Search tips
Search criteria

Results 1-25 (1090222)

Clipboard (0)

Related Articles

1.  Emergence of Azole Resistance in Aspergillus fumigatus and Spread of a Single Resistance Mechanism 
PLoS Medicine  2008;5(11):e219.
Resistance to triazoles was recently reported in Aspergillus fumigatus isolates cultured from patients with invasive aspergillosis. The prevalence of azole resistance in A. fumigatus is unknown. We investigated the prevalence and spread of azole resistance using our culture collection that contained A. fumigatus isolates collected between 1994 and 2007.
Methods and Findings
We investigated the prevalence of itraconazole (ITZ) resistance in 1,912 clinical A. fumigatus isolates collected from 1,219 patients in our University Medical Centre over a 14-y period. The spread of resistance was investigated by analyzing 147 A. fumigatus isolates from 101 patients, from 28 other medical centres in The Netherlands and 317 isolates from six other countries. The isolates were characterized using phenotypic and molecular methods. The electronic patient files were used to determine the underlying conditions of the patients and the presence of invasive aspergillosis. ITZ-resistant isolates were found in 32 of 1,219 patients. All cases were observed after 1999 with an annual prevalence of 1.7% to 6%. The ITZ-resistant isolates also showed elevated minimum inhibitory concentrations of voriconazole, ravuconazole, and posaconazole. A substitution of leucine 98 for histidine in the cyp51A gene, together with two copies of a 34-bp sequence in tandem in the gene promoter (TR/L98H), was found to be the dominant resistance mechanism. Microsatellite analysis indicated that the ITZ-resistant isolates were genetically distinct but clustered. The ITZ-sensitive isolates were not more likely to be responsible for invasive aspergillosis than the ITZ-resistant isolates. ITZ resistance was found in isolates from 13 patients (12.8%) from nine other medical centres in The Netherlands, of which 69% harboured the TR/L98H substitution, and in six isolates originating from four other countries.
Azole resistance has emerged in A. fumigatus and might be more prevalent than currently acknowledged. The presence of a dominant resistance mechanism in clinical isolates suggests that isolates with this mechanism are spreading in our environment.
Editors' Summary
Aspergillosis is a group of lung diseases caused by infection with Aspergillus, a mold (fungus) that grows on decaying plant matter. Because Aspergillus is widespread in the environment, people often breathe in its spores. For most people, this is not a problem—their immune system rapidly kills the fungal spores. However, people with asthma or cystic fibrosis sometimes develop allergic bronchopulmonary aspergillosis, a condition in which the spores trigger an allergic reaction in the lungs that causes coughing, wheezing. and breathlessness. Other people can develop an aspergilloma—a fungus ball that grows in cavities in the lung caused by other illnesses such as tuberculosis. However, the most serious form of aspergillosis is invasive aspergillosis. This pneumonia-like infection, which is fatal if left untreated, affects people who have a weakened immune system (for example, people with leukemia) and can spread from the lungs into the heart, brain, and other parts of the body. Aspergillosis is usually treated with triazole drugs, which inhibit an enzyme that the fungus needs to make its cell membranes; this enzyme is encoded by a gene called cyp51A. Voriconazole is the first-line therapy for aspergillosis but itraconazole and posaconazole are also sometimes used and ravuconazole is in clinical development.
Why Was This Study Done?
About half of patients with invasive aspergillosis recover if they are given triazoles. Worryingly, however, strains of Aspergillus fumigatus (the type of Aspergillus usually involved in invasive aspergillosis) with resistance to several triazoles have recently been isolated from some patients in The Netherlands. If multi-azole resistant strains of A. fumigatus become common, they could have a serious impact on the management of invasive aspergillosis. However, noone knows what proportion of A. fumigatus strains isolated from patients with aspergillosis are resistant to several azole drugs. That is, noone knows the “prevalence” of multi-azole resistance. In this study, the researchers investigate the prevalence and development of azole resistance in A. fumigatus.
What Did the Researchers Do and Find?
Since 1994, all fungal isolates from patients at the Radboud University Nijmegen Medical Center in the Netherlands have been stored. The researchers' search of this collection yielded 1,908 A. fumigatus isolates that had been collected from 1,219 patients over a 14-year period. Of these, the isolates from 32 patients grew in the presence of itraconazole. All the itraconazole-resistant isolates (which also had increased resistance to voriconazole, ravuconazole, and posaconazole) were collected after 1999; the annual prevalence of itraconazole-resistant isolates ranged from 1.7% to 6%. The researchers then sequenced the cyp51A gene in each resistant isolate. Thirty had a genetic alteration represented as TR/L98H. This “dominant resistance mechanism” consisted of a single amino acid change in the cyp51A gene and an alteration in the gene's promoter region (the region that controls how much protein is made from a gene). The researchers also analyzed A. fumigatus isolates from patients admitted to 28 other hospitals in the Netherlands. Itraconazole resistance was present in isolates from 13 patients (out of 101 patients) from nine hospitals; the TR/L98H genetic alteration was present in 69% of the itraconazole-resistant isolates. Finally, itraconazole resistance was present in six isolates from four other countries (out of 317 isolates from six countries); only one Norwegian isolate had the TR/L98H genetic alteration.
What Do These Findings Mean?
These findings indicate that azole resistance is emerging in A. fumigatus and may already be more prevalent than generally thought. Given the dominance of the TR/L98H genetic alteration in the azole-resistant clinical isolates, the researchers suggest that A. fumigatus isolates harboring this alteration might be present and spreading in the environment rather than being selected for during azole treatment of patients. Why azole resistance should develop in A. fumigatus in the environment is unclear but might be caused by the use of azole-containing fungicides. Further studies are now urgently needed to find out if this is the case, to measure the international prevalence and spread of A. fumigatus isolates harboring the TR/L98H genetic alteration, and, most importantly, to develop alternative treatments for patients with azole-resistant aspergillosis.
Additional Information.
Please access these Web sites via the online version of this summary at
The MedlinePlus Medical Encyclopedia has a page on aspergillosis (in English and Spanish)
The UK National Health Service Direct health encyclopedia has detailed information about all aspects of aspergillosis
The US Centers for Disease Control and Prevention also has information about aspergillosis
Paul Verweij and colleagues show that azole resistance has emerged inAspergillus fumigatus in The Netherlands and that a dominant resistance mechanism is present in clinical isolates.
PMCID: PMC2581623  PMID: 18998768
2.  Direct transbronchial administration of liposomal amphotericin B into a pulmonary aspergilloma 
Pulmonary aspergillomas usually occur in pre-existing lung cavities exhibiting local immunodeficiency. As pulmonary aspergillomas only partially touch the walls of the cavities containing them, they rarely come into contact with the bloodstream, which makes it difficult for antifungal agents to reach them. Although surgical treatment is the optimal strategy for curing the condition, most patients also have pulmonary complications such as tuberculosis and pulmonary fibrosis, which makes this strategy difficult. A 72-year-old male patient complained of recurrent hemoptysis and dyspnea, and a chest X-ray and CT scan demonstrated the existence of a fungus ball in a pulmonary cavity exhibiting fibrosis. Although an examination of the patient's sputum was inconclusive, his increased 1-3-beta-D-glucan level and Aspergillus galactomannan antigen index were suggestive of pulmonary aspergilloma. Since the systemic administration of voriconazole for two months followed by itraconazole for one month was ineffective and surgical treatment was not possible due to the patient's poor respiratory function, liposomal amphotericin B was transbronchially administered directly into the aspergilloma. The patient underwent fiberoptic bronchoscopy, and a yellow fungus ball was observed in the cavity connecting to the right B2bi-beta, a biopsy sample of which was found to contain Aspergillus fumigatus. Nine transbronchial administrations of liposomal amphotericin B were conducted using a transbronchial aspiration cytology needle, which resulted in the aspergilloma disappearing by seven and a half months after the first treatment. This strategy could be suitable for aspergilloma patients with complications because it is safe and rarely causes further complications.
PMCID: PMC3969609
Liposomal amphotericin B; Pulmonary aspergilloma; Topical treatment; Transbronchial direct administration
3.  Chronic necrotizing pulmonary aspergillosis presenting as bilateral pleural effusion: a case report 
Chronic necrotizing pulmonary aspergillosis is an uncommon subacute form of Aspergillus infection. It typically occurs in immunocompromised individuals and in those with underlying lung disease. This interesting case highlights the occurrence of this entity of aspergillosis in an immunocompetent middle-aged woman with atypical radiological findings. To the best of our knowledge this is the first case report of chronic necrotizing pulmonary aspergillosis presenting with pleural effusion.
Case presentation
Our patient was a 64-year-old Malay woman with a background history of epilepsy but no other comorbidities. She was a lifelong non-smoker. She presented to our facility with a six-month history of productive cough and three episodes of hemoptysis. An initial chest radiograph showed bilateral pleural effusion with bibasal consolidation. Bronchoscopy revealed a white-coated endobronchial tree and bronchoalveolar lavage culture grew Aspergillus niger. A diagnosis of chronic necrotizing pulmonary aspergillosis was made based on the clinical presentation and microbiological results. She responded well to treatment with oral itraconazole.
The radiological findings in chronic necrotizing pulmonary aspergillosis can be very diverse. This case illustrates that this condition can be a rare cause of bilateral pleural effusion.
PMCID: PMC3292990  PMID: 22333492
4.  Endobronchial Aspergilloma: Report of 10 Cases and Literature Review 
Yonsei Medical Journal  2011;52(5):787-792.
A retrospective investigation of the clinical and radiologic features as well as the bronchoscopic appearance was carried out in patients with endobronchial aspergilloma.
Materials and Methods
Ten patients with endobronchial aspergilloma diagnosed by bronchoscopy and histological examination were identified at the Gyeongsang University Hospital of Korea, from May 2003 to May 2009.
The patients included 9 men and 1 woman, and the age of the patients ranged from 36 to 76 (median, 58 years). The associated diseases or conditions were: previous pulmonary tuberculosis in 7 patients, lung cancer in 2 patients, pulmonary resection in 1 patient, and foreign body of the bronchus in 1 patient. The chest radiologic finding showed fibrotic changes as a consequence of previous tuberculosis infection in 6 patients and a mass-like lesion in 2 patients. Two patients had a co-existing fungus ball, and an endobronchial lesion was suspected in only 2 patients on the CT scan. The bronchoscopic appearance was a whitish to yellow necrotic mass causing bronchial obstruction in 7 patients, foreign body with adjacent granulation tissue and whitish necrotic tissue in 1 patient, whitish necrotic tissue at an anastomosis site in 1 patient, and a protruding mass with whitish necrotic tissue in 1 patient.
An endobronchial aspergilloma is a rare presentation of pulmonary aspergilosis and is usually incidentally found in immunocompetent patients with underlying lung disease. It usually appears as a necrotic mass causing bronchial obstruction on bronchoscopy and can be confirmed by biopsy.
PMCID: PMC3159936  PMID: 21786444
Endobronchial aspergilloma
5.  Acute fibrinous and organising pneumonia: a case report and review of the literature 
Organising pneumonia is a distinct histopathological entity characterized by intra-alveolar buds of granulation tissue, called Masson bodies, which mainly comprise of activated fibroblasts and loose connective tissue. This histopathologic pattern has been described in idiopathic cases, characterizing cryptogenic organising pneumonia as well as in the context of pulmonary infection, drug-induced pneumonitis and following lung transplantation. Although distinct as a clinical and pathological entity, community organising pneumonia may present with atypical clinical and pathological features, such as intra-alveolar fillings of fibrin balls and organising tissue that resembles acute respiratory distress syndrome or diffuse alveolar damage. The latter characteristics constitute a recently described anatomoclinical entity called acute fibrinous and organising pneumonia.
Case presentation
Here, we describe a rare case of acute fibrinous and organising pneumonia, in an otherwise healthy 65-year-old Greek woman who complained of dry cough, fever, weight loss and progressive dyspnoea. She had never been a smoker. Her clinical symptoms showed a rapid deterioration in the two weeks before admission, despite a course of oral antibiotics. After excluding infection and malignancy with routine laboratory tests and flexible bronchoscopy, high resolution computed tomography and video assisted thoracoscopic lung biopsy were performed. Diagnosis was based on radiological features typical of community organising pneumonia coupled with pathologic features characteristic of acute fibrinous and organising pneumonia. The patient was treated with corticosteroids and showed excellent clinical and radiological response three months after treatment initiation.
Acute fibrinous and organising pneumonia is an extremely rare pathologic entity, often misdiagnosed as typical community organising pneumonia. To our knowledge, this is the seventh case of acute fibrinous and organising pneumonia in the literature, with no identifiable cause or association in a female patient, with no underlying lung disease or known exposures and with an unremarkable previous medical history. We highlight the need for careful review of lung biopsies from patients with clinical and radiologic characteristics typical of community organising pneumonia. Although it remains uncertain whether fibrin alters the favourable prognosis and treatment response of community organising pneumonia, it becomes obvious that a thorough pathologic review, apart from establishing the diagnosis of acute fibrinous and organising pneumonia, may predict a more unfavorable outcome therefore alerting the clinician to administer more aggressive and prolonged therapeutic regimens.
PMCID: PMC2783073  PMID: 19946550
6.  Efficacy of ER-30346, a novel oral triazole antifungal agent, in experimental models of aspergillosis, candidiasis, and cryptococcosis. 
Antimicrobial Agents and Chemotherapy  1996;40(10):2243-2247.
ER-30346 is a novel oral triazole with a broad spectrum of potent activity against a wide range of fungi. In the present study, we investigated the therapeutic effects of oral ER-30346 on experimental local infections caused by Aspergillus fumigatus, Candida albicans, and Cryptococcus neoformans and compared them with those of itraconazole and fluconazole. In experimental murine models of pulmonary aspergillosis, candidiasis, and cryptococcosis, ER-30346 reduced the numbers of CFU in the lungs significantly compared with the numbers of CFU in the lungs of the controls (P < 0.05). ER-30346 was as effective as or more effective than itraconazole against pulmonary aspergillosis. Against pulmonary candidiasis and cryptococcosis, ER-30346 was more effective than itraconazole and was as effective as fluconazole. ER-30346 was also effective against pulmonary candidiasis caused by fluconazole-resistant C. albicans. In mice with intracranial cryptococcosis, ER-30346 reduced the numbers of CFU in the brains significantly compared with the numbers of CFU in the brains of the controls (P < 0.05) and was more effective than itraconazole and as effective as fluconazole. In an experimental model of oral candidiasis in rats, ER-30346 reduced the numbers of CFU in oral swabs significantly compared with the numbers of CFU in oral swabs from the controls (P < 0.05) and was more effective than itraconazole and as effective as fluconazole. Thus, ER-30346 shows efficacy in murine aspergillosis, candidiasis, and cryptococcosis models. Further studies are needed to determine the potential of ER-30346 for use in the treatment of these infections.
PMCID: PMC163511  PMID: 8891122
7.  Pulmonary fungus ball caused by Penicillium capsulatum in a patient with type 2 diabetes: a case report 
BMC Infectious Diseases  2013;13:496.
Following the recent transfer of all accepted species of Penicillium subgenus Biverticillium to Talaromyces (including Talaromyces marneffei, formerly Penicillium marneffei), Penicillium species are becoming increasingly rare causal agents of invasive infections. Herein, we present a report of a type 2 diabetes patient with a fungus ball in the respiratory tract caused by Penicillium capsulatum.
Case presentation
A 56-year-old Chinese female gardener with a 5-year history of type 2 diabetes presented at the Shanghai Changzheng Hospital with fever, a cough producing yellow-white sputum, and fatigue. The therapeutic effect of cefoxitin was poor. An HIV test was negative, but the β-D-glucan test was positive (459.3 pg/ml). Chest radiography revealed a cavitary lesion in the left upper lobe, and a CT scan showed globate cavities with a radiopaque, gravity-dependent ball. The histopathologic features of the tissue after haematoxylin-eosin staining showed septate hyphae. The fungus was isolated from the gravity-dependent ball and identified as Penicillium capsulatum based on the morphological analysis of microscopic and macroscopic features and on ribosomal internal transcribed spacer sequencing. After surgery, the patient was cured with a sequential treatment of fluconazole 400 mg per day for 90 days and caspofungin 70 mg per day for 14 days.
Although the prognosis is often satisfactory, clinicians, mycologists and epidemiologists should be aware of the possibility of infection by this uncommon fungal pathogen in diabetes patients, since it may cause severe invasive infections in immunocompromised hosts such as diabetes and AIDS patients.
PMCID: PMC3819729  PMID: 24152579
Fungal ball; Pulmonary infections; Penicillium capsulatum
8.  Management of necrotizing pneumonia and pulmonary gangrene: A case series and review of the literature 
Although rare, necrotizing pneumonia is a severe complication of bacterial pneumonia and is associated with a high morbidity and mortality. Given its rarity and the presence of only a few case reports and small retrospective cohort studies in the literature, there are no guidelines to direct the care of patients. This case series and literature review describes several presentations of necrotizing pneumonia and discusses pathophysiology, management recommendations and surgical options.
Necrotizing pneumonia is an uncommon but severe complication of bacterial pneumonia, associated with high morbidity and mortality. The availability of current data regarding the management of necrotizing pneumonia is limited to case reports and small retrospective observational cohort studies. Consequently, appropriate management for these patients remains unclear.
To describe five cases and review the available literature to help guide management of necrotizing pneumonia.
Cases involving five adults with respiratory failure due to necrotizing pneumonia admitted to a tertiary care centre and infected with Streptococcus pneumoniae (n=3), Klebsiella pneumoniae (n=1) and methicillin-resistant Staphylococcus aureus (n=1) were reviewed. All available literature was reviewed and encompassed case reports and retrospective reviews dating from 1975 to the present.
All five patients received aggressive medical management and consultation by thoracic surgery. Three patients underwent surgical procedures to debride necrotic lung parenchyma. Two of the five patients died in hospital.
Necrotizing pneumonia often leads to pulmonary gangrene. Computed tomography of the thorax with contrast is recommended to evaluate the pulmonary vascular supply. Further study is necessary to determine whether surgical intervention, in the absence of pulmonary gangrene, results in better outcomes.
PMCID: PMC4173892  PMID: 24791253
Lung abscess; Lung resection; Necrotizing pneumonia; Pneumonia; Pulmonary gangrene
9.  Acrophialophora fusispora Brain Abscess in a Child with Acute Lymphoblastic Leukemia: Review of Cases and Taxonomy 
Journal of Clinical Microbiology  2000;38(12):4569-4576.
A 12-year-old girl with acute lymphoblastic leukemia was referred to King Faisal Specialist Hospital and Research Center. The diagnosis without central nervous system (CNS) involvement was confirmed on admission, and chemotherapy was initiated according to the Children Cancer Group (CCG) 1882 protocol for high-risk-group leukemia. During neutropenia amphotericin B (AMB) (1 mg/kg of body weight/day) was initiated for presumed fungal infection when a computed tomography (CT) scan of the chest revealed multiple nodular densities. After 3 weeks of AMB therapy, a follow-up chest CT revealed progression of the pulmonary nodules. The patient subsequently suffered a seizure, and a CT scan of the brain was consistent with infarction or hemorrhage. Because of progression of pulmonary lesions while receiving AMB, antifungal therapy was changed to liposomal AMB (LAMB) (6 mg/kg/day). Despite 26 days of LAMB, the patient continued to have intermittent fever, and CT and magnetic resonance imaging of the brain demonstrated findings consistent with a brain abscess. Aspiration of brain abscess was performed and the Gomori methenamine silver stain was positive for hyphal elements. Culture of this material grew Acrophialophora fusispora. Lung biopsy showed necrotizing fungal pneumonia with negative culture. The dosage of LAMB was increased, and itraconazole (ITRA) was added; subsequently LAMB was discontinued and therapy was continued with ITRA alone. The patient demonstrated clinical and radiological improvement. In vitro, the isolate was susceptible to low concentrations of AMB and ITRA. A. fusispora is a thermotolerant, fast-growing fungus with neurotropic potential. We report the first case of human infection involving the CNS. Acrophialophora resembles Paecilomyces but differs in having colonies that become dark and in the development of phialides along the sides or at the tips of echinulate brown conidiophores. Conidia are borne in long chains and are smooth or ornamented with fine-to-coarse echinulations, sometimes in spiral bands. The taxonomy of the genus Acrophialophora is reviewed, and Acrophialophora nainiana and Acrophialophora levis are considered as synonyms of A. fusispora.
PMCID: PMC87638  PMID: 11101597
10.  Ball Python Nidovirus: a Candidate Etiologic Agent for Severe Respiratory Disease in Python regius 
mBio  2014;5(5):e01484-14.
A severe, sometimes fatal respiratory disease has been observed in captive ball pythons (Python regius) since the late 1990s. In order to better understand this disease and its etiology, we collected case and control samples and performed pathological and diagnostic analyses. Electron micrographs revealed filamentous virus-like particles in lung epithelial cells of sick animals. Diagnostic testing for known pathogens did not identify an etiologic agent, so unbiased metagenomic sequencing was performed. Abundant nidovirus-like sequences were identified in cases and were used to assemble the genome of a previously unknown virus in the order Nidovirales. The nidoviruses, which were not previously known to infect nonavian reptiles, are a diverse order that includes important human and veterinary pathogens. The presence of the viral RNA was confirmed in all diseased animals (n = 8) but was not detected in healthy pythons or other snakes (n = 57). Viral RNA levels were generally highest in the lung and other respiratory tract tissues. The 33.5-kb viral genome is the largest RNA genome yet described and shares canonical characteristics with other nidovirus genomes, although several features distinguish this from related viruses. This virus, which we named ball python nidovirus (BPNV), will likely establish a new genus in Torovirinae subfamily. The identification of a novel nidovirus in reptiles contributes to our understanding of the biology and evolution of related viruses, and its association with lung disease in pythons is a promising step toward elucidating an etiology for this long-standing veterinary disease.
Ball pythons are popular pets because of their diverse coloration, generally nonaggressive behavior, and relatively small size. Since the 1990s, veterinarians have been aware of an infectious respiratory disease of unknown cause in ball pythons that can be fatal. We used unbiased shotgun sequencing to discover a novel virus in the order Nidovirales that was present in cases but not controls. While nidoviruses are known to infect a variety of animals, this is the first report of a nidovirus recovered from any reptile. This report will enable diagnostics that will assist in determining the role of this virus in the causation of disease, which would allow control of the disease in zoos and private collections. Given its evolutionary divergence from known nidoviruses and its unique host, the study of reptile nidoviruses may further our understanding of related diseases and the viruses that cause them in humans and other animals.
PMCID: PMC4173777  PMID: 25205093
11.  Fatal pneumonia caused by Penicillium digitatum: a case report 
Penicillium species are among the most common fungi present in the environment and are usually considered non-pathogenic to humans. However, in immunocompromised hosts they can be virulent pathogens and can cause death. Penicillium digitatum is a plant pathogen that commonly causes a postharvest fungal disease of citrus called green mould; it very rarely causes systemic mycosis in humans. Here, we report a case of fatal pneumonia due to P. digitatum infection, as confirmed by repeated examination of cultured sputum.
Case presentation
A cavity was found in the left upper lung on routine chest X-ray in a 78-year-old undernourished male who had been diagnosed at age 66 with bronchial asthma and pulmonary emphysema. No increased sputum production was present. The presence of antigen-specific precipitating antibodies to Aspergillus flavus and P. digitatum was confirmed in the patient’s serum and also later pleural fluid by using Ouchterlony double immunodiffusion testing with A. flavus and P. digitatum antigens. The patient was treated over a period of months with itraconazole, micafungin, voriconazole, amphotericin B, and antibacterials. However, the cavity enlarged, the pleural effusion increased, and the patient began producing purulent sputum. He died from progressive renal failure. From sputum culture only one fungus was isolated repeatedly on potato-dextrose agar in large quantities. This fungus was confirmed to be P. digitatum by molecular identification. Partial sequences of the beta-tubulin gene were determined by using the primers Bt2a and Bt2b for PCR amplification and sequencing and underwent a BLAST search at the National Centre for Biotechnology Information, these results confirmed that the isolated fungus was P. digitatum.
To our knowledge, this is the first report of pulmonary infection with P. digitatum. Our patient had pulmonary emphysema and was elderly, and undernourished. These factors might have facilitated the infection. In his case, antimycotics were ineffective in treating the lung involvement. Although human infection with P. digitatum is considered rare, it appears that this organism can be very virulent and resistant to antimycotics.
PMCID: PMC3614886  PMID: 23522080
Penicillium digitatum; Penicillium species; Infection; Immunocompromised host; Pulmonary emphysema; Pneumonia
12.  Acute fibrinous and organizing pneumonia masquerading as a lower respiratory tract infection: a case report and review of the literature 
BMC Research Notes  2015;8:38.
Acute Fibrinous and Organizing Pneumonia is a rare entity characterized by the histological pattern suggestive of diffuse alveolar damage, eosinophilic pneumonia and organizing pneumonia; the presence of intra alveolar “fibrin balls” distinguishes it from these conditions. Herein, we describe the association of acute fibrinous and organizing pneumonia with a respiratory tract infection. We believe that such an association has been extremely rarely described.
Case presentation
We report the case of a 68 year old female patient of Afghan descent who presented with shortness of breath, cough and high grade fever not responding satisfactorily to standard antibiotic therapy. Imaging revealed bilateral basilar infiltrates and ground glass opacification of the right lower lung zone. Though the inflammatory markers decreased with antibiotic therapy, there was minimal improvement in the patient’s symptoms and radiological appearance of the lungs. Bronchoscopy was refused by the patient’s family and a Computed Tomography guided biopsy of the lung revealed a histological diagnosis of acute fibrinous and organizing pneumonia. Patient was initiated on high dose intravenous corticosteroid therapy followed by a maintenance dose of prednisolone at 40 mg/day. She recovered dramatically. However, due to poor compliance with treatment, she relapsed and was re-treated with the same regimen. Currently she is completely symptom free and is on a tapering corticosteroid dose.
We conclude that AFOP may be a rare but under diagnosed entity and recommend that it should be considered in the differentials of a suspected pulmonary infection unresponsive to optimum antibiotic therapy.
PMCID: PMC4331172
Acute Fibrinous and Organizing Pneumonia (AFOP); Computerized Tomography (CT) guided biopsy
13.  Association between Respiratory Syncytial Virus Activity and Pneumococcal Disease in Infants: A Time Series Analysis of US Hospitalization Data 
PLoS Medicine  2015;12(1):e1001776.
Daniel Weinberger and colleagues examine a possible interaction between two serious respiratory infections in children under 2 years of age.
Please see later in the article for the Editors' Summary
The importance of bacterial infections following respiratory syncytial virus (RSV) remains unclear. We evaluated whether variations in RSV epidemic timing and magnitude are associated with variations in pneumococcal disease epidemics and whether changes in pneumococcal disease following the introduction of seven-valent pneumococcal conjugate vaccine (PCV7) were associated with changes in the rate of hospitalizations coded as RSV.
Methods and Findings
We used data from the State Inpatient Databases (Agency for Healthcare Research and Quality), including >700,000 RSV hospitalizations and >16,000 pneumococcal pneumonia hospitalizations in 36 states (1992/1993–2008/2009). Harmonic regression was used to estimate the timing of the average seasonal peak of RSV, pneumococcal pneumonia, and pneumococcal septicemia. We then estimated the association between the incidence of pneumococcal disease in children and the activity of RSV and influenza (where there is a well-established association) using Poisson regression models that controlled for shared seasonal variations. Finally, we estimated changes in the rate of hospitalizations coded as RSV following the introduction of PCV7. RSV and pneumococcal pneumonia shared a distinctive spatiotemporal pattern (correlation of peak timing: ρ = 0.70, 95% CI: 0.45, 0.84). RSV was associated with a significant increase in the incidence of pneumococcal pneumonia in children aged <1 y (attributable percent [AP]: 20.3%, 95% CI: 17.4%, 25.1%) and among children aged 1–2 y (AP: 10.1%, 95% CI: 7.6%, 13.9%). Influenza was also associated with an increase in pneumococcal pneumonia among children aged 1–2 y (AP: 3.2%, 95% CI: 1.7%, 4.7%). Finally, we observed a significant decline in RSV-coded hospitalizations in children aged <1 y following PCV7 introduction (−18.0%, 95% CI: −22.6%, −13.1%, for 2004/2005–2008/2009 versus 1997/1998–1999/2000). This study used aggregated hospitalization data, and studies with individual-level, laboratory-confirmed data could help to confirm these findings.
These analyses provide evidence for an interaction between RSV and pneumococcal pneumonia. Future work should evaluate whether treatment for secondary bacterial infections could be considered for pneumonia cases even if a child tests positive for RSV.
Please see later in the article for the Editors' Summary
Editors' Summary
Respiratory infections—bacterial and viral infections of the lungs and the airways (the tubes that take oxygen-rich air to the lungs)—are major causes of illness and death in children worldwide. Pneumonia (infection of the lungs) alone is responsible for about 15% of all child deaths. The leading cause of bacterial pneumonia in children is Streptococcus pneumoniae, which is transmitted through contact with infected respiratory secretions. S. pneumoniae usually causes noninvasive diseases such as bronchitis, but sometimes the bacteria invade the lungs, the bloodstream, or the covering of the brain, where they cause pneumonia, septicemia, or meningitis, respectively. These potentially fatal invasive pneumococcal diseases can be treated with antibiotics but can also be prevented by vaccination with pneumococcal conjugate vaccines such as PCV7. The leading cause of viral pneumonia is respiratory syncytial virus (RSV), which is also readily transmitted through contact with infected respiratory secretions. Almost all children have an RSV infection before their second birthday—RSV usually causes a mild cold-like illness. However, some children infected with RSV develop pneumonia and have to be admitted to hospital for supportive care such as the provision of supplemental oxygen; there is no specific treatment for RSV infection.
Why Was This Study Done?
Co-infections with bacteria and viruses can sometimes have a synergistic effect and lead to more severe disease than an infection with either type of pathogen (disease-causing organism) alone. For example, influenza infections increase the risk of invasive pneumococcal disease. But does pneumococcal disease also interact with RSV infection? It is important to understand the interaction between pneumococcal disease and RSV to improve the treatment of respiratory infections in young children, but the importance of bacterial infections following RSV infection is currently unclear. Here, the researchers undertake a time series analysis of US hospitalization data to investigate the association between RSV activity and pneumococcal disease in infants. Time series analysis uses statistical methods to analyze data collected at successive, evenly spaced time points.
What Did the Researchers Do and Find?
For their analysis, the researchers used data collected between 1992/1993 and 2008/2009 by the State Inpatient Databases on more than 700,000 hospitalizations for RSV and more than 16,000 hospitalizations for pneumococcal pneumonia or septicemia among children under two years old in 36 US states. Using a statistical technique called harmonic regression to measure seasonal variations in disease incidence (the rate of occurrence of new cases of a disease), the researchers show that RSV and pneumococcal pneumonia shared a distinctive spatiotemporal pattern over the study period. Next, using Poisson regression models (another type of statistical analysis), they show that RSV was associated with significant increases (increases unlikely to have happened by chance) in the incidence of pneumococcal disease. Among children under one year old, 20.3% of pneumococcal pneumonia cases were associated with RSV activity; among children 1–2 years old, 10.1% of pneumococcal pneumonia cases were associated with RSV activity. Finally, the researchers report that following the introduction of routine vaccination in the US against S. pneumoniae with PCV7 in 2000, there was a significant decline in hospitalizations for RSV among children under one year old.
What Do These Findings Mean?
These findings provide evidence for an interaction between RSV and pneumococcal pneumonia and indicate that RSV is associated with increases in the incidence of pneumococcal pneumonia, particularly in young infants. Notably, the finding that RSV hospitalizations declined after the introduction of routine pneumococcal vaccination suggests that some RSV hospitalizations may have a joint viral–bacterial etiology (cause), although it is possible that PCV7 vaccination reduced the diagnosis of RSV because fewer children were hospitalized with pneumococcal disease and subsequently tested for RSV. Because this is an ecological study (an observational investigation that looks at risk factors and outcomes in temporally and geographically defined populations), these findings do not provide evidence for a causal link between hospitalizations for RSV and pneumococcal pneumonia. The similar spatiotemporal patterns for the two infections might reflect another unknown factor shared by the children who were hospitalized for RSV or pneumococcal pneumonia. Moreover, because pooled hospitalization discharge data were used in this study, these results need to be confirmed through analysis of individual-level, laboratory-confirmed data. Importantly, however, these findings support the initiation of studies to determine whether treatment for bacterial infections should be considered for children with pneumonia even if they have tested positive for RSV.
Additional Information
Please access these websites via the online version of this summary at
The US National Heart, Lung, and Blood Institute provides information about the respiratory system and about pneumonia
The US Centers for Disease Control and Prevention provides information on all aspects of pneumococcal disease and pneumococcal vaccination, including personal stories and information about RSV infection
The UK National Health Service Choices website provides information about pneumonia (including a personal story) and about pneumococcal diseases
KidsHealth, a website provided by the US-based non-profit Nemours Foundation, includes information on pneumonia and on RSV (in English and Spanish)
MedlinePlus provides links to other resources about pneumonia, RSV infections, and pneumococcal infections (in English and Spanish)
HCUPnet provides aggregated hospitalization data from the State Inpatient Databases used in this study
PMCID: PMC4285401  PMID: 25562317
14.  Pulmonary Infection with Hypervirulent Mycobacteria Reveals a Crucial Role for the P2X7 Receptor in Aggressive Forms of Tuberculosis 
PLoS Pathogens  2014;10(7):e1004188.
The purinergic P2X7 receptor (P2X7R) is a sensor of extracellular ATP, a damage-associated molecule that is released from necrotic cells and that induces pro-inflammatory cytokine production and cell death. To investigate whether the innate immune response to damage signals could contribute to the development of pulmonary necrotic lesions in severe forms of tuberculosis, disease progression was examined in C57BL/6 and P2X7R−/− mice that were intratracheally infected with highly virulent mycobacterial strains (Mycobacterium tuberculosis strain 1471 of the Beijing genotype family and Mycobacterium bovis strain MP287/03). The low-dose infection of C57BL/6 mice with bacteria of these strains caused the rapid development of extensive granulomatous pneumonia with necrotic areas, intense bacillus dissemination and anticipated animal death. In contrast, in P2X7R−/− mice, the lung pathology presented with moderate infiltrates of mononuclear leukocytes without visible signs of necrosis; the disease attenuation was accompanied by a delay in mortality. In vitro, the hypervirulent mycobacteria grew rapidly inside macrophages and induced death by a P2X7R-dependent mechanism that facilitated the release of bacilli. Furthermore, these bacteria were resistant to the protective mechanisms elicited in macrophages following extracellular ATP stimulation. Based on this study, we propose that the rapid intracellular growth of hypervirulent mycobacteria results in massive macrophage damage. The ATP released by damaged cells engages P2X7R and accelerates the necrotic death of infected macrophages and the release of bacilli. This vicious cycle exacerbates pneumonia and lung necrosis by promoting widespread cell destruction and bacillus dissemination. These findings suggest the use of drugs that have been designed to inhibit the P2X7R as a new therapeutic approach to treat the aggressive forms of tuberculosis.
Author Summary
Nearly 9 million new cases of tuberculosis and 1.3 million deaths are reported yearly worldwide. Most individuals infected with tubercle bacilli remain asymptomatic; however, some develop active tuberculosis due to the reactivation of latent infections. Progressive primary tuberculosis is an alternative form of the disease that mostly affects children and immunocompromised individuals. Extensive pneumonia, pulmonary necrosis and bacillus dissemination characterize some of the aggressive forms of tuberculosis. To investigate the molecular mechanisms that underlie severe disease progression, we used experimental models of relatively resistant C57BL/6 mice that were infected with highly virulent strains of Mycobacterium tuberculosis or Mycobacterium bovis. Two hypervirulent strains (Mtb strain 1471 and Mbv strain MP287/03) induced extensive pulmonary inflammation and necrosis in mice and promoted bacillus dissemination and animal death. We hypothesized that the innate immune response to endogenous damage signals from necrotic cells could aggravate the disease. We focused our study on the purinergic P2X7 receptor (P2X7R), a sensor of ATP that is released from necrotic cells and that induces pro-inflammatory cytokine production and cell death. Our data provide new insights into the pathogenesis of severe tuberculosis by showing that mice that lack P2X7R have attenuated disease with substantially reduced bacillus dissemination and lung inflammation without evidence of necrosis.
PMCID: PMC4081775  PMID: 24991816
15.  Allergic Broncho Pulmonary Aspergillosis Complicated by Nocardiosis 
Case Reports in Pulmonology  2012;2012:758630.
We describe a 70-year-old male with a history of diabetes mellitus, hypertension, and asthma who presented with increasing breathlessness for 5 months. He was diagnosed to have allergic bronchopulmonary aspergillosis (ABPA) by serological and radiographic criteria. He was treated with steroids and itraconazole. After initial improvement, he developed fever with cough and mucopurulent sputum. X-ray chest revealed multiple cavities with air fluid level. Patient was treated with antibiotics without any response. Sputum was negative for acid fast bacilli (AFB). Sputum culture for bacteria and fungus did not reveal any significant growth; however a delayed growth of Nocardia was noted on fungal plates. Modified Ziehl Nelsen stain was positive for AFB. Patient was treated with cotrimoxazole. We discuss the serological and radiological criteria of ABPA, presentation and treatment of nocardia pulmonary infection and other possible causes of necrotizing pneumonia in immunocompromised settings.
PMCID: PMC3540710  PMID: 23320238
16.  Efficacy of Oral E1210, a New Broad-Spectrum Antifungal with a Novel Mechanism of Action, in Murine Models of Candidiasis, Aspergillosis, and Fusariosis▿ 
Antimicrobial Agents and Chemotherapy  2011;55(10):4543-4551.
E1210 is a first-in-class, broad-spectrum antifungal with a novel mechanism of action—inhibition of fungal glycosylphosphatidylinositol biosynthesis. In this study, the efficacies of E1210 and reference antifungals were evaluated in murine models of oropharyngeal and disseminated candidiasis, pulmonary aspergillosis, and disseminated fusariosis. Oral E1210 demonstrated dose-dependent efficacy in infections caused by Candida species, Aspergillus spp., and Fusarium solani. In the treatment of oropharyngeal candidiasis, E1210 and fluconazole each caused a significantly greater reduction in the number of oral CFU than the control treatment (P < 0.05). In the disseminated candidiasis model, mice treated with E1210, fluconazole, caspofungin, or liposomal amphotericin B showed significantly higher survival rates than the control mice (P < 0.05). E1210 was also highly effective in treating disseminated candidiasis caused by azole-resistant Candida albicans or Candida tropicalis. A 24-h delay in treatment onset minimally affected the efficacy outcome of E1210 in the treatment of disseminated candidiasis. In the Aspergillus flavus pulmonary aspergillosis model, mice treated with E1210, voriconazole, or caspofungin showed significantly higher survival rates than the control mice (P < 0.05). E1210 was also effective in the treatment of Aspergillus fumigatus pulmonary aspergillosis. In contrast to many antifungals, E1210 was also effective against disseminated fusariosis caused by F. solani. In conclusion, E1210 demonstrated consistent efficacy in murine models of oropharyngeal and disseminated candidiasis, pulmonary aspergillosis, and disseminated fusariosis. These data suggest that further studies to determine E1210's potential for the treatment of disseminated fungal infections are indicated.
PMCID: PMC3187015  PMID: 21788462
17.  A Case of Endobronchial Aspergilloma Associated with Foreign Body in Immunocompetent Patient without Underlying Lung Disease 
Aspergillus causes a variety of clinical syndromes in the lung including tracheobronchial aspergillosis, invasive aspergillosis, chronic necrotizing pulmonary aspergillosis, allergic bronchopulmonary aspergillosis, and aspergilloma. Aspergilloma usually results from ingrowths of colonized Aspergillus in damaged bronchial tree, pulmonary cyst or cavities of patients with underlying lung diseases. There are a few reports on endobronchial aspergilloma without underlying pulmonary lesion. We have experienced a case of endobronchial aspergilloma associated with foreign body developed in an immunocompetent patient without underlying lung diseases. A 59-year-old man is being hospitalized with recurring hemoptysis for 5 months. X-ray and computed tomography scans of chest showed a nodular opacity in superior segment of left lower lobe. Fiberoptic bronchoscopy revealed an irregular, mass-like, brownish material which totally obstructed the sub-segmental bronchus and a foreign body in superior segmental bronchus of the lower left lobe. Histopathologic examinations of biopsy specimen revealed fungal hyphae, characteristic of Aspergillus species.
PMCID: PMC3672416  PMID: 23750172
Aspergillosis; Foreign Bodies; Immunocompetence
18.  Proven invasive pulmonary mucormycosis successfully treated with amphotericin B and surgery in patient with acute myeloblastic leukemia: a case report 
Invasive mucormycosis (zygomycosis) is the third most frequent fungal infection in patients with hematologic malignancies. It often results in a fatal outcome mainly due to the difficulty of early diagnosis and its resistance to antimycotics.
Case presentation
A 52-year-old Caucasian man was diagnosed with acute myeloblastic leukemia. Following the induction chemotherapy he developed febrile neutropenia. Meropenem (3×1000mg/day) was introduced empirically. A chest computed tomography showed soft-tissue consolidation change in his right upper lobe. A bronchoscopy was performed and the histology indicated invasive pulmonary aspergillosis based on fungal hypha detection. Also, high risk patients are routinely screened for invasive fungal infections using commercially available serological enzyme-linked immunosorbent assay tests: galactomannan and mannan (Bio-Rad, France), as well as anti-Aspergillus immunoglobulin G and/or immunoglobulin M and anti-Candida immunoglobulin G and/or immunoglobulin M antibodies (Virion-Serion, Germany). Galactomannan showed low positivity and voriconazole therapy (2×400mg/first day; 2×300mg/following days) was implemented. The patient became afebrile and a partial remission of disease was established. After 2 months, the patient developed a fever and a chest multi-slice computed tomography showed soft-tissue mass compressing his upper right bronchus. Voriconazole (2×400mg/first day; 2×300mg/following days) was reintroduced and bronchoscopy was repeated. Histologic examination of the new specimen was done, as well as a revision of the earlier samples in the reference laboratory and the diagnosis was switched to invasive pulmonary mucormycosis. The treatment was changed to amphotericin B colloidal dispersion (1×400mg/day). The complete remission of acute myeloblastic leukemia was verified after 2 months. During his immunerestitution, a high positivity of the anti-Aspergillus immunoglobulin M antibodies was found in a single serum sample and pulmonary radiography was unchanged. A lobectomy of his right upper pulmonary lobe was done and the mycology culture of the lung tissue sample revealed Rhizopus oryzae. He remained in complete remission for more than 1 year.
Invasive mucormycosis was successfully treated with amphotericin B, surgery and secondary itraconazole prophylaxis. As a rare disease invasive mucormycosis is not well understood by the medical community and therefore an improvement of education about prevention, diagnosis and treatment of invasive mucormycosis is necessary.
PMCID: PMC3879024  PMID: 24299522
Acute myeloblastic leukemia; Early laboratory diagnosis; Invasive pulmonary mucormycosis
19.  Pichia fabianii blood infection in a premature infant in China: case report 
BMC Research Notes  2013;6:77.
Invasive fungal infections caused by uncommon fungi have increased in recent years. Hospitalized low-birth-weight infants are at high risk for neonatal fungal infections. Pichia fabianii is a rare pathogen causing blood infection, which has reportedly caused only 4 cases of fungemia and 1 case of endocarditis worldwide. Here, we describe the first case of a P. fabianii blood infection in a premature infant in China.
Case presentation
On July 28th, a low-birth-weight (LBW, 1760 g) female infant born at 33+4 weeks of gestation was admitted to the pediatric intensive care unit with mild neonatal asphyxia. Until August 2nd, a mechanical respirator was used to assist respiration under the Continuous Positive Airway Pressure (CPAP) model. The baby had an increased body temperature and a fever. To prevent infection, Ceftriaxone Sodium (CS) was administered intravenously for three days, after which Cefepime was administered until August 13th. Chest X-rays showed suspected plaque-like shadows in the right lung. Blood cultures twice tested positive for fungal infection caused by Candida pelliculosa (recognized as Pichia fabianii later), which is first mis-identified by commercial kit. Hence, intravenous fluconazole was administered. However, cultures of other body fluids (e.g., urine, feces and sputum) tested negative for fungal infection. Routine tests and biochemistry of cerebrospinal fluid (CSF) were normal. Latex agglutination of Cryptococcus neoformans and fungi cultures in the CSF were also negative. After 14 days of intravenous fluconazole, blood was re-cultured, the result of which was negative. On August 30th, intravenous fluconazole was suspended. On Sep 3rd, the infant left the hospital in good health.
This is the first case of a blood infection caused by P. fabianii in a LBW premature female infant in China. Risk factors for fungal infection include premature birth, as well as mechanical invasive operation and antibacterial drug usage. Whether such risk factors necessitate prophylactic use of antifungal drugs is an important question that has yet to be fully addressed. Additionally, the pathogen P. fabianii collected in this study was resistant to amphotericin B (AMB) and itraconazole (ITR). With the exception of the azole-resistant endocarditis case, all other cases have not demonstrated such a resistance. Finally, commercial biochemical methods used in routine practice are limited in their ability to identify P. fabianii. Molecular genetic based methods are imperative for identification of uncommon fungal species from disseminated infections.
PMCID: PMC3599298  PMID: 23510524
Pichia fabianii; Fungemia; Infant infection
20.  Aspergillus niger: an unusual cause of invasive pulmonary aspergillosis 
Journal of Medical Microbiology  2010;59(Pt 7):834-838.
Infections due to Aspergillus species cause significant morbidity and mortality. Most are attributed to Aspergillus fumigatus, followed by Aspergillus flavus and Aspergillus terreus. Aspergillus niger is a mould that is rarely reported as a cause of pneumonia. A 72-year-old female with chronic obstructive pulmonary disease and temporal arteritis being treated with steroids long term presented with haemoptysis and pleuritic chest pain. Chest radiography revealed areas of heterogeneous consolidation with cavitation in the right upper lobe of the lung. Induced bacterial sputum cultures, and acid-fast smears and cultures were negative. Fungal sputum cultures grew A. niger. The patient clinically improved on a combination therapy of empiric antibacterials and voriconazole, followed by voriconazole monotherapy. After 4 weeks of voriconazole therapy, however, repeat chest computed tomography scanning showed a significant progression of the infection and near-complete necrosis of the right upper lobe of the lung. Serum voriconazole levels were low–normal (1.0 μg ml−1, normal range for the assay 0.5–6.0 μg ml−1). A. niger was again recovered from bronchoalveolar lavage specimens. A right upper lobectomy was performed, and lung tissue cultures grew A. niger. Furthermore, the lung histopathology showed acute and organizing pneumonia, fungal hyphae and oxalate crystallosis, confirming the diagnosis of invasive A. niger infection. A. niger, unlike A. fumigatus and A. flavus, is less commonly considered a cause of invasive aspergillosis (IA). The finding of calcium oxalate crystals in histopathology specimens is classic for A. niger infection and can be helpful in making a diagnosis even in the absence of conidia. Therapeutic drug monitoring may be useful in optimizing the treatment of IA given the wide variations in the oral bioavailability of voriconazole.
PMCID: PMC3052473  PMID: 20299503
21.  Bench-to-bedside review: Candida infections in the intensive care unit 
Critical Care  2008;12(1):204.
Invasive mycoses are life-threatening opportunistic infections and have emerged as a major cause of morbidity and mortality in critically ill patients. This review focuses on recent advances in our understanding of the epidemiology, diagnosis and management of invasive candidiasis, which is the predominant fungal infection in the intensive care unit setting. Candida spp. are the fourth most common cause of bloodstream infections in the USA, but they are a much less common cause of bloodstream infections in Europe. About one-third of episodes of candidaemia occur in the intensive care unit. Until recently, Candida albicans was by far the predominant species, causing up to two-thirds of all cases of invasive candidiasis. However, a shift toward non-albicans Candida spp., such as C. glabrata and C. krusei, with reduced susceptibility to commonly used antifungal agents, was recently observed. Unfortunately, risk factors and clinical manifestations of candidiasis are not specific, and conventional culture methods such as blood culture systems lack sensitivity. Recent studies have shown that detection of circulating β-glucan, mannan and antimannan antibodies may contribute to diagnosis of invasive candidiasis. Early initiation of appropriate antifungal therapy is essential for reducing the morbidity and mortality of invasive fungal infections. For decades, amphotericin B deoxycholate has been the standard therapy, but it is often poorly tolerated and associated with infusion-related acute reactions and nephrotoxicity. Azoles such as fluconazole and itraconazole provided the first treatment alternatives to amphotericin B for candidiasis. In recent years, several new antifungal agents have become available, offering additional therapeutic options for the management of Candida infections. These include lipid formulations of amphotericin B, new azoles (voriconazole and posaconazole) and echinocandins (caspofungin, micafungin and anidulafungin).
PMCID: PMC2374590  PMID: 18279532
22.  Detection and Identification of Fungi from Fungus Balls of the Maxillary Sinus by Molecular Techniques 
Journal of Clinical Microbiology  2003;41(2):581-585.
The aim of this study was to find a reliable method for the detection and identification of fungi in fungus balls of the maxillary sinus and to evaluate the spectrum of fungi in these samples. One hundred twelve samples were obtained from patients with histologically proven fungal infections; 81 samples were paraffin-embedded tissue sections of the maxillary sinus. In 31 cases, sinus contents without paraffin embedding were sent for investigation. PCR amplification with universal fungal primers for 28S ribosomal DNA and amplicon identification by hybridization with species-specific probes for Aspergillus fumigatus, Aspergillus flavus, Aspergillus niger, Aspergillus terreus, Aspergillus glaucus, Pseudallescheria boydii, Candida albicans, and Candida glabrata were performed for all samples. Furthermore, PCR products were sequenced. Fresh samples were also cultivated. Fungal DNA was detected in all of the fresh samples but only in 71 paraffin-embedded tissue samples (87.7%). Sequence analysis was the most sensitive technique, as results could be obtained for 28 (90.3%) fresh samples by this method in comparison to 24 (77.4%) samples by hybridization and 16 (51.6%) samples by culture. However, sequence analysis delivered a result for only 36 (50.7%) of the paraffin-embedded specimens. Hybridization showed reliable results for A. fumigatus, which proved to be the most common agent in fungus balls of the maxillary sinus. Other Aspergillus species and other genera were rarely found.
PMCID: PMC149709  PMID: 12574250
23.  Systemic dissemination of chronic necrotizing pulmonary aspergillosis in an elderly woman without comorbidity: a case report 
Chronic necrotizing pulmonary aspergillosis usually occurs in mildly immune-compromised hosts or those with underlying pulmonary disease. The radiographic pattern of chronic necrotizing pulmonary aspergillosis is typically a progressive upper lobe cavitary infiltrate with pleural thickening. We report here an atypical case of chronic necrotizing pulmonary aspergillosis mimicking lung cancer, which developed into a disseminated fatal disease in an older woman with no comorbidity.
Case presentation
An 80-year-old Japanese woman was referred to our hospital for a chest roentgenogram abnormality. Repeated fiber-optic bronchoscopy could not confirm any definite diagnosis, and she refused further examinations. Considering the roentgenogram findings and her age, she was followed-up as a suspected case of lung cancer without any treatment. Then, 10 months later, she complained of visual disturbance and was admitted to our department of ophthalmology. She was diagnosed as having endophthalmitis. After treatment with corticosteroids for 20 days, she developed acute encephalitis and died four weeks later. Autopsy revealed dissemination of Aspergillus hyphae throughout her body, including her brain.
In older patients, even if they do not have any comorbidity, chronic necrotizing pulmonary aspergillosis should be added to the differential diagnosis of solitary pulmonary lesions in a chest roentgenogram.
PMCID: PMC3470993  PMID: 22938191
24.  Influenza and Pneumococcal Vaccinations for Patients With Chronic Obstructive Pulmonary Disease (COPD) 
Executive Summary
In July 2010, the Medical Advisory Secretariat (MAS) began work on a Chronic Obstructive Pulmonary Disease (COPD) evidentiary framework, an evidence-based review of the literature surrounding treatment strategies for patients with COPD. This project emerged from a request by the Health System Strategy Division of the Ministry of Health and Long-Term Care that MAS provide them with an evidentiary platform on the effectiveness and cost-effectiveness of COPD interventions.
After an initial review of health technology assessments and systematic reviews of COPD literature, and consultation with experts, MAS identified the following topics for analysis: vaccinations (influenza and pneumococcal), smoking cessation, multidisciplinary care, pulmonary rehabilitation, long-term oxygen therapy, noninvasive positive pressure ventilation for acute and chronic respiratory failure, hospital-at-home for acute exacerbations of COPD, and telehealth (including telemonitoring and telephone support). Evidence-based analyses were prepared for each of these topics. For each technology, an economic analysis was also completed where appropriate. In addition, a review of the qualitative literature on patient, caregiver, and provider perspectives on living and dying with COPD was conducted, as were reviews of the qualitative literature on each of the technologies included in these analyses.
The Chronic Obstructive Pulmonary Disease Mega-Analysis series is made up of the following reports, which can be publicly accessed at the MAS website at:
Chronic Obstructive Pulmonary Disease (COPD) Evidentiary Framework
Influenza and Pneumococcal Vaccinations for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Smoking Cessation for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Community-Based Multidisciplinary Care for Patients With Stable Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Pulmonary Rehabilitation for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Long-term Oxygen Therapy for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Noninvasive Positive Pressure Ventilation for Acute Respiratory Failure Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Noninvasive Positive Pressure Ventilation for Chronic Respiratory Failure Patients With Stable Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Hospital-at-Home Programs for Patients with Acute Exacerbations of Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Home Telehealth for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Cost-Effectiveness of Interventions for Chronic Obstructive Pulmonary Disease Using an Ontario Policy Model
Experiences of Living and Dying With COPD: A Systematic Review and Synthesis of the Qualitative Empirical Literature
For more information on the qualitative review, please contact Mita Giacomini at:
For more information on the economic analysis, please visit the PATH website:
The Toronto Health Economics and Technology Assessment (THETA) collaborative has produced an associated report on patient preference for mechanical ventilation. For more information, please visit the THETA website:
The objective of this analysis was to determine the effectiveness of the influenza vaccination and the pneumococcal vaccination in patients with chronic obstructive pulmonary disease (COPD) in reducing the incidence of influenza-related illness or pneumococcal pneumonia.
Clinical Need: Condition and Target Population
Influenza Disease
Influenza is a global threat. It is believed that the risk of a pandemic of influenza still exists. Three pandemics occurred in the 20th century which resulted in millions of deaths worldwide. The fourth pandemic of H1N1 influenza occurred in 2009 and affected countries in all continents.
Rates of serious illness due to influenza viruses are high among older people and patients with chronic conditions such as COPD. The influenza viruses spread from person to person through sneezing and coughing. Infected persons can transfer the virus even a day before their symptoms start. The incubation period is 1 to 4 days with a mean of 2 days. Symptoms of influenza infection include fever, shivering, dry cough, headache, runny or stuffy nose, muscle ache, and sore throat. Other symptoms such as nausea, vomiting, and diarrhea can occur.
Complications of influenza infection include viral pneumonia, secondary bacterial pneumonia, and other secondary bacterial infections such as bronchitis, sinusitis, and otitis media. In viral pneumonia, patients develop acute fever and dyspnea, and may further show signs and symptoms of hypoxia. The organisms involved in bacterial pneumonia are commonly identified as Staphylococcus aureus and Hemophilus influenza. The incidence of secondary bacterial pneumonia is most common in the elderly and those with underlying conditions such as congestive heart disease and chronic bronchitis.
Healthy people usually recover within one week but in very young or very old people and those with underlying medical conditions such as COPD, heart disease, diabetes, and cancer, influenza is associated with higher risks and may lead to hospitalization and in some cases death. The cause of hospitalization or death in many cases is viral pneumonia or secondary bacterial pneumonia. Influenza infection can lead to the exacerbation of COPD or an underlying heart disease.
Streptococcal Pneumonia
Streptococcus pneumoniae, also known as pneumococcus, is an encapsulated Gram-positive bacterium that often colonizes in the nasopharynx of healthy children and adults. Pneumococcus can be transmitted from person to person during close contact. The bacteria can cause illnesses such as otitis media and sinusitis, and may become more aggressive and affect other areas of the body such as the lungs, brain, joints, and blood stream. More severe infections caused by pneumococcus are pneumonia, bacterial sepsis, meningitis, peritonitis, arthritis, osteomyelitis, and in rare cases, endocarditis and pericarditis.
People with impaired immune systems are susceptible to pneumococcal infection. Young children, elderly people, patients with underlying medical conditions including chronic lung or heart disease, human immunodeficiency virus (HIV) infection, sickle cell disease, and people who have undergone a splenectomy are at a higher risk for acquiring pneumococcal pneumonia.
Influenza and Pneumococcal Vaccines
Trivalent Influenza Vaccines in Canada
In Canada, 5 trivalent influenza vaccines are currently authorized for use by injection. Four of these are formulated for intramuscular use and the fifth product (Intanza®) is formulated for intradermal use.
The 4 vaccines for intramuscular use are:
Fluviral (GlaxoSmithKline), split virus, inactivated vaccine, for use in adults and children ≥ 6 months;
Vaxigrip (Sanofi Pasteur), split virus inactivated vaccine, for use in adults and children ≥ 6 months;
Agriflu (Novartis), surface antigen inactivated vaccine, for use in adults and children ≥ 6 months; and
Influvac (Abbott), surface antigen inactivated vaccine, for use in persons ≥ 18 years of age.
FluMist is a live attenuated virus in the form of an intranasal spray for persons aged 2 to 59 years. Immunization with current available influenza vaccines is not recommended for infants less than 6 months of age.
Pneumococcal Vaccine
Pneumococcal polysaccharide vaccines were developed more than 50 years ago and have progressed from 2-valent vaccines to the current 23-valent vaccines to prevent diseases caused by 23 of the most common serotypes of S pneumoniae. Canada-wide estimates suggest that approximately 90% of cases of pneumococcal bacteremia and meningitis are caused by these 23 serotypes. Health Canada has issued licenses for 2 types of 23-valent vaccines to be injected intramuscularly or subcutaneously:
Pneumovax 23® (Merck & Co Inc. Whitehouse Station, NJ, USA), and
Pneumo 23® (Sanofi Pasteur SA, Lion, France) for persons 2 years of age and older.
Other types of pneumococcal vaccines licensed in Canada are for pediatric use. Pneumococcal polysaccharide vaccine is injected only once. A second dose is applied only in some conditions.
Research Questions
What is the effectiveness of the influenza vaccination and the pneumococcal vaccination compared with no vaccination in COPD patients?
What is the safety of these 2 vaccines in COPD patients?
What is the budget impact and cost-effectiveness of these 2 vaccines in COPD patients?
Research Methods
Literature search
Search Strategy
A literature search was performed on July 5, 2010 using OVID MEDLINE, MEDLINE In-Process and Other Non-Indexed Citations, EMBASE, the Cumulative Index to Nursing & Allied Health Literature (CINAHL), the Cochrane Library, and the International Agency for Health Technology Assessment (INAHTA) for studies published from January 1, 2000 to July 5, 2010. The search was updated monthly through the AutoAlert function of the search up to January 31, 2011. Abstracts were reviewed by a single reviewer and, for those studies meeting the eligibility criteria, full-text articles were obtained. Articles with an unknown eligibility were reviewed with a second clinical epidemiologist and then a group of epidemiologists until consensus was established. Data extraction was carried out by the author.
Inclusion Criteria
studies comparing clinical efficacy of the influenza vaccine or the pneumococcal vaccine with no vaccine or placebo;
randomized controlled trials published between January 1, 2000 and January 31, 2011;
studies including patients with COPD only;
studies investigating the efficacy of types of vaccines approved by Health Canada;
English language studies.
Exclusion Criteria
non-randomized controlled trials;
studies investigating vaccines for other diseases;
studies comparing different variations of vaccines;
studies in which patients received 2 or more types of vaccines;
studies comparing different routes of administering vaccines;
studies not reporting clinical efficacy of the vaccine or reporting immune response only;
studies investigating the efficacy of vaccines not approved by Health Canada.
Outcomes of Interest
Primary Outcomes
Influenza vaccination: Episodes of acute respiratory illness due to the influenza virus.
Pneumococcal vaccination: Time to the first episode of community-acquired pneumonia either due to pneumococcus or of unknown etiology.
Secondary Outcomes
rate of hospitalization and mechanical ventilation
mortality rate
adverse events
Quality of Evidence
The quality of each included study was assessed taking into consideration allocation concealment, randomization, blinding, power/sample size, withdrawals/dropouts, and intention-to-treat analyses. The quality of the body of evidence was assessed as high, moderate, low, or very low according to the GRADE Working Group criteria. The following definitions of quality were used in grading the quality of the evidence:
Summary of Efficacy of the Influenza Vaccination in Immunocompetent Patients With COPD
Clinical Effectiveness
The influenza vaccination was associated with significantly fewer episodes of influenza-related acute respiratory illness (ARI). The incidence density of influenza-related ARI was:
All patients: vaccine group: (total of 4 cases) = 6.8 episodes per 100 person-years; placebo group: (total of 17 cases) = 28.1 episodes per 100 person-years, (relative risk [RR], 0.2; 95% confidence interval [CI], 0.06−0.70; P = 0.005).
Patients with severe airflow obstruction (forced expiratory volume in 1 second [FEV1] < 50% predicted): vaccine group: (total of 1 case) = 4.6 episodes per 100 person-years; placebo group: (total of 7 cases) = 31.2 episodes per 100 person-years, (RR, 0.1; 95% CI, 0.003−1.1; P = 0.04).
Patients with moderate airflow obstruction (FEV1 50%−69% predicted): vaccine group: (total of 2 cases) = 13.2 episodes per 100 person-years; placebo group: (total of 4 cases) = 23.8 episodes per 100 person-years, (RR, 0.5; 95% CI, 0.05−3.8; P = 0.5).
Patients with mild airflow obstruction (FEV1 ≥ 70% predicted): vaccine group: (total of 1 case) = 4.5 episodes per 100 person-years; placebo group: (total of 6 cases) = 28.2 episodes per 100 person-years, (RR, 0.2; 95% CI, 0.003−1.3; P = 0.06).
The Kaplan-Meier survival analysis showed a significant difference between the vaccinated group and the placebo group regarding the probability of not acquiring influenza-related ARI (log-rank test P value = 0.003). Overall, the vaccine effectiveness was 76%. For categories of mild, moderate, or severe COPD the vaccine effectiveness was 84%, 45%, and 85% respectively.
With respect to hospitalization, fewer patients in the vaccine group compared with the placebo group were hospitalized due to influenza-related ARIs, although these differences were not statistically significant. The incidence density of influenza-related ARIs that required hospitalization was 3.4 episodes per 100 person-years in the vaccine group and 8.3 episodes per 100 person-years in the placebo group (RR, 0.4; 95% CI, 0.04−2.5; P = 0.3; log-rank test P value = 0.2). Also, no statistically significant differences between the 2 groups were observed for the 3 categories of severity of COPD.
Fewer patients in the vaccine group compared with the placebo group required mechanical ventilation due to influenza-related ARIs. However, these differences were not statistically significant. The incidence density of influenza-related ARIs that required mechanical ventilation was 0 episodes per 100 person-years in the vaccine group and 5 episodes per 100 person-years in the placebo group (RR, 0.0; 95% CI, 0−2.5; P = 0.1; log-rank test P value = 0.4). In addition, no statistically significant differences between the 2 groups were observed for the 3 categories of severity of COPD. The effectiveness of the influenza vaccine in preventing influenza-related ARIs and influenza-related hospitalization was not related to age, sex, severity of COPD, smoking status, or comorbid diseases.
Overall, significantly more patients in the vaccine group than the placebo group experienced local adverse reactions (vaccine: 17 [27%], placebo: 4 [6%]; P = 0.002). Significantly more patients in the vaccine group than the placebo group experienced swelling (vaccine 4, placebo 0; P = 0.04) and itching (vaccine 4, placebo 0; P = 0.04). Systemic reactions included headache, myalgia, fever, and skin rash and there were no significant differences between the 2 groups for these reactions (vaccine: 47 [76%], placebo: 51 [81%], P = 0.5).
With respect to lung function, dyspneic symptoms, and exercise capacity, there were no significant differences between the 2 groups at 1 week and at 4 weeks in: FEV1, maximum inspiratory pressure at residual volume, oxygen saturation level of arterial blood, visual analogue scale for dyspneic symptoms, and the 6 Minute Walking Test for exercise capacity.
There was no significant difference between the 2 groups with regard to the probability of not acquiring total ARIs (influenza-related and/or non-influenza-related); (log-rank test P value = 0.6).
Summary of Efficacy of the Pneumococcal Vaccination in Immunocompetent Patients With COPD
Clinical Effectiveness
The Kaplan-Meier survival analysis showed no significant differences between the group receiving the penumoccocal vaccination and the control group for time to the first episode of community-acquired pneumonia due to pneumococcus or of unknown etiology (log-rank test 1.15; P = 0.28). Overall, vaccine efficacy was 24% (95% CI, −24 to 54; P = 0.33).
With respect to the incidence of pneumococcal pneumonia, the Kaplan-Meier survival analysis showed a significant difference between the 2 groups (vaccine: 0/298; control: 5/298; log-rank test 5.03; P = 0.03).
Hospital admission rates and median length of hospital stays were lower in the vaccine group, but the difference was not statistically significant. The mortality rate was not different between the 2 groups.
Subgroup Analysis
The Kaplan-Meier survival analysis showed significant differences between the vaccine and control groups for pneumonia due to pneumococcus and pneumonia of unknown etiology, and when data were analyzed according to subgroups of patients (age < 65 years, and severe airflow obstruction FEV1 < 40% predicted). The accumulated percentage of patients without pneumonia (due to pneumococcus and of unknown etiology) across time was significantly lower in the vaccine group than in the control group in patients younger than 65 years of age (log-rank test 6.68; P = 0.0097) and patients with a FEV1 less than 40% predicted (log-rank test 3.85; P = 0.0498).
Vaccine effectiveness was 76% (95% CI, 20−93; P = 0.01) for patients who were less than 65 years of age and −14% (95% CI, −107 to 38; P = 0.8) for those who were 65 years of age or older. Vaccine effectiveness for patients with a FEV1 less than 40% predicted and FEV1 greater than or equal to 40% predicted was 48% (95% CI, −7 to 80; P = 0.08) and −11% (95% CI, −132 to 47; P = 0.95), respectively. For patients who were less than 65 years of age (FEV1 < 40% predicted), vaccine effectiveness was 91% (95% CI, 35−99; P = 0.002).
Cox modelling showed that the effectiveness of the vaccine was dependent on the age of the patient. The vaccine was not effective in patients 65 years of age or older (hazard ratio, 1.53; 95% CI, 0.61−a2.17; P = 0.66) but it reduced the risk of acquiring pneumonia by 80% in patients less than 65 years of age (hazard ratio, 0.19; 95% CI, 0.06−0.66; P = 0.01).
No patients reported any local or systemic adverse reactions to the vaccine.
PMCID: PMC3384373  PMID: 23074431
25.  Clinical Significance and Molecular Characterization of Nonsporulating Molds Isolated from the Respiratory Tracts of Bronchopulmonary Mycosis Patients with Special Reference to Basidiomycetes 
Journal of Clinical Microbiology  2013;51(10):3331-3337.
Nonsporulating molds (NSMs), especially basidiomycetes, have predominantly been reported as human pathogens responsible for allergic and invasive disease. Their conventional identification is problematic, as many isolates remain sterile in culture. Thus, inconclusive culture reports might adversely affect treatment decisions. The clinical significance of NSMs in pulmonary mycoses is poorly understood. We sequenced the internal transcribed spacer (ITS) region and D1/D2 domain of the larger subunit (LSU) of 52 NSMs isolated from respiratory specimens. The basidiomycetes were the predominant NSMs, of which Schizophyllum commune was the most common agent in allergic bronchopulmonary mycosis (ABPM), followed by Ceriporia lacerata in invasive fungal disease. Porostereum spadiceum, Phanaerochaete stereoides, Neosartorya fischeri, and Marasmiellus palmivorus were the other molds observed. Application of ITS and LSU region sequencing identified 92% of the isolates. The antifungal susceptibility data revealed that all basidiomycetes tested were susceptible to amphotericin B and resistant to caspofungin, fluconazole, and flucytosine. Except for 3 isolates of S. commune and a solitary isolate of M. palmivorus, all basidiomycetes had low MICs for itraconazole, posaconazole, and voriconazole. Basidiomycetes were isolated from patients with ABPM, invasive pulmonary mycosis/pneumonia, or fungal balls. In addition, the majority of the basidiomycetes were isolated from patients with chronic respiratory disorders who were sensitized to one of the basidiomycetous fungi and demonstrated precipitating antibodies against the incriminating fungi, indicating an indolent tissue reaction. Thus, isolation of basidiomycetes from the lower respiratory tract could be significant, and it is important to monitor these patients in order to prevent subsequent lung damage.
PMCID: PMC3811655  PMID: 23903552

Results 1-25 (1090222)