Search tips
Search criteria

Results 1-25 (634786)

Clipboard (0)

Related Articles

1.  Sequestration of Sup35 by Aggregates of huntingtin Fragments Causes Toxicity of [PSI+] Yeast* 
The Journal of Biological Chemistry  2012;287(28):23346-23355.
Background: Yeast have been used to study hungtingtin toxicity.
Results: Both HttQ103 and HttQP103 are toxic in yeast with [PSI+] prion. This toxicity is markedly rescued by a Sup35 fragment.
Conclusion: Sequestration of the essential protein, Sup35, contributes to Htt toxicity in yeast.
Significance: This research demonstrates the complex nature of Htt toxicity.
Expression of huntingtin fragments with 103 glutamines (HttQ103) is toxic in yeast containing either the [PIN+] prion, which is the amyloid form of Rnq1, or [PSI+] prion, which is the amyloid form of Sup35. We find that HttQP103, which has a polyproline region at the C-terminal end of the polyQ repeat region, is significantly more toxic in [PSI+] yeast than in [PIN+], even though HttQP103 formed multiple aggregates in both [PSI+] and [PIN+] yeast. This toxicity was only observed in the strong [PSI+] variant, not the weak [PSI+] variant, which has more soluble Sup35 present than the strong variant. Furthermore, expression of the MC domains of Sup35, which retains the C-terminal domain of Sup35, but lacks the N-terminal prion domain, almost completely rescued HttQP103 toxicity, but was less effective in rescuing HttQ103 toxicity. Therefore, the toxicity of HttQP103 in yeast containing the [PSI+] prion is primarily due to sequestration of the essential protein, Sup35.
PMCID: PMC3390612  PMID: 22573320
Huntington Disease; Prions; Protein Folding; Yeast; Yeast Physiology
2.  Polyglutamine Toxicity Is Controlled by Prion Composition and Gene Dosage in Yeast 
PLoS Genetics  2012;8(4):e1002634.
Polyglutamine expansion causes diseases in humans and other mammals. One example is Huntington's disease. Fragments of human huntingtin protein having an expanded polyglutamine stretch form aggregates and cause cytotoxicity in yeast cells bearing endogenous QN-rich proteins in the aggregated (prion) form. Attachment of the proline(P)-rich region targets polyglutamines to the large perinuclear deposit (aggresome). Aggresome formation ameliorates polyglutamine cytotoxicity in cells containing only the prion form of Rnq1 protein. Here we show that expanded polyglutamines both with (poly-QP) or without (poly-Q) a P-rich stretch remain toxic in the presence of the prion form of translation termination (release) factor Sup35 (eRF3). A Sup35 derivative that lacks the QN-rich domain and is unable to be incorporated into aggregates counteracts cytotoxicity, suggesting that toxicity is due to Sup35 sequestration. Increase in the levels of another release factor, Sup45 (eRF1), due to either disomy by chromosome II containing the SUP45 gene or to introduction of the SUP45-bearing plasmid counteracts poly-Q or poly-QP toxicity in the presence of the Sup35 prion. Protein analysis confirms that polyglutamines alter aggregation patterns of Sup35 and promote aggregation of Sup45, while excess Sup45 counteracts these effects. Our data show that one and the same mode of polyglutamine aggregation could be cytoprotective or cytotoxic, depending on the composition of other aggregates in a eukaryotic cell, and demonstrate that other aggregates expand the range of proteins that are susceptible to sequestration by polyglutamines.
Author Summary
Polyglutamine diseases, including Huntington disease, are associated with expansions of polyglutamine tracts, resulting in aggregation of respective proteins. The severity of Huntington disease is controlled by both DNA and non–DNA factors. Mechanisms of such a control are poorly understood. Polyglutamine may sequester other cellular proteins; however, different experimental models have pointed to different sequestered proteins. By using a yeast model, we demonstrate that the mechanism of polyglutamine toxicity is driven by the composition of other (endogenous) aggregates (for example, yeast prions) present in a eukaryotic cell. Although these aggregates do not necessarily cause significant toxicity on their own, they serve as mediators in protein sequestration and therefore determine which specific proteins are to be sequestered by polyglutamines. We also show that polyglutamine deposition into an aggresome, a perinuclear compartment thought to be cytoprotective, fails to ameliorate cytotoxicity in cells with certain compositions of pre-existing aggregates. Finally, we demonstrate that an increase in the dosage of a sequestered protein due to aneuploidy by a chromosome carrying a respective gene may rescue cytotoxicity. Our data shed light on genetic and epigenetic mechanisms modulating polyglutamine cytotoxicity and establish a new approach for identifying potential therapeutic targets through characterization of the endogenous aggregated proteins.
PMCID: PMC3334884  PMID: 22536159
3.  A Regulatory Role of the Rnq1 Nonprion Domain for Prion Propagation and Polyglutamine Aggregates▿ †  
Molecular and Cellular Biology  2008;28(10):3313-3323.
Prions are infectious, self-propagating protein conformations. Rnq1 is required for the yeast Saccharomyces cerevisiae prion [PIN+], which is necessary for the de novo induction of a second prion, [PSI+]. Here we isolated a [PSI+]-eliminating mutant, Rnq1Δ100, that deletes the nonprion domain of Rnq1. Rnq1Δ100 inhibits not only [PSI+] prion propagation but also [URE3] prion and huntingtin's polyglutamine aggregate propagation in a [PIN+] background but not in a [pin−] background. Rnq1Δ100, however, does not eliminate [PIN+]. These findings are interpreted as showing a possible involvement of the Rnq1 prion in the maintenance of heterologous prions and polyQ aggregates. Rnq1 and Rnq1Δ100 form a sodium dodecyl sulfate-stable and Sis1 (an Hsp40 chaperone protein)-containing coaggregate in [PIN+] cells. Importantly, Rnq1Δ100 is highly QN-rich and prone to self-aggregate or coaggregate with Rnq1 when coexpressed in [pin−] cells. However, the [pin−] Rnq1-Rnq1Δ100 coaggregate does not represent a prion-like aggregate. These findings suggest that [PIN+] Rnq1-Rnq1Δ100 aggregates interact with other transmissible and nontransmissible amyloids to destabilize them and that the nonprion domain of Rnq1 plays a crucial role in self-regulation of the highly reactive QN-rich prion domain of Rnq1.
PMCID: PMC2423166  PMID: 18332119
4.  Interdependence of amyloid formation in yeast 
Prion  2010;4(1):45-52.
In eukaryotic cells amyloid aggregates may incorporate various functionally unrelated proteins. In mammalian diseases this may cause amyloid toxicity, while in yeast this could contribute to prion phenotypes. Insolubility of amyloids in the presence of strong ionic detergents, such as SDS or sarcosyl, allows discrimination between amorphous and amyloid aggregates. Here, we used this property of amyloids to study the interdependence of their formation in yeast. We observed that SDS-resistant polymers of proteins with extended polyglutamine domains caused the appearance of SDS or sarcosyl-insoluble polymers of three tested chromosomally-encoded Q/N-rich proteins, Sup35, Rnq1 and Pub1. These polymers were non-heritable, since they could not propagate in the absence of polyglutamine polymers. Sup35 prion polymers caused the appearance of non-heritable sarcosyl-resistant polymers of Pub1. Since eukaryotic genomes encode hundreds of proteins with long Q/N-rich regions, polymer interdependence suggests that conversion of a single protein into polymer form may significantly affect cell physiology by causing partial transfer of other Q/N-rich proteins into a non-functional polymer state.
PMCID: PMC2850420  PMID: 20118659
amyloid; prion; [PSI+]; huntingtin; polyglutamine; Saccharomyces cerevisiae; Sup35/eRF3
5.  Disassociation of Histone Deacetylase-3 from Normal Huntingtin Underlies Mutant Huntingtin Neurotoxicity 
The Journal of Neuroscience  2013;33(29):11833-11838.
Huntington's disease (HD) is caused by a polyglutamine expansion within the huntingtin (Htt) protein. Both loss of function of normal Htt and gain of a toxic function by the polyglutamine-expanded mutant Htt protein have been proposed to be responsible for HD, although the molecular mechanisms involved are unclear. We show that Htt is a neuroprotective protein in both HD-related and unrelated model systems. Neuroprotection by Htt is mediated by its sequestration of histone deacetylase-3 (HDAC3), a protein known to promote neuronal death. In contrast to the normal Htt, mutant Htt interacts poorly with HDAC3. However, expression of mutant Htt liberates HDAC3 from Htt, thus de-repressing its neurotoxic activity. Indeed, mutant Htt neurotoxicity is inhibited by the knockdown of HDAC3 and markedly reduced in HDAC3-deficient neurons. A reduction in Htt–HDAC3 interaction is also seen in neurons exposed to other apoptotic stimuli and in the striatum of R6/2 HD mice. Our results suggest that the robust interaction between Htt and HDAC3 along with the ability of mutant Htt to disrupt this association while not itself interacting with HDAC3 provides an explanation for both the loss-of-function and gain-of-toxic-function mechanisms proposed for HD. Moreover, our results identify HDAC3 as an essential player in mutant Htt-induced neurodegeneration.
PMCID: PMC3713725  PMID: 23864673
6.  A genomic screen in yeast implicates kynurenine 3-monooxygenase as a therapeutic target for Huntington's disease 
Nature genetics  2005;37(5):526-531.
Huntington's disease (HD) is a fatal neurodegenerative disorder that is caused by an expansion of a polyglutamine (polyQ) tract in the protein huntingtin (Htt)1, which leads to its aggregation in nuclear and cytoplasmic inclusion bodies2. We recently reported the identification of 52 loss-of-function (LOF) mutations in yeast genes that enhance the toxicity of a mutant Htt fragment3. Here we report the results from a genome-wide LOF suppressor screen in which 28 gene deletions that suppress toxicity of a mutant Htt fragment were identified. The suppressors are known or predicted to play roles in vesicle transport, vacuolar degradation, transcription, and prion-like aggregation. Among the most potent suppressors identified was Bna4 (kynurenine 3-monooxygenase), an enzyme in the kynurenine pathway of tryptophan degradation that in humans has been linked directly to the pathophysiology of HD by a mechanism that may involve reactive oxygen species4. This finding suggests a conserved mechanism of polyQ toxicity from yeast to humans and identifies new candidate therapeutic targets for the treatment of HD.
PMCID: PMC1449881  PMID: 15806102
7.  Reciprocal Efficiency of RNQ1 and Polyglutamine Detoxification in the Cytosol and Nucleus 
Molecular Biology of the Cell  2009;20(19):4162-4173.
Onset of proteotoxicity is linked to change in the subcellular location of proteins that cause misfolding diseases. Yet, factors that drive changes in disease protein localization and the impact of residence in new surroundings on proteotoxicity are not entirely clear. To address these issues, we examined aspects of proteotoxicity caused by Rnq1-green fluorescent protein (GFP) and a huntingtin's protein exon-1 fragment with an expanded polyglutamine tract (Htt-103Q), which is dependent upon the intracellular presence of [RNQ+] prions. Increasing heat-shock protein 40 chaperone activity before Rnq1-GFP expression, shifted Rnq1-GFP aggregation from the cytosol to the nucleus. Assembly of Rnq1-GFP into benign amyloid-like aggregates was more efficient in the nucleus than cytosol and nuclear accumulation of Rnq1-GFP correlated with reduced toxicity. [RNQ+] prions were found to form stable complexes with Htt-103Q, and nuclear Rnq1-GFP aggregates were capable of sequestering Htt-103Q in the nucleus. On accumulation in the nucleus, conversion of Htt-103Q into SDS-resistant aggregates was dramatically reduced and Htt-103Q toxicity was exacerbated. Alterations in activity of molecular chaperones, the localization of intracellular interaction partners, or both can impact the cellular location of disease proteins. This, in turn, impacts proteotoxicity because the assembly of proteins to a benign state occurs with different efficiencies in the cytosol and nucleus.
PMCID: PMC2754930  PMID: 19656852
8.  Preferential accumulation of N-terminal mutant huntingtin in the nuclei of striatal neurons is regulated by phosphorylation 
Human Molecular Genetics  2011;20(7):1424-1437.
An expanded polyglutamine tract (>37 glutamines) in the N-terminal region of huntingtin (htt) causes htt to accumulate in the nucleus, leading to transcriptional dysregulation in Huntington disease (HD). In HD knock-in mice that express full-length mutant htt at the endogenous level, mutant htt preferentially accumulates in the nuclei of striatal neurons, which are affected most profoundly in HD. The mechanism underlying this preferential nuclear accumulation of mutant htt in striatal neurons remains unknown. Here, we report that serine 16 (S16) in htt is important for the generation of small N-terminal fragments that are able to accumulate in the nucleus and form aggregates. Phosphorylation of N-terminal S16 in htt promotes the nuclear accumulation of small N-terminal fragments and reduces the interaction of N-terminal htt with the nuclear pore complex protein Tpr. Mouse brain striatal tissues show increased S16 phosphorylation and a decreased association between mutant N-terminal htt and Tpr. These findings provide mechanistic insight into the nuclear accumulation of mutant htt and the selective neuropathology of HD, revealing potential therapeutic targets for treating this disease.
PMCID: PMC3049362  PMID: 21245084
9.  Huntington’s Disease: The Past, Present, and Future Search for Disease Modifiers 
Huntington’s disease (HD) is an autosomal dominant genetic disorder that specifically causes neurodegeneration of striatal neurons, resulting in a triad of symptoms that includes emotional, cognitive, and motor disturbances. The HD mutation causes a polyglutamine repeat expansion within the N-terminal of the huntingtin (Htt) protein. This expansion causes aggregate formation within the cytosol and nucleus due to the presence of misfolded mutant Htt, as well as altered interactions with Htt’s multiple binding partners, and changes in post-translational Htt modifications. The present review charts efforts toward a therapy that delays age of onset or slows symptom progression in patients affected by HD, as there is currently no effective treatment. Although silencing Htt expression appears promising as a disease modifying treatment, it should be attempted with caution in light of Htt’s essential roles in neural maintenance and development. Other therapeutic targets include those that boost aggregate dissolution, target excitotoxicity and metabolic issues, and supplement growth factors.
PMCID: PMC3670441  PMID: 23766742
Huntington’s disease; HD; Htt; huntingtin; polyQ; triplet repeat disorders; polyglutamine expansions; neurodegenerative disease; autosomal dominant; protein misfolding; excitotoxicity; small molecule therapies; loss of function; gain of function; developmental disorder; gene therapy; RNAi
10.  Pathogenic Polyglutamine Tracts Are Potent Inducers of Spontaneous Sup35 and Rnq1 Amyloidogenesis 
PLoS ONE  2010;5(3):e9642.
The glutamine/asparagine (Q/N)-rich yeast prion protein Sup35 has a low intrinsic propensity to spontaneously self-assemble into ordered, β-sheet-rich amyloid fibrils. In yeast cells, de novo formation of Sup35 aggregates is greatly facilitated by high protein concentrations and the presence of preformed Q/N-rich protein aggregates that template Sup35 polymerization. Here, we have investigated whether aggregation-promoting polyglutamine (polyQ) tracts can stimulate the de novo formation of ordered Sup35 protein aggregates in the absence of Q/N-rich yeast prions. Fusion proteins with polyQ tracts of different lengths were produced and their ability to spontaneously self-assemble into amlyloid structures was analyzed using in vitro and in vivo model systems. We found that Sup35 fusions with pathogenic (≥54 glutamines), as opposed to non-pathogenic (19 glutamines) polyQ tracts efficiently form seeding-competent protein aggregates. Strikingly, polyQ-mediated de novo assembly of Sup35 protein aggregates in yeast cells was independent of pre-existing Q/N-rich protein aggregates. This indicates that increasing the content of aggregation-promoting sequences enhances the tendency of Sup35 to spontaneously self-assemble into insoluble protein aggregates. A similar result was obtained when pathogenic polyQ tracts were linked to the yeast prion protein Rnq1, demonstrating that polyQ sequences are generic inducers of amyloidogenesis. In conclusion, long polyQ sequences are powerful molecular tools that allow the efficient production of seeding-competent amyloid structures.
PMCID: PMC2835767  PMID: 20224794
11.  Propagation of the [PIN+] prion by fragments of Rnq1 fused to GFP 
Current genetics  2007;51(5):309-319.
Prions are viewed as enigmatic infectious entities whose genetic properties are enciphered solely in an array of self-propagating protein aggregate conformations. Rnq1, a yeast protein with yet unknown function, forms a prion named [PIN+] for its ability to facilitate the de novo induction of another prion, [PSI+]. Here we investigate a set of RNQ1 truncations that were designed to cover major Rnq1 sequence elements similar to those important for the propagation of other yeast prions: a region rich in asparagines and glutamines and several types of oligopeptide repeats. Proteins encoded by these RNQ1 truncations were tested for their ability to (i) join (decorate) pre-existing [PIN+] aggregates made of wild-type Rnq1 and (ii) maintain the heritable aggregated state in the absence of wild-type RNQ1. While the possible involvement of particular sequence elements in the propagation of [PIN+] is discussed, the major result is that the efficiency of transmission of [PIN+] from wild-type Rnq1 to a fragment, decreased with the fragment’s length.
PMCID: PMC2597802  PMID: 17415568
Rnq1 [PIN+] yeast prion [PSI+] induction
12.  Cdk5 phosphorylation of huntingtin reduces its cleavage by caspases 
The Journal of Cell Biology  2005;169(4):647-656.
Huntington's disease (HD) is a neurodegenerative disorder caused by an expanded polyglutamine (polyQ) tract in the huntingtin (htt) protein. Mutant htt toxicity is exposed after htt cleavage by caspases and other proteases release NH2-terminal fragments containing the polyQ expansion. Here, we show htt interacts and colocalizes with cdk5 in cellular membrane fractions. Cdk5 phosphorylates htt at Ser434, and this phosphorylation reduces caspase-mediated htt cleavage at residue 513. Reduced mutant htt cleavage resulting from cdk5 phosphorylation attenuated aggregate formation and toxicity in cells expressing the NH2-terminal 588 amino acids (htt588) of mutant htt. Cdk5 activity is reduced in the brains of HD transgenic mice compared with controls. This result can be accounted for by the polyQ-expanded htt fragments reducing the interaction between cdk5 and its activator p35. These data predict that the ability of cdk5 phosphorylation to protect against htt cleavage, aggregation, and toxicity is compromised in cells expressing toxic fragments of htt.
PMCID: PMC2171695  PMID: 15911879
13.  Appearance and Propagation of Polyglutamine-based Amyloids in Yeast 
The Journal of Biological Chemistry  2008;283(22):15185-15192.
In yeast, fragmentation of amyloid polymers by the Hsp104 chaperone allows them to propagate as prions. The prion-forming domain of the yeast Sup35 protein is rich in glutamine, asparagine, tyrosine, and glycine residues, which may define its prion properties. Long polyglutamine stretches can also drive amyloid polymerization in yeast, but these polymers are unable to propagate because of poor fragmentation and exist through constant seeding with the Rnq1 prion polymers. We proposed that fragmentation of polyglutamine amyloids may be improved by incorporation of hydrophobic amino acid residues into polyglutamine stretches. To investigate this, we constructed sets of polyglutamine with or without tyrosine stretches fused to the non-prion domains of Sup35. Polymerization of these chimeras started rapidly, and its efficiency increased with stretch size. Polymerization of proteins with polyglutamine stretches shorter than 70 residues required Rnq1 prion seeds. Proteins with longer stretches polymerized independently of Rnq1 and thus could propagate. The presence of tyrosines within polyglutamine stretches dramatically enhanced polymer fragmentation and allowed polymer propagation in the absence of Rnq1 and, in some cases, of Hsp104.
PMCID: PMC2397454  PMID: 18381282
14.  Palmitoylation of huntingtin by HIP14 is essential for its trafficking and function 
Nature neuroscience  2006;9(6):824-831.
Post-translational modification by the lipid palmitate is crucial for the correct targeting and function of many proteins. Here we show that huntingtin (htt) is normally palmitoylated at cysteine 214, which is essential for its trafficking and function. The palmitoylation and distribution of htt are regulated by the palmitoyl transferase huntingtin interacting protein 14 (HIP14). Expansion of the polyglutamine tract of htt, which causes Huntington disease, results in reduced interaction between mutant htt and HIP14 and consequently in a marked reduction in palmitoylation. Mutation of the palmitoylation site of htt, making it palmitoylation resistant, accelerates inclusion formation and increases neuronal toxicity. Downregulation of HIP14 in mouse neurons expressing wild-type and mutant htt increases inclusion formation, whereas overexpression of HIP14 substantially reduces inclusions. These results suggest that the expansion of the polyglutamine tract in htt results in decreased palmitoylation, which contributes to the formation of inclusion bodies and enhanced neuronal toxicity.
PMCID: PMC2279235  PMID: 16699508
15.  The story of stolen chaperones 
Prion  2013;7(4):294-300.
Prions are self-seeding alternate protein conformations. Most yeast prions contain glutamine/asparagine (Q/N)-rich domains that promote the formation of amyloid-like prion aggregates. Chaperones, including Hsp104 and Sis1, are required to continually break these aggregates into smaller “seeds.” Decreasing aggregate size and increasing the number of growing aggregate ends facilitates both aggregate transmission and growth. Our previous work showed that overexpression of 11 proteins with Q/N-rich domains facilitates the de novo aggregation of Sup35 into the [PSI+] prion, presumably by a cross-seeding mechanism. We now discuss our recent paper, in which we showed that overexpression of most of these same 11 Q/N-rich proteins, including Pin4C and Cyc8, destabilized pre-existing Q/N rich prions. Overexpression of both Pin4C and Cyc8 caused [PSI+] aggregates to enlarge. This is incompatible with a previously proposed “capping” model where the overexpressed Q/N-rich protein poisons, or “caps,” the growing aggregate ends. Rather the data match what is expected of a reduction in prion severing by chaperones. Indeed, while Pin4C overexpression does not alter chaperone levels, Pin4C aggregates sequester chaperones away from the prion aggregates. Cyc8 overexpression cures [PSI+] by inducing an increase in Hsp104 levels, as excess Hsp104 binds to [PSI+] aggregates in a way that blocks their shearing.
PMCID: PMC3904315  PMID: 23924684
prion; yeast; amyloid; chaperone; Hsp104; Sis1; [PSI+]; Sup35; Pin4; Cyc8
16.  The chaperonin TRiC controls polyglutamine aggregation and toxicity through subunit-specific interactions 
Nature cell biology  2006;8(10):1155-1162.
Misfolding and aggregation of proteins containing expanded polyglutamine repeats underlie Huntington’s disease and other neurodegenerative disorders1. Here, we show that the hetero-oligomeric chaperonin TRiC (also known as CCT) physically interacts with polyglutamine-expanded variants of huntingtin (Htt) and effectively inhibits their aggregation. Depletion of TRiC enhances polyglutamine aggregation in yeast and mammalian cells. Conversely, overexpression of a single TRiC subunit, CCT1, is sufficient to remodel Htt-aggregate morphology in vivo and in vitro, and reduces Htt-induced toxicity in neuronal cells. Because TRiC acts during de novo protein biogenesis2, this chaperonin may have an early role preventing Htt access to pathogenic conformations. Based on the specificity of the Htt–CCT1 interaction, the CCT1 substrate-binding domain may provide a versatile scaffold for therapeutic inhibitors of neurodegenerative disease.
PMCID: PMC2829982  PMID: 16980959
17.  A series of N-terminal epitope tagged Hdh knock-in alleles expressing normal and mutant huntingtin: their application to understanding the effect of increasing the length of normal huntingtin’s polyglutamine stretch on CAG140 mouse model pathogenesis 
Molecular Brain  2012;5:28.
Huntington’s disease (HD) is an autosomal dominant neurodegenerative disease that is caused by the expansion of a polyglutamine (polyQ) stretch within Huntingtin (htt), the protein product of the HD gene. Although studies in vitro have suggested that the mutant htt can act in a potentially dominant negative fashion by sequestering wild-type htt into insoluble protein aggregates, the role of the length of the normal htt polyQ stretch, and the adjacent proline-rich region (PRR) in modulating HD mouse model pathogenesis is currently unknown.
We describe the generation and characterization of a series of knock-in HD mouse models that express versions of the mouse HD gene (Hdh) encoding N-terminal hemaglutinin (HA) or 3xFlag epitope tagged full-length htt with different polyQ lengths (HA7Q-, 3xFlag7Q-, 3xFlag20Q-, and 3xFlag140Q-htt) and substitution of the adjacent mouse PRR with the human PRR (3xFlag20Q- and 3xFlag140Q-htt). Using co-immunoprecipitation and immunohistochemistry analyses, we detect no significant interaction between soluble full-length normal 7Q- htt and mutant (140Q) htt, but we do observe N-terminal fragments of epitope-tagged normal htt in mutant htt aggregates. When the sequences encoding normal mouse htt’s polyQ stretch and PRR are replaced with non-pathogenic human sequence in mice also expressing 140Q-htt, aggregation foci within the striatum, and the mean size of htt inclusions are increased, along with an increase in striatal lipofuscin and gliosis.
In mice, soluble full-length normal and mutant htt are predominantly monomeric. In heterozygous knock-in HD mouse models, substituting the normal mouse polyQ and PRR with normal human sequence can exacerbate some neuropathological phenotypes.
PMCID: PMC3499431  PMID: 22892315
Huntingtin; Epitope tag; Knock-in; Polyglutamine; Proline-rich region; Sequestration; Huntington’s disease
18.  Antagonistic Interactions between Yeast [PSI+] and [URE3] Prions and Curing of [URE3] by Hsp70 Protein Chaperone Ssa1p but Not by Ssa2p 
Molecular and Cellular Biology  2002;22(11):3590-3598.
The yeast [PSI+], [URE3], and [PIN+] genetic elements are prion forms of Sup35p, Ure2p, and Rnq1p, respectively. Overexpression of Sup35p, Ure2p, or Rnq1p leads to increased de novo appearance of [PSI+], [URE3], and [PIN+], respectively. This inducible appearance of [PSI+] was shown to be dependent on the presence of [PIN+] or [URE3] or overexpression of other yeast proteins that have stretches of polar residues similar to the prion-determining domains of the known prion proteins. In a similar manner, [PSI+] and [URE3] facilitate the appearance of [PIN+]. In contrast to these positive interactions, here we find that in the presence of [PIN+], [PSI+] and [URE3] repressed each other's propagation and de novo appearance. Elevated expression of Hsp104 and Hsp70 (Ssa2p) had little effect on these interactions, ruling out competition between the two prions for limiting amounts of these protein chaperones. In contrast, we find that constitutive overexpression of SSA1 but not SSA2 cured cells of [URE3], uncovering a specific interaction between Ssa1p and [URE3] and a functional distinction between these nearly identical Hsp70 isoforms. We also find that Hsp104 abundance, which critically affects [PSI+] propagation, is elevated when [URE3] is present. Our results are consistent with the notion that proteins that have a propensity to form prions may interact with heterologous prions but, as we now show, in a negative manner. Our data also suggest that differences in how [PSI+] and [URE3] interact with Hsp104 and Hsp70 may contribute to their antagonistic interactions.
PMCID: PMC133818  PMID: 11997496
19.  Formation and Toxicity of Soluble Polyglutamine Oligomers in Living Cells 
PLoS ONE  2010;5(12):e15245.
Aggregation and cytotoxicity of mutant proteins containing an expanded number of polyglutamine (polyQ) repeats is a hallmark of several diseases, including Huntington's disease (HD). Within cells, mutant Huntingtin (mHtt) and other polyglutamine expansion mutant proteins exist as monomers, soluble oligomers, and insoluble inclusion bodies (IBs). Determining which of these forms constitute a toxic species has proven difficult. Recent studies support a role for IBs as a cellular coping mechanism to sequester levels of potentially toxic soluble monomeric and oligomeric species of mHtt.
Methodology/Principal Findings
When fused to a fluorescent reporter (GFP) and expressed in cells, the soluble monomeric and oligomeric polyglutamine species are visually indistinguishable. Here, we describe two complementary biophysical fluorescence microscopy techniques to directly detect soluble polyglutamine oligomers (using Htt exon 1 or Httex1) and monitor their fates in live cells. Photobleaching analyses revealed a significant reduction in the mobilities of mHttex1 variants consistent with their incorporation into soluble microcomplexes. Similarly, when fused to split-GFP constructs, both wildtype and mHttex1 formed oligomers, as evidenced by the formation of a fluorescent reporter. Only the mHttex1 split-GFP oligomers assembled into IBs. Both FRAP and split-GFP approaches confirmed the ability of mHttex1 to bind and incorporate wildtype Htt into soluble oligomers. We exploited the irreversible binding of split-GFP fragments to forcibly increase levels of soluble oligomeric mHttex1. A corresponding increase in the rate of IBs formation and the number formed was observed. Importantly, higher levels of soluble mHttex1 oligomers significantly correlated with increased mutant cytotoxicity, independent of the presence of IBs.
Our study describes powerful and sensitive tools for investigating soluble oligomeric forms of expanded polyglutamine proteins, and their impact on cell viability. Moreover, these methods should be applicable for the detection of soluble oligomers of a wide variety of aggregation prone proteins.
PMCID: PMC3011017  PMID: 21209946
20.  Full length mutant huntingtin is required for altered Ca2+ signaling and apoptosis of striatal neurons in the YAC mouse model of Huntington’s disease 
Neurobiology of disease  2008;31(1):80-88.
Huntington’s disease (HD) is caused by progressive loss of striatal medium spiny neurons (MSN). The molecular trigger of HD is a polyglutamine expansion in the Huntingtin protein (Htt). The mutant Htt protein forms insoluble nuclear aggregates which have been proposed to play a key role in causing neuronal cell death in HD. Other lines of investigation suggest that expression of mutant Htt facilitates activity of the NR2B subtype of NMDA receptors and the type 1 inositol 1,4,5-trisphosphate receptors (InsP3R1), and that disturbed calcium (Ca2+) signaling causes apoptosis of MSNs in HD. The YAC128 transgenic HD mouse model expresses the full-length human Htt protein with 120Q CAG repeat expansion and displays age-dependent loss of striatal neurons as seen in human HD brain. In contrast, the shortstop mice express an amino-terminal fragment of the mutant Htt protein (exons 1 and 2) and display no behavioral abnormalities or striatal neurodegeneration despite widespread formation of neuronal inclusions. Here we compared Ca2+ signals in primary MSN neuronal cultures derived from YAC128 and shortstop mice to their wild type non-transgenic littermates. Repetitive application of glutamate results in supranormal Ca2+ responses in YAC128 MSNs, but not in shortstop MSNs. In addition, while currents mediated by the NR2B subtype of NMDA receptors were increased in YAC128 MSNs, currents in SS MSNs were found to be similar to WT. Furthermore, YAC128 MSNs were sensitized to glutamate-induced apoptosis. Consistent with these findings, we found that application of glutamate induced rapid loss of mitochondrial membrane potential in YAC128 MSNs. In contrast, SS MSNs do not show increased cell death post glutamate treatment nor cause loss of mitochondrial membrane potential. Glutamate-induced loss of mitochondrial membrane potential in YAC128 MSNs could be prevented by inhibitors of NR2B NMDA receptors and mGluR1/5 receptors. Our results are consistent with the hypothesis that disturbed neuronal Ca2+ signaling plays a significant role in the degeneration of MSN containing full length mutant Httexp. Furthermore, the results obtained with neurons from shortstop mice provide additional evidence that not all fragments of mutant Httexp are toxic to neurons.
PMCID: PMC2528878  PMID: 18502655
calcium; NMDAR; Huntington’s; disease; transgenic mouse; mitochondria; apoptosis; excitotoxicity
21.  Huntington's Disease 
Huntington's disease (HD) is the most common inherited neurodegenerative disease and is characterized by uncontrolled excessive motor movements and cognitive and emotional deficits. The mutation responsible for HD leads to an abnormally long polyglutamine (polyQ) expansion in the huntingtin (Htt) protein, which confers one or more toxic functions to mutant Htt leading to neurodegeneration. The polyQ expansion makes Htt prone to aggregate and accumulate, and manipulations that mitigate protein misfolding or facilitate the clearance of misfolded proteins tend to slow disease progression in HD models. This article will focus on HD and the evidence that it is a conformational disease.
Inherited polyQ mutations cause huntingtin to misfold and aggregate. This may overload the cell's chaperone network so other metastable proteins misfold, producing a complex loss-of-function phenotype that leads to neurodegeneration.
PMCID: PMC3098678  PMID: 21441583
22.  A Pathogenic Mechanism in Huntington's Disease Involves Small CAG-Repeated RNAs with Neurotoxic Activity 
PLoS Genetics  2012;8(2):e1002481.
Huntington's disease (HD) is an autosomal dominantly inherited disorder caused by the expansion of CAG repeats in the Huntingtin (HTT) gene. The abnormally extended polyglutamine in the HTT protein encoded by the CAG repeats has toxic effects. Here, we provide evidence to support that the mutant HTT CAG repeats interfere with cell viability at the RNA level. In human neuronal cells, expanded HTT exon-1 mRNA with CAG repeat lengths above the threshold for complete penetrance (40 or greater) induced cell death and increased levels of small CAG-repeated RNAs (sCAGs), of ≈21 nucleotides in a Dicer-dependent manner. The severity of the toxic effect of HTT mRNA and sCAG generation correlated with CAG expansion length. Small RNAs obtained from cells expressing mutant HTT and from HD human brains significantly decreased neuronal viability, in an Ago2-dependent mechanism. In both cases, the use of anti-miRs specific for sCAGs efficiently blocked the toxic effect, supporting a key role of sCAGs in HTT-mediated toxicity. Luciferase-reporter assays showed that expanded HTT silences the expression of CTG-containing genes that are down-regulated in HD. These results suggest a possible link between HD and sCAG expression with an aberrant activation of the siRNA/miRNA gene silencing machinery, which may trigger a detrimental response. The identification of the specific cellular processes affected by sCAGs may provide insights into the pathogenic mechanisms underlying HD, offering opportunities to develop new therapeutic approaches.
Author Summary
Huntington's disease (HD) is a neurodegenerative disorder caused by an abnormal CAG expansion in the Huntingtin gene (HTT), resulting in an expanded polyglutamine track in the HTT protein. Longer CAG expansions correlate with an earlier more severe manifestation of the disease that produces choreic movement, behavioural and psychiatric disturbances, and dementia. Although the causative gene is widely expressed, neuropathology is characterized by striatal and cortical atrophy. HTT interacts with proteins involved in transcription, cell signaling, and transport. The pathogenic role of mutant HTT is not fully understood. This study shows that CAG expanded HTT RNA also contributes to neuronal toxicity. Mutant HTT RNA gives rise to small CAG-repeated RNAs (sCAGs) with neurotoxic activity. These short RNAs interfere with cell functions by silencing the expression of genes that are fully or partially complementary, through a mechanism similar to that of microRNAs. These findings suggest that a small RNA–dependent mechanism may contribute to HD neuronal cell loss. The exhaustive identification of the target genes modulated by sCAGs may lead to a better understanding of HD pathology, allowing the development of new therapeutic strategies.
PMCID: PMC3285580  PMID: 22383888
23.  Mass Spectrometric Identification of Novel Posttranslational Modification Sites in Huntingtin 
Proteomics  2012;12(12):10.1002/pmic.201100380.
Huntington’s disease (HD) is caused by a CAG triplet repeat expansion in exon 1 of the Huntingtin (Htt) gene, encoding an abnormal expanded polyglutamine (polyQ) tract that confers toxicity to the mutant Htt (mHtt) protein. Recent data suggest that posttranslational modifications of mHtt modulate its cytotoxicity. To further understand the cytotoxic mechanisms of mHtt, we have generated HEK293 cell models stably expressing Strep- and FLAG-tagged Htt containing either 19Q (wild type Htt), 55Q (mHtt), or 94Q (mHtt) repeats. Following tandem affinity purification, the tagged Htt and associated proteins were subjected to tandem mass spectrometry or 2D-nano-LC tandem mass spectrometry and several novel modification sites of mHtt containing 55Q or 94Q were identified. These were phosphorylation sites located at Ser 431 and Ser 432, and ubiquitination site located at Lys 444. The two phosphorylation sites were confirmed by Western blot analysis using phosphorylation site-specific antibodies. In addition, prevention of phosphorylation at the two serine sites altered mHtt toxicity and accumulation. These modifications of mHtt may provide novel therapeutic targets for effective treatment of the disorder.
PMCID: PMC3845347  PMID: 22623107
tandem affinity purification; mass spectrometry; post-translational modification; phosphorylation; ubiquitination
24.  Huntington's Disease Induced Cardiac Amyloidosis Is Reversed by Modulating Protein Folding and Oxidative Stress Pathways in the Drosophila Heart 
PLoS Genetics  2013;9(12):e1004024.
Amyloid-like inclusions have been associated with Huntington's disease (HD), which is caused by expanded polyglutamine repeats in the Huntingtin protein. HD patients exhibit a high incidence of cardiovascular events, presumably as a result of accumulation of toxic amyloid-like inclusions. We have generated a Drosophila model of cardiac amyloidosis that exhibits accumulation of PolyQ aggregates and oxidative stress in myocardial cells, upon heart-specific expression of Huntingtin protein fragments (Htt-PolyQ) with disease-causing poly-glutamine repeats (PolyQ-46, PolyQ-72, and PolyQ-102). Cardiac expression of GFP-tagged Htt-PolyQs resulted in PolyQ length-dependent functional defects that included increased incidence of arrhythmias and extreme cardiac dilation, accompanied by a significant decrease in contractility. Structural and ultrastructural analysis of the myocardial cells revealed reduced myofibrillar content, myofibrillar disorganization, mitochondrial defects and the presence of PolyQ-GFP positive aggregates. Cardiac-specific expression of disease causing Poly-Q also shortens lifespan of flies dramatically. To further confirm the involvement of oxidative stress or protein unfolding and to understand the mechanism of PolyQ induced cardiomyopathy, we co-expressed expanded PolyQ-72 with the antioxidant superoxide dismutase (SOD) or the myosin chaperone UNC-45. Co-expression of SOD suppressed PolyQ-72 induced mitochondrial defects and partially suppressed aggregation as well as myofibrillar disorganization. However, co-expression of UNC-45 dramatically suppressed PolyQ-72 induced aggregation and partially suppressed myofibrillar disorganization. Moreover, co-expression of both UNC-45 and SOD more efficiently suppressed GFP-positive aggregates, myofibrillar disorganization and physiological cardiac defects induced by PolyQ-72 than did either treatment alone. Our results demonstrate that mutant-PolyQ induces aggregates, disrupts the sarcomeric organization of contractile proteins, leads to mitochondrial dysfunction and increases oxidative stress in cardiomyocytes leading to abnormal cardiac function. We conclude that modulation of both protein unfolding and oxidative stress pathways in the Drosophila heart model can ameliorate the detrimental PolyQ effects, thus providing unique insights into the genetic mechanisms underlying amyloid-induced cardiac failure in HD patients.
Author Summary
Huntington's disease (HD) is associated with amyloid-like inclusions in the brain and heart, and accumulation of amyloid protein is associated with neurodegeneration and cardiomyopathy. Recent studies suggest that HD patients show increased susceptibility to cardiac failure. However, the mechanisms by which disease-causing poly-glutamine repeats (PolyQ) cause heart dysfunction in these patients are unclear. We have developed a novel Drosophila heart model that exhibits significant GFP-positive aggregates upon HD-causing PolyQ expression in myocardial cells resulting in PolyQ length-dependent physiological defects. Modulation of protein folding and oxidative stress pathways in this system reduced the number of aggregates and reversed the cardiac dysfunction in response to expression of disease-causing PolyQ. The ability to explore PolyQ-associated mechanisms of cardiomyopathy in a genetically tractable whole organism, Drosophila melanogaster, promises to provide novel insights into the relationship between amyloid accumulation and heart dysfunction. Our findings not only impact the understanding of PolyQ-induced cardiomyopathy but also other human cardiac diseases associated with oxidative stress, mitochondrial defects and protein homeostasis.
PMCID: PMC3868535  PMID: 24367279
Nature medicine  2011;17(3):377-382.
Huntington disease (HD) is an inherited and incurable neurodegenerative disorder caused by an abnormal polyglutamine (polyQ) expansion in huntingtin (HTT). PolyQ length determines disease onset and severity with a longer expansion causing earlier onset. The mechanisms of mutant HTT-mediated neurotoxicity remain unclear; however, mitochondrial dysfunction is a key event in HD pathogenesis1,2. Here we tested whether mutant HTT impairs the mitochondrial fission/fusion balance and thereby causes neuronal injury. We show that mutant HTT triggers mitochondrial fragmentation in neurons and fibroblasts of HD individuals in vitro and HD mice in vivo before the presence of neurological deficits and HTT aggregates. Interestingly, mutant HTT abnormally interacts with the mitochondrial fission GTPase dynamin-related protein 1 (DRP1) in HD mice and individuals which in turn stimulates its enzymatic activity. Importantly, mutant HTT-mediated mitochondrial fragmentation, defects in anterograde and retrograde mitochondrial transport, and neuronal cell death are all rescued by reducing DRP1 GTPase activity with the dominant-negative DRP1K38A mutant. Thus, DRP1 might represent a new therapeutic target to combat neurodegeneration in HD.
PMCID: PMC3051025  PMID: 21336284

Results 1-25 (634786)