Search tips
Search criteria

Results 1-25 (849937)

Clipboard (0)

Related Articles

1.  Sulfinylated Azadecalins act as functional mimics of a pollen germination stimulant in Arabidopsis pistils 
Polarized cell elongation is triggered by small molecule cues during development of diverse organisms. During plant reproduction, pollen interactions with the stigma result in the polar outgrowth of a pollen tube, which delivers sperm cells to the female gametophyte to effect double fertilization. In many plants, pistils stimulate pollen germination. However, in Arabidopsis, the effect of pistils on pollen germination and the pistil factors that stimulate pollen germination remain poorly characterized. Here, we demonstrate that stigma, style, and ovules in Arabidopsis pistils stimulate pollen germination. We isolated an Arabidopsis pistil extract fraction that stimulates Arabidopsis pollen germination, and employed ultrahigh resolution ESI FT-ICR and MS/MS techniques to accurately determine the mass (202.126 daltons) of a compound that is specifically present in this pistil extract fraction. Using the molecular formula (C10H19NOS) and tandem mass spectral fragmentation patterns of the m/z (mass to charge ratio) 202.126 ion, we postulated chemical structures, devised protocols, synthesized N-Methanesulfinyl 1- and 2-azadecalins that are close structural mimics of the m/z 202.126 ion, and showed that they are sufficient to stimulate Arabidopsis pollen germination in vitro (30 µM stimulated ~50% germination) and elicit accession-specific response. Although N-Methanesulfinyl 2-azadecalin stimulated pollen germination in three species of Lineage I of Brassicaceae, it did not induce a germination response in Sisymbrium irio (Lineage II of Brassicaceae) and tobacco, indicating that activity of the compound is not random. Our results show that Arabidopsis pistils promote germination by producing azadecalin-like molecules to ensure rapid fertilization by the appropriate pollen.
PMCID: PMC3225508  PMID: 21801250
Pollen; pistil; germination; stimulant; chemical biology; functional mimic
2.  Proteins implicated in mediating self-incompatibility-induced alterations to the actin cytoskeleton of Papaver pollen 
Annals of Botany  2011;108(4):659-675.
Background and Aims
Sexual reproduction in angiosperms involves a network of signalling and interactions between pollen and pistil. To promote out-breeding, an additional layer of interactions, involving self-incompatibility (SI), is used to prevent self-fertilization. SI is generally controlled by the S-locus, and comprises allelic pollen and pistil S-determinants. This provides the basis of recognition, and consequent rejection, of incompatible pollen. In Papaver rhoeas, SI involves interaction of pistil PrsS and pollen PrpS, triggering a Ca2+-dependent signalling network. This results in rapid and distinctive alterations to both the actin and microtubule cytoskeleton being triggered in ‘self’ pollen. Some of these alterations are implicated in mediating programmed cell death, involving activation of several caspase-like proteases.
Here we review and discuss our current understanding of the cytoskeletal alterations induced in incompatible pollen during SI and their relationship with programmed cell death. We focus on data relating to the formation of F-actin punctate foci, which have, to date, not been well characterized. The identification of two actin-binding proteins that interact with these structures are reviewed. Using an approach that enriched for F-actin from SI-induced pollen tubes using affinity purification followed by mass spectrometry, further proteins were identified as putative interactors with the F-actin foci in an SI situation.
Key Results
Previously two important actin-binding proteins, CAP and ADF, had been identified whose localization altered with SI, both showing co-localization with the F-actin punctate foci based on immunolocalization studies. Further analysis has identified differences between proteins associated with F-actin from SI-induced pollen samples and those associated with F-actin in untreated pollen. This provides candidate proteins implicated in either the formation or stabilization of the punctate actin structures formed during SI.
This review brings together for the first time, our current understanding of proteins and events involved in SI-induced signalling to the actin cytoskeleton in incompatible Papaver pollen.
PMCID: PMC3170148  PMID: 21320881
Actin cytoskeleton; actin-binding proteins; mass spectrometry; Papaver rhoeas; pollen; self-incompatibility; signalling
3.  Identification and characterization of TcCRP1, a pollen tube attractant from Torenia concolor 
Annals of Botany  2011;108(4):739-747.
Background and Aims
During sexual reproduction in higher angiosperms, the pollen tubes are directed to the ovules in the pistil to deliver sperm cells. This pollen tube attraction is highly species specific, and a group of small secreted proteins, TfCRPs, are necessary for this process in Torenia fournieri.
A candidate pollen tube attractant protein in Torenia concolor, a related species of T. fournieri, was isolated and the attractant abilities between them were compared.
Key Results
TcCRP1, an orthologous gene of TfCRP1 from T. concolor, is expressed predominantly in the synergid cell. The gene product attracted pollen tubes in a concentration-dependent manner, but attracted fewer pollen tubes from the other species.
The results indicated that this class of CRP proteins is a common pollen tube attractant in Torenia species. The sequence diversity of these proteins is important for species-specific pollen tube attraction.
PMCID: PMC3170153  PMID: 21546430
Torenia fournieri; T. concolor; sexual reproduction; TcCRP1; fertilization; pollen tube guidance; synergid cell; defensin; cysteine-rich polypeptide; CRP; speciation
4.  Comprehensive Cell-specific Protein Analysis in Early and Late Pollen Development from Diploid Microsporocytes to Pollen Tube Growth* 
Pollen development in angiosperms is one of the most important processes controlling plant reproduction and thus productivity. At the same time, pollen development is highly sensitive to environmental fluctuations, including temperature, drought, and nutrition. Therefore, pollen biology is a major focus in applied studies and breeding approaches for improving plant productivity in a globally changing climate. The most accessible developmental stages of pollen are the mature pollen and the pollen tubes, and these are thus most frequently analyzed. To reveal a complete quantitative proteome map, we additionally addressed the very early stages, analyzing eight stages of tobacco pollen development: diploid microsporocytes, meiosis, tetrads, microspores, polarized microspores, bipolar pollen, desiccated pollen, and pollen tubes. A protocol for the isolation of the early stages was established. Proteins were extracted and analyzed by means of a new gel LC-MS fractionation protocol. In total, 3817 protein groups were identified. Quantitative analysis was performed based on peptide count. Exceedingly stage-specific differential protein regulation was observed during the conversion from the sporophytic to the gametophytic proteome. A map of highly specialized functionality for the different stages could be revealed from the metabolic activity and pronounced differentiation of proteasomal and ribosomal protein complex composition up to protective mechanisms such as high levels of heat shock proteins in the very early stages of development.
PMCID: PMC3879621  PMID: 24078888
5.  Establishment of the male germline and sperm cell movement during pollen germination and tube growth in maize 
Plant Signaling & Behavior  2010;5(7):885-889.
Two sperm cells are required to achieve double fertilization in flowering plants (angiosperms). In contrast to animals and lower plants such as mosses and ferns, sperm cells of flowering plants (angiosperms) are immobile and are transported to the female gametes (egg and central cell) via the pollen tube. The two sperm cells arise from the generative pollen cell either within the pollen grain or after germination inside the pollen tube. While pollen tube growth and sperm behavior has been intensively investigated in model plant species such as tobacco and lily, little is know about sperm dynamics and behavior during pollen germination, tube growth and sperm release in grasses. In the March issue of Journal of Experimental Botany, we have reported about the sporophytic and gametophytic control of pollen tube germination, growth and guidance in maize.1 Five progamic phases were distinguished involving various prezygotic crossing barriers before sperm cell delivery inside the female gametophyte takes place. Using live cell imaging and a generative cell-specific promoter driving α-tubulin-YFP expression in the male germline, we report here the formation of the male germline inside the pollen grain and the sperm behaviour during pollen germination and their movement dynamics during tube growth in maize.
PMCID: PMC3014542  PMID: 20505353
male gametophyte; generative cell; sperm; pollen tube; tubulin; fertilization; maize
6.  Ethylene is involved in maintaining tomato (Solanum lycopersicum) pollen quality under heat-stress conditions 
AoB Plants  2012;2012:pls024.
The paper supports the view that ethylene plays a significant role in maintaining tomato pollen thermotolerance. Interfering with the ethylene signalling pathway or reducing ethylene levels and increased tomato pollen sensitivity to heat stress. On the other hand, increasing ethylene levels before heat-stress improved pollen quality.
Background and aims
Exposure to higher-than-optimal temperatures reduces crop yield and quality, mainly due to sensitivity of developing pollen grains. The mechanisms maintaining high pollen quality under heat-stress conditions are poorly understood. Our recently published data indicate high heat-stress-induced expression of ethylene-responsive genes in tomato pollen, indicating ethylene involvement in the pollen heat-stress response. Here we elucidated ethylene's involvement in pollen heat-stress response and thermotolerance by assessing the effects of interfering with the ethylene signalling pathway and altering ethylene levels on tomato pollen functioning under heat stress.
Plants of the ethylene-insensitive mutant Never ripe (Nr)—defective in an ethylene response sensor (ERS)-like ethylene receptor—and the corresponding wild type were exposed to control or heat-stress growing conditions, and pollen quality was determined. Starch and carbohydrates were measured in isolated pollen grains from these plants. The effect of pretreating cv. Micro-Tom tomato plants, prior to heat-stress exposure, with an ethylene releaser or inhibitor of ethylene biosynthesis on pollen quality was assessed.
Principal results
Never ripe pollen grains exhibited higher heat-stress sensitivity, manifested by a significant reduction in the total number of pollen grains, reduction in the number of viable pollen and elevation of the number of non-viable pollen, compared with wild-type plants. Mature Nr pollen grains accumulated only 40 % of the sucrose level accumulated by the wild type. Pretreatment of tomato plants with an ethylene releaser increased pollen quality under heat stress, with an over 5-fold increase in the number of germinating pollen grains per flower. Pretreatment with an ethylene biosynthesis inhibitor reduced the number of germinating pollen grains following heat-stress exposure over 5-fold compared with non-treated controls.
Ethylene plays a significant role in tomato pollen thermotolerance. Interfering with the ethylene signalling pathway or reducing ethylene levels increased tomato pollen sensitivity to heat stress, whereas increasing ethylene levels prior to heat-stress exposure increased pollen quality.
PMCID: PMC3461890  PMID: 23050072
7.  Physiological and proteomic approaches to address heat tolerance during anthesis in rice (Oryza sativa L.) 
Journal of Experimental Botany  2009;61(1):143-156.
Episodes of high temperature at anthesis, which in rice is the most sensitive stage to temperature, are expected to occur more frequently in future climates. The morphology of the reproductive organs and pollen number, and changes in anther protein expression, were studied in response to high temperature at anthesis in three rice (Oryza sativa L.) genotypes. Plants were exposed to 6 h of high (38 °C) and control (29 °C) temperature at anthesis and spikelets collected for morphological and proteomic analysis. Moroberekan was the most heat-sensitive genotype (18% spikelet fertility at 38 °C), while IR64 (48%) and N22 (71%) were moderately and highly heat tolerant, respectively. There were significant differences among the genotypes in anther length and width, apical and basal pore lengths, apical pore area, and stigma and pistil length. Temperature also affected some of these traits, increasing anther pore size and reducing stigma length. Nonetheless, variation in the number of pollen on the stigma could not be related to measured morphological traits. Variation in spikelet fertility was highly correlated (r=0.97, n=6) with the proportion of spikelets with ≥20 germinated pollen grains on the stigma. A 2D-gel electrophoresis showed 46 protein spots changing in abundance, of which 13 differentially expressed protein spots were analysed by MS/MALDI-TOF. A cold and a heat shock protein were found significantly up-regulated in N22, and this may have contributed to the greater heat tolerance of N22. The role of differentially expressed proteins and morphology during anther dehiscence and pollination in shaping heat tolerance and susceptibility is discussed.
PMCID: PMC2791117  PMID: 19858118
Anther; high temperature; pollen; proteomics; rice; spikelet fertility
8.  MYB97, MYB101 and MYB120 Function as Male Factors That Control Pollen Tube-Synergid Interaction in Arabidopsis thaliana Fertilization 
PLoS Genetics  2013;9(11):e1003933.
Pollen tube reception involves a pollen tube-synergid interaction that controls the discharge of sperm cells into the embryo sac during plant fertilization. Despite its importance in the sexual reproduction of plants, little is known about the role of gene regulation in this process. We report here that the pollen-expressed transcription factors MYB97, MYB101 and MYB120 probably control genes whose encoded proteins play important roles in Arabidopsis thaliana pollen tube reception. They share a high amino acid sequence identity and are expressed mainly in mature pollen grains and pollen tubes. None of the single or double mutants of these three genes exhibited any visible defective phenotype. Although the myb97 myb101 myb120 triple mutant was not defective in pollen development, pollen germination, pollen tube growth or tube guidance, the pollen tubes of the triple mutants exhibited uncontrolled growth and failed to discharge their sperm cells after entering the embryo sac. In addition, the myb97 myb101 myb120 triple mutation significantly affected the expression of a group of pollen-expressed genes in mature pollen grains. All these results indicate that MYB97, MYB101 and MYB120 participate in pollen tube reception, possibly by controlling the expression of downstream genes.
Author Summary
Pollen tube reception is an important step of fertilization and is controlled by interactions between the pollen tube and synergid. Components of both the pollen tube and synergid are believed to be involved in the process. Several proteins associated with this process have been identified in synergid cells. However, very little is known about the components contributed by the pollen tube. This work identified a group of Arabidopsis pollen-expressed MYB transcription factors, among which at least three members are involved in pollen tube reception. The myb97 myb101 myb120 triple mutation caused overgrowth of the pollen tube into the embryo sac and disrupted sperm cell discharge, leading to failed fertilization. This study provides novel evidence demonstrating that male factors are involved in pollen tube reception.
PMCID: PMC3836714  PMID: 24278028
9.  Pollen–pistil interactions and self-incompatibility in the Asteraceae: new insights from studies of Senecio squalidus (Oxford ragwort) 
Annals of Botany  2011;108(4):687-698.
Pollen–pistil interactions are an essential prelude to fertilization in angiosperms and determine compatibility/incompatibility. Pollen–pistil interactions have been studied at a molecular and cellular level in relatively few families. Self-incompatibility (SI) is the best understood pollen–pistil interaction at a molecular level where three different molecular mechanisms have been identified in just five families. Here we review studies of pollen–pistil interactions and SI in the Asteraceae, an important family that has been relatively understudied in these areas of reproductive biology.
We begin by describing the historical literature which first identified sporophytic SI (SSI) in species of Asteraceae, the SI system later identified and characterized at a molecular level in the Brassicaceae. Early structural and cytological studies in these two families suggested that pollen–pistil interactions and SSI were similar, if not the same. Recent cellular and molecular studies in Senecio squalidus (Oxford ragwort) have challenged this belief by revealing that despite sharing the same genetic system of SSI, the Brassicaceae and Asteraceae molecular mechanisms are different. Key cellular differences have also been highlighted in pollen–stigma interactions, which may arise as a consequence of the Asteraceae possessing a ‘semi-dry’ stigma, rather than the ‘dry’ stigma typical of the Brassicaceae. The review concludes with a summary of recent transcriptomic analyses aimed at identifying proteins regulating pollen–pistil interactions and SI in S. squalidus, and by implication the Asteraceae. The Senecio pistil transcriptome contains many novel pistil-specific genes, but also pistil-specific genes previously shown to play a role in pollen–pistil interactions in other species.
Studies in S. squalidus have shown that stigma structure and the molecular mechanism of SSI in the Asteraceae and Brassicaceae are different. The availability of a pool of pistil-specific genes for S. squalidus offers an opportunity to elucidate the molecular mechanisms of pollen–pistil interactions and SI in the Asteraceae.
PMCID: PMC3170154  PMID: 21752792
Asteraceae; Senecio; pistil; stigma; pollen; pollen–pistil interactions; self-incompatibility; transcriptome
10.  Pollen tube growth and guidance: roles of small, secreted proteins 
Annals of Botany  2011;108(4):627-636.
Pollination is a crucial step in angiosperm (flowering plant) reproduction. Highly orchestrated pollen–pistil interactions and signalling events enable plant species to avoid inbreeding and outcrossing as a species-specific barrier. In compatible pollination, pollen tubes carrying two sperm cells grow through the pistil transmitting tract and are precisely guided to the ovules, discharging the sperm cells to the embryo sac for fertilization.
In Lilium longiflorum pollination, growing pollen tubes utilize two critical mechanisms, adhesion and chemotropism, for directional growth to the ovules. Among several molecular factors discovered in the past decade, two small, secreted cysteine-rich proteins have been shown to play major roles in pollen tube adhesion and reorientation bioassays: stigma/style cysteine-rich adhesin (SCA, approx. 9·3 kDa) and chemocyanin (approx. 9·8 kDa). SCA, a lipid transfer protein (LTP) secreted from the stylar transmitting tract epidermis, functions in lily pollen tube tip growth as well as in forming the adhesive pectin matrix at the growing pollen tube wall back from the tip. Lily chemocyanin is a plantacyanin family member and acts as a directional cue for reorienting pollen tubes. Recent consecutive studies revealed that Arabidopsis thaliana homologues for SCA and chemocyanin play pivotal roles in tip polarity and directionality of pollen tube growth, respectively. This review outlines the biological roles of various secreted proteins in angiosperm pollination, focusing on plant LTPs and chemocyanin.
PMCID: PMC3170145  PMID: 21307038
Angiosperm fertilization; Arabidopsis thaliana; chemocyanin; cysteine-rich peptides (CRPs); Lilium longiflorum; lipid transfer proteins (LTPs); plantacyanins; pollen tube tip growth; stigma/style cysteine-rich adhesin (SCA)
11.  The evolution of pollen germination timing in flowering plants: Austrobaileya scandens (Austrobaileyaceae) 
AoB Plants  2012;2012:pls010.
Austrobaileya has long served as a model for ancient angiosperm pollen structure. Its pollen germination is relatively rapid and requires < 10 % of the progamic phase. Extensive evidence suggests pollen germination underwent acceleration early in angiosperm history.
Background and aims
The pollination to fertilization process (progamic phase) is thought to have become greatly abbreviated with the origin of flowering plants. In order to understand what developmental mechanisms enabled the speeding of fertilization, comparative data are needed from across the group, especially from early-divergent lineages. I studied the pollen germination process of Austrobaileya scandens, a perennial vine endemic to the Wet Tropics area of northeastern Queensland, Australia, and a member of the ancient angiosperm lineage, Austrobaileyales.
I used in vivo and in vitro hand pollinations and timed collections to study development from late pollen maturation to just after germination. Then I compared the contribution of pollen germination timing to progamic phase duration in 131 angiosperm species (65 families).
Principal findings
Mature pollen of Austrobaileya was bicellular, starchless and moderately dehydrated—water content was 31.5 % by weight and volume increased by 57.9 % upon hydration. A callose layer in the inner intine appeared only after pollination. In vivo pollen germination followed a logarithmic curve, rising from 28 % at 1 hour after pollination (hap) to 97 % at 12 hap (R2 = 0.98). Sufficient pollen germination to fertilize all ovules was predicted to have occurred within 62 min. Across angiosperms, pollen germination ranged from 1 min to >60 h long and required 8.3 ± 9.8 % of the total duration of the progamic phase.
Pollen of Austrobaileya has many plesiomorphic features that are thought to prolong germination. Yet its germination is quite fast for species with desiccation-tolerant pollen (range: <1 to 60 h). Austrobaileya and other early-divergent angiosperms have relatively rapid pollen germination and short progamic phases, comparable to those of many insect-pollinated monocots and eudicots. These results suggest that both the pollen germination and pollen tube growth periods were marked by acceleration of developmental processes early in angiosperm history.
PMCID: PMC3345124  PMID: 22567221
12.  Mode of Pollen-Tube Growth in Pistils of Myrica rubra (Myricaceae): A Comparison with Related Families 
Annals of Botany  2006;97(1):71-77.
• Background and Aims It is generally known that fertilization is delayed for more than a few weeks after pollination in Fagales. Recent studies showed that, during that period, pollen tubes grew in pistils in close association with the development of the ovule in a five-step process in Casuarina (Casuarinaceae) and a four-step process in Alnus (Betulaceae). The number of pollen tubes was reduced from many to one, a fact suggesting that delayed fertilization plays a role for gametophyte selection. Myrica (Myricaceae) also shows delayed fertilization for >2 weeks after pollination, but nothing is known of how pollen tubes grow in the pistil during that period.
• Methods Pollen-tube growth and the development of the ovule in pistils was investigated by fluorescent and scanning electron microscopy and analysis of microtome sections of the pistils.
• Key Results Developmental study of the pollen-tube growth in the pistil of M. rubra showed that the tip of the pollen tube was branched or lay in a zigzag pattern in the upper space of the ovarian locule or near the tip of the integument, and subsequently was swollen on the nucellar surface. Such morphological changes indicate that the pollen-tube growth was temporarily arrested before fertilization. The pollen-tube growth in M. rubra can therefore be summarized as occurring in three steps: (1) from the stigma to the ovarian locule; (2) from the ovarian locule to the nucellar surface; and (3) from the nucellar surface to the embryo sac.
• Conclusion Myrica differs from other families in that the pollen tubes arrest their growth on the nucellar surface, probably digesting nutrient from nucellar cells. There is little information on five other families of Fagales. An extensive study is needed to better understand the diversity and function of the mode of pollen-tube growth within the order.
PMCID: PMC2803377  PMID: 16291781
Fagales; fertilization; micropyle; Myrica; Myricaceae; pollen-tube growth
13.  De novo post-pollen mitosis II tobacco pollen tube transcriptome 
Plant Signaling & Behavior  2012;7(8):918-921.
In our previous study we applied the Agilent 44K tobacco gene chip to introduce and analyze the tobacco male gametophyte transcriptome in mature pollen and 4h pollen tubes. Here we extended our analysis post-pollen mitosis II (PMII) by including a new data set obtained from more advanced stage of the ongoing progamic phase – pollen tubes cultivated in vitro for 24 h. Pollen mitosis II marks key events in the control of male gametophyte development, the production of two sperm cells. In bicellular species covering cca 70% of angiosperms including Nicotiana tabacum, PMII takes place after pollen germination in growing pollen tube. We showed the stable and even slightly increasing complexity of tobacco male gametophyte transcriptome over long period of progamic phase–24 h of pollen tube growth. We also demonstrated the ongoing transcription activity and specific transcript accumulation in post-PMII pollen tubes cultivated in vitro. In all, we have identified 320 genes (2.2%) that were newly transcribed at least after 4h of pollen tube cultivation in vitro. Further, 699 genes (4.8%) showed over 5-fold increased accumulation after the 24h of cultivation.
PMCID: PMC3474685  PMID: 22827945
de novo pollen tube transcriptome; male gametophyte development; pollen tube growth; transcriptomics
14.  Distribution of poly(A)-containing RNA during normal pollen development and during induced pollen embryogenesis in Hyoscyamus niger 
The Journal of Cell Biology  1981;89(3):593-606.
The distribution of poly(A)-containing RNA [poly(A)+RNA] in pollen grains of Hyoscyamus niger during normal gametophytic development and embryogenic development induced by culture of anther segments was followed by in situ hybridization with [3H]-polyuridylic acid as a probe. No binding of the isotope occurred in pollen grains during the uninucleate phase of their development. Although [3H]polyuridylic acid binding sites were present in the generative and vegetative cells of maturing pollen grains, they almost completely disappeared from mature grains ready to germinate. During pollen germination, poly(A)+RNA formation was transient and was due to the activity of the generative nucleus, whereas the vegetative nucleus and the sperm cells failed to interact with the applied probe. In cultured anther segments, moderate amounts of poly(A)+RNA were detected in the uninucleate, nonvacuolate, embryogenically determined pollen grains. Poly(A)+RNA accumulation in these grains was sensitive to actinomycin D, suggesting that it represents newly transcribed mRNA. After the first haploid mitosis in the embryogenically determined pollen grains, only those grains in which the generative nucleus alone or along with the vegetative nucleus accumulated poly(A)+RNA in the surrounding cytoplasm were found to divide in the embryogenic pathway. Overall, the results suggest that, in contrast to normal gametophytic development, embryogenic development in the uninucleate pollen grains of cultured anther segments of H. niger is due to the transcriptional activation of an informational type of RNA. Subsequent divisions in the potentially embryogenic binucleate pollen grains appeared to be mediated by the continued synthesis of mRNA either in the generative nucleus or in both the generative and vegetative nuclei.
PMCID: PMC2111802  PMID: 6166618
15.  Temperature stress and plant sexual reproduction: uncovering the weakest links 
Journal of Experimental Botany  2010;61(7):1959-1968.
The reproductive (gametophytic) phase in flowering plants is often highly sensitive to hot or cold temperature stresses, with even a single hot day or cold night sometimes being fatal to reproductive success. This review describes studies of temperature stress on several crop plants, which suggest that pollen development and fertilization may often be the most sensitive reproductive stage. Transcriptome and proteomic studies on several plant species are beginning to identify stress response pathways that function during pollen development. An example is provided here of genotypic differences in the reproductive stress tolerance between two ecotypes of Arabidopsis thaliana Columbia (Col) and Hilversum (Hi-0), when reproducing under conditions of hot days and cold nights. Hi-0 exhibited a more severe reduction in seed set, correlated with a reduction in pollen tube growth potential and tropism defects. Hi-0 thus provides an Arabidopsis model to investigate strategies for improved stress tolerance in pollen. Understanding how different plants cope with stress during reproductive development offers the potential to identify genetic traits that could be manipulated to improve temperature tolerance in selected crop species being cultivated in marginal climates.
PMCID: PMC2917059  PMID: 20351019
Cold stress; fertilization; gene expression; heat stress; plant reproduction; pollen; pollen tropism; seed set
16.  Penetration of the Stigma and Style Elicits a Novel Transcriptome in Pollen Tubes, Pointing to Genes Critical for Growth in a Pistil 
PLoS Genetics  2009;5(8):e1000621.
Pollen tubes extend through pistil tissues and are guided to ovules where they release sperm for fertilization. Although pollen tubes can germinate and elongate in a synthetic medium, their trajectory is random and their growth rates are slower compared to growth in pistil tissues. Furthermore, interaction with the pistil renders pollen tubes competent to respond to guidance cues secreted by specialized cells within the ovule. The molecular basis for this potentiation of the pollen tube by the pistil remains uncharacterized. Using microarray analysis in Arabidopsis, we show that pollen tubes that have grown through stigma and style tissues of a pistil have a distinct gene expression profile and express a substantially larger fraction of the Arabidopsis genome than pollen grains or pollen tubes grown in vitro. Genes involved in signal transduction, transcription, and pollen tube growth are overrepresented in the subset of the Arabidopsis genome that is enriched in pistil-interacted pollen tubes, suggesting the possibility of a regulatory network that orchestrates gene expression as pollen tubes migrate through the pistil. Reverse genetic analysis of genes induced during pollen tube growth identified seven that had not previously been implicated in pollen tube growth. Two genes are required for pollen tube navigation through the pistil, and five genes are required for optimal pollen tube elongation in vitro. Our studies form the foundation for functional genomic analysis of the interactions between the pollen tube and the pistil, which is an excellent system for elucidation of novel modes of cell–cell interaction.
Author Summary
For successful reproduction in flowering plants, a single-celled pollen tube must rapidly extend through female pistil tissue, locate female gametes, and deliver sperm. Pollen tubes undergo a dramatic transformation while growing in the pistil; they grow faster compared to tubes grown in vitro and become competent to perceive and respond to navigation cues secreted by the pistil. The genes expressed by pollen tubes in response to growth in the pistil have not been characterized. We used a surgical procedure to obtain large quantities of uncontaminated pollen tubes that grew through the pistil and defined their transcriptome by microarray analysis. Importantly, we identify a set of genes that are specifically expressed in pollen tubes in response to their growth in the pistil and are not expressed during other stages of pollen or plant development. We analyzed mutants in 33 pollen tube–expressed genes using a sensitive series of pollen function assays and demonstrate that seven of these genes are critical for pollen tube growth; two specifically disrupt growth in the pistil. By identifying pollen tube genes induced by the pistil and describing a mutant analysis scheme to understand their function, we lay the foundation for functional genomic analysis of pollen–pistil interactions.
PMCID: PMC2726614  PMID: 19714218
17.  Sporophytic control of pollen tube growth and guidance in maize 
Journal of Experimental Botany  2009;61(3):673-682.
Pollen tube germination, growth, and guidance (progamic phase) culminating in sperm discharge is a multi-stage process including complex interactions between the male gametophyte as well as sporophytic tissues and the female gametophyte (embryo sac), respectively. Inter- and intra-specific crossing barriers in maize and Tripsacum have been studied and a precise description of progamic pollen tube development in maize is reported here. It was found that pollen germination and initial tube growth are rather unspecific, but an early, first crossing barrier was detected before arrival at the transmitting tract. Pollination of maize silks with Tripsacum pollen and incompatible pollination of Ga1s/Ga1s-maize silks with ga1-maize pollen revealed another two incompatibility barriers, namely transmitting tract mistargeting and insufficient growth support. Attraction and growth support by the transmitting tract seem to play key roles for progamic pollen tube growth. After leaving transmitting tracts, pollen tubes have to navigate across the ovule in the ovular cavity. Pollination of an embryo sac-less maize RNAi-line allowed the role of the female gametophyte for pollen tube guidance to be determined in maize. It was found that female gametophyte controlled guidance is restricted to a small region around the micropyle, approximately 50–100 μm in diameter. This area is comparable to the area of influence of previously described ZmEA1-based short-range female gametophyte signalling. In conclusion, the progamic phase is almost completely under sporophytic control in maize.
PMCID: PMC2814102  PMID: 19926683
Female gametophyte; maize; pollen tube guidance; prezygotic barriers; transmitting tract; Tripsacum
18.  The Papaver Self-Incompatibility Pollen S-Determinant, PrpS, Functions in Arabidopsis thaliana 
Current Biology  2012;22(2):154-159.
Many angiosperms use specific interactions between pollen and pistil proteins as “self” recognition and/or rejection mechanisms to prevent self-fertilization. Self-incompatibility (SI) is encoded by a multiallelic S locus, comprising pollen and pistil S-determinants [1, 2]. In Papaver rhoeas, cognate pistil and pollen S-determinants, PrpS, a pollen-expressed transmembrane protein, and PrsS, a pistil-expressed secreted protein [3, 4], interact to trigger a Ca2+-dependent signaling network [5–10], resulting in inhibition of pollen tube growth, cytoskeletal alterations [11–13], and programmed cell death (PCD) [14, 15] in incompatible pollen. We introduced the PrpS gene into Arabidopsis thaliana, a self-compatible model plant. Exposing transgenic A. thaliana pollen to recombinant Papaver PrsS protein triggered remarkably similar responses to those observed in incompatible Papaver pollen: S-specific inhibition and hallmark features of Papaver SI [11–15]. Our findings demonstrate that Papaver PrpS is functional in a species with no SI system that diverged ∼140 million years ago [16]. This suggests that the Papaver SI system uses cellular targets that are, perhaps, common to all eudicots and that endogenous signaling components can be recruited to elicit a response that most likely never operated in this species. This will be of interest to biologists interested in the evolution of signaling networks in higher plants.
► PrpS, a Papaver SI determinant, functions in Arabidopsis thaliana pollen ► A “self” interaction with PrsS reveals Papaver SI hallmark features in A. thaliana ► The first evidence for transfamily functionality of an SI system (>140 my apart) ► Evidence of recruitment of signaling components for novel SI function
PMCID: PMC3695568  PMID: 22209529
19.  The progamic phase of an early-divergent angiosperm, Annona cherimola (Annonaceae) 
Annals of Botany  2009;105(2):221-231.
Background and Aims
Recent studies of reproductive biology in ancient angiosperm lineages are beginning to shed light on the early evolution of flowering plants, but comparative studies are restricted by fragmented and meagre species representation in these angiosperm clades. In the present study, the progamic phase, from pollination to fertilization, is characterized in Annona cherimola, which is a member of the Annonaceae, the largest extant family among early-divergent angiosperms. Beside interest due to its phylogenetic position, this species is also an ancient crop with a clear niche for expansion in subtropical climates.
The kinetics of the reproductive process was established following controlled pollinations and sequential fixation. Gynoecium anatomy, pollen tube pathway, embryo sac and early post-fertilization events were characterized histochemically.
Key Results
A plesiomorphic gynoecium with a semi-open carpel shows a continuous secretory papillar surface along the carpel margins, which run from the stigma down to the obturator in the ovary. The pollen grains germinate in the stigma and compete in the stigma-style interface to reach the narrow secretory area that lines the margins of the semi-open stylar canal and is able to host just one to three pollen tubes. The embryo sac has eight nuclei and is well provisioned with large starch grains that are used during early cellular endosperm development.
A plesiomorphic simple gynoecium hosts a simple pollen–pistil interaction, based on a support–control system of pollen tube growth. Support is provided through basipetal secretory activity in the cells that line the pollen tube pathway. Spatial constraints, favouring pollen tube competition, are mediated by a dramatic reduction in the secretory surface available for pollen tube growth at the stigma–style interface. This extramural pollen tube competition contrasts with the intrastylar competition predominant in more recently derived lineages of angiosperms.
PMCID: PMC2814751  PMID: 19939980
Annona cherimola; Annonaceae; embryo sac; endosperm; Magnoliid; ovule; pollen–pistil interaction; pollen tube
20.  Moderate Increase of Mean Daily Temperature Adversely Affects Fruit Set of Lycopersicon esculentum by Disrupting Specific Physiological Processes in Male Reproductive Development 
Annals of Botany  2006;97(5):731-738.
• Background and Aims Global warming is gaining significance as a threat to natural and managed ecosystems since temperature is one of the major environmental factors affecting plant productivity. Hence, the effects of moderate temperature increase on the growth and development of the tomato plant (Lycopersicon esculentum) were investigated.
• Methods Plants were grown at 32/26 °C as a moderately elevated temperature stress (METS) treatment or at 28/22 °C (day/night temperatures) as a control with natural light conditions. Vegetative growth and reproductive development as well as sugar content and metabolism, proline content and translocation in the androecium were investigated.
• Key Results METS did not cause a significant change in biomass, the number of flowers, or the number of pollen grains produced, but there was a significant decrease in the number of fruit set, pollen viability and the number of pollen grains released. Glucose and fructose contents in the androecium (i.e. all stamens from one flower) were generally higher in the control than METS, but sucrose was higher in METS. Coincidently, the mRNA transcript abundance of acid invertase in the androecium was decreased by METS. Proline contents in the androecium were almost the same in the control and METS, while the mRNA transcript level of proline transporter 1, which expresses specifically at the surface of microspores, was significantly decreased by METS.
• Conclusions The research indicated that failure of tomato fruit set under a moderately increased temperature above optimal is due to the disruption of sugar metabolism and proline translocation during the narrow window of male reproductive development.
PMCID: PMC2803419  PMID: 16497700
Lycopersicon esculentum; moderately elevated temperature stress; microsporogenesis; mean daily temperature; fruit set; pollen release; male reproductive development; tapetum; hexose; sucrose; acid invertase; proline transporter
21.  Sporophytic self-incompatibility in Senecio squalidus (Asteraceae): S allele dominance interactions and modifiers of cross-compatibility and selfing rates 
Heredity  2010;106(1):113-123.
Understanding genetic mechanisms of self-incompatibility (SI) and how they evolve is central to understanding the mating behaviour of most outbreeding angiosperms. Sporophytic SI (SSI) is controlled by a single multi-allelic locus, S, which is expressed in the diploid (sporophyte) plant to determine the SI phenotype of its haploid (gametophyte) pollen. This allows complex patterns of independent S allele dominance interactions in male (pollen) and female (pistil) reproductive tissues. Senecio squalidus is a useful model for studying the genetic regulation and evolution of SSI because of its population history as an alien invasive species in the UK. S. squalidus maintains a small number of S alleles (7–11) with a high frequency of dominance interactions. Some S. squalidus individuals also show partial selfing and/or greater levels of cross-compatibility than expected under SSI. We previously speculated that these might be adaptations to invasiveness. Here we describe a detailed characterization of the regulation of SSI in S. squalidus. Controlled crosses were used to determine the S allele dominance hierarchy of six S alleles and effects of modifiers on cross-compatibility and partial selfing. Complex dominance interactions among S alleles were found with at least three levels of dominance and tissue-specific codominance. Evidence for S gene modifiers that increase selfing and/or cross-compatibility was also found. These empirical findings are discussed in the context of theoretical predictions for maintenance of S allele dominance interactions, and the role of modifier loci in the evolution of SI.
PMCID: PMC3183852  PMID: 20372180
sporophytic self-incompatibility; S allele; dominance; modifier locus; pseudo-self-compatibility
22.  Developmental and heat stress-regulated expression of HsfA2 and small heat shock proteins in tomato anthers 
Journal of Experimental Botany  2009;61(2):453-462.
The high sensitivity of male reproductive cells to high temperatures may be due to an inadequate heat stress response. The results of a comprehensive expression analysis of HsfA2 and Hsp17-CII, two important members of the heat stress system, in the developing anthers of a heat-tolerant tomato genotype are reported here. A transcriptional analysis at different developmental anther/pollen stages was performed using semi-quantitative and real-time PCR. The messengers were localized using in situ RNA hybridization, and protein accumulation was monitored using immunoblot analysis. Based on the analysis of the gene and protein expression profiles, HsfA2 and Hsp17-CII are finely regulated during anther development and are further induced under both short and prolonged heat stress conditions. These data suggest that HsfA2 may be directly involved in the activation of protection mechanisms in the tomato anther during heat stress and, thereby, may contribute to tomato fruit set under adverse temperatures.
PMCID: PMC2803211  PMID: 19854799
Anther development; heat stress; HsfA2; Hsp17-CII; pollen; tomato
23.  Pollen Lipidomics: Lipid Profiling Exposes a Notable Diversity in 22 Allergenic Pollen and Potential Biomarkers of the Allergic Immune Response 
PLoS ONE  2013;8(2):e57566.
Pollen grains are the male gametophytes that deliver sperm cells to female gametophytes during sexual reproduction of higher plants. Pollen is a major source of aeroallergens and environmental antigens. The pollen coat harbors a plethora of lipids that are required for pollen hydration, germination, and penetration of the stigma by pollen tubes. In addition to proteins, pollen displays a wide array of lipids that interact with the human immune system. Prior searches for pollen allergens have focused on the identification of intracellular allergenic proteins, but have largely overlooked much of the extracellular pollen matrix, a region where the majority of lipid molecules reside. Lipid antigens have attracted attention for their potent immunoregulatory effects. By being in close proximity to allergenic proteins on the pollen surface when they interact with host cells, lipids could modify the antigenic properties of proteins.
Methodology/Principal Findings
We performed a comparative pollen lipid profiling of 22 commonly allergenic plant species by the use of gas chromatography-mass spectroscopy, followed by detailed data mining and statistical analysis. Three experiments compared pollen lipid profiles. We built a database library of the pollen lipids by matching acquired pollen-lipid mass spectra and retention times with the NIST/EPA/NIH mass-spectral library. We detected, identified, and relatively quantified more than 106 lipid molecular species including fatty acids, n-alkanes, fatty alcohols, and sterols. Pollen-derived lipids stimulation up-regulate cytokines expression of dendritic and natural killer T cells co-culture.
Here we report on a lipidomic analysis of pollen lipids that can serve as a database for identifying potential lipid antigens and/or novel candidate molecules involved in allergy. The database provides a resource that facilitates studies on the role of lipids in the immunopathogenesis of allergy. Pollen lipids vary greatly among allergenic species and contain many molecules that have stimulatory or regulatory effects on immune responses.
PMCID: PMC3585183  PMID: 23469025
24.  Whole-Organ analysis of calcium behaviour in the developing pistil of olive (Olea europaea L.) as a tool for the determination of key events in sexual plant reproduction 
BMC Plant Biology  2011;11:150.
The pistil is a place where multiple interactions between cells of different types, origin, and function occur. Ca2+ is one of the key signal molecules in plants and animals. Despite the numerous studies on Ca2+ signalling during pollen-pistil interactions, which constitute one of the main topics of plant physiology, studies on Ca2+ dynamics in the pistil during flower formation are scarce. The purpose of this study was to analyze the contents and in situ localization of Ca2+ at the whole-organ level in the pistil of olive during the whole course of flower development.
The obtained results showed significant changes in Ca2+ levels and distribution during olive pistil development. In the flower buds, the lowest levels of detectable Ca2+ were observed. As flower development proceeded, the Ca2+ amount in the pistil successively increased and reached the highest levels just after anther dehiscence. When the anthers and petals fell down a dramatic but not complete drop in calcium contents occurred in all pistil parts. In situ Ca2+ localization showed a gradual accumulation on the stigma, and further expansion toward the style and the ovary after anther dehiscence. At the post-anthesis phase, the Ca2+ signal on the stigmatic surface decreased, but in the ovary a specific accumulation of calcium was observed only in one of the four ovules. Ultrastructural localization confirmed the presence of Ca2+ in the intracellular matrix and in the exudate secreted by stigmatic papillae.
This is the first report to analyze calcium in the olive pistil during its development. According to our results in situ calcium localization by Fluo-3 AM injection is an effective tool to follow the pistil maturity degree and the spatial organization of calcium-dependent events of sexual reproduction occurring in developing pistil of angiosperms. The progressive increase of the Ca2+ pool during olive pistil development shown by us reflects the degree of pistil maturity. Ca2+ distribution at flower anthesis reflects the spatio-functional relationship of calcium with pollen-stigma interaction, progamic phase, fertilization and stigma senescence.
PMCID: PMC3228850  PMID: 22050767
25.  500-year climate cycles stacking of recent centennial warming documented in an East Asian pollen record 
Scientific Reports  2014;4:3611.
Here we presented a high-resolution 5350-year pollen record from a maar annually laminated lake in East Asia (EA). Pollen record reflected the dynamics of vertical vegetation zones and temperature change. Spectral analysis on pollen percentages/concentrations of Pinus and Quercus, and a temperature proxy, revealed ~500-year quasi-periodic cold-warm fluctuations during the past 5350 years. This ~500-year cyclic climate change occurred in EA during the mid-late Holocene and even the last 150 years dominated by anthropogenic forcing. It was almost in phase with a ~500-year periodic change in solar activity and Greenland temperature change, suggesting that ~500-year small variations in solar output played a prominent role in the mid-late Holocene climate dynamics in EA, linked to high latitude climate system. Its last warm phase might terminate in the next several decades to enter another ~250-year cool phase, and thus this future centennial cyclic temperature minimum could partially slow down man-made global warming.
PMCID: PMC3885877  PMID: 24402348

Results 1-25 (849937)