Search tips
Search criteria

Results 1-25 (369988)

Clipboard (0)

Related Articles

1.  Aldehyde dehydrogenase 1 defines and protects a nigrostriatal dopaminergic neuron subpopulation 
The Journal of Clinical Investigation  2014;124(7):3032-3046.
Subpopulations of dopaminergic (DA) neurons within the substantia nigra pars compacta (SNpc) display a differential vulnerability to loss in Parkinson’s disease (PD); however, it is not clear why these subsets are preferentially selected in PD-associated neurodegeneration. In rodent SNpc, DA neurons can be divided into two subpopulations based on the expression of aldehyde dehydrogenase 1 (ALDH1A1). Here, we have shown that, in α-synuclein transgenic mice, a murine model of PD-related disease, DA neurodegeneration occurs mainly in a dorsomedial ALDH1A1-negative subpopulation that is also prone to cytotoxic aggregation of α-synuclein. Notably, the topographic ALDH1A1 pattern observed in α-synuclein transgenic mice was conserved in human SNpc. Postmortem evaluation of brains of patients with PD revealed a severe reduction of ALDH1A1 expression and neurodegeneration in the ventral ALDH1A1-positive DA subpopulations. ALDH1A1 expression was also suppressed in α-synuclein transgenic mice. Deletion of Aldh1a1 exacerbated α-synuclein–mediated DA neurodegeneration and α-synuclein aggregation, whereas Aldh1a1-null and control DA neurons were comparably susceptible to 1-methyl-4-phenylpyridinium–, glutamate-, or camptothecin-induced cell death. ALDH1A1 overexpression appeared to preferentially protect against α-synuclein–mediated DA neurodegeneration but did not rescue α-synuclein–induced loss of cortical neurons. Together, our findings suggest that ALDH1A1 protects subpopulations of SNpc DA neurons by preventing the accumulation of dopamine aldehyde intermediates and formation of cytotoxic α-synuclein oligomers.
PMCID: PMC4071380  PMID: 24865427
2.  GRK2 and group I mGluR mediate inflammation-induced sensitization to excitotoxic neurodegeneration 
Annals of neurology  2013;73(5):10.1002/ana.23868.
The concept of inflammation-induced sensitization is emerging in the field of perinatal brain injury, stroke, Alzheimer disease and multiple sclerosis. However, mechanisms underpinning this process remain unidentified.
We combined in vivo systemic lipopolysaccharide (LPS) or Interleukin-1β (IL-1β) induced sensitization of neonatal and adult rodent cortical neurons to excitotoxic neurodegeneration with in vitro IL-1β sensitization of human and rodent neurons to excitotoxic neurodegeneration. Within these inflammation-induced sensitization models we assessed metabotropic glutamatergic receptor (mGluR) signaling and regulation.
We demonstrate for the first time that group I mGluRs mediate inflammation-induced sensitization to neuronal excitotoxicity in neonatal and adult neurons across species. Inflammation induced G protein–coupled receptor kinase 2 (GRK2) down-regulation and genetic deletion of GRK2 mimicked the sensitizing effect of inflammation on excitotoxic neurodegeneration. Thus, we identify GRK2 as a potential molecular link between inflammation and mGluR-mediated sensitization.
Collectively, our findings indicate that inflammation-induced sensitization is universal across species and ages and that group I mGluRs and GRK2 represent new avenues for neuroprotection in perinatal and adult neurological disorders.
PMCID: PMC3837433  PMID: 23494575
3.  Spinal Cord Injury Causes Brain Inflammation Associated with Cognitive and Affective Changes: Role of Cell Cycle Pathways 
The Journal of Neuroscience  2014;34(33):10989-11006.
Experimental spinal cord injury (SCI) causes chronic neuropathic pain associated with inflammatory changes in thalamic pain regulatory sites. Our recent studies examining chronic pain mechanisms after rodent SCI showed chronic inflammatory changes not only in thalamus, but also in other regions including hippocampus and cerebral cortex. Because changes appeared similar to those in our rodent TBI models that are associated with neurodegeneration and neurobehavioral dysfunction, we examined effects of mouse SCI on cognition, depressive-like behavior, and brain inflammation. SCI caused spatial and retention memory impairment and depressive-like behavior, as evidenced by poor performance in the Morris water maze, Y-maze, novel objective recognition, step-down passive avoidance, tail suspension, and sucrose preference tests. SCI caused chronic microglial activation in the hippocampus and cerebral cortex, where microglia with hypertrophic morphologies and M1 phenotype predominated. Stereological analyses showed significant neuronal loss in the hippocampus at 12 weeks but not 8 d after injury. Increased cell-cycle-related gene (cyclins A1, A2, D1, E2F1, and PCNA) and protein (cyclin D1 and CDK4) expression were found chronically in hippocampus and cerebral cortex. Systemic administration of the selective cyclin-dependent kinase inhibitor CR8 after SCI significantly reduced cell cycle gene and protein expression, microglial activation and neurodegeneration in the brain, cognitive decline, and depression. These studies indicate that SCI can initiate a chronic brain neurodegenerative response, likely related to delayed, sustained induction of M1-type microglia and related cell cycle activation, which result in cognitive deficits and physiological depression.
PMCID: PMC4131014  PMID: 25122899
brain; cognition; depression; inflammation; neurodegeneration; spinal cord injury
4.  Genetic background modifies neurodegeneration and neuroinflammation driven by misfolded human tau protein in rat model of tauopathy: implication for immunomodulatory approach to Alzheimer's disease 
Numerous epidemiological studies demonstrate that genetic background modifies the onset and the progression of Alzheimer's disease and related neurodegenerative disorders. The efficacious influence of genetic background on the disease pathway of amyloid beta has been meticulously described in rodent models. Since the impact of genetic modifiers on the neurodegenerative and neuroinflammatory cascade induced by misfolded tau protein is yet to be elucidated, we have addressed the issue by using transgenic lines expressing the same human truncated tau protein in either spontaneously hypertensive rat (SHR) or Wistar-Kyoto (WKY) genetic background.
Brains of WKY and SHR transgenic rats in the terminal stage of phenotype and their age-matched non-transgenic littermates were examined by means of immunohistochemistry and unbiased stereology. Basic measures of tau-induced neurodegeneration (load of neurofibrillary tangles) and neuroinflammation (number of Iba1-positive microglia, their activated morphology, and numbers of microglia immunoreactive for MHCII and astrocytes immunoreactive for GFAP) were quantified with an optical fractionator in brain areas affected by neurofibrillary pathology (pons, medulla oblongata). The stereological data were evaluated using two-way ANOVA and Student's t-test.
Tau neurodegeneration (neurofibrillary tangles (NFTs), axonopathy) and neuroinflammation (microgliosis, astrocytosis) appeared in both WKY and SHR transgenic rats. Although identical levels of transgene expression in both lines were present, terminally-staged WKY transgenic rats displayed significantly lower final NFT loads than their SHR transgenic counterparts. Interestingly, microglial responses showed a striking difference between transgenic lines. Only 1.6% of microglia in SHR transgenic rats expressed MHCII in spite of having a robust phagocytic phenotype, whereas in WKY transgenic rats, 23.2% of microglia expressed MHCII despite displaying a considerably lower extent of transformation into phagocytic phenotype.
These results show that the immune response represents a pivotal and genetically variable modifying factor that is able to influence vulnerability to neurodegeneration. Therefore, targeted immunomodulation could represent a prospective therapeutic approach to Alzheimer's disease.
PMCID: PMC2958906  PMID: 20937161
5.  Characterization of Cognitive Deficits in Rats Overexpressing Human Alpha-Synuclein in the Ventral Tegmental Area and Medial Septum Using Recombinant Adeno-Associated Viral Vectors 
PLoS ONE  2013;8(5):e64844.
Intraneuronal inclusions containing alpha-synuclein (a-syn) constitute one of the pathological hallmarks of Parkinson's disease (PD) and are accompanied by severe neurodegeneration of A9 dopaminergic neurons located in the substantia nigra. Although to a lesser extent, A10 dopaminergic neurons are also affected. Neurodegeneration of other neuronal populations, such as the cholinergic, serotonergic and noradrenergic cell groups, has also been documented in PD patients. Studies in human post-mortem PD brains and in rodent models suggest that deficits in cholinergic and dopaminergic systems may be associated with the cognitive impairment seen in this disease. Here, we investigated the consequences of targeted overexpression of a-syn in the mesocorticolimbic dopaminergic and septohippocampal cholinergic pathways. Rats were injected with recombinant adeno-associated viral vectors encoding for either human wild-type a-syn or green fluorescent protein (GFP) in the ventral tegmental area and the medial septum/vertical limb of the diagonal band of Broca, two regions rich in dopaminergic and cholinergic neurons, respectively. Histopathological analysis showed widespread insoluble a-syn positive inclusions in all major projections areas of the targeted nuclei, including the hippocampus, neocortex, nucleus accumbens and anteromedial striatum. In addition, the rats overexpressing human a-syn displayed an abnormal locomotor response to apomorphine injection and exhibited spatial learning and memory deficits in the Morris water maze task, in the absence of obvious spontaneous locomotor impairment. As losses in dopaminergic and cholinergic immunoreactivity in both the GFP and a-syn expressing animals were mild-to-moderate and did not differ from each other, the behavioral impairments seen in the a-syn overexpressing animals appear to be determined by the long term persisting neuropathology in the surviving neurons rather than by neurodegeneration.
PMCID: PMC3660601  PMID: 23705016
6.  Rates of β-amyloid accumulation are independent of hippocampal neurodegeneration 
Neurology  2014;82(18):1605-1612.
To test the hypotheses predicted in a hypothetical model of Alzheimer disease (AD) biomarkers that rates of β-amyloid (Aβ) accumulation on PET imaging are not related to hippocampal neurodegeneration whereas rates of neurodegenerative brain atrophy depend on the presence of both amyloid and neurodegeneration in a population-based sample.
A total of 252 cognitively normal (CN) participants from the Mayo Clinic Study of Aging had 2 or more serial visits with both amyloid PET and MRI. Subjects were classified into 4 groups based on baseline positive/negative amyloid PET (A+ or A−) and baseline hippocampal volume (N+ or N−). We compared rates of amyloid accumulation and rates of brain atrophy among the 4 groups.
At baseline, 148 (59%) were amyloid negative and neurodegeneration negative (A−N−), 29 (12%) amyloid negative and neurodegeneration positive (A−N+), 56 (22%) amyloid positive and neurodegeneration negative (A+N−), and 19 (8%) amyloid positive and neurodegeneration positive (A+N+). High rates of Aβ accumulation were found in those with abnormal amyloid at baseline and were not influenced by hippocampal neurodegeneration at baseline. In contrast, rates of brain atrophy were greatest in A+N+.
We describe a 2-feature biomarker approach to classifying elderly CN subjects that is complementary to the National Institute on Aging–Alzheimer's Association preclinical staging criteria. Our results support 2 key concepts in a model of the temporal evolution of AD biomarkers. First, the rate of Aβ accumulation is not influenced by neurodegeneration and thus may be a biologically independent process. Second, Aβ pathophysiology increases or catalyzes neurodegeneration.
PMCID: PMC4013810  PMID: 24706010
7.  Neurodegeneration in the somatosensory cortex after experimental diffuse brain injury 
Brain structure & function  2011;217(1):49-61.
Disruption and consequent reorganization of central nervous system circuits following traumatic brain injury may manifest as functional deficits and behavioral morbidities. We previously reported axotomy and neuronal atrophy in the ventral basal (VB) complex of the thalamus, without gross degeneration after experimental diffuse brain injury in adult rats. Pathology in VB coincided with the development of late-onset aberrant behavioral responses to whisker stimulation, which lead to the current hypothesis that neurodegeneration after experimental diffuse brain injury includes the primary somatosensory barrel cortex (S1BF), which receives projection of VB neurons and mediates whisker somatosensation. Over 28 days after midline fluid percussion brain injury, argyrophilic reaction product within superficial layers and layer IV barrels at 1 day progresses into the cortex to subcortical white matter by 7 days, and selective inter-barrel septa and subcortical white matter labeling at 28 days. Cellular consequences were determined by stereological estimates of neuronal nuclear volumes and number. In all cortical layers, neuronal nuclear volumes significantly atrophied by 42–49% at 7 days compared to sham, which marginally attenuated by 28 days. Concomitantly, the number of healthy neurons was reduced by 34–45% at 7 days compared to sham, returning to control levels by 28 days. Progressive neurodegeneration, including argyrophilic reaction product and neuronal nuclear atrophy, indicates injury-induced damage and reorganization of the reciprocal thalamocortical projections that mediate whisker somatosensation. The rodent whisker barrel circuit may serve as a discrete model to evaluate the causes and consequences of circuit reorganization after diffuse brain injury.
PMCID: PMC3536493  PMID: 21597967
Disector; Fractionator; Nucleator
8.  Prevention of neonatal oxygen-induced brain damage by reduction of intrinsic apoptosis 
Cell Death & Disease  2012;3(1):e250-.
Within the last decade, it became clear that oxygen contributes to the pathogenesis of neonatal brain damage, leading to neurocognitive impairment of prematurely born infants in later life. Recently, we have identified a critical role for receptor-mediated neuronal apoptosis in the immature rodent brain. However, the contribution of the intrinsic apoptotic pathway accompanied by activation of caspase-2 under hyperoxic conditions in the neonatal brain still remains elusive. Inhibition of caspases appears a promising strategy for neuroprotection. In order to assess the influence of specific caspases on the developing brain, we applied a recently developed pentapeptide-based group II caspase inhibitor (5-(2,6-difluoro-phenoxy)-3(R,S)-(2(S)-(2(S)-(3-methoxycarbonyl-2(S)-(3-methyl-2(S)-((quinoline-2-carbonyl)-amino)-butyrylamino)propionylamino)3-methylbutyrylamino)propionylamino)-4-oxo-pentanoic acid methyl ester; TRP601). Here, we report that elevated oxygen (hyperoxia) triggers a marked increase in active caspase-2 expression, resulting in an initiation of the intrinsic apoptotic pathway with upregulation of key proteins, namely, cytochrome c, apoptosis protease-activating factor-1, and the caspase-independent protein apoptosis-inducing factor, whereas BH3-interacting domain death agonist and the anti-apoptotic protein B-cell lymphoma-2 are downregulated. These results coincide with an upregulation of caspase-3 activity and marked neurodegeneration. However, single treatment with TRP601 at the beginning of hyperoxia reversed the detrimental effects in this model. Hyperoxia-mediated neurodegeneration is supported by intrinsic apoptosis, suggesting that the development of highly selective caspase inhibitors will represent a potential useful therapeutic strategy in prematurely born infants.
PMCID: PMC3270267  PMID: 22237207
caspase inhibitor; neonatal cell death; brain damage; hyperoxia; neuroprotection
9.  HDAC inhibition combined with behavioral therapy enhances learning and memory following traumatic brain injury 
Neuroscience  2009;163(1):1-8.
Traumatic brain injury (TBI) induces a number of pathological events ranging from neuronal degeneration and tissue loss to impaired neuronal plasticity and neurochemical dysregulation. In rodents, exposure of brain injured animals to environmental enrichment has been shown to be an effective means of enhancing learning and memory post-injury. Recently, it has been discovered that environmental enrichment may enhance neuronal plasticity through epigenetic changes that involve enhanced histone acetylation, a property that can be mimicked by the use of histone deactylase (HDAC) inhibitors. We therefore evaluated the consequences of the HDAC inhibitor sodium butyrate on the learning and memory of brain injured mice. In contrast to a previous report using a mouse neurodegeneration model, sodium butyrate (1.2g/kg daily for four weeks) did not improve learning and memory when tested after the completion of the drug treatment paradigm. In addition, sodium butyrate administration during the reported period of neurodegeneration (days 0–5) also offered no benefit. However, when administered concurrently with training in the Morris water maze task (beginning on day 14 post-injury), sodium butyrate improved learning and memory in brain injured mice. Interestingly, when these mice were subsequently tested in an associative fear conditioning task, a continued improvement was observed. Taken together, our findings indicate that HDAC inhibition may mimic some of the cognitive improvements seen following enriched environment exposure, and that the improvement is observed when the treatment is carried out current with behavioral testing.
PMCID: PMC4217276  PMID: 19531374
traumatic brain injury; HDAC; Morris water maze; hippocampus; delay fear conditioning
10.  Oxidative tissue injury in multiple sclerosis is only partly reflected in experimental disease models 
Acta neuropathologica  2014;128(2):247-266.
Recent data suggest that oxidative injury may play an important role in demyelination and neurodegeneration in multiple sclerosis (MS). We compared the extent of oxidative injury in MS lesions with that in experimental models driven by different inflammatory mechanisms. It was only in a model of coronavirus-induced demyelinating encephalomyelitis that we detected an accumulation of oxidised phospholipids, which was comparable in extent to that in MS. In both, MS and coronavirus-induced encephalomyelitis, this was associated with massive microglial and macrophage activation, accompanied by the expression of the NADPH oxidase subunit p22phox but only sparse expression of inducible nitric oxide synthase (iNOS). Acute and chronic CD4+ T cell-mediated experimental autoimmune encephalomyelitis lesions showed transient expression of p22phox and iNOS associated with inflammation. Macrophages in chronic lesions of antibody-mediated demyelinating encephalomyelitis showed lysosomal activity but very little p22phox or iNOS expressions. Active inflammatory demyelinating lesions induced by CD8+ T cells or by innate immunity showed macrophage and microglial activation together with the expression of p22phox, but low or absent iNOS reactivity. We corroborated the differences between acute CD4+ T cell-mediated experimental autoimmune encephalomyelitis and acute MS lesions via gene expression studies. Furthermore, age-dependent iron accumulation and lesion-associated iron liberation, as occurring in the human brain, were only minor in rodent brains. Our study shows that oxidative injury and its triggering mechanisms diverge in different models of rodent central nervous system inflammation. The amplification of oxidative injury, which has been suggested in MS, is only reflected to a limited degree in the studied rodent models.
PMCID: PMC4102830  PMID: 24622774
Multiple sclerosis; Experimental autoimmune encephalomyelitis (EAE); Oxidative injury; NADPH oxidase; Inducible nitric oxide synthase (iNOS); Iron
11.  Oxidative tissue injury in multiple sclerosis is only partly reflected in experimental disease models 
Acta Neuropathologica  2014;128(2):247-266.
Recent data suggest that oxidative injury may play an important role in demyelination and neurodegeneration in multiple sclerosis (MS). We compared the extent of oxidative injury in MS lesions with that in experimental models driven by different inflammatory mechanisms. It was only in a model of coronavirus-induced demyelinating encephalomyelitis that we detected an accumulation of oxidised phospholipids, which was comparable in extent to that in MS. In both, MS and coronavirus-induced encephalomyelitis, this was associated with massive microglial and macrophage activation, accompanied by the expression of the NADPH oxidase subunit p22phox but only sparse expression of inducible nitric oxide synthase (iNOS). Acute and chronic CD4+ T cell-mediated experimental autoimmune encephalomyelitis lesions showed transient expression of p22phox and iNOS associated with inflammation. Macrophages in chronic lesions of antibody-mediated demyelinating encephalomyelitis showed lysosomal activity but very little p22phox or iNOS expressions. Active inflammatory demyelinating lesions induced by CD8+ T cells or by innate immunity showed macrophage and microglial activation together with the expression of p22phox, but low or absent iNOS reactivity. We corroborated the differences between acute CD4+ T cell-mediated experimental autoimmune encephalomyelitis and acute MS lesions via gene expression studies. Furthermore, age-dependent iron accumulation and lesion-associated iron liberation, as occurring in the human brain, were only minor in rodent brains. Our study shows that oxidative injury and its triggering mechanisms diverge in different models of rodent central nervous system inflammation. The amplification of oxidative injury, which has been suggested in MS, is only reflected to a limited degree in the studied rodent models.
Electronic supplementary material
The online version of this article (doi:10.1007/s00401-014-1263-5) contains supplementary material, which is available to authorized users.
PMCID: PMC4102830  PMID: 24622774
Multiple sclerosis; Experimental autoimmune encephalomyelitis (EAE); Oxidative injury; NADPH oxidase; Inducible nitric oxide synthase (iNOS); Iron
12.  Prion Pathogenesis Is Faithfully Reproduced in Cerebellar Organotypic Slice Cultures 
PLoS Pathogens  2012;8(11):e1002985.
Prions cause neurodegeneration in vivo, yet prion-infected cultured cells do not show cytotoxicity. This has hampered mechanistic studies of prion-induced neurodegeneration. Here we report that prion-infected cultured organotypic cerebellar slices (COCS) experienced progressive spongiform neurodegeneration closely reproducing prion disease, with three different prion strains giving rise to three distinct patterns of prion protein deposition. Neurodegeneration did not occur when PrP was genetically removed from neurons, and a comprehensive pharmacological screen indicated that neurodegeneration was abrogated by compounds known to antagonize prion replication. Prion infection of COCS and mice led to enhanced fodrin cleavage, suggesting the involvement of calpains or caspases in pathogenesis. Accordingly, neurotoxicity and fodrin cleavage were prevented by calpain inhibitors but not by caspase inhibitors, whereas prion replication proceeded unimpeded. Hence calpain inhibition can uncouple prion replication from its neurotoxic sequelae. These data validate COCS as a powerful model system that faithfully reproduces most morphological hallmarks of prion infections. The exquisite accessibility of COCS to pharmacological manipulations was instrumental in recognizing the role of calpains in neurotoxicity, and significantly extends the collection of tools necessary for rigorously dissecting prion pathogenesis.
Author Summary
Transmissible spongiform encephalopathies (TSEs) are a group of fatal protein misfolding diseases causing neurodegeneration in vivo. TSEs are unique in that the infectious agent termed ‘prion’ consists of a misfolded protein lacking sequence specific nucleic acids. Prion-infected cultured cells do not develop visible pathological changes, and this has hampered mechanistic studies of prion-induced neurodegeneration. Here, we have developed a prion-induced neurodegeneration model that uses cultured slices of living brain tissue. Such slices display all the classical hallmark of prion disease, namely prion replication, inflammation, spongiform changes and neurodegeneration. Neurotoxicity is blocked by anti-prion drugs by reducing prion replication. We demonstrate for the first time an involvement of calcium-regulated cysteine proteases called calpains in driving neurotoxicity. We find that the proteolytic processing of the calpain substrate is induced by prion infection and blocked by calpain inhibitors without prion replication being affected. The assay system developed here allows for precise dissection of the mechanisms of prion-induced degeneration with pharmacological means.
PMCID: PMC3486912  PMID: 23133383
13.  A Transient Decrease in Spleen Size Following Stroke Corresponds to Splenocyte Release into Systemic Circulation 
The splenic response to stroke is a proinflammatory reaction to ischemic injury resulting in expanded neurodegeneration. Splenectomy reduces neural injury in rodent models of hemorrhagic and ischemic stroke, however the exact nature of this response has yet to be fully understood. This study examines the migration of splenocytes after brain ischemia utilizing carboxyfluorescein diacetate succinimidyl ester (CFSE) to label them in vivo. The spleen was found to significantly decrease in size from 24 to 48 h following middle cerebral artery occlusion (MCAO) in rats compared to sham operated controls. By 96 h post-MCAO the spleen size returned to levels not different from sham operated rats. To track splenocyte migration following MCAO, spleens were injected with CFSE to label cells. CFSE positive cell numbers were significantly reduced in the 48 h MCAO group versus 48 h sham and CFSE labeled cells were equivalent in 96 h MCAO and sham groups. A significant increase of labeled lymphocyte, monocytes, and neutrophils was detected in the blood at 48 h post-MCAO when compared to the other groups. CFSE labeled cells migrated to the brain following MCAO but appear to remain within the vasculature. These cells were identified as natural killer cells (NK) and monocytes at 48 h and at 96 h post-MCAO NK cells, T cells and monocytes. After ischemic injury, splenocytes enter into systemic circulation and migrate to the brain exacerbating neurodegeneration.
PMCID: PMC3518577  PMID: 23054371
14.  G9a-Mediated Histone Methylation Regulates Ethanol-Induced Neurodegeneration in the Neonatal Mouse Brain 
Neurobiology of disease  2013;54:475-485.
Rodent exposure to binge-like ethanol during postnatal day 7 (P7), which is comparable to the third trimester of human pregnancy, induces neuronal cell loss. However, the molecular mechanisms underlying these neuronal losses are still poorly understood. Here, we tested the possibility of histone methylation mediated by G9a (lysine dimethyltransferase) in regulating neuronal apoptosis in P7 mice exposed to ethanol. G9a protein expression, which is higher during embryogenesis and synaptogenic period compared to adult brain, is entirely confined to the cell nuclei in the developing brain. We found that ethanol treatment at P7, which induces apoptotic neurodegeneration in neonatal mice, enhanced G9a activity followed by increased histone H3 lysine 9 (H3K9me2) and 27 (H3K27me2) dimethylation. In addition, it appears that increased dimethylation of H3K9 makes it susceptible to proteolytic degradation by caspase-3 in conditions in which ethanol induces neurodegeneration. Further, pharmacological inhibition of G9a activity prior to ethanol treatment at P7 normalized H3K9me2, H3K27me2 and total H3 proteins to basal levels and prevented neurodegeneration in neonatal mice. Together, these data demonstrate that G9a mediated histone H3K9 and K27 dimethylation critically regulates ethanol-induced neurodegeneration in the developing brain. Furthermore, these findings reveal a novel link between G9a and neurodegeneration in the developing brain exposed to postnatal ethanol and may have a role in fetal alcohol spectrum disorders.
PMCID: PMC3656439  PMID: 23396011
Developing brain; Fetal alcohol syndrome; Methyltransferase; Neuronal loss; Bix
15.  Rodent models for HIV-associated neurocognitive disorders 
Trends in Neurosciences  2012;35(3):197-208.
Human immunodeficiency virus (HIV)-associated neurocognitive disorders (HAND) reflect the spectrum of neural impairments seen during chronic viral infection. Current research efforts focus on improving antiretroviral and adjunctive therapies, defining disease onset and progression, facilitating drug delivery, and halting neurodegeneration and viral resistance. As HIV is species-specific, generating disease in small animal models has proved challenging. After two decades of research, rodent HAND models now include those containing a human immune system. Antiviral responses, neuroinflammation and immunocyte blood-brain barrier (BBB) trafficking follow HIV infection in these rodent models. Here, we review these and other rodent models of HAND and discuss their unmet potential in reflecting human pathobiology and in facilitating disease monitoring and therapeutic discoveries.
PMCID: PMC3294256  PMID: 22305769
human immunodeficiency virus type one; rodent model; neuroinflammation; cognitive impairment; HIV-associated neurocognitive disorders
16.  Chronic Wasting Disease in Bank Voles: Characterisation of the Shortest Incubation Time Model for Prion Diseases 
PLoS Pathogens  2013;9(3):e1003219.
In order to assess the susceptibility of bank voles to chronic wasting disease (CWD), we inoculated voles carrying isoleucine or methionine at codon 109 (Bv109I and Bv109M, respectively) with CWD isolates from elk, mule deer and white-tailed deer. Efficient transmission rate (100%) was observed with mean survival times ranging from 156 to 281 days post inoculation. Subsequent passages in Bv109I allowed us to isolate from all CWD sources the same vole-adapted CWD strain (Bv109ICWD), typified by unprecedented short incubation times of 25–28 days and survival times of ∼35 days. Neuropathological and molecular characterisation of Bv109ICWD showed that the classical features of mammalian prion diseases were all recapitulated in less than one month after intracerebral inoculation. Bv109ICWD was characterised by a mild and discrete distribution of spongiosis and relatively low levels of protease-resistant PrPSc (PrPres) in the same brain regions. Despite the low PrPres levels and the short time lapse available for its accumulation, end-point titration revealed that brains from terminally-ill voles contained up to 108,4 i.c. ID50 infectious units per gram. Bv109ICWD was efficiently replicated by protein misfolding cyclic amplification (PMCA) and the infectivity faithfully generated in vitro, as demonstrated by the preservation of the peculiar Bv109ICWD strain features on re-isolation in Bv109I. Overall, we provide evidence that the same CWD strain was isolated in Bv109I from the three-cervid species. Bv109ICWD showed unique characteristics of “virulence”, low PrPres accumulation and high infectivity, thus providing exceptional opportunities to improve basic knowledge of the relationship between PrPSc, neurodegeneration and infectivity.
Author Summary
Chronic wasting disease (CWD) is a prion disease that affects free-ranging and captive cervids and is expanding increasingly in the USA and Canada. Animal models are of key importance in the study of prion diseases but their development for CWD has long been hampered by its very inefficient transmission to wild-type mice. Significant progress was made following the generation of transgenic mice over-expressing cervid PrP. Here we show that the bank vole (Myodes glareolus), a wild rodent species that we demonstrated to be susceptible to many animal and human prion diseases, is also very susceptible to CWD from elk, mule deer and white-tailed deer. Adaptation of CWD to bank vole led to the isolation of a prion strain with peculiar characteristics: unprecedented short incubation and survival times, respectively of 25–28 and ∼35 days, low PrPSc levels compared with other vole-adapted prion strains and high infectious titre. These features were all faithfully maintained upon the generation of this strain in vitro by protein misfolding cyclic amplification. The development of a model for prion diseases that led to disease in less than one month accumulating high infectious titres but low PrPSc levels, represents a significant tool for investigating the still unclear relationship between PrPSc, neurodegeneration and infectivity in prion diseases.
PMCID: PMC3591354  PMID: 23505374
17.  Kainic Acid-Induced Neurotoxicity: Targeting Glial Responses and Glia-Derived Cytokines 
Current Neuropharmacology  2011;9(2):388-398.
Glutamate excitotoxicity contributes to a variety of disorders in the central nervous system, which is triggered primarily by excessive Ca2+ influx arising from overstimulation of glutamate receptors, followed by disintegration of the endoplasmic reticulum (ER) membrane and ER stress, the generation and detoxification of reactive oxygen species as well as mitochondrial dysfunction, leading to neuronal apoptosis and necrosis. Kainic acid (KA), a potent agonist to the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)/kainate class of glutamate receptors, is 30-fold more potent in neuro-toxicity than glutamate. In rodents, KA injection resulted in recurrent seizures, behavioral changes and subsequent degeneration of selective populations of neurons in the brain, which has been widely used as a model to study the mechanisms of neurodegenerative pathways induced by excitatory neurotransmitter. Microglial activation and astrocytes proliferation are the other characteristics of KA-induced neurodegeneration. The cytokines and other inflammatory molecules secreted by activated glia cells can modify the outcome of disease progression. Thus, anti-oxidant and anti-inflammatory treatment could attenuate or prevent KA-induced neurodegeneration. In this review, we summarized updated experimental data with regard to the KA-induced neurotoxicity in the brain and emphasized glial responses and glia-oriented cytokines, tumor necrosis factor-α, interleukin (IL)-1, IL-12 and IL-18.
PMCID: PMC3131729  PMID: 22131947
Kainic acid; excitotoxicity; microglia; astrocytes; cytokines.
18.  Experimental Models of Status Epilepticus and Neuronal Injury for Evaluation of Therapeutic Interventions 
This article describes current experimental models of status epilepticus (SE) and neuronal injury for use in the screening of new therapeutic agents. Epilepsy is a common neurological disorder characterized by recurrent unprovoked seizures. SE is an emergency condition associated with continuous seizures lasting more than 30 min. It causes significant mortality and morbidity. SE can cause devastating damage to the brain leading to cognitive impairment and increased risk of epilepsy. Benzodiazepines are the first-line drugs for the treatment of SE, however, many people exhibit partial or complete resistance due to a breakdown of GABA inhibition. Therefore, new drugs with neuroprotective effects against the SE-induced neuronal injury and degeneration are desirable. Animal models are used to study the pathophysiology of SE and for the discovery of newer anticonvulsants. In SE paradigms, seizures are induced in rodents by chemical agents or by electrical stimulation of brain structures. Electrical stimulation includes perforant path and self-sustaining stimulation models. Pharmacological models include kainic acid, pilocarpine, flurothyl, organophosphates and other convulsants that induce SE in rodents. Neuronal injury occurs within the initial SE episode, and animals exhibit cognitive dysfunction and spontaneous seizures several weeks after this precipitating event. Current SE models have potential applications but have some limitations. In general, the experimental SE model should be analogous to the human seizure state and it should share very similar neuropathological mechanisms. The pilocarpine and diisopropylfluorophosphate models are associated with prolonged, diazepam-insensitive seizures and neurodegeneration and therefore represent paradigms of refractory SE. Novel mechanism-based or clinically relevant models are essential to identify new therapies for SE and neuroprotective interventions.
PMCID: PMC3794781  PMID: 24013377
perforant stimulation; pilocarpine; kainic acid; epilepsy; seizure; DFP; neurodegeneration
19.  Chemokines and Neurodegeneration in the Early Stage of Experimental Ischemic Stroke 
Mediators of Inflammation  2013;2013:727189.
Neurodegeneration is a hallmark of most of the central nervous system (CNS) disorders including stroke. Recently inflammation has been implicated in pathogenesis of neurodegeneration and neurodegenerative diseases. The aim of this study was analysis of expression of several inflammatory markers and its correlation with development of neurodegeneration during the early stage of experimental stroke. Ischemic stroke model was induced by stereotaxic intracerebral injection of vasoconstricting agent endothelin-1 (ET-1). It was observed that neurodegeneration appears very early in that model and correlates well with migration of inflammatory lymphocytes and macrophages to the brain. Although the expression of several studied chemotactic cytokines (chemokines) was significantly increased at the early phase of ET-1 induced stroke model, no clear correlation of this expression with neurodegeneration was observed. These data may indicate that chemokines do not induce neurodegeneration directly. Upregulated in the ischemic brain chemokines may be a potential target for future therapies reducing inflammatory cell migration to the brain in early stroke. Inhibition of inflammatory cell accumulation in the brain at the early stage of stroke may lead to amelioration of ischemic neurodegeneration.
PMCID: PMC3844257  PMID: 24324296
20.  Chronic ethanol increases systemic TLR3 agonist-induced neuroinflammation and neurodegeneration 
Increasing evidence links systemic inflammation to neuroinflammation and neurodegeneration. We previously found that systemic endotoxin, a TLR4 agonist or TNFα, increased blood TNFα that entered the brain activating microglia and persistent neuroinflammation. Further, we found that models of ethanol binge drinking sensitized blood and brain proinflammatory responses. We hypothesized that blood cytokines contribute to the magnitude of neuroinflammation and that ethanol primes proinflammatory responses. Here, we investigate the effects of chronic ethanol on neuroinflammation and neurodegeneration triggered by toll-like receptor 3 (TLR3) agonist poly I:C.
Polyinosine-polycytidylic acid (poly I:C) was used to induce inflammatory responses when sensitized with D-galactosamine (D-GalN). Male C57BL/6 mice were treated with water or ethanol (5 g/kg/day, i.g., 10 days) or poly I:C (250 μg/kg, i.p.) alone or sequentially 24 hours after ethanol exposure. Cytokines, chemokines, microglial morphology, NADPH oxidase (NOX), reactive oxygen species (ROS), high-mobility group box 1 (HMGB1), TLR3 and cell death markers were examined using real-time PCR, ELISA, immunohistochemistry and hydroethidine histochemistry.
Poly I:C increased blood and brain TNFα that peaked at three hours. Blood levels returned within one day, whereas brain levels remained elevated for at least three days. Escalating blood and brain proinflammatory responses were found with ethanol, poly I:C, and ethanol-poly I:C treatment. Ethanol pretreatment potentiated poly I:C-induced brain TNFα (345%), IL-1β (331%), IL-6 (255%), and MCP-1(190%). Increased levels of brain cytokines coincided with increased microglial activation, NOX gp91phox, superoxide and markers of neurodegeneration (activated caspase-3 and Fluoro-Jade B). Ethanol potentiation of poly I:C was associated with ethanol-increased expression of TLR3 and endogenous agonist HMGB1 in the brain. Minocycline and naltrexone blocked microglial activation and neurodegeneration.
Chronic ethanol potentiates poly I:C blood and brain proinflammatory responses. Poly I:C neuroinflammation persists after systemic responses subside. Increases in blood TNFα, IL-1β, IL-6, and MCP-1 parallel brain responses consistent with blood cytokines contributing to the magnitude of neuroinflammation. Ethanol potentiation of TLR3 agonist responses is consistent with priming microglia-monocytes and increased NOX, ROS, HMGB1-TLR3 and markers of neurodegeneration. These studies indicate that TLR3 agonists increase blood cytokines that contribute to neurodegeneration and that ethanol binge drinking potentiates these responses.
PMCID: PMC3412752  PMID: 22709825
Alcohol; toll-like receptor 3; oxidative stress; NADPH oxidase; neurodegeneration
21.  Combining Comparative Proteomics and Molecular Genetics Uncovers Regulators of Synaptic and Axonal Stability and Degeneration In Vivo 
PLoS Genetics  2012;8(8):e1002936.
Degeneration of synaptic and axonal compartments of neurons is an early event contributing to the pathogenesis of many neurodegenerative diseases, but the underlying molecular mechanisms remain unclear. Here, we demonstrate the effectiveness of a novel “top-down” approach for identifying proteins and functional pathways regulating neurodegeneration in distal compartments of neurons. A series of comparative quantitative proteomic screens on synapse-enriched fractions isolated from the mouse brain following injury identified dynamic perturbations occurring within the proteome during both initiation and onset phases of degeneration. In silico analyses highlighted significant clustering of proteins contributing to functional pathways regulating synaptic transmission and neurite development. Molecular markers of degeneration were conserved in injury and disease, with comparable responses observed in synapse-enriched fractions isolated from mouse models of Huntington's disease (HD) and spinocerebellar ataxia type 5. An initial screen targeting thirteen degeneration-associated proteins using mutant Drosophila lines revealed six potential regulators of synaptic and axonal degeneration in vivo. Mutations in CALB2, ROCK2, DNAJC5/CSP, and HIBCH partially delayed injury-induced neurodegeneration. Conversely, mutations in DNAJC6 and ALDHA1 led to spontaneous degeneration of distal axons and synapses. A more detailed genetic analysis of DNAJC5/CSP mutants confirmed that loss of DNAJC5/CSP was neuroprotective, robustly delaying degeneration in axonal and synaptic compartments. Our study has identified conserved molecular responses occurring within synapse-enriched fractions of the mouse brain during the early stages of neurodegeneration, focused on functional networks modulating synaptic transmission and incorporating molecular chaperones, cytoskeletal modifiers, and calcium-binding proteins. We propose that the proteins and functional pathways identified in the current study represent attractive targets for developing therapeutics aimed at modulating synaptic and axonal stability and neurodegeneration in vivo.
Author Summary
In diseases affecting the nervous system, such as Alzheimer's disease and motor neuron disease, the breakdown of synaptic connections between neurons is a critical early event, contributing to disease onset and progression. However, we still know very little about the molecular machinery present in synaptic and axonal compartments of neurons that regulate their stability and cause breakdown during neurodegeneration. In this study we examined the protein composition of healthy and degenerating synapse-enriched fractions isolated from the brains of mice in order to identify early molecular changes occurring during neurodegeneration. We identified a range of proteins and cellular pathways that were modulated in synapse-enriched fractions during the early phases of degeneration, many of which were already known to regulate synaptic function. Similar molecular alterations were found in synapse-enriched fractions prepared from mouse models of Huntington's disease (HD) and spinocerebellar ataxia type 5. Data from these proteomic studies were then used to design experiments in Drosophila, in which we found that at least six of the individual proteins modified in degenerating synapses from mice were capable of independently regulating neuronal stability and degeneration in vivo. Designing novel therapeutics to target these proteins and pathways may help to delay or prevent neurodegeneration across a range of diseases.
PMCID: PMC3431337  PMID: 22952455
22.  Evaluation of Serotonin 5-HT1A Receptors in Rodent Models using [18F]Mefway PET¶ 
Synapse (New York, N.Y.)  2013;67(9):596-608.
Serotonin 5-HT1A receptors have been investigated in various CNS disorders, including epilepsy, mood disorders and neurodegeneration. [18F]Mefway (N-{2-[4-(2'-methoxyphenyl)piperazinyl]ethyl}-N-(2-pyridyl)-N-(cis/trans-4'-[18F]fluoromethylcyclohexane)-carboxamide) has been developed as a suitable positron emission tomography (PET) imaging agent for these receptors. We have now evaluated the suitability of [18F]trans-mefway in rat and mouse models using PET and computerized tomography (CT) imaging and corroborated with ex vivo and in vitro autoradiographic studies.
Normal Sprague-Dawley rats and Balb/C mice were used for PET/CT imaging using intravenously injected [18F]trans-mefway. Brain PET data were coregistered with rat and mouse magnetic resonance (MR) imaging template and regional distribution of radioactivity was quantitated. Select animals were used for ex vivo autoradiographic studies in order to confirm regional brain distribution and quantitative measures of binding, using brain region to cerebellum ratios. Binding affinity of trans-mefway and WAY-100635 was measured in rat brain homogenates. Distribution of [18F]trans-4-fluoromethylcyclohexane carboxylate ([18F]FMCHA), a major metabolite of [18F] trans-mefway, was assessed in the rat by PET/CT.
The inhibition constant, Ki for trans-mefway was 0.84 nM and that for WAY-100635 was 1.07 nM. Rapid brain uptake of [18F]trans-mefway was observed in all rat brain regions and clearance from cerebellum was fast and was used as a reference region in all studies. Distribution of [18F]trans-mefway in various brain regions was consistent in PET and in vitro studies. The dorsal raphe was visualized and quantified in the rat PET but identification in the mouse was difficult. The rank order of binding to the various brain regions was hippocampus>frontal cortex>anterior cingulate cortex>lateral septal nuclei>dorsal raphe nuclei.
[18F]trans-Mefway appears to be an effective 5-HT1A receptor imaging agent in rodents for studies of various disease models.
PMCID: PMC3744326  PMID: 23504990
Mefway; MicroPET; Serotonin; 5-HT1A receptors; WAY-100635
23.  Parkinson's disease-linked mutations in VPS35 induce dopaminergic neurodegeneration 
Human Molecular Genetics  2014;23(17):4621-4638.
Mutations in the vacuolar protein sorting 35 homolog (VPS35) gene at the PARK17 locus, encoding a key component of the retromer complex, were recently identified as a new cause of late-onset, autosomal dominant Parkinson's disease (PD). Here we explore the pathogenic consequences of PD-associated mutations in VPS35 using a number of model systems. VPS35 exhibits a broad neuronal distribution throughout the rodent brain, including within the nigrostriatal dopaminergic pathway. In the human brain, VPS35 protein levels and distribution are similar in tissues from control and PD subjects, and VPS35 is not associated with Lewy body pathology. The common D620N missense mutation in VPS35 does not compromise its protein stability or localization to endosomal and lysosomal vesicles, or the vesicular sorting of the retromer cargo, sortilin, SorLA and cation-independent mannose 6-phosphate receptor, in rodent primary neurons or patient-derived human fibroblasts. In yeast we show that PD-linked VPS35 mutations are functional and can normally complement VPS35 null phenotypes suggesting that they do not result in a loss-of-function. In rat primary cortical cultures the overexpression of human VPS35 induces neuronal cell death and increases neuronal vulnerability to PD-relevant cellular stress. In a novel viral-mediated gene transfer rat model, the expression of D620N VPS35 induces the marked degeneration of substantia nigra dopaminergic neurons and axonal pathology, a cardinal pathological hallmark of PD. Collectively, these studies establish that dominant VPS35 mutations lead to neurodegeneration in PD consistent with a gain-of-function mechanism, and support a key role for VPS35 in the development of PD.
PMCID: PMC4119414  PMID: 24740878
24.  Serial PIB and MRI in normal, mild cognitive impairment and Alzheimer's disease: implications for sequence of pathological events in Alzheimer's disease 
Brain  2009;132(5):1355-1365.
The purpose of this study was to use serial imaging to gain insight into the sequence of pathologic events in Alzheimer's disease, and the clinical features associated with this sequence. We measured change in amyloid deposition over time using serial 11C Pittsburgh compound B (PIB) positron emission tomography and progression of neurodegeneration using serial structural magnetic resonance imaging. We studied 21 healthy cognitively normal subjects, 32 with amnestic mild cognitive impairment and 8 with Alzheimer's disease. Subjects were drawn from two sources—ongoing longitudinal registries at Mayo Clinic, and the Alzheimer's disease Neuroimaging Initiative (ADNI). All subjects underwent clinical assessments, MRI and PIB studies at two time points, approximately one year apart. PIB retention was quantified in global cortical to cerebellar ratio units and brain atrophy in units of cm3 by measuring ventricular expansion. The annual change in global PIB retention did not differ by clinical group (P = 0.90), and although small (median 0.042 ratio units/year overall) was greater than zero among all subjects (P < 0.001). Ventricular expansion rates differed by clinical group (P < 0.001) and increased in the following order: cognitively normal (1.3 cm3/year) <  amnestic mild cognitive impairment (2.5 cm3/year) <  Alzheimer's disease (7.7 cm3/year). Among all subjects there was no correlation between PIB change and concurrent change on CDR-SB (r = −0.01, P = 0.97) but some evidence of a weak correlation with MMSE (r =−0.22, P = 0.09). In contrast, greater rates of ventricular expansion were clearly correlated with worsening concurrent change on CDR-SB (r = 0.42, P < 0.01) and MMSE (r =−0.52, P < 0.01). Our data are consistent with a model of typical late onset Alzheimer's disease that has two main features: (i) dissociation between the rate of amyloid deposition and the rate of neurodegeneration late in life, with amyloid deposition proceeding at a constant slow rate while neurodegeneration accelerates and (ii) clinical symptoms are coupled to neurodegeneration not amyloid deposition. Significant plaque deposition occurs prior to clinical decline. The presence of brain amyloidosis alone is not sufficient to produce cognitive decline, rather, the neurodegenerative component of Alzheimer's disease pathology is the direct substrate of cognitive impairment and the rate of cognitive decline is driven by the rate of neurodegeneration. Neurodegeneration (atrophy on MRI) both precedes and parallels cognitive decline. This model implies a complimentary role for MRI and PIB imaging in Alzheimer's disease, with each reflecting one of the major pathologies, amyloid dysmetabolism and neurodegeneration.
PMCID: PMC2677798  PMID: 19339253
Alzheimer's disease; amyloid imaging; magnetic resonance imaging, longitudinal imaging; mild cognitive impairment; Pittsburgh compound B
25.  Towards a transgenic model of Huntington's disease in a non-human primate 
Nature  2008;453(7197):921-924.
Non-human primates are valuable for modelling human disorders and for developing therapeutic strategies; however, little work has been reported in establishing transgenic non-human primate models of human diseases. Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder characterized by motor impairment, cognitive deterioration and psychiatric disturbances followed by death within 10-15 years of the onset of the symptoms1-4. HD is caused by the expansion of cytosineadenine-guanine (CAG, translated into glutamine) trinucleotide repeats in the first exon of the human huntingtin (HTT) gene5. Mutant HTT with expanded polyglutamine (polyQ) is widely expressed in the brain and peripheral tissues2,6, but causes selective neurodegeneration that is most prominent in the striatum and cortex of the brain. Although rodent models of HD have been developed, these models do not satisfactorily parallel the brain changes and behavioural features observed in HD patients. Because of the close physiological7, neurological and genetic similarities8,9 between humans and higher primates, monkeys can serve as very useful models for understanding human physiology and diseases10,11. Here we report our progress in developing a transgenic model of HD in a rhesus macaque that expresses polyglutamine-expanded HTT. Hallmark features of HD, including nuclear inclusions and neuropil aggregates, were observed in the brains of the HD transgenic monkeys. Additionally, the transgenic monkeys showed important clinical features of HD, including dystonia and chorea. A transgenic HD monkey model may open the way to understanding the underlying biology of HD better, and to the development of potential therapies. Moreover, our data suggest that it will be feasible to generate valuable non-human primate models of HD and possibly other human genetic diseases.
PMCID: PMC2652570  PMID: 18488016

Results 1-25 (369988)