10 μM and oroxylin-A 10 μM could significantly lower the perfusion pressure in reference to positive control SNP, Duzhong induced vasodilation was not inhibited by L-NAME (nitric oxide inhibitor), but was significantly inhibited by Tetraethyl ammonium (TEA, a K+ channel blocker and almost abolished by potassium chloride. The underlying mechanism was carried out in EA.hy926 cell lines. When these cells were treated with H2O2, there was higher expression of NOX-4, TNF-α and COX-2 mRNA. However, wogonin treatment attenuated the mRNA of NOX-4, TNF-α and COX-2. Wogonin also upregulated the mRNA expression of CAT, SOD-1 and GSR in oxidative stress induced by H2O2 EA.hy926 cells. Duzhong and compounds can exert an in vitro relaxation effect of the coronary artery and improve the heart function in Langendorff apparatus. This action appears to be endothelium dependent but not NO mediated. Cell culture findings indicated that wogonin can exert vascular and cellular protection by scavenging Reactive Oxygen Species.
PMCID: PMC4238523  PMID: 25419347
Eucommiae Ulmoides Oliv.; endothelium; vasorelaxation; hypertension
20.  Free-Radical Scavenger Edaravone Treatment Confers Neuroprotection Against Traumatic Brain Injury in Rats 
Journal of Neurotrauma  2011;28(10):2123-2134.
Abstract
Traumatic brain injury (TBI) is one of the leading causes of neurological disability in young adults. Edaravone, a novel synthetic small-molecule free-radical scavenger, has been shown to have a neuroprotective effect in both animal models of cerebral ischemia and stroke patients; however, the underlying mechanism is poorly understood. In this report, we investigated the potential mechanisms of edaravone treatment in a rat model of TBI. TBI was induced in the right cerebral cortex of male adult rats using Feeney's weight-drop method. Edaravone (0.75, 1.5, or 3 mg/kg) or vehicle (normal saline) was intravenously administered at 2 and 12 h after TBI. Edaravone treatment significantly decreased hippocampal CA3 neuron loss, reduced oxidative stress, and decreased neuronal programmed cell death compared to vehicle treatment. The protective effects of edaravone treatment were also related to the pathology of TBI on non-neuronal cells, as edaravone decreased astrocyte and glial activation. Lastly, edaravone treatment significantly reduced the presence of inflammatory cytokines, cerebral edema, blood–brain barrier (BBB) permeability, and, importantly, neurological deficits following TBI. Our results suggest that edaravone exerts a neuroprotective effect in the rat model of TBI. The likely mechanism is via inhibiting oxidative stress, leading to a decreased inflammatory response and glial activation, and thereby reducing neuronal death and improving neurological function.
doi:10.1089/neu.2011.1939
PMCID: PMC3191368  PMID: 21732763
edaravone; inflammatory cytokines; neuroprotection; oxidative stress; TBI
21.  Methylene Blue Attenuates Traumatic Brain Injury-Associated Neuroinflammation and Acute Depressive-Like Behavior in Mice 
Journal of Neurotrauma  2015;32(2):127-138.
Abstract
Traumatic brain injury (TBI) is associated with cerebral edema, blood brain barrier breakdown, and neuroinflammation that contribute to the degree of injury severity and functional recovery. Unfortunately, there are no effective proactive treatments for limiting immediate or long-term consequences of TBI. Therefore, the objective of this study was to determine the efficacy of methylene blue (MB), an antioxidant agent, in reducing inflammation and behavioral complications associated with a diffuse brain injury. Here we show that immediate MB infusion (intravenous; 15–30 minutes after TBI) reduced cerebral edema, attenuated microglial activation and reduced neuroinflammation, and improved behavioral recovery after midline fluid percussion injury in mice. Specifically, TBI-associated edema and inflammatory gene expression in the hippocampus were significantly reduced by MB at 1 d post injury. Moreover, MB intervention attenuated TBI-induced inflammatory gene expression (interleukin [IL]-1β, tumor necrosis factor α) in enriched microglia/macrophages 1 d post injury. Cell culture experiments with lipopolysaccharide-activated BV2 microglia confirmed that MB treatment directly reduced IL-1β and increased IL-10 messenger ribonucleic acid in microglia. Last, functional recovery and depressive-like behavior were assessed up to one week after TBI. MB intervention did not prevent TBI-induced reductions in body weight or motor coordination 1–7 d post injury. Nonetheless, MB attenuated the development of acute depressive-like behavior at 7 d post injury. Taken together, immediate intervention with MB was effective in reducing neuroinflammation and improving behavioral recovery after diffuse brain injury. Thus, MB intervention may reduce life-threatening complications of TBI, including edema and neuroinflammation, and protect against the development of neuropsychiatric complications.
doi:10.1089/neu.2014.3514
PMCID: PMC4291210  PMID: 25070744
cytokines; fluid percussion injury; intervention; microglia; recovery
22.  Studies of selective TNF inhibitors in the treatment of brain injury from stroke and trauma: a review of the evidence to date 
The brain is very actively involved in immune-inflammatory processes, and the response to several trigger factors such as trauma, hemorrhage, or ischemia causes the release of active inflammatory substances such as cytokines, which are the basis of second-level damage. During brain ischemia and after brain trauma, the intrinsic inflammatory mechanisms of the brain, as well as those of the blood, are mediated by leukocytes that communicate with each other through cytokines. A neuroinflammatory cascade has been reported to be activated after a traumatic brain injury (TBI) and this cascade is due to the release of pro- and anti-inflammatory cytokines and chemokines. Microglia are the first sources of this inflammatory cascade in the brain setting. Also in an ischemic stroke setting, an important mediator of this inflammatory reaction is tumor necrosis factor (TNF)-α, which seems to be involved in every phase of stroke-related neuronal damage such as inflammatory and prothrombotic events. TNF-α has been shown to have an important role within the central nervous system; its properties include activation of microglia and astrocytes, influence on blood–brain barrier permeability, and influences on glutamatergic transmission and synaptic plasticity. TNF-α increases the amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor density on the cell surface and simultaneously decreases expression of γ-aminobutyric acid receptor cells, and these effects are related to a direct neurotoxic effect. Several endogenous mechanisms regulate TNF-α activity during inflammatory responses. Endogenous inhibitors of TNF include prostaglandins, cyclic adenosine monophosphate, and glucocorticoids. Etanercept, a biologic TNF antagonist, has a reported effect of decreasing microglia activation in experimental models, and it has been used therapeutically in animal models of ischemic and traumatic neuronal damage. In some studies using animal models, researchers have reported a limitation of TBI-induced cerebral ischemia due to etanercept action, amelioration of brain contusion signs, as well as motor and cognitive dysfunction. On this basis, it appears that etanercept may improve outcomes of TBI by penetrating into the cerebrospinal fluid in rats, although further studies in humans are needed to confirm these interesting and suggestive experimental findings.
doi:10.2147/DDDT.S67655
PMCID: PMC4232043  PMID: 25422582
tumor necrosis factor inhibitors; brain injury; stroke; TBI; traumatic brain injury
23.  Preinjury alcohol exposure attenuates the neuroinflammatory response to traumatic brain injury 
The Journal of surgical research  2013;184(2):1053-1058.
Background
Traumatic brain injury (TBI) initiates a neuroinflammatory response that increases the risk of TBI-related mortality. Acute alcohol intoxication at the time of TBI is associated with improved survival. Ethanol is recognized as a systemic immunomodulator that may also impart neuroprotection. The effects of alcohol on TBI-induced neuroinflammation, however, are unknown. We hypothesized that ethanol treatment prior to TBI may provide neuroprotection by diminishing the neuroinflammatory response to injury.
Materials and methods
Mice underwent gavage with ethanol (EtOH) or water (H2O) prior to TBI. Animals were subjected to blunt TBI or sham injury (Sham). Posttraumatic rapid righting reflex (RRR) and apnea times were assessed. Cerebral and serum samples were analyzed by ELISA for inflammatory cytokine levels. Serum neuron-specific enolase (NSE), a biomarker of injury severity, was also measured.
Results
Neurologic recovery from TBI was more rapid in H2O-treated mice compared with EtOH-treated mice. However, EtOH/TBI mice had a 4-fold increase in RRR time compared with EtOH/Sham, whereas H2O/TBI mice had a 15-fold increase in RRR time compared with H2O/Sham. Ethanol intoxication at the time of TBI significantly increased posttraumatic apnea time. Preinjury EtOH treatment was associated with reduced levels of proinflammatory cytokines IL-6, KC, MCP-1, and MIP-1α post TBI. NSE was significantly increased post injury in the H2O/TBI group compared with H2O/Sham but was not significantly reduced by EtOH pretreatment.
Conclusions
Alcohol treatment prior to TBI reduces the local neuroinflammatory response to injury. The decreased neurologic and inflammatory impact of TBI in acutely intoxicated patients may be responsible for improved clinical outcomes.
doi:10.1016/j.jss.2013.04.058
PMCID: PMC4245023  PMID: 23721933
Traumatic brain injury; Alcohol; Inflammation; Neuroinflammation
24.  Stress-dose hydrocortisone reduces critical illness-related corticosteroid insufficiency associated with severe traumatic brain injury in rats 
Critical Care  2013;17(5):R241.
Introduction
The spectrum of critical illness-related corticosteroid insufficiency (CIRCI) in severe traumatic brain injury (TBI) is not fully defined and no effective treatments for TBI-induced CIRCI are available to date. Despite growing interest in the use of stress-dose hydrocortisone as a potential therapy for CIRCI, there remains a paucity of data regarding its benefits following severe TBI. This study was designed to investigate the effects of stress-dose hydrocortisone on CIRCI development and neurological outcomes in a rat model of severe traumatic brain injury.
Methods
Rats were subjected to lateral fluid percussion injury of 3.2-3.5 atmosphere. These rats were then treated with either a stress-dose hydrocortisone (HC, 3 mg/kg/d for 5 days, 1.5 mg/kg on day 6, and 0.75 mg on day 7), a low-dose methylprednisolone (MP, 1 mg/kg/d for 5 days, 0.5 mg/kg on day 6, and 0.25 mg on day 7) or control saline solution intraperitoneally daily for 7 days after injury.
Results
We investigated the effects of stress-dose HC on the mortality, CIRCI occurrence, and neurological deficits using an electrical stimulation test to assess corticosteroid response and modified neurological severity score (mNSS). We also studied pathological changes in the hypothalamus, especially in the paraventricular nuclei (PVN), after stress-dose HC or a low dose of MP was administered, including apoptosis detected by a TUNEL assay, blood–brain barrier (BBB) permeability assessed by brain water content and Evans Blue extravasation into the cerebral parenchyma, and BBB integrity evaluated by CD31 and claudin-5 expression. We made the following observations. First, 70% injured rats developed CIRCI, with a peak incidence on post-injury day 7. The TBI-associated CIRCI was closely correlated with an increased mortality and delayed neurological recovery. Second, post-injury administration of stress-dose HC, but not MP or saline increased corticosteroid response, prevented CIRCI, reduced mortality, and improved neurological function during the first 14 days post injury dosing. Thirdly, these beneficial effects were closely related to improved vascular function by the preservation of tight junctions in surviving endothelial cells, and reduced neural apoptosis in the PVN of hypothalamus.
Conclusions
Our findings indicate that post-injury administration of stress-dose HC, but not MP reduces CIRCI and improves neurological recovery. These improvements are associated with reducing the damage to the tight junction of vascular endothelial cells and blocking neuronal apoptosis in the PVN of the hypothalamus.
doi:10.1186/cc13067
PMCID: PMC4057521  PMID: 24131855
25.  Role of p53, PUMA, and Bax in wogonin-induced apoptosis in human cancer cells 
Biochemical pharmacology  2008;75(10):2020-2033.
We observed that treatment of prostate cancer cells for 24 h with wogonin, a naturally occurring monoflavonoid, induced cell death in a dose- and time-dependent manner. Exposure of wogonin to LNCaP cells was associated with increased intracellular levels of p21Cip-1, p27Kip-1, p53, and PUMA, oligomerization of Bax, release of cytochrome c from the mitochondria, and activation of caspases. We also confirmed the role of p53 by noting that knock-in in p53 expression by transfecting p53 DNA increased wogonin-induced apoptosis in p53-null PC-3 cells. To study the mechanism of PUMA upregulation, we determined the activities of PUMA promoter in the wogonin treated and untreated cells. Increase of the intracellular levels of PUMA protein was due to increase in transcriptional activity. Data from chromatin immunoprecipitation (ChIP) analyses revealed that wogonin activated the transcription factor p53 binding activity to the PUMA promoter region. We observed that the upregulation of PUMA mediated wogonin cytotoxicity. Further characterization of the transcriptional response to wogonin in HCT116 human colon cancer cells demonstrated that PUMA induction was p53-dependent; deficiency in either p53 or PUMA significantly protected HCT116 cells against wogonin-induced apoptosis. Also, wogonin promoted mitochondrial translocation and multimerization of Bax. Interestingly, wogonin (100 μM) treatment did not affect the viability of normal human prostate epithelial cells (PrEC). Taken together, these results indicate that p53-dependent transcriptional induction of PUMA and oligomerization of Bax play important roles in the sensitivity of cancer cells to apoptosis induced by caspase activation through wogonin.
doi:10.1016/j.bcp.2008.02.023
PMCID: PMC2424318  PMID: 18377871
Wogonin; apoptosis; p53; PUMA; Bax

Results 1-25 (1253058)