Search tips
Search criteria

Results 1-25 (769379)

Clipboard (0)

Related Articles

1.  Additional Effects of Silver Nanoparticles on Bactericidal Efficiency Depend on Calcination Temperature and Dip-Coating Speed▿  
Applied and Environmental Microbiology  2011;77(16):5629-5634.
There is an increasing interest in the application of photocatalytic properties for disinfection of surfaces, air, and water. Titanium dioxide is widely used as a photocatalyst, and the addition of silver reportedly enhances its bactericidal action. However, the synergy of silver nanoparticles and TiO2 is not well understood. The photocatalytic elimination of Bacillus atrophaeus was examined under different calcination temperatures, dip-coating speeds, and ratios of TiO2, SiO2, and Ag to identify optimal production conditions for the production of TiO2- and/or TiO2/Ag-coated glass for surface disinfection. Photocatalytic disinfection of pure TiO2 or TiO2 plus Ag nanoparticles was dependent primarily on the calcination temperature. The antibacterial activity of TiO2 films was optimal with a high dip-coating speed and high calcination temperature (600°C). Maximal bacterial inactivation using TiO2/Ag-coated glass was also observed following high-speed dip coating but with a low calcination temperature (250°C). Scanning electron microscopy (SEM) showed that the Ag nanoparticles combined together at a high calcination temperature, leading to decreased antibacterial activity of TiO2/Ag films due to a smaller surface area of Ag nanoparticles. The presence of Ag enhanced the photocatalytic inactivation rate of TiO2, producing a more pronounced effect with increasing levels of catalyst loading.
PMCID: PMC3165257  PMID: 21724887
2.  Comparison of Infectious Agents Susceptibility to Photocatalytic Effects of Nanosized Titanium and Zinc Oxides: A Practical Approach 
Nanotechnology contributes towards a more effective eradication of pathogens that have emerged in hospitals, veterinary clinics, and food processing plants and that are resistant to traditional drugs or disinfectants. Since new methods of pathogens eradication must be invented and implemented, nanotechnology seems to have become the response to that acute need. A remarkable achievement in this field of science was the creation of self-disinfecting surfaces that base on advanced oxidation processes (AOPs). Thus, the phenomenon of photocatalysis was practically applied. Among the AOPs that have been most studied in respect of their ability to eradicate viruses, prions, bacteria, yeasts, and molds, there are the processes of TiO2/UV and ZnO/UV. Titanium dioxide (TiO2) and zinc oxide (ZnO) act as photocatalysts, after they have been powdered to nanoparticles. Ultraviolet (UV) radiation is an agent that determines their excitation. Methods using photocatalytic properties of nanosized TiO2 and ZnO prove to be highly efficient in inactivation of infectious agents. Therefore, they are being applied on a growing scale. AOP-based disinfection is regarded as a very promising tool that might help overcome problems in food hygiene and public health protection. The susceptibility of infectious agents to photocatalylic processes can be generally arranged in the following order: viruses > prions > Gram-negative bacteria > Gram-positive bacteria > yeasts > molds.
PMCID: PMC4523504  PMID: 26239879
Nanotechnology; Nanoparticles; Photocatalysis; Titanium dioxide; Zinc oxide; Reactive oxygen species; Infectious agents
3.  Identification of the mechanisms that drive the toxicity of TiO2 particulates: the contribution of physicochemical characteristics 
This review focuses on outlining the toxicity of titanium dioxide (TiO2) particulates in vitro and in vivo, in order to understand their ability to detrimentally impact on human health. Evaluating the hazards associated with TiO2 particles is vital as it enables risk assessments to be conducted, by combining this information with knowledge on the likely exposure levels of humans. This review has concentrated on the toxicity of TiO2, due to the fact that the greatest number of studies by far have evaluated the toxicity of TiO2, in comparison to other metal oxide particulates. This derives from historical reasons (whereby the size dependency of particulate toxicity was first realised for TiO2) and due to its widespread application within consumer products (such as sunscreens). The pulmonary and dermal hazards of TiO2 have been a particular focus of the available studies, due to the past use of TiO2 as a (negative) control when assessing the pulmonary toxicity of particulates, and due to its incorporation within consumer products such as sunscreens. Mechanistic processes that are critical to TiO2 particulate toxicity will also be discussed and it is apparent that, in the main, the oxidant driven inflammatory, genotoxic and cytotoxic consequences associated with TiO2 exposure, are inherently linked, and are evident both in vivo and in vitro. The attributes of TiO2 that have been identified as being most likely to drive the observed toxicity include particle size (and therefore surface area), crystallinity (and photocatalytic activity), surface chemistry, and particle aggregation/agglomeration tendency. The experimental set up also influences toxicological outcomes, so that the species (or model) used, route of exposure, experiment duration, particle concentration and light conditions are all able to influence the findings of investigations. In addition, the applicability of the observed findings for particular TiO2 forms, to TiO2 particulates in general, requires consideration. At this time it is inappropriate to consider the findings for one TiO2 form as being representative for TiO2 particulates as a whole, due to the vast number of available TiO2 particulate forms and large variety of potential tissue and cell targets that may be affected by exposure. Thus emphasising that the physicochemical characteristics are fundamental to their toxicity.
PMCID: PMC2804608  PMID: 20017923
4.  Electrospinning Synthesis and Photocatalytic Activity of Mesoporous TiO2 Nanofibers 
The Scientific World Journal  2012;2012:154939.
Titanium dioxide (TiO2) nanofibers in the anatase structure were successfully prepared via electrospinning technique followed by calcination process. The morphologies, crystal structure, surface area, and the photocatalytic activity of resulting TiO2 nanofibers were characterized by field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), nitrogen sorption, and UV-vis spectroscopy. The results revealed that calcination temperature had greatly influenced the morphologies of TiO2 nanofibers, but no obvious effect was noticed on the crystal structure of TiO2 nanofibers. The photocatalytic properties of TiO2 nanofibers were evaluated by photocatalytic degradation of rhodamine B (RhB) in water under visible light irradiation. It was observed that TiO2 nanofibers obtained by calcination at 500°C for 3 hours exhibited the most excellent photocatalytic activity. We present a novel and simple method to fabricate TiO2 nanofibers with high-photocatalytic activity.
PMCID: PMC3349318  PMID: 22619598
5.  Chances and limitations of nanosized titanium dioxide practical application in view of its physicochemical properties 
Nanotechnology is a field of science that is nowadays developing in a dynamic way. It seems to offer almost endless opportunities of contribution to many areas of economy and human activity, in general. Thanks to nanotechnology, the so-called nanomaterials can be designed. They present structurally altered materials, with their physical, chemical and biological properties entirely differing from properties of the same materials manufactured in microtechnology. Nanotechnology creates a unique opportunity to modify the matter at the level of atoms and particles. Therefore, it has become possible to obtain items displaying new, useful properties, i.e. self-disinfecting and self-cleaning surfaces. Those surfaces are usually covered by a thin layer of a photocatalyst. The role of the photocatalyst is most of the time performed by the nanosized titanium dioxide (nano-TiO2). Excitation of nano-TiO2 by ultraviolet radiation initiates advanced oxidation processes and reactions leading to the creation of oxygen vacancies that bind water particles. As a result, photocatalytic surfaces are given new properties. Those properties can then be applied in a variety of disciplines, such as medicine, food hygiene, environmental protection or building industry. Practically, the applications include inactivation of microorganisms, degradation of toxins, removing pollutants from buildings and manufacturing of fog-free windows or mirrors.
PMCID: PMC4385004  PMID: 25852354
Nanotechnology; Photocatalysis; Titanium dioxide; Reactive oxygen species; Self-disinfecting and self-cleaning surfaces; Bacteria
6.  Incorporating TiO2 nanotubes with a peptide of D-amino K122-4 (D) for enhanced mechanical and photocatalytic properties 
Scientific Reports  2016;6:22247.
Titanium dioxide (TiO2) nanotubes are promising for a wide variety of potential applications in energy, biomedical and environmental sectors. However, their low mechanical strength and wide band gap limit their widespread technological use. This article reports our recent efforts to increase the mechanical strength of TiO2 nanotubes with lowered band gap by immobilizing a peptide of D-amino K122-4 (D) onto the nanotubes. Topographies and chemical compositions of the peptide-coated and uncoated TiO2 nanotubular arrays were characterized by scanning electron microscopy and X-ray photoelectron spectroscopy (XPS). Properties of the peptide-coated and uncoated TiO2 nanotubular arrays, including hardness, elastic modulus, electron work function and photocurrent, were evaluated using micromechanical probe, Kelvin Probe and electrochemical system. Effect of the peptide on surface conductivity was also investigated through current mapping and I–V curve analysis with conductive atomic force microscopy. It is demonstrated that the peptide coating simultaneously enhances the mechanical strength, photocatalytic and electrical properties of TiO2 nanotubes.
PMCID: PMC4768109  PMID: 26915564
7.  Controllable Synthesis and Tunable Photocatalytic Properties of Ti3+-doped TiO2 
Scientific Reports  2015;5:10714.
Photocatalysts show great potential in environmental remediation and water splitting using either artificial or natural light. Titanium dioxide (TiO2)-based photocatalysts are studied most frequently because they are stable, non-toxic, readily available, and highly efficient. However, the relatively wide band gap of TiO2 significantly limits its use under visible light or solar light. We herein report a facile route for controllable synthesis of Ti3+-doped TiO2 with tunable photocatalytic properties using a hydrothermal method with varying amounts of reductant, i.e., sodium borohydride (NaBH4). The resulting TiO2 showed color changes from light yellow, light grey, to dark grey with the increasing amount of NaBH4. The present method can controllably and effectively reduce Ti4+ on the surface of TiO2 and induce partial transformation of anatase TiO2 to rutile TiO2, with the evolution of nanoparticles into hierarchical structures attributable to a high pressure and strong alkali environment in the synthesis atmosphere; in this way, the photocatalytic activity of Ti3+-doped TiO2 under visible-light can be tuned. The as-developed strategy may open up a new avenue for designing and functionalizing TiO2 materials for enhancing visible light absorption, narrowing band gap, and improving photocatalytic activity.
PMCID: PMC4650606  PMID: 26044406
8.  Biotemplated Synthesis of Anatase Titanium Dioxide Nanoparticles via Lignocellulosic Waste Material 
BioMed Research International  2014;2014:205636.
Anatase titanium dioxide nanoparticles (TiO2-NPs) were synthesized by sol-gel method using rice straw as a soft biotemplate. Rice straw, as a lignocellulosic waste material, is a biomass feedstock which is globally produced in high rate and could be utilized in an innovative approach to manufacture a value-added product. Rice straw as a reliable biotemplate has been used in the sol-gel method to synthesize ultrasmall sizes of TiO2-NPs with high potential application in photocatalysis. The physicochemical properties of titanium dioxide nanoparticles were investigated by a number of techniques such as X-ray diffraction analysis (XRD), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, thermogravimetric analysis (TGA), ultraviolet visible spectra (UV-Vis), and surface area and pore size analysis. All results consensually confirmed that particle sizes of synthesized titanium dioxide were template-dependent, representing decrease in the nanoparticles sizes with increase of biotemplate concentration. Titanium dioxide nanoparticles as small as 13.0 ± 3.3 nm were obtained under our experimental conditions. Additionally, surface area and porosity of synthesized TiO2-NPs have been enhanced by increasing rice straw amount which results in surface modification of nanoparticles and potential application in photocatalysis.
PMCID: PMC4122071  PMID: 25126547
9.  TiO2 Photocatalysis Damages Lipids and Proteins in Escherichia coli 
This study investigates the mechanisms of UV-A (315 to 400 nm) photocatalysis with titanium dioxide (TiO2) applied to the degradation of Escherichia coli and their effects on two key cellular components: lipids and proteins. The impact of TiO2 photocatalysis on E. coli survival was monitored by counting on agar plate and by assessing lipid peroxidation and performing proteomic analysis. We observed through malondialdehyde quantification that lipid peroxidation occurred during the photocatalytic process, and the addition of superoxide dismutase, which acts as a scavenger of the superoxide anion radical (O2·−), inhibited this effect by half, showing us that O2·− radicals participate in the photocatalytic antimicrobial effect. Qualitative analysis using two-dimensional electrophoresis allowed selection of proteins for which spot modifications were observed during the applied treatments. Two-dimensional electrophoresis highlighted that among the selected protein spots, 7 and 19 spots had already disappeared in the dark in the presence of 0.1 g/liter and 0.4 g/liter TiO2, respectively, which is accounted for by the cytotoxic effect of TiO2. Exposure to 30 min of UV-A radiation in the presence of 0.1 g/liter and 0.4 g/liter TiO2 increased the numbers of missing spots to 14 and 22, respectively. The proteins affected by photocatalytic oxidation were strongly heterogeneous in terms of location and functional category. We identified several porins, proteins implicated in stress response, in transport, and in bacterial metabolism. This study reveals the simultaneous effects of O2·− on lipid peroxidation and on the proteome during photocatalytic treatment and therefore contributes to a better understanding of molecular mechanisms in antibacterial photocatalytic treatment.
PMCID: PMC3993174  PMID: 24532071
10.  The design, fabrication, and photocatalytic utility of nanostructured semiconductors: focus on TiO2-based nanostructures 
Recent advances in basic fabrication techniques of TiO2-based nanomaterials such as nanoparticles, nanowires, nanoplatelets, and both physical- and solution-based techniques have been adopted by various research groups around the world. Our research focus has been mainly on various deposition parameters used for fabricating nanostructured materials, including TiO2-organic/inorganic nanocomposite materials. Technically, TiO2 shows relatively high reactivity under ultraviolet light, the energy of which exceeds the band gap of TiO2. The development of photocatalysts exhibiting high reactivity under visible light allows the main part of the solar spectrum to be used. Visible light-activated TiO2 could be prepared by doping or sensitizing. As far as doping of TiO2 is concerned, in obtaining tailored material with improved properties, metal and nonmetal doping has been performed in the context of improved photoactivity. Nonmetal doping seems to be more promising than metal doping. TiO2 represents an effective photocatalyst for water and air purification and for self-cleaning surfaces. Additionally, it can be used as an antibacterial agent because of its strong oxidation activity and superhydrophilicity. Therefore, applications of TiO2 in terms of photocatalytic activities are discussed here. The basic mechanisms of the photoactivities of TiO2 and nanostructures are considered alongside band structure engineering and surface modification in nanostructured TiO2 in the context of doping. The article reviews the basic structural, optical, and electrical properties of TiO2, followed by detailed fabrication techniques of 0-, 1-, and quasi-2-dimensional TiO2 nanomaterials. Applications and future directions of nanostructured TiO2 are considered in the context of various photoinduced phenomena such as hydrogen production, electricity generation via dye-sensitized solar cells, photokilling and self-cleaning effect, photo-oxidation of organic pollutant, wastewater management, and organic synthesis.
PMCID: PMC3781710  PMID: 24198485
TiO2 nanostructure; fabrication techniques; doping in TiO2; TiO2-assisted photoactivity; solar hydrogen; TiO2-based dye-sensitized solar cells; TiO2 self-cleaning; organic synthesis
11.  Titanium Dioxide Nanoparticles in Food and Personal Care Products 
Environmental science & technology  2012;46(4):2242-2250.
Titanium dioxide is a common additive in many food, personal care, and other consumer products used by people, which after use can enter the sewage system, and subsequently enter the environment as treated effluent discharged to surface waters or biosolids applied to agricultural land, incinerated wastes, or landfill solids. This study quantifies the amount of titanium in common food products, derives estimates of human exposure to dietary (nano-) TiO2, and discusses the impact of the nanoscale fraction of TiO2 entering the environment. The foods with the highest content of TiO2 included candies, sweets and chewing gums. Among personal care products, toothpastes and select sunscreens contained 1% to >10% titanium by weight. While some other crèmes contained titanium, despite being colored white, most shampoos, deodorants, and shaving creams contained the lowest levels of titanium (<0.01 μg/mg). For several high-consumption pharmaceuticals, the titanium content ranged from below the instrument detection limit (0.0001 μg Ti/mg) to a high of 0.014 μg Ti/mg. Electron microscopy and stability testing of food-grade TiO2 (E171) suggests that approximately 36% of the particles are less than 100 nm in at least one dimension and that it readily disperses in water as fairly stable colloids. However, filtration of water solubilized consumer products and personal care products indicated that less than 5% of the titanium was able to pass through 0.45 or 0.7 μm pores. Two white paints contained 110 μg Ti/mg while three sealants (i.e., prime coat paint) contained less titanium (25 to 40 μg Ti/mg). This research showed that while many white-colored products contained titanium, it was not a prerequisite. Although several of these product classes contained low amounts of titanium, their widespread use and disposal down the drain and eventually to WWTPs deserves attention. A Monte Carlo human exposure analysis to TiO2 through foods identified children as having the highest exposures because TiO2 content of sweets is higher than other food products, and that a typical exposure for a US adult may be on the order of 1 mg Ti per kilogram body weight per day. Thus, because of the millions of tons of titanium based white pigment used annually, testing should focus on food-grade TiO2 (E171) rather than that adopted in many environmental health and safety tests (i.e., P25), which is used in much lower amounts in products less likely to enter the environment (e.g., catalyst supports, photocatalytic coatings).
PMCID: PMC3288463  PMID: 22260395
nanotechnology; nanomaterial; TiO2; exposure; fate; transport; wastewater; P25; E171
12.  Core-shell VO2@TiO2 nanorods that combine thermochromic and photocatalytic properties for application as energy-saving smart coatings 
Scientific Reports  2013;3:1370.
Vanadium dioxide (VO2) is a Mott phase transition compound that can be applied as a thermochromic smart material for energy saving and comfort, and titanium dioxide (TiO2) is a well-known photocatalyst for self-cleaning coatings. In this paper, we report a VO2@TiO2 core-shell structure, in which the VO2 nanorod core exhibits a remarkable modulation ability for solar infrared light, and the TiO2 anatase shell exhibits significant photocatalytic degradation of organic dye. In addition, the TiO2 overcoating not only increased the luminous transmittance of VO2 based on an antireflection effect, but also modified the intrinsic colour of VO2 films from yellow to light blue. The TiO2 also enhanced the chemical stability of VO2 against oxidation. This is the first report of such a single nanoparticle structure with both thermochromic and photocatalytic properties that offer significant potential for creating a multifunctional smart coating.
PMCID: PMC3613806  PMID: 23546301
13.  Effects of self-assembled monolayer structural order, surface homogeneity and surface energy on pentacene morphology and thin film transistor device performance 
A systematic study of six phosphonic acid (PA) self-assembled monolayers (SAMs) with tailored molecular structures is performed to evaluate their effectiveness as dielectric modifying layers in organic field-effect transistors (OFETs) and determine the relationship between SAM structural order, surface homogeneity, and surface energy in dictating device performance. SAM structures and surface properties are examined by near edge X-ray absorption fine structure (NEXAFS) spectroscopy, contact angle goniometry, and atomic force microscopy (AFM). Top-contact pentacene OFET devices are fabricated on SAM modified Si with a thermally grown oxide layer as a dielectric. For less ordered methyl- and phenyl-terminated alkyl ~(CH2)12 PA SAMs of varying surface energies, pentacene OFETs show high charge carrier mobilities up to 4.1 cm2 V−1 s−1. It is hypothesized that for these SAMs, mitigation of molecular scale roughness and subsequent control of surface homogeneity allow for large pentacene grain growth leading to high performance pentacene OFET devices. PA SAMs that contain bulky terminal groups or are highly crystalline in nature do not allow for a homogenous surface at a molecular level and result in charge carrier mobilities of 1.3 cm2 V−1 s−1 or less. For all molecules used in this study, no causal relationship between SAM surface energy and charge carrier mobility in pentacene FET devices is observed.
PMCID: PMC3786186  PMID: 24086795
14.  Comparative Study of Electroless Copper Film on Different Self-Assembled Monolayers Modified ABS Substrate 
Copper films were grown on (3-Mercaptopropyl)trimethoxysilane (MPTMS), (3-Aminopropyl)triethoxysilane (APTES) and 6-(3-(triethoxysilyl)propylamino)-1,3,5- triazine-2,4-dithiol monosodium (TES) self-assembled monolayers (SAMs) modified acrylonitrile-butadiene-styrene (ABS) substrate via electroless copper plating. The copper films were examined using scanning electron microscopy (SEM) and X-ray diffraction (XRD). Their individual deposition rate and contact angle were also investigated to compare the properties of SAMs and electroless copper films. The results indicated that the formation of copper nuclei on the TES-SAMs modified ABS substrate was faster than those on the MPTMS-SAMs and APTES-SAMs modified ABS substrate. SEM images revealed that the copper film on TES-SAM modified ABS substrate was smooth and uniform, and the density of copper nuclei was much higher. Compared with that of TES-SAMs modified resin, the coverage of copper nuclei on MPTMS and APTES modified ABS substrate was very limited and the copper particle size was too big. The adhesion property test demonstrated that all the SAMs enhanced the interfacial interaction between copper plating and ABS substrate. XRD analysis showed that the copper film deposited on SAM-modified ABS substrate had a structure with Cu(111) preferred orientation, and the copper film deposited on TES-SAMs modified ABS substrate is better than that deposited on MPTMS-SAMs or APTES-SAMs modified ABS resins in electromigrtion resistance.
PMCID: PMC4013637  PMID: 24739812
ABS resin; SAMs; electroless copper film; heterocyclic silane
15.  Multi-technique Characterization of Self-assembled Carboxylic Acid Terminated Alkanethiol Monolayers on Nanoparticle and Flat Gold Surfaces 
Gold nanoparticles (AuNPs) with 14, 25 and 40nm diameters were functionalized with different chain length (C6, C8, C11 and C16) carboxylic acid terminated alkanethiol self-assembled monolayers (COOH-SAMs). X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS) were used to examine the changes in surface chemistry as both AuNP diameter and SAM chain length were varied. COOH-SAMs on flat gold surfaces were also examined and compared to the COOH-SAM on AuNP results. For a given surface, as the COOH-SAM chain length increased the XPS C/Au atomic ratio increased due to an increased number of carbon atoms per molecule in the overlayer and an increased attenuation of the Au substrate signal. For the C16 COOH-SAMs, as the size of AuNPs decreased the XPS C/Au atomic ratio and the apparent SAM thickness increased due to the increased curvature of the smaller AuNPs. The C16 COOH-SAMs on the flat Au had the lowest XPS C/Au atomic ratio and apparent SAM thickness of any C16 COOH-SAM covered Au surface. The effective take-off angles of the COOH-SAMs were also calculated by comparing the apparent thickness of COOH-SAMs with literature values. The effective take-off angle for C16 COOH-SAM on 14nm, 25nm and 40nm diameter AuNPs and flat Au were found to be 57°, 53°, 51° and 39°, respectively, for data acquired in a mode that collects a wide range of photoelectron take-off angles. The effective take-off angle for C16 COOH-SAM on 14nm AuNP and flat Au decreased to 52° and 0°, respectively, for data acquired in a mode that collects a narrow range of photoelectron take-off angles. The ToF-SIMS results showed similar changes in surface chemistry with COOH-SAM chain length and AuNP size. For example, the ratio of the sum of the C1–4HxOy positive ion intensities to the sum of the Au-containing positive ions intensities increased with decreasing AuNP size and increasing COOH-SAM chain length. Fourier transform IR spectroscopy in the attenuated total reflectance mode (FTIR-ATR) was used to characterize the crystallinity of the COOH-SAMs. The CH2 stretching frequencies decreased with increasing COOH-SAM chain length on flat Au. The C16 COOH-SAM on the 14nm AuNPs exhibited a crystalline-like CH2 stretching frequency. The size, size distribution, shapes and solution stability of AuNPs were investigated with transmission electron microscopy (TEM) and UV/VIS spectroscopy. As the average diameter of the AuNPs decreased the size distribution became narrower and the shape became more spherical.
PMCID: PMC3096993  PMID: 21603069
16.  Nanoscale clustering of carbohydrate thiols in mixed SAMs on gold 
Langmuir  2012;28(17):6950-6959.
Self-assembled monolayers (SAMs) bearing pendant carbohydrate functionality are frequently employed to tailor glycan-specific bioactivity onto gold substrates. The resulting glycoSAMs are valuable for interrogating glycan-mediated biological interactions via surface analytical techniques, microarrays, and label-free biosensors. GlycoSAM composition can be readily modified during assembly using mixed solutions containing thiolated species, including carbohydrates, oligo(ethylene glycol) (OEG) and other inert moieties. This intrinsic tunability of the self-assembled system is frequently used to optimize bioavailability and anti-biofouling properties of the resulting SAM. However, until now, our nanoscale understanding of the behavior of these mixed glycoSAMs has lacked detail. In this study, we examined the time-dependent clustering of mixed sugar+OEG glycoSAMs on ultraflat gold substrates. Composition and surface morphologic changes in the monolayers were analyzed by X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM), respectively. We provide evidence that the observed clustering is consistent with a phase separation process in which surface-bound glycans self-associate to form dense glycoclusters within the monolayer. These observations have significant implications for the construction of mixed glycoSAMs for use in biosensing and glycomics applications.
PMCID: PMC3350752  PMID: 22435511
Atomic force microscopy; carbohydrates; glycoSAM; phase separation; XPS
17.  Intestinal toxicity evaluation of TiO2 degraded surface-treated nanoparticles: a combined physico-chemical and toxicogenomics approach in caco-2 cells 
Titanium dioxide (TiO2) nanoparticles (NPs) are widely used due to their specific properties, like UV filters in sunscreen. In that particular case TiO2 NPs are surface modified to avoid photocatalytic effects. These surface-treated nanoparticles (STNPs) spread in the environment and might release NPs as degradation residues. Indeed, degradation by the environment (exposure to UV, water and air contact …) will occur and could profoundly alter the physicochemical properties of STNPs such as chemistry, size, shape, surface structure and dispersion that are important parameters for toxicity. Although the toxicity of surface unmodified TiO2 NPs has been documented, nothing was done about degraded TiO2 STNPs which are the most likely to be encountered in environment. The superoxide production by aged STNPs suspensions was tested and compared to surface unmodified TiO2 NPs. We investigated the possible toxicity of commercialized STNPs, degraded by environmental conditions, on human intestinal epithelial cells. STNPs sizes and shape were characterized and viability tests were performed on Caco-2 cells exposed to STNPs. The exposed cells were imaged with SEM and STNPs internalization was researched by TEM. Gene expression microarray analyses were performed to look for potential changes in cellular functions.
The production of reactive oxygen species was detected with surface unmodified TiO2 NPs but not with STNPs or their residues. Through three different toxicity assays, the STNPs tested, which have a strong tendency to aggregate in complex media, showed no toxic effect in Caco-2 cells after exposures to STNPs up to 100 μg/mL over 4 h, 24 h and 72 h. The cell morphology remained intact, attested by SEM, and internalization of STNPs was not seen by TEM. Moreover gene expression analysis using pangenomic oligomicroarrays (4x 44000 genes) did not show any change versus unexposed cells after exposure to 10 μg/ mL, which is much higher than potential environmental concentrations.
TiO2 STNPs, degraded or not, are not harmful to Caco-2 cells and are unlikely to penetrate the body via oral route. It is likely that the strong persistence of the aluminium hydroxide layer surrounding these nanoparticles protects the cells from a direct contact with the potentially phototoxic TiO2 core.
PMCID: PMC3583216  PMID: 22650444
Nanoparticles (NPs); Surface-treated nanoparticles (STNPs); Titanium dioxide; Toxicity; degradation of nanomaterials; Gene expression; Life cycle
18.  The evaluation of the impact of titania nanotube covers morphology and crystal phase on their biological properties 
The highly ordered titanium dioxide nanotube coatings were produced under various electrochemical conditions on the surface of titanium foil. The anodization voltage changes proved to be a main factor which directly affects the nanotube morphology, structure, and wettability. Moreover we have noticed a significant dependence between the size and crystallinity of TiO2 layers and the adhesion/proliferation of fibroblasts and antimicrobial properties. Cellular functionality were investigated for up to 3 days in culture using a cell viability assay and scanning electron microscopy. In general, results of our studies revealed that fibroblasts adhesion, proliferation, and differentiation on the titania nanotube coatings is clearly higher than on the surface of the pure titanium foil. The formation of crystallic islands in the nanotubes structure induced a significant acceleration in the growth rate of fibroblasts cells by as much as ~200 %. Additionally, some types of TiO2 layers revealed the ability to the reduce of the staphylococcal aggregates/biofilm formation. The nanotube coatings formed during the anodization process using the voltage 4 V proved to be the stronger S. aureus aggregates/biofilm inhibitor in comparison to the uncovered titanium substrate. That accelerated eukaryotic cell growth and anti-biofilm activity is believed to be advantageous for faster cure of dental and orthopaedic patients, and also for a variety of biomedical diagnostic and therapeutic applications.
Graphical Abstract
The highly ordered titanium dioxide nanotube coatings were produced under various electrochemical conditions on the surface of titanium foil. The anodization voltage changes proved to be a main factor which directly affects the nanotube morphology, structure, and wettability. Moreover we have noticed a significant dependence between the size and crystallinity of TiO2 layers and the adhesion/proliferation of fibroblasts and antimicrobial properties.
PMCID: PMC4366560  PMID: 25791457
19.  Aluminum plasmonic photocatalysis 
Scientific Reports  2015;5:15288.
The effectiveness of photocatalytic processes is dictated largely by plasmonic materials with the capability to enhance light absorption as well as the energy conversion efficiency. Herein, we demonstrate how to improve the plasmonic photocatalytic properties of TiO2/Al nano-void arrays by overlapping the localized surface plasmon resonance (LSPR) modes with the TiO2 band gap. The plasmonic TiO2/Al arrays exhibit superior photocatalytic activity boasting an enhancement of 7.2 folds. The underlying mechanisms concerning the radiative energy transfer and interface energy transfer processes are discussed. Both processes occur at the TiO2/Al interface and their contributions to photocatalysis are evaluated. The results are important to the optimization of aluminum plasmonic materials in photocatalytic applications.
PMCID: PMC4620498  PMID: 26497411
20.  Stability of Phosphonic Self Assembled Monolayers (SAMs) on Cobalt Chromium (Co-Cr) Alloy under Oxidative conditions 
Applied surface science  2011;257(13):5605-5612.
Cobalt Chromium (Co-Cr) alloys has been widely used in the biomedical arena for cardiovascular, orthopedic and dental applications. Surface modification of the alloy allows us to tailor the interfacial properties to address critical challenges of Co-Cr alloy in medical applications. Self assembled monolayers (SAMs) of Octadecylphosphonic acid (ODPA) have been used to form thin films on the oxide layer of the Co-Cr alloy surface by solution deposition technique. The SAMs formed were investigated for their stability to oxidative conditions of ambient laboratory environment over periods of 1, 3, 7 and 14 days. The samples were then characterized for their stability using X-ray Photoelectron Spectroscopy (XPS), Atomic Force Microscopy (AFM) and Contact Angle Measurements. Detailed high energy XPS elemental scans confirmed the presence of the phosphonic monolayer after oxidative exposure which suggested that the SAMs were firmly attached to the oxide layer of Co-Cr alloy. AFM images gave topographical data of the surface and showed islands of SAMs on Co-Cr alloy surface, before and after SAM formation and also over the duration of the oxidative exposure. Contact angle measurements confirmed the hydrophobicity of the surface over 14 days. Thus the SAMs were found to be stable for the duration of the study. These SAMs could be subsequently tailored by modifying the terminal functional groups and could be used for various potential biomedical applications such as drug delivery, biocompatibility and tissue integration
PMCID: PMC3097514  PMID: 21603056
surface modification; self assembled monolayers (SAMs); phosphonic acids; cobalt chromium alloy
21.  Synthesis, characterization, and performance evaluation of multilayered photoanodes by introducing mesoporous carbon and TiO2 for humic acid adsorption 
Nanostructured photoanodes were prepared via a novel combination of titanium dioxide (TiO2) nanoparticles and mesoporous carbon (C). Four different photoanodes were synthesized by sol–gel spin coating onto a glassy substrate of fluorine-doped tin oxide. The photocatalytic activities of TiO2, TiO2/C/TiO2, TiO2/C/C/TiO2, and TiO2/C/TiO2/C/TiO2 photoanodes were evaluated by exposing the synthesized photoanodes to UV–visible light. The photocurrent density observed in these photoanodes confirmed that an additional layer of mesoporous carbon could successfully increase the photocurrent density. The highest photocurrent density of ~1.022 mA cm−2 at 1 V/saturated calomel electrode was achieved with TiO2/C/C/TiO2 under an illumination intensity of 100 mW cm−2 from a solar simulator. The highest value of surface roughness was measured for a TiO2/C/C/TiO2 combination owing to the presence of two continuous layers of mesoporous carbon. The resulting films had a thickness ranging from 1.605 µm to 5.165 µm after the calcination process. The presence of double-layer mesoporous carbon resulted in a 20% increase in the photocurrent density compared with the TiO2/C/TiO2 combination when only a single mesoporous carbon layer was employed. The improved performance of these photoanodes can be attributed to the enhanced porosity and increased void space due to the presence of mesoporous carbon. For the first time, it has been demonstrated here that the photoelectrochemical performance of TiO2 can be improved by integrating several layers of mesoporous carbon. Comparison of the rate of removal of humic acid by the prepared photoanodes showed that the highest performance from TiO2/C/C/TiO2 was due to the highest photocurrent density generated. Therefore, this study showed that optimizing the sequence of mesoporous carbon layers can be a viable and inexpensive method for enhanced humic acid removal.
PMCID: PMC4993268  PMID: 27574426
renewable energy; photocatalysis; mesoporous carbon; TiO2 nanoparticle; multilayer photoelectrode; humic acid
22.  Titanium dioxide nanoparticles induce oxidative stress and DNA-adduct formation but not DNA-breakage in human lung cells 
Titanium dioxide (TiO2), also known as titanium (IV) oxide or anatase, is the naturally occurring oxide of titanium. It is also one of the most commercially used form. To date, no parameter has been set for the average ambient air concentration of TiO2 nanoparticles (NP) by any regulatory agency. Previously conducted studies had established these nanoparticles to be mainly non-cyto- and -genotoxic, although they had been found to generate free radicals both acellularly (specially through photocatalytic activity) and intracellularly. The present study determines the role of TiO2-NP (anatase, ∅ < 100 nm) using several parameters such as cyto- and genotoxicity, DNA-adduct formation and generation of free radicals following its uptake by human lung cells in vitro. For comparison, iron containing nanoparticles (hematite, Fe2O3, ∅ < 100 nm) were used. The results of this study showed that both types of NP were located in the cytosol near the nucleus. No particles were found inside the nucleus, in mitochondria or ribosomes. Human lung fibroblasts (IMR-90) were more sensitive regarding cyto- and genotoxic effects caused by the NP than human bronchial epithelial cells (BEAS-2B). In contrast to hematite NP, TiO2-NP did not induce DNA-breakage measured by the Comet-assay in both cell types. Generation of reactive oxygen species (ROS) was measured acellularly (without any photocatalytic activity) as well as intracellularly for both types of particles, however, the iron-containing NP needed special reducing conditions before pronounced radical generation. A high level of DNA adduct formation (8-OHdG) was observed in IMR-90 cells exposed to TiO2-NP, but not in cells exposed to hematite NP. Our study demonstrates different modes of action for TiO2- and Fe2O3-NP. Whereas TiO2-NP were able to generate elevated amounts of free radicals, which induced indirect genotoxicity mainly by DNA-adduct formation, Fe2O3-NP were clastogenic (induction of DNA-breakage) and required reducing conditions for radical formation.
PMCID: PMC2711958  PMID: 19545397
23.  Removal of Carbamazepine from Water by a Novel TiO2–Coconut Shell Powder/UV Process: Composite Preparation and Photocatalytic Activity 
Environmental Engineering Science  2013;30(9):515-526.
A novel TiO2–coconut shell powder (TCNSP) composite, prepared by the controlled sol-gel method with a subsequent heat treatment, was investigated as an innovative photocatalytic absorbent for the removal of carbamazepine (CBZ). CBZ is used worldwide as an antiepileptic drug, which has recently been recognized as an important organic pollutant increasingly found in wastewaters from urban areas and other aquatic environments. The granulation process was performed by using a semiautomated mass production line to produce sufficient quantities of TCNSP composites, possessing sufficient crush strength for commercialization. Physical properties of the TCNSP composite such as crystallinity, morphology, crush strength, and the Brunauer-Emmett-Teller (BET)–specific surface area were controlled by the mass ratio of titanium dioxide sol and coconut shell powder (CNSP). Calcination at 700°C produced anatase phase TiO2 in the TCNSP composites with a BET high surface area of 454 m2/g. Anatase crystallite size of the TCNSP composite increased from 2.37 to 15.11 nm with increasing calcination temperature from 500°C to 800°C. Calcinated TCNSP composites had higher CBZ removal efficiency (98%) than pure TiO2 (23%) and CNSP (34%) within a 40-min reaction time. Optimization of this innovative adsorption/photocatalytic process was obtained by a response surface methodology and a central composite design model, which indicated that this novel and sustainable technology was successful in removing CBZ from a solution.
PMCID: PMC3777652  PMID: 24065870
drug; granulation; photocatalytic degradation; semiautomated mass production line; TiO2–coconut shell powder composite
24.  Improving the Dielectric Properties of Ethylene-Glycol Alkanethiol Self-Assembled Monolayers 
Langmuir  2014;30(5):1321-1326.
Self-assembled monolayers (SAMs) can be formed at the interface between solids and fluids, and are often used to modify the surface properties of the solid. One of the most widely employed SAM systems is exploiting thiol-gold chemistry, which, together with alkane-chain-based molecules, provides a reliable way of SAM formation to modify the surface properties of electrodes. Oligo ethylene-glycol (OEG) terminated alkanethiol monolayers have shown excellent antifouling properties and have been used extensively for the coating of biosensor electrodes to minimize nonspecific binding. Here, we report the investigation of the dielectric properties of COOH-capped OEG monolayers and demonstrate a strategy to improve the dielectric properties significantly by mixing the OEG SAM with small concentrations of 11-mercaptoundecanol (MUD). The monolayer properties and composition were characterized by means of impedance spectroscopy, water contact angle, ellipsometry and X-ray photoelectron spectroscopy. An equivalent circuit model is proposed to interpret the EIS data and to determine the conductivity of the monolayer. We find that for increasing MUD concentrations up to about 5% the resistivity of the SAM steadily increases, which together with a considerable decrease of the phase of the impedance, demonstrates significantly improved dielectric properties of the monolayer. Such monolayers will find widespread use in applications which depend critically on good dielectric properties such as capacitive biosensor.
PMCID: PMC4065163  PMID: 24447311
25.  Instability of Self-Assembled Monolayers (SAM) as a Model Material System for Macrophage/FBGC Cellular Behavior 
Novel self-assembled monolayers (SAMs) designed to present homogenous surface chemistries were utilized to further investigate the material surface chemistry dependent macrophage and foreign body giant cell (FBGC) behaviors including macrophage adhesion, fusion, and apoptosis. Contact angle analysis revealed instabilities in the –CH3 and –COOH terminate SAM surfaces upon incubation in serum-free media at 37oC or under dry, room temperatureconditions. Further analysis indicated that the –CH3 terminated SAM surface degraded rapidly within 2 hours and loss of sufficient SAM units to be comparable to the gold (Au) control surface within 24 hours of incubation in serum-free media (SFM) at 37oC. After 5days of incubation in SFM at 37oC, the contact angles for the –COOH terminated SAMsurfaces increased markedly. AFM analysis confirmed the desorption of –CH3 terminated SAM molecules from the surface with increased roughness and marked appearance of peaks andvalleys within 2 hours. A decrease in the thickness of the –COOH terminated SAM surface also suggests molecular desorption over time. No significant changes in contact angle or AFM analyses were observed on the –OH terminated SAM surfaces. Cellular adhesion decreased morerapidly on the Au control and –CH3 terminated SAM surfaces in comparison to the other surfaces. However by day 10, cellular adhesion, fusion, and apoptosis were comparable on all SAM surfaces and the Au control . These studies suggest that SAM surfaces may not be suitable for long-term studies where material dependent properties are investigated.
PMCID: PMC4017672  PMID: 18412136
self-assembled monolayers; instability; macrophage; foreign body giant cell; contact angles

Results 1-25 (769379)