Search tips
Search criteria

Results 1-25 (1114014)

Clipboard (0)

Related Articles

1.  A synthetic route to ultralight hierarchically micro/mesoporous Al(III)-carboxylate metal-organic aerogels 
Nature Communications  2013;4:1774-.
Developing a synthetic methodology for the fabrication of hierarchically porous metal-organic monoliths that feature high surface area, low density and tunable porosity is imperative for mass transfer applications, including bulky molecule capture, heterogeneous catalysis and drug delivery. Here we report a versatile and facile synthetic route towards ultralight micro/mesoporous metal-organic aerogels based on the two-step gelation of metal-organic framework nanoparticles. Heating represents a key factor in the control of gelation versus crystallization of Al(III)-multicarboxylate systems. The porosity of the resulting metal-organic aerogels can be readily tuned, leading to the formation of well-ordered intraparticle micropores and aerogel-specific interparticle mesopores, thereby integrating the merits of both crystalline metal-organic frameworks and light aerogels. The hierarchical micro/mesoporosity of the Al-metal-organic aerogels is thoroughly evaluated by N2 sorption. The good accessibility of the micro/mesopores is verified by vapour/dye uptake, and their potential for utilization as effective fibre-coating absorbents is tested in solid-phase microextraction analyses.
Hierarchically porous metal-organic monoliths are potential materials for mass transfer applications. Here, the authors synthesize metal-organic aerogels via the gelation of metal-organic frameworks, and are able to tune their porosity exploiting the properties of both crystalline and aerogel materials.
PMCID: PMC3644084  PMID: 23653186
2.  A solid with a hierarchical tetramodal micro-meso-macro pore size distribution 
Nature Communications  2013;4:2015.
Porous solids have an important role in addressing some of the major energy-related problems facing society. Here we describe a porous solid, α-MnO2, with a hierarchical tetramodal pore size distribution spanning the micro-, meso- and macro pore range, centred at 0.48, 4.0, 18 and 70 nm. The hierarchical tetramodal structure is generated by the presence of potassium ions in the precursor solution within the channels of the porous silica template; the size of the potassium ion templates the microporosity of α-MnO2, whereas their reactivity with silica leads to larger mesopores and macroporosity, without destroying the mesostructure of the template. The hierarchical tetramodal pore size distribution influences the properties of α-MnO2 as a cathode in lithium batteries and as a catalyst, changing the behaviour, compared with its counterparts with only micropores or bimodal micro/mesopores. The approach has been extended to the preparation of LiMn2O4 with a hierarchical pore structure.
Porous solids have potential applications in energy storage, gas separation and catalysis technologies. Here, the authors report a hierarchical solid with porosity spanning the micro, meso and macro ranges, which is synthesized using templating silica, and potassium ions as both templates and reactive species.
PMCID: PMC3709504  PMID: 23764887
3.  Effective Enrichment and Mass Spectrometry Analysis of Phosphopeptides Using Mesoporous Metal Oxide Nanomaterials 
Analytical chemistry  2010;82(17):7193-7201.
Mass spectrometry (MS)-based phosphoproteomics remains challenging due to the low abundance of phosphoproteins and substoichiometric phosphorylation. This demands better methods to effectively enrich phosphoproteins/peptides prior to MS analysis. We have previously communicated the first use of mesoporous zirconium oxide (ZrO2) nanomaterials for effective phosphopeptide enrichment. Here we present the full report including the synthesis, characterization, and application of mesoporous titanium dioxide (TiO2), ZrO2, and hafnium oxide (HfO2) in phosphopeptide enrichment and MS analysis. Mesoporous ZrO2 and HfO2 are demonstrated to be superior to TiO2 for phosphopeptide enrichment from a complex mixture with high specificity (>99%), which could almost be considered as “a purification”, mainly because of the extremely large active surface area of mesoporous nanomaterials. A single enrichment and Fourier transform MS analysis of phosphopeptides digested from a complex mixture containing 7% of α-casein identified 21 out of 22 phosphorylation sites for α-casein. Moreover, the mesoporous ZrO2 and HfO2 can be reused after a simple solution regeneration procedure with comparable enrichment performance to that of fresh materials. Mesoporous ZrO2 and HfO2 nanomaterials hold great promise for applications in MS-based phosphoproteomics.
PMCID: PMC2936271  PMID: 20704311
4.  Cefazolin-loaded mesoporous silicon microparticles show sustained bactericidal effect against Staphylococcus aureus 
Journal of Tissue Engineering  2014;5:2041731414536573.
Cefazolin is an antibiotic frequently used in preoperative prophylaxis of orthopedic surgery and to fight secondary infections post-operatively. Although its systemic delivery in a bulk or bolus dose is usually effective, the local and controlled release can increase its effectiveness by lowering dosages, minimizing total drug exposure, abating the development of antibiotic resistance and avoiding the cytotoxic effect. A delivery system based on mesoporous silicon microparticles was developed that is capable of efficiently loading and continuously releasing cefazolin over several days. The in vitro release kinetics from mesoporous silicon microparticles with three different nanopore sizes was evaluated, and minimal inhibitory concentration of cefazolin necessary to eliminate a culture of Staphylococcus aureus was identified to be 250 µg/mL. A milder toxicity toward mesenchymal stem cells was observed from mesoporous silicon microparticles over a 7-day period. Medium pore size-loaded mesoporous silicon microparticles exhibited long-lasting bactericidal properties in a zone inhibition assay while they were able to kill all the bacteria growing in suspension cultures within 24 h. This study demonstrates that the sustained release of cefazolin from mesoporous silicon microparticles provides immediate and long-term control over bacterial growth both in suspension and adhesion while causing minimal toxicity to a population of mesenchymal stem cell. Mesoporous silicon microparticles offer significant advantageous properties for drug delivery applications in tissue engineering as it favorably extends drug bioavailability and stability, while reducing concomitant cytotoxicity to the surrounding tissues.
PMCID: PMC4046808  PMID: 24904728
Antibiotics; controlled release; drug delivery; microparticles; mesoporous silicon
5.  Mesoporous Silica Chips for Selective Enrichment and Stabilization of Low Molecular Weight Proteome 
Proteomics  2010;10(3):496-505.
The advanced properties of mesoporous silica have been demonstrated in applications which include chemical sensing, filtration, catalysis, drug-delivery and selective biomolecular uptake. These properties depend on the architectural, physical and chemical properties of the material, which in turn are determined by the processing parameters in evaporation-induced self-assembly. In this study, we introduce a combinatorial approach for the removal of the high molecular weight proteins and for the specific isolation and enrichment of low molecular weight species. This approach is based on Mesoporous Silica Chips able to fractionate, selectively harvest and protect from enzymatic degradation, peptides and proteins present in complex human biological fluids. We present the characterization of the harvesting properties of a wide range of mesoporous chips using a library of peptides and proteins standard and their selectivity on the recovery of serum peptidome. Using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, we established the correlation between the harvesting specificity and the physico-chemical properties of mesoporous silica surfaces. The introduction of this mesoporous material with fine controlled properties will provide a powerful platform for proteomics application offering a rapid and efficient methodology for low molecular weight biomarker discovery.
PMCID: PMC2873235  PMID: 20013801
Nanotechnology; Prefractionation techniques; Mass spectrometry; Surface modification; Peptide stabilization
6.  Oxidative nanopatterning of titanium generates mesoporous surfaces with antimicrobial properties 
Mesoporous surfaces generated by oxidative nanopatterning have the capacity to selectively regulate cell behavior, but their impact on microorganisms has not yet been explored. The main objective of this study was to test the effects of such surfaces on the adherence of two common bacteria and one yeast strain that are responsible for nosocomial infections in clinical settings and biomedical applications. In addition, because surface characteristics are known to affect bacterial adhesion, we further characterized the physicochemical properties of the mesoporous surfaces. Focused ion beam (FIB) was used to generate ultrathin sections for elemental analysis by energy-dispersive X-ray spectroscopy (EDS), nanobeam electron diffraction (NBED), and high-angle annular dark field (HAADF) scanning transmission electron microscopy (STEM) imaging. The adherence of Staphylococcus aureus, Escherichia coli and Candida albicans onto titanium disks with mesoporous and polished surfaces was compared. Disks with the two surfaces side-by-side were also used for direct visual comparison. Qualitative and quantitative results from this study indicate that bacterial adhesion is significantly hindered by the mesoporous surface. In addition, we provide evidence that it alters structural parameters of C. albicans that determine its invasiveness potential, suggesting that microorganisms can sense and respond to the mesoporous surface. Our findings demonstrate the efficiency of a simple chemical oxidative treatment in generating nanotextured surfaces with antimicrobial capacity with potential applications in the implant manufacturing industry and hospital setting.
PMCID: PMC4026557  PMID: 24872694
mesoporosity; surface characterization; microorganisms; adhesion
7.  Enantioselective recognition at mesoporous chiral metal surfaces 
Nature Communications  2014;5:3325.
Chirality is widespread in natural systems, and artificial reproduction of chiral recognition is a major scientific challenge, especially owing to various potential applications ranging from catalysis to sensing and separation science. In this context, molecular imprinting is a well-known approach for generating materials with enantioselective properties, and it has been successfully employed using polymers. However, it is particularly difficult to synthesize chiral metal matrices by this method. Here we report the fabrication of a chirally imprinted mesoporous metal, obtained by the electrochemical reduction of platinum salts in the presence of a liquid crystal phase and chiral template molecules. The porous platinum retains a chiral character after removal of the template molecules. A matrix obtained in this way exhibits a large active surface area due to its mesoporosity, and also shows a significant discrimination between two enantiomers, when they are probed using such materials as electrodes.
Chemical synthesis of chiral materials with enantioselective properties is an ongoing challenge. Here, the authors fabricate a chirally imprinted mesoporous metal from the electrochemical reduction of platinum salts in the presence of a liquid crystal phase and chiral templating molecules.
PMCID: PMC3948375  PMID: 24548992
8.  Combined Spectroscopic and Calorimetric Studies to Reveal Absorption Mechanisms and Conformational Changes of Protein on Nanoporous Biomaterials 
In this study the effect of surface modification of mesoporous silica nanoparticles (MSNs) on its adsorption capacities and protein stability after immobilization of beta-lactoglobulin B (BLG-B) was investigated. For this purpose, non-functionalized (KIT-6) and aminopropyl-functionalized cubic Ia3d mesoporous silica ([n-PrNH2-KIT-6]) nanoparticles were used as nanoporous supports. Aminopropyl-functionalized mesoporous nanoparticles exhibited more potential candidates for BLG-B adsorption and minimum BLG leaching than non-functionalized nanoparticles. It was observed that the amount of adsorbed BLG is dependent on the initial BLG concentration for both KIT-6 and [n-PrNH2-KIT-6] mesoporous nanoparticles. Also larger amounts of BLG-B on KIT-6 was immobilized upon raising the temperature of the medium from 4 to 55 °C while such increase was undetectable in the case of immobilization of BLG-B on the [n-PrNH2-KIT-6]. At temperatures above 55 °C the amounts of adsorbed BLG on both studied nanomaterials decreased significantly. By Differential scanning calorimetry or DSC analysis the heterogeneity of the protein solution and increase in Tm may indicate that immobilization of BLG-B onto the modified KIT-6 results in higher thermal stability compared to unmodified one. The obtained results provide several crucial factors in determining the mechanism(s) of protein adsorption and stability on the nanostructured solid supports and the development of engineered nano-biomaterials for controlled drug-delivery systems and biomimetic interfaces for the immobilization of living cells.
PMCID: PMC4581193  PMID: 26230687
protein; nanoporous; immobilization; BLG-B; calorimetry
9.  Controlling drug delivery kinetics from mesoporous titania thin films by pore size and surface energy 
The osseointegration capacity of bone-anchoring implants can be improved by the use of drugs that are administrated by an inbuilt drug delivery system. However, to attain superior control of drug delivery and to have the ability to administer drugs of varying size, including proteins, further material development of drug carriers is needed. Mesoporous materials have shown great potential in drug delivery applications to provide and maintain a drug concentration within the therapeutic window for the desired period of time. Moreover, drug delivery from coatings consisting of mesoporous titania has shown to be promising to improve healing of bone-anchoring implants. Here we report on how the delivery of an osteoporosis drug, alendronate, can be controlled by altering pore size and surface energy of mesoporous titania thin films. The pore size was varied from 3.4 nm to 7.2 nm by the use of different structure-directing templates and addition of a swelling agent. The surface energy was also altered by grafting dimethylsilane to the pore walls. The drug uptake and release profiles were monitored in situ using quartz crystal microbalance with dissipation (QCM-D) and it was shown that both pore size and surface energy had a profound effect on both the adsorption and release kinetics of alendronate. The QCM-D data provided evidence that the drug delivery from mesoporous titania films is controlled by a binding–diffusion mechanism. The yielded knowledge of release kinetics is crucial in order to improve the in vivo tissue response associated to therapeutic treatments.
PMCID: PMC4501225  PMID: 26185444
mesoporous titania; controlled drug delivery; release kinetics; alendronate; QCM-D
10.  Photon-Manipulated Drug Release from Mesoporous Nanocontainer Controlled by Azobenzene-Modified Nucleic Acid 
ACS nano  2012;6(7):6337-6344.
Herein a photon manipulated mesoporous release system was constructed based on azobenzene-modified nucleic acids. In this system, the azobenzene-incorporated DNA double strands were immobilized at the pore mouth of meso-porous silica nanoparticles. The photo-isomerization of azobenzene induced dehybridization/hybridization switch of complementary DNA, causing uncapping/capping of pore gates of mesoporous silica. This nanoplatform permits holding of guest molecules within the nanopores under visible light but release them when light wavelength turns to UV range. These DNA/mesoporous silica hybrid nanostructures were exploited as carriers for cancer cell chemotherapy drug doxorubicin (DOX) due to its stimuli-responsive property as well as good biocompatibility via MTT assay. It is found that the drug release behavior is light wavelength sensitive. Switching of the light from visible to UV range uncapped the pores causes the release of DOX from the mesoporous silica nanospheres and an obvious cytotoxic effect on cancer cells. We envision that this photo-controlled drug release system could find potential applications in cancer therapy.
PMCID: PMC3407578  PMID: 22670595
azobenzene; photoregulation; mesoporous silica; nucleic acids; drug delivery
11.  Highly mesoporous metal–organic framework assembled in a switchable solvent 
Nature Communications  2014;5:4465.
The mesoporous metal–organic frameworks are a family of materials that have pore sizes ranging from 2 to 50 nm, which have shown promising applications in catalysis, adsorption, chemical sensing and so on. The preparation of mesoporous metal–organic frameworks usually needs the supramolecular or cooperative template strategy. Here we report the template-free assembly of mesoporous metal–organic frameworks by using CO2-expanded liquids as switchable solvents. The mesocellular metal–organic frameworks with large mesopores (13–23 nm) are formed, and their porosity properties can be easily adjusted by controlling CO2 pressure. Moreover, the use of CO2 can accelerate the reaction for metal–organic framework formation from metal salt and organic linker due to the viscosity-lowering effect of CO2, and the product can be recovered through CO2 extraction. The as-synthesized mesocellular metal–organic frameworks are highly active in catalysing the aerobic oxidation of benzylic alcohols under mild temperature at atmospheric pressure.
Large pore metal–organic frameworks may have improved catalytic or molecular sieving properties. Here, the authors demonstrate that carbon dioxide expanded liquids can be used to synthesize these materials and that pore size may, to an extent, be tuned by varying gas pressure.
PMCID: PMC4109014  PMID: 25047059
12.  Silica-based mesoporous nanoparticles for controlled drug delivery 
Journal of Tissue Engineering  2013;4:2041731413503357.
Drug molecules with lack of specificity and solubility lead patients to take high doses of the drug to achieve sufficient therapeutic effects. This is a leading cause of adverse drug reactions, particularly for drugs with narrow therapeutic window or cytotoxic chemotherapeutics. To address these problems, there are various functional biocompatible drug carriers available in the market, which can deliver therapeutic agents to the target site in a controlled manner. Among the carriers developed thus far, mesoporous materials emerged as a promising candidate that can deliver a variety of drug molecules in a controllable and sustainable manner. In particular, mesoporous silica nanoparticles are widely used as a delivery reagent because silica possesses favourable chemical properties, thermal stability and biocompatibility. Currently, sol-gel-derived mesoporous silica nanoparticles in soft conditions are of main interest due to simplicity in production and modification and the capacity to maintain function of bioactive agents. The unique mesoporous structure of silica facilitates effective loading of drugs and their subsequent controlled release. The properties of mesopores, including pore size and porosity as well as the surface properties, can be altered depending on additives used to fabricate mesoporous silica nanoparticles. Active surface enables functionalisation to modify surface properties and link therapeutic molecules. The tuneable mesopore structure and modifiable surface of mesoporous silica nanoparticle allow incorporation of various classes of drug molecules and controlled delivery to the target sites. This review aims to present the state of knowledge of currently available drug delivery system and identify properties of an ideal drug carrier for specific application, focusing on mesoporous silica nanoparticles.
PMCID: PMC3764983  PMID: 24020012
Mesoporous silica nanoparticle; targeted drug delivery; controlled release; sol-gel process; chemotherapy
13.  Mesoporous Iron Oxide Nanoparticles Prepared by Polyacrylic Acid Etching and Their Application in Gene Delivery to Mesenchymal Stem Cells 
Microscopy research and technique  2013;76(9):10.1002/jemt.22251.
Novel monodisperse mesoporous iron oxide nanoparticles (m-IONPs) were synthesized by a postsynthesis etching approach and characterized by electron microscopy. In this approach, solid iron oxide nanoparticles (s-IONPs) were first prepared following a solvothermal method, and then etched anisotropically by polyacrylic acid to form the mesoporous nanostructures. MTT cytotoxicity assay demonstrated that the m-IONPs have good biocompatibility with mesenchymal stem cells (MSCs). Owing to their mesoporous structure and good biocompatibility, these monodisperse m-IONPs were used as a nonviral vector for the delivery of a gene of vascular endothelial growth factor (VEGF) tagged with a green fluorescence protein (GFP) into the hard-to-transfect stem cells. Successful gene delivery and transfection were verified by detecting the GFP fluorescence from MSCs using fluorescence microscopy. Our results illustrated that the m-IONPs synthesized in this work can serve as a potential nonviral carrier in gene therapy where stem cells should be first transfected and then implanted into disease sites for disease treatment.
PMCID: PMC3786869  PMID: 23913581
postsynthesis etching; mesoporous nanostructures; iron oxide nanoparticles; gene delivery
14.  Large-Scale, Three–Dimensional, Free–Standing, and Mesoporous Metal Oxide Networks for High–Performance Photocatalysis 
Scientific Reports  2013;3:2204.
Mesoporous nanostructures represent a unique class of photocatalysts with many applications, including splitting of water, degradation of organic contaminants, and reduction of carbon dioxide. In this work, we report a general Lewis acid catalytic template route for the high–yield producing single– and multi–component large–scale three–dimensional (3D) mesoporous metal oxide networks. The large-scale 3D mesoporous metal oxide networks possess large macroscopic scale (millimeter–sized) and mesoporous nanostructure with huge pore volume and large surface exposure area. This method also can be used for the synthesis of large–scale 3D macro/mesoporous hierarchical porous materials and noble metal nanoparticles loaded 3D mesoporous networks. Photocatalytic degradation of Azo dyes demonstrated that the large–scale 3D mesoporous metal oxide networks enable high photocatalytic activity. The present synthetic method can serve as the new design concept for functional 3D mesoporous nanomaterials.
PMCID: PMC3712314  PMID: 23857595
15.  Tailored porous silicon microparticles: fabrication and properties 
The use of mesoporous silicon particles for drug delivery has been widely explored thanks to their biodegradability and biocompatibility. The ability to tailor the physicochemical properties of porous silicon at the micro and nano scale confers versatility to this material. We present a method for the fabrication of highly reproducible, monodisperse mesoporous silicon particles with controlled physical characteristics through electrochemical etch of patterned silicon trenches. We tailored particle size in the micrometer range and pore size in the nanometer range, shape from tubular to discoidal to hemispherical, and porosity from 46% to over 80%. In addition, we correlated the properties of the porous matrix with the loading of model nanoparticles (Q-dots) and observed their three-dimensional arrangement within the matrix by transmission electron microscopy tomography. The methods developed in this study provide effective means to fabricate mesoporous silicon particles according to the principles of rational design for therapeutic vectors and to characterize the distribution of nanoparticles within the porous matrix
PMCID: PMC2920042  PMID: 20162656
Porous Silicon; Microfabrication; Nanoparticles; Drug Delivery; Multi-stage Delivery System
16.  Nanoporous composites prepared by a combination of SBA-15 with Mg–Al mixed oxides. Water vapor sorption properties 
This work presents two easy ways for preparing nanostructured mesoporous composites by interconnecting and combining SBA-15 with mixed oxides derived from a calcined Mg–Al hydrotalcite. Two different Mg–Al hydrotalcite addition procedures were implemented, either after or during the SBA-15 synthesis (in situ method). The first procedure, i.e., the post-synthesis method, produces a composite material with Mg–Al mixed oxides homogeneously dispersed on the SBA-15 nanoporous surface. The resulting composites present textural properties similar to the SBA-15. On the other hand, with the second procedure (in situ method), Mg and Al mixed oxides occur on the porous composite, which displays a cauliflower morphology. This is an important microporosity contribution and micro and mesoporous surfaces coexist in almost the same proportion. Furthermore, the nanostructured mesoporous composites present an extraordinary water vapor sorption capacity. Such composites might be utilized as as acid-base catalysts, adsorbents, sensors or storage nanomaterials.
PMCID: PMC4143113  PMID: 25161858
calcined Mg–Al hydrotalcite; nanoporous composites; SBA-15; vapor sorption
17.  Antibody-Capped Mesoporous Nanoscopic Materials: Design of a Probe for the Selective Chromo-Fluorogenic Detection of Finasteride 
ChemistryOpen  2012;1(6):251-259.
The synthesis of capped mesoporous silica nanoparticles (MSN) conjugated with an antibody (AB) as a gatekeeper has been carried out in order to obtain a delivery system able to release an entrapped cargo (dye) in the presence of a target molecule (antigen) to which the conjugated antibody binds selectively. In particular, MSN loaded with rhodamine B and functionalized on the external surface with a suitable derivative of N-(t-butyl)-3-oxo-(5α,17β)-4-aza-androst-1-ene-17-carboxamide (finasteride) have been prepared (S1). The addition of polyclonal antibodies against finasteride induced capping of the pores due to the interaction with the anchored hapten-like finasteride derivative to give a MSN–hapten–AB nanoparticle S1-AB. It was found that the addition of capped material S1-AB to water solutions containing finasteride resulted in displacement of the antibody, pore uncapping and entrapped-dye release. The response of the gated material is highly selective, and only finasteride, among other steroids, was able to induce a significant uncapping process. Compared with finasteride, the finasteride metabolite was able to release 17 % of the dye, whereas the exogen steroids testosterone, metenolone and 16-β-hydroxystanozolol only induced very little release of rhodamine B (lower than 10 %) from aqueous suspensions containing sensing solid S1-AB. A detection limit as low as 20 ppb was found for the fluorimetric detection of finasteride. In order to evaluate a possible application of the material for label-free detection of finasteride, the capped material was isolated and stored to give final sensing solid S1-AB-i. It was found to display a similar behavior towards finasteride as to that shown by freshly prepared S1-AB; even after a period of two months, no significant loss of selectivity or sensitivity was noted. Moreover, to study the application for the detection of finasteride in biological samples, this “aged” material, S1-AB-i, was tested using commercially available blank urine as matrix. Samples containing 70 and 90 % blank urine were spiked with a defined amount of finasteride, and the concentration was determined using capped S1-AB-i. Recovery ranges from 94 % to 118 % were reached.
PMCID: PMC3922482  PMID: 24551515
antibodies; finasteride; hybrid materials; MCM-41; molecular gates
18.  Measurement of Uptake and Release Capacities of Mesoporous Silica Nanoparticles Enabled by Nanovalve Gates 
The uptake and release capacities of mesoporous silica particles are measured on nanovalve-gated stimulated release systems, using a water soluble biological stain, Hoechst 33342, as the cargo model. Five different types of mesoporous silica nanoparticles: 2D-hexagonal MCM-41, swollen pore MCM-41, rod-like MCM-41, hollow mesoporous nanoparticles and radial mesoporous nanoparticles are studied and compared. Solid silica nanoparticles are used as the control. Because of the presence of the nanovalves, the loaded and capped particles can be washed thoroughly without losing the content of the mesopores. The quantity of Hoechst 33342 molecules trapped within the nanoparticles and released upon opening the nanovalves are systematically studied for the first time. The loading conditions are optimized by varying the Hoechst concentration in the loading solutions. Surprisingly, increasing the Hoechst concentration in the loading solution does not always result in a larger amount of Hoechst being trapped and released. Among the five types of mesoporous silica nanoparticles, the radial mesoporous nanoparticles and the swollen pore MCM-41 particles show the highest and lowest release capacity, respectively. The uptake capacities is correlated with the specific surface area of the materials rather than their internal volume. The uptake and release behaviors are also affected by charge and spatial factors.
PMCID: PMC3651276  PMID: 23667713
uptake capacity; release capacity; mesoporous silica nanoparticles; acid-responsive nanovalve; stimulated release
19.  Packaging biological cargoes in mesoporous materials: opportunities for drug delivery 
Expert Opinion on Drug Delivery  2014;11(11):1781-1793.
Confinement of biomolecules in structured nanoporous materials offers several desirable features ranging from chemical and thermal stability, to resistance to degradation from the external environment. A new generation of mesoporous materials presents exciting new possibilities for the formulation and controlled release of biological agents. Such materials address niche applications in enteral and parenteral delivery of biologics, such as peptides, polypeptides, enzymes and proteins for use as therapeutics, imaging agents, biosensors, and adjuvants.
Areas covered
Mesoporous silica Santa Barbara Amorphous-15 (SBA-15), with its unique, tunable pore diameter, and easily functionalized surface, provides a representative example of this new generation of materials. Here, we review recent advances in the design and synthesis of nanostructured mesoporous materials, focusing on SBA-15, and highlight opportunities for the delivery of biological agents to various organ and tissue compartments.
Expert opinion
The SBA-15 platform provides a delivery carrier that is inherently separated from the active biologic due to distinct intra and extra-particle environments. This permits the SBA-15 platform to not require direct modification of the active biological therapeutic. Additionally, this makes the platform universal and allows for its application independent of the desired methods of discovery and development. The SBA-15 platform also directly addresses issues of targeted delivery and controlled release, although future challenges in the implementation of this platform reside in particle design, biocompatibility, and the tunability of the internal and external material properties. Examples illustrating the flexibility in the application of the SBA-15 platform are also discussed.
PMCID: PMC4245185  PMID: 25016923
compartmentalization; confinement; controlled release; drug delivery; extra-particle effects; intra-particle effects; MCM-41; mesoporous silica; nanoparticle therapeutics; protein therapeutics; SBA-15; targeted delivery
20.  In vitro and in vivo evaluation of ordered mesoporous silica as a novel adsorbent in liquisolid formulation 
A liquisolid technique has been reported to be a new approach to improve the release of poorly water-soluble drugs for oral administration. However, an apparent limitation of this technique is the formulation of a high dose because a large amount of liquid vehicle is needed, which finally results in a low-dose liquisolid formulation. Silica as an absorbent has been used extensively in liquisolid formulations. Although nanoparticle silica can be prepared and used to improve liquid adsorption capacity, loading a high dose of drug into a liquisolid is still a challenge. With the aim of improving adsorption capacity and accordingly achieving high drug loading, ordered mesoporous silica with a high surface area and narrow pore size distribution was synthesized and used in a liquisolid formulation.
Ordered mesoporous silica was synthesized and its particle size and morphology were tailored by controlling the concentration of cetyltrimethyl ammonium bromide. The ordered mesoporous silica synthesized was characterized by transmission electron microscopy, scanning electron microscopy, Fourier transform infrared spectroscopy, small-angle x-ray diffraction, wide angle x-ray diffraction, and nitrogen adsorption-desorption measurements. The liquid adsorption capacity of ordered mesoporous silica was subsequently compared with that of conventional silica materials using PEG400 as the model liquid. Carbamazepine was chosen as a model drug to prepare the liquisolid formulation, with ordered mesoporous silica as the adsorbent material. The preparation was evaluated and compared with commercially available fast-release carbamazepine tablets in vitro and in vivo.
Characterization of the ordered mesoporous silica synthesized in this study indicated a huge Brunauer–Emmett–Teller surface area (1030 m2/g), an ordered mesoporous structure with a pore size of 2.8 nm, and high adsorption capacity for liquid compared with conventional silica. Compared with fast-release commercial carbamazepine tablets, drug release from the liquisolid capsules was greatly improved, and the bioavailability of the liquisolid preparation was enhanced by 182.7%.
Ordered mesoporous silica is a potentially attractive adsorbent which may lead to a new approach for development of liquisolid products.
PMCID: PMC3263412  PMID: 22275835
ordered mesoporous silica; poorly water-soluble drug; carbamazepine; liquisolid; bioavailability
21.  Mesoporous hexagonal Co3O4 for high performance lithium ion batteries 
Scientific Reports  2014;4:6519.
Mesoporous Co3O4 nanoplates were successfully prepared by the conversion of hexagonal β-Co(OH)2 nanoplates. TEM, HRTEM and N2 sorption analysis confirmed the facet crystal structure and inner mesoporous architecture. When applied as anode materials for lithium storage in lithium ion batteries, mesoporous Co3O4 nanocrystals delivered a high specific capacity. At 10 C current rate, as-prepared mesoporous Co3O4 nanoplates delivered a specific capacity of 1203 mAh/g at first cycle and after 200 cycles it can still maintain a satisfied value (330 mAh/g). From ex-situ TEM, SAED and FESEM observation, it was found that mesoporous Co3O4 nanoplates were reduced to Li2O and Co during the discharge process and re-oxidised without losing the mesoporous structure during charge process. Even after 100 cycles, mesoporous Co3O4 crystals still preserved their pristine hexagonal shape and mesoporous nanostructure.
PMCID: PMC4185389  PMID: 25283174
22.  Hollow hydroxyapatite microspheres as a device for controlled delivery of proteins 
Hollow hydroxyapatite (HA) microspheres were prepared by reacting solid microspheres of Li2O–CaO–B2O3 glass (106–150 μm) in K2HPO4 solution, and evaluated as a controlled delivery device for a model protein, bovine serum albumin (BSA). Reaction of the glass microspheres for 2 days in 0.02 M K2HPO4 solution (pH = 9) at 37°C resulted in the formation of biocompatible HA microspheres with a hollow core diameter equal to 0.6 the external diameter, high surface area (~100 m2/g), and a mesoporous shell wall (pore size ≈13 nm). After loading with a solution of BSA in phosphate-buffered saline (PBS) (5 mg BSA/ml), the release kinetics of BSA from the HA microspheres into a PBS medium were measured using a micro bicinchoninic acid (BCA) protein assay. Release of BSA initially increased linearly with time, but almost ceased after 24–48 h. Modification of the BSA release kinetics was achieved by modifying the microstructure of the as-prepared HA microspheres using a controlled heat treatment (1–24 h at 600–900°C). Sustained release of BSA was achieved over 7–14 days from HA microspheres heated for 5 h at 600°C. The amount of BSA released at a given time was dependent on the concentration of BSA initially loaded into the HA microspheres. These hollow HA microspheres could provide a novel inorganic device for controlled local delivery of proteins and drugs.
PMCID: PMC3160344  PMID: 21290170
23.  Low Molecular Weight Protein Enrichment on Mesoporous Silica Thin Films for Biomarker Discovery 
The identification of circulating biomarkers holds great potential for non invasive approaches in early diagnosis and prognosis, as well as for the monitoring of therapeutic efficiency.1-3 The circulating low molecular weight proteome (LMWP) composed of small proteins shed from tissues and cells or peptide fragments derived from the proteolytic degradation of larger proteins, has been associated with the pathological condition in patients and likely reflects the state of disease.4,5 Despite these potential clinical applications, the use of Mass Spectrometry (MS) to profile the LMWP from biological fluids has proven to be very challenging due to the large dynamic range of protein and peptide concentrations in serum.6 Without sample pre-treatment, some of the more highly abundant proteins obscure the detection of low-abundance species in serum/plasma. Current proteomic-based approaches, such as two-dimensional polyacrylamide gel-electrophoresis (2D-PAGE) and shotgun proteomics methods are labor-intensive, low throughput and offer limited suitability for clinical applications.7-9 Therefore, a more effective strategy is needed to isolate LMWP from blood and allow the high throughput screening of clinical samples.
Here, we present a fast, efficient and reliable multi-fractionation system based on mesoporous silica chips to specifically target and enrich LMWP.10,11 Mesoporous silica (MPS) thin films with tunable features at the nanoscale were fabricated using the triblock copolymer template pathway. Using different polymer templates and polymer concentrations in the precursor solution, various pore size distributions, pore structures, connectivity and surface properties were determined and applied for selective recovery of low mass proteins. The selective parsing of the enriched peptides into different subclasses according to their physicochemical properties will enhance the efficiency of recovery and detection of low abundance species. In combination with mass spectrometry and statistic analysis, we demonstrated the correlation between the nanophase characteristics of the mesoporous silica thin films and the specificity and efficacy of low mass proteome harvesting. The results presented herein reveal the potential of the nanotechnology-based technology to provide a powerful alternative to conventional methods for LMWP harvesting from complex biological fluids. Because of the ability to tune the material properties, the capability for low-cost production, the simplicity and rapidity of sample collection, and the greatly reduced sample requirements for analysis, this novel nanotechnology will substantially impact the field of proteomic biomarker research and clinical proteomic assessment.
PMCID: PMC3466656  PMID: 22546927
Bioengineering;  Issue 62;  Nanoporous silica chip;  Low molecular weight proteomics;  Peptidomics;  MALDI-TOF mass spectrometry;  early diagnostics;  proteomics
24.  Flash freezing route to mesoporous polymer nanofibre networks 
Nature Communications  2013;4:2653.
There are increasing requirements worldwide for advanced separation materials with applications in environmental protection processes. Various mesoporous polymeric materials have been developed and they are considered as potential candidates. It is still challenging, however, to develop economically viable and durable separation materials from low-cost, mass-produced materials. Here we report the fabrication of a nanofibrous network structure from common polymers, based on a microphase separation technique from frozen polymer solutions. The resulting polymer nanofibre networks exhibit large free surface areas, exceeding 300 m2 g−1, as well as small pore radii as low as 1.9 nm. These mesoporous polymer materials are able to rapidly adsorb and desorb a large amount of carbon dioxide and are also capable of condensing organic vapours. Furthermore, the nanofibres made of engineering plastics with high glass transition temperatures over 200 °C exhibit surprisingly high, temperature-dependent adsorption of organic solvents from aqueous solution.
Mesoporous polymeric materials are good candidates for advanced separation materials, though their low-cost production remains challenging. Here, the authors report a microphase separation technique for the fabrication of nanoporous networks from frozen solutions of common polymers.
PMCID: PMC3826646  PMID: 24145702
25.  Label-Free Luminescent Mesoporous Silica Nanoparticles for Imaging and Drug Delivery 
Theranostics  2013;3(9):650-657.
We report herein a straightforward and label-free approach to prepare luminescent mesoporous silica nanoparticles. We found that calcination at 400 °C can grant mesoporous organosilica nanoparticles with strong fluorescence of great photo- and chemical stability. The luminescence is found to originate from the carbon dots generated from the calcination, rather than the defects in the silica matrix as was believed previously. The calcination does not impact the particles' abilities to load drugs and conjugate to biomolecules. In a proof-of-concept study, we demonstrated that doxorubicin (Dox) can be efficiently encapsulated into these fluorescent mesoporous silica nanoparticles. After coupled to c(RGDyK), the nanoconjugates can efficiently home to tumors through interactions with integrin αvβ3 overexpressed on the tumor vasculature. This calcination-induced luminescence is expected to find wide applications in silica-based drug delivery, nanoparticle coating, and immunofluorescence imaging.
PMCID: PMC3776216  PMID: 24052805
Silica nanoparticles; Drug delivery; Integrin αvβ3; Bioimaging; Doxorubicin.

Results 1-25 (1114014)