PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (570172)

Clipboard (0)
None

Related Articles

1.  Evolution and Functional Diversification of Fructose Bisphosphate Aldolase Genes in Photosynthetic Marine Diatoms 
Molecular Biology and Evolution  2011;29(1):367-379.
Diatoms and other chlorophyll-c containing, or chromalveolate, algae are among the most productive and diverse phytoplankton in the ocean. Evolutionarily, chlorophyll-c algae are linked through common, although not necessarily monophyletic, acquisition of plastid endosymbionts of red as well as most likely green algal origin. There is also strong evidence for a relatively high level of lineage-specific bacterial gene acquisition within chromalveolates. Therefore, analyses of gene content and derivation in chromalveolate taxa have indicated particularly diverse origins of their overall gene repertoire. As a single group of functionally related enzymes spanning two distinct gene families, fructose 1,6-bisphosphate aldolases (FBAs) illustrate the influence on core biochemical pathways of specific evolutionary associations among diatoms and other chromalveolates with various plastid-bearing and bacterial endosymbionts. Protein localization and activity, gene expression, and phylogenetic analyses indicate that the pennate diatom Phaeodactylum tricornutum contains five FBA genes with very little overall functional overlap. Three P. tricornutum FBAs, one class I and two class II, are plastid localized, and each appears to have a distinct evolutionary origin as well as function. Class I plastid FBA appears to have been acquired by chromalveolates from a red algal endosymbiont, whereas one copy of class II plastid FBA is likely to have originated from an ancient green algal endosymbiont. The other copy appears to be the result of a chromalveolate-specific gene duplication. Plastid FBA I and chromalveolate-specific class II plastid FBA are localized in the pyrenoid region of the chloroplast where they are associated with β-carbonic anhydrase, which is known to play a significant role in regulation of the diatom carbon concentrating mechanism. The two pyrenoid-associated FBAs are distinguished by contrasting gene expression profiles under nutrient limiting compared with optimal CO2 fixation conditions, suggestive of a distinct specialized function for each. Cytosolically localized FBAs in P. tricornutum likely play a role in glycolysis and cytoskeleton function and seem to have originated from the stramenopile host cell and from diatom-specific bacterial gene transfer, respectively.
doi:10.1093/molbev/msr223
PMCID: PMC3245544  PMID: 21903677
carbon concentrating mechanism (CCM); carbon metabolism; carbonic anhydrase; diatom; fructose bisphosphate aldolase; pyrenoid
2.  Multiple genes of apparent algal origin suggest ciliates may once have been photosynthetic 
Current biology : CB  2008;18(13):956-962.
Summary
Plantae (sensu Cavalier-Smith 1981) [1] plastids evolved via primary endosymbiosis whereby a heterotrophic protist enslaved a photosynthetic cyanobacterium. This 'primary' plastid spread into other eukaryotes via secondary endosymbiosis. An important but contentious theory in algal evolution is the chromalveolate hypothesis that posits chromists (cryptophytes, haptophytes, and stramenopiles) and alveolates (ciliates, apicomplexans, and dinoflagellates) share a common ancestor that contained a red algal derived 'secondary' plastid [2]. Under this view, the existence of several later-diverging plastid-lacking chromalveolates such as ciliates and oomycetes would be explained by plastid loss in these lineages. To test the idea of a photosynthetic ancestry for ciliates we used the 27,446 predicted proteins from the macronuclear genome of Tetrahymena thermophila to query prokaryotic and eukaryotic genomes. We identified 16 proteins of possible algal origin in the ciliates Tetrahymena and Paramecium tetraurelia. Fourteen of these are present in other chromalveolates. Here we compare and contrast the likely scenarios for algal gene origin in ciliates either via multiple rounds of horizontal gene transfer (HGT) from algal prey or symbionts, or through endosymbiotic gene transfer (EGT) during a putative photosynthetic phase in their evolution.
doi:10.1016/j.cub.2008.05.042
PMCID: PMC2577054  PMID: 18595706
3.  Genomic reduction and evolution of novel genetic membranes and protein-targeting machinery in eukaryote-eukaryote chimaeras (meta-algae). 
Chloroplasts originated just once, from cyanobacteria enslaved by a biciliate protozoan to form the plant kingdom (green plants, red and glaucophyte algae), but subsequently, were laterally transferred to other lineages to form eukaryote-eukaryote chimaeras or meta-algae. This process of secondary symbiogenesis (permanent merger of two phylogenetically distinct eukaryote cells) has left remarkable traces of its evolutionary role in the more complex topology of the membranes surrounding all non-plant (meta-algal) chloroplasts. It took place twice, soon after green and red algae diverged over 550 Myr ago to form two independent major branches of the eukaryotic tree (chromalveolates and cabozoa), comprising both meta-algae and numerous secondarily non-photosynthetic lineages. In both cases, enslavement probably began by evolving a novel targeting of endomembrane vesicles to the perialgal vacuole to implant host porter proteins for extracting photosynthate. Chromalveolates arose by such enslavement of a unicellular red alga and evolution of chlorophyll c to form the kingdom Chromista and protozoan infrakingdom Alveolata, which diverged from the ancestral chromalveolate chimaera. Cabozoa arose when the common ancestor of euglenoids and cercozoan chlorarachnean algae enslaved a tetraphyte green alga with chlorophyll a and b. I suggest that in cabozoa the endomembrane vesicles originally budded from the Golgi, whereas in chromalveolates they budded from the endoplasmic reticulum (ER) independently of Golgi-targeted vesicles, presenting a potentially novel target for drugs against alveolate Sporozoa such as malaria parasites and Toxoplasma. These hypothetical ER-derived vesicles mediated fusion of the perialgal vacuole and rough ER (RER) in the ancestral chromist, placing the former red alga within the RER lumen. Subsequently, this chimaera diverged to form cryptomonads, which retained the red algal nucleus as a nucleomorph (NM) with approximately 464 protein-coding genes (30 encoding plastid proteins) and a red or blue phycobiliprotein antenna pigment, and the chromobiotes (heterokonts and haptophytes), which lost phycobilins and evolved the brown carotenoid fucoxanthin that colours brown seaweeds, diatoms and haptophytes. Chromobiotes transferred the 30 genes to the nucleus and lost the NM genome and nuclear-pore complexes, but retained its membrane as the periplastid reticulum (PPR), putatively the phospholipid factory of the periplastid space (former algal cytoplasm), as did the ancestral alveolate independently. The chlorarachnean NM has three minute chromosomes bearing approximately 300 genes riddled with pygmy introns. I propose that the periplastid membrane (PPM, the former algal plasma membrane) of chromalveolates, and possibly chlorarachneans, grows by fusion of vesicles emanating from the NM envelope or PPR. Dinoflagellates and euglenoids independently lost the PPM and PPR (after diverging from Sporozoa and chlorarachneans, respectively) and evolved triple chloroplast envelopes comprising the original plant double envelope and an extra outermost membrane, the EM, derived from the perialgal vacuole. In all metaalgae most chloroplast proteins are coded by nuclear genes and enter the chloroplast by using bipartite targeting sequences--an upstream signal sequence for entering the ER and a downstream chloroplast transit sequence. I present a new theory for the four-fold diversification of the chloroplast OM protein translocon following its insertion into the PPM to facilitate protein translocation across it (of both periplastid and plastid proteins). I discuss evidence from genome sequencing and other sources on the contrasting modes of protein targeting, cellular integration, and evolution of these two major lineages of eukaryote "cells within cells". They also provide powerful evidence for natural selection's effectiveness in eliminating most functionless DNA and therefore of a universally useful non-genic function for nuclear non-coding DNA, i.e. most DNA in the biosphere, and dramatic examples of genomic reduction. I briefly argue that chloroplast replacement in dinoflagellates, which happened at least twice, may have been evolutionarily easier than secondary symbiogenesis because parts of the chromalveolate protein-targeting machinery could have helped enslave the foreign plastids.
doi:10.1098/rstb.2002.1194
PMCID: PMC1693104  PMID: 12594921
4.  Evolutionary Origins and Functions of the Carotenoid Biosynthetic Pathway in Marine Diatoms 
PLoS ONE  2008;3(8):e2896.
Carotenoids are produced by all photosynthetic organisms, where they play essential roles in light harvesting and photoprotection. The carotenoid biosynthetic pathway of diatoms is largely unstudied, but is of particular interest because these organisms have a very different evolutionary history with respect to the Plantae and are thought to be derived from an ancient secondary endosymbiosis between heterotrophic and autotrophic eukaryotes. Furthermore, diatoms have an additional xanthophyll-based cycle for dissipating excess light energy with respect to green algae and higher plants. To explore the origins and functions of the carotenoid pathway in diatoms we searched for genes encoding pathway components in the recently completed genome sequences of two marine diatoms. Consistent with the supplemental xanthophyll cycle in diatoms, we found more copies of the genes encoding violaxanthin de-epoxidase (VDE) and zeaxanthin epoxidase (ZEP) enzymes compared with other photosynthetic eukaryotes. However, the similarity of these enzymes with those of higher plants indicates that they had very probably diversified before the secondary endosymbiosis had occurred, implying that VDE and ZEP represent early eukaryotic innovations in the Plantae. Consequently, the diatom chromist lineage likely obtained all paralogues of ZEP and VDE genes during the process of secondary endosymbiosis by gene transfer from the nucleus of the algal endosymbiont to the host nucleus. Furthermore, the presence of a ZEP gene in Tetrahymena thermophila provides the first evidence for a secondary plastid gene encoded in a heterotrophic ciliate, providing support for the chromalveolate hypothesis. Protein domain structures and expression analyses in the pennate diatom Phaeodactylum tricornutum indicate diverse roles for the different ZEP and VDE isoforms and demonstrate that they are differentially regulated by light. These studies therefore reveal the ancient origins of several components of the carotenoid biosynthesis pathway in photosynthetic eukaryotes and provide information about how they have diversified and acquired new functions in the diatoms.
doi:10.1371/journal.pone.0002896
PMCID: PMC2483416  PMID: 18682837
5.  ERAD Components in Organisms with Complex Red Plastids Suggest Recruitment of a Preexisting Protein Transport Pathway for the Periplastid Membrane 
The plastids of cryptophytes, haptophytes, and heterokontophytes (stramenopiles) (together once known as chromists) are surrounded by four membranes, reflecting the origin of these plastids through secondary endosymbiosis. They share this trait with apicomplexans, which are alveolates, the plastids of which have been suggested to stem from the same secondary symbiotic event and therefore form a phylogenetic clade, the chromalveolates. The chromists are quantitatively the most important eukaryotic contributors to primary production in marine ecosystems. The mechanisms of protein import across their four plastid membranes are still poorly understood. Components of an endoplasmic reticulum-associated degradation (ERAD) machinery in cryptophytes, partially encoded by the reduced genome of the secondary symbiont (the nucleomorph), are implicated in protein transport across the second outermost plastid membrane. Here, we show that the haptophyte Emiliania huxleyi, like cryptophytes, stramenopiles, and apicomplexans, possesses a nuclear-encoded symbiont-specific ERAD machinery (SELMA, symbiont-specific ERAD-like machinery) in addition to the host ERAD system, with targeting signals that are able to direct green fluorescent protein or yellow fluorescent protein to the predicted cellular localization in transformed cells of the stramenopile Phaeodactylum tricornutum. Phylogenies of the duplicated ERAD factors reveal that all SELMA components trace back to a red algal origin. In contrast, the host copies of cryptophytes and haptophytes associate with the green lineage to the exclusion of stramenopiles and alveolates. Although all chromalveolates with four membrane-bound plastids possess the SELMA system, this has apparently not arisen in a single endosymbiotic event. Thus, our data do not support the chromalveolate hypothesis.
doi:10.1093/gbe/evq074
PMCID: PMC3045029  PMID: 21081314
Emiliania huxleyi; secondary endosymbiosis; chromalveolate hypothesis; complex plastid; plastid protein import; algal evolution
6.  Gene Replacement of Fructose-1,6-Bisphosphate Aldolase Supports the Hypothesis of a Single Photosynthetic Ancestor of Chromalveolates†  
Eukaryotic Cell  2004;3(5):1169-1175.
Plastids (photosynthetic organelles of plants and algae) are known to have spread between eukaryotic lineages by secondary endosymbiosis, that is, by the uptake of a eukaryotic alga by another eukaryote. But the number of times this has taken place is controversial. This is particularly so in the case of eukaryotes with plastids derived from red algae, which are numerous and diverse. Despite their diversity, it has been suggested that all these eukaryotes share a recent common ancestor and that their plastids originated in a single endosymbiosis, the so-called “chromalveolate hypothesis.” Here we describe a novel molecular character that supports the chromalveolate hypothesis. Fructose-1,6-bisphosphate aldolase (FBA) is a glycolytic and Calvin cycle enzyme that exists as two nonhomologous types, class I and class II. Red algal plastid-targeted FBA is a class I enzyme related to homologues from plants and green algae, and it would be predicted that the plastid-targeted FBA from algae with red algal secondary endosymbionts should be related to this class I enzyme. However, we show that plastid-targeted FBA of heterokonts, cryptomonads, haptophytes, and dinoflagellates (all photosynthetic chromalveolates) are class II plastid-targeted enzymes, completely unlike those of red algal plastids. The chromalveolate enzymes form a strongly supported group in FBA phylogeny, and their common possession of this unexpected plastid characteristic provides new evidence for their close relationship and a common origin for their plastids.
doi:10.1128/EC.3.5.1169-1175.2004
PMCID: PMC522617  PMID: 15470245
7.  Plastid genomes of two brown algae, Ectocarpus siliculosus and Fucus vesiculosus: further insights on the evolution of red-algal derived plastids 
Background
Heterokont algae, together with cryptophytes, haptophytes and some alveolates, possess red-algal derived plastids. The chromalveolate hypothesis proposes that the red-algal derived plastids of all four groups have a monophyletic origin resulting from a single secondary endosymbiotic event. However, due to incongruence between nuclear and plastid phylogenies, this controversial hypothesis remains under debate. Large-scale genomic analyses have shown to be a powerful tool for phylogenetic reconstruction but insufficient sequence data have been available for red-algal derived plastid genomes.
Results
The chloroplast genomes of two brown algae, Ectocarpus siliculosus and Fucus vesiculosus, have been fully sequenced. These species represent two distinct orders of the Phaeophyceae, which is a major group within the heterokont lineage. The sizes of the circular plastid genomes are 139,954 and 124,986 base pairs, respectively, the size difference being due principally to the presence of longer inverted repeat and intergenic regions in E. siliculosus. Gene contents of the two plastids are similar with 139-148 protein-coding genes, 28-31 tRNA genes, and 3 ribosomal RNA genes. The two genomes also exhibit very similar rearrangements compared to other sequenced plastid genomes. The tRNA-Leu gene of E. siliculosus lacks an intron, in contrast to the F. vesiculosus and other heterokont plastid homologues, suggesting its recent loss in the Ectocarpales. Most of the brown algal plastid genes are shared with other red-algal derived plastid genomes, but a few are absent from raphidophyte or diatom plastid genomes. One of these regions is most similar to an apicomplexan nuclear sequence. The phylogenetic relationship between heterokonts, cryptophytes and haptophytes (collectively referred to as chromists) plastids was investigated using several datasets of concatenated proteins from two cyanobacterial genomes and 18 plastid genomes, including most of the available red algal and chromist plastid genomes.
Conclusion
The phylogenetic studies using concatenated plastid proteins still do not resolve the question of the monophyly of all chromist plastids. However, these results support both the monophyly of heterokont plastids and that of cryptophyte and haptophyte plastids, in agreement with nuclear phylogenies.
doi:10.1186/1471-2148-9-253
PMCID: PMC2765969  PMID: 19835607
8.  The endosymbiotic origin, diversification and fate of plastids 
Plastids and mitochondria each arose from a single endosymbiotic event and share many similarities in how they were reduced and integrated with their host. However, the subsequent evolution of the two organelles could hardly be more different: mitochondria are a stable fixture of eukaryotic cells that are neither lost nor shuffled between lineages, whereas plastid evolution has been a complex mix of movement, loss and replacement. Molecular data from the past decade have substantially untangled this complex history, and we now know that plastids are derived from a single endosymbiotic event in the ancestor of glaucophytes, red algae and green algae (including plants). The plastids of both red algae and green algae were subsequently transferred to other lineages by secondary endosymbiosis. Green algal plastids were taken up by euglenids and chlorarachniophytes, as well as one small group of dinoflagellates. Red algae appear to have been taken up only once, giving rise to a diverse group called chromalveolates. Additional layers of complexity come from plastid loss, which has happened at least once and probably many times, and replacement. Plastid loss is difficult to prove, and cryptic, non-photosynthetic plastids are being found in many non-photosynthetic lineages. In other cases, photosynthetic lineages are now understood to have evolved from ancestors with a plastid of different origin, so an ancestral plastid has been replaced with a new one. Such replacement has taken place in several dinoflagellates (by tertiary endosymbiosis with other chromalveolates or serial secondary endosymbiosis with a green alga), and apparently also in two rhizarian lineages: chlorarachniophytes and Paulinella (which appear to have evolved from chromalveolate ancestors). The many twists and turns of plastid evolution each represent major evolutionary transitions, and each offers a glimpse into how genomes evolve and how cells integrate through gene transfers and protein trafficking.
doi:10.1098/rstb.2009.0103
PMCID: PMC2817223  PMID: 20124341
plastids; endosymbiosis; evolution; algae; protist; phylogeny
9.  Chlamydial genes shed light on the evolution of photoautotrophic eukaryotes 
Background
Chlamydiae are obligate intracellular bacteria of protists, invertebrates and vertebrates, but have not been found to date in photosynthetic eukaryotes (algae and embryophytes). Genes of putative chlamydial origin, however, are present in significant numbers in sequenced genomes of photosynthetic eukaryotes. It has been suggested that such genes were acquired by an ancient horizontal gene transfer from Chlamydiae to the ancestor of photosynthetic eukaryotes. To further test this hypothesis, an extensive search for proteins of chlamydial origin was performed using several recently sequenced algal genomes and EST databases, and the proteins subjected to phylogenetic analyses.
Results
A total of 39 proteins of chlamydial origin were retrieved from the photosynthetic eukaryotes analyzed and their identity verified through phylogenetic analyses. The distribution of the chlamydial proteins among four groups of photosynthetic eukaryotes (Viridiplantae, Rhodoplantae, Glaucoplantae, Bacillariophyta) was complex suggesting multiple acquisitions and losses. Evidence is presented that all except one of the chlamydial genes originated from an ancient endosymbiosis of a chlamydial bacterium into the ancestor of the Plantae before their divergence into Viridiplantae, Rhodoplantae and Glaucoplantae, i.e. more than 1.1 BYA. The chlamydial proteins subsequently spread through secondary plastid endosymbioses to other eukaryotes. Of 20 chlamydial proteins recovered from the genomes of two Bacillariophyta, 10 were of rhodoplant, and 10 of viridiplant origin suggesting that they were acquired by two different secondary endosymbioses. Phylogenetic analyses of concatenated sequences demonstrated that the viridiplant secondary endosymbiosis likely occurred before the divergence of Chlorophyta and Streptophyta.
Conclusion
We identified 39 proteins of chlamydial origin in photosynthetic eukaryotes signaling an ancient invasion of the ancestor of the Plantae by a chlamydial bacterium accompanied by horizontal gene transfer. Subsequently, chlamydial proteins spread through secondary endosymbioses to other eukaryotes. We conclude that intracellular chlamydiae likely persisted throughout the early history of the Plantae donating genes to their hosts that replaced their cyanobacterial/plastid homologs thus shaping early algal/plant evolution before they eventually vanished.
doi:10.1186/1471-2148-8-203
PMCID: PMC2490706  PMID: 18627593
10.  The evolution of photosynthesis in chromist algae through serial endosymbioses 
Nature Communications  2014;5:5764.
Chromist algae include diverse photosynthetic organisms of great ecological and social importance. Despite vigorous research efforts, a clear understanding of how various chromists acquired photosynthetic organelles has been complicated by conflicting phylogenetic results, along with an undetermined number and pattern of endosymbioses, and the horizontal movement of genes that accompany them. We apply novel statistical approaches to assess impacts of endosymbiotic gene transfer on three principal chromist groups at the heart of long-standing controversies. Our results provide robust support for acquisitions of photosynthesis through serial endosymbioses, beginning with the adoption of a red alga by cryptophytes, then a cryptophyte by the ancestor of ochrophytes, and finally an ochrophyte by the ancestor of haptophytes. Resolution of how chromist algae are related through endosymbioses provides a framework for unravelling the further reticulate history of red algal-derived plastids, and for clarifying evolutionary processes that gave rise to eukaryotic photosynthetic diversity.
The chromalveolate hypothesis proposes that chromist algae became photosynthetic through a single endosymbiosis in a common ancestor. Here, Stiller et al. use a novel statistical approach to propose that instead, the major chromist algae arose as a result of three specific serial plastid transfers.
doi:10.1038/ncomms6764
PMCID: PMC4284659  PMID: 25493338
11.  Eukaryote-to-eukaryote gene transfer gives rise to genome mosaicism in euglenids 
Background
Euglenophytes are a group of photosynthetic flagellates possessing a plastid derived from a green algal endosymbiont, which was incorporated into an ancestral host cell via secondary endosymbiosis. However, the impact of endosymbiosis on the euglenophyte nuclear genome is not fully understood due to its complex nature as a 'hybrid' of a non-photosynthetic host cell and a secondary endosymbiont.
Results
We analyzed an EST dataset of the model euglenophyte Euglena gracilis using a gene mining program designed to detect laterally transferred genes. We found E. gracilis genes showing affinity not only with green algae, from which the secondary plastid in euglenophytes evolved, but also red algae and/or secondary algae containing red algal-derived plastids. Phylogenetic analyses of these 'red lineage' genes suggest that E. gracilis acquired at least 14 genes via eukaryote-to-eukaryote lateral gene transfer from algal sources other than the green algal endosymbiont that gave rise to its current plastid. We constructed an EST library of the aplastidic euglenid Peranema trichophorum, which is a eukaryovorous relative of euglenophytes, and also identified 'red lineage' genes in its genome.
Conclusions
Our data show genome mosaicism in E. gracilis and P. trichophorum. One possible explanation for the presence of these genes in these organisms is that some or all of them were independently acquired by lateral gene transfer and contributed to the successful integration and functioning of the green algal endosymbiont as a secondary plastid. Alternative hypotheses include the presence of a phagocytosed alga as the single source of those genes, or a cryptic tertiary endosymbiont harboring secondary plastid of red algal origin, which the eukaryovorous ancestor of euglenophytes had acquired prior to the secondary endosymbiosis of a green alga.
doi:10.1186/1471-2148-11-105
PMCID: PMC3101172  PMID: 21501489
12.  Red and Green Algal Origin of Diatom Membrane Transporters: Insights into Environmental Adaptation and Cell Evolution 
PLoS ONE  2011;6(12):e29138.
Membrane transporters (MTs) facilitate the movement of molecules between cellular compartments. The evolutionary history of these key components of eukaryote genomes remains unclear. Many photosynthetic microbial eukaryotes (e.g., diatoms, haptophytes, and dinoflagellates) appear to have undergone serial endosymbiosis and thereby recruited foreign genes through endosymbiotic/horizontal gene transfer (E/HGT). Here we used the diatoms Thalassiosira pseudonana and Phaeodactylum tricornutum as models to examine the evolutionary origin of MTs in this important group of marine primary producers. Using phylogenomics, we used 1,014 diatom MTs as query against a broadly sampled protein sequence database that includes novel genome data from the mesophilic red algae Porphyridium cruentum and Calliarthron tuberculosum, and the stramenopile Ectocarpus siliculosus. Our conservative approach resulted in 879 maximum likelihood trees of which 399 genes show a non-lineal history between diatoms and other eukaryotes and prokaryotes (at the bootstrap value ≥70%). Of the eukaryote-derived MTs, 172 (ca. 25% of 697 examined phylogenies) have members of both red/green algae as sister groups, with 103 putatively arising from green algae, 19 from red algae, and 50 have an unresolved affiliation to red and/or green algae. We used topology tests to analyze the most convincing cases of non-lineal gene history in which red and/or green algae were nested within stramenopiles. This analysis showed that ca. 6% of all trees (our most conservative estimate) support an algal origin of MTs in stramenopiles with the majority derived from green algae. Our findings demonstrate the complex evolutionary history of photosynthetic eukaryotes and indicate a reticulate origin of MT genes in diatoms. We postulate that the algal-derived MTs acquired via E/HGT provided diatoms and other related microbial eukaryotes the ability to persist under conditions of fluctuating ocean chemistry, likely contributing to their great success in marine environments.
doi:10.1371/journal.pone.0029138
PMCID: PMC3237598  PMID: 22195008
13.  Chromera velia, Endosymbioses and the Rhodoplex Hypothesis—Plastid Evolution in Cryptophytes, Alveolates, Stramenopiles, and Haptophytes (CASH Lineages)  
Genome Biology and Evolution  2014;6(3):666-684.
The discovery of Chromera velia, a free-living photosynthetic relative of apicomplexan pathogens, has provided an unexpected opportunity to study the algal ancestry of malaria parasites. In this work, we compared the molecular footprints of a eukaryote-to-eukaryote endosymbiosis in C. velia to their equivalents in peridinin-containing dinoflagellates (PCD) to reevaluate recent claims in favor of a common ancestry of their plastids. To this end, we established the draft genome and a set of full-length cDNA sequences from C. velia via next-generation sequencing. We documented the presence of a single coxI gene in the mitochondrial genome, which thus represents the genetically most reduced aerobic organelle identified so far, but focused our analyses on five “lucky genes” of the Calvin cycle. These were selected because of their known support for a common origin of complex plastids from cryptophytes, alveolates (represented by PCDs), stramenopiles, and haptophytes (CASH) via a single secondary endosymbiosis with a red alga. As expected, our broadly sampled phylogenies of the nuclear-encoded Calvin cycle markers support a rhodophycean origin for the complex plastid of Chromera. However, they also suggest an independent origin of apicomplexan and dinophycean (PCD) plastids via two eukaryote-to-eukaryote endosymbioses. Although at odds with the current view of a common photosynthetic ancestry for alveolates, this conclusion is nonetheless in line with the deviant plastome architecture in dinoflagellates and the morphological paradox of four versus three plastid membranes in the respective lineages. Further support for independent endosymbioses is provided by analysis of five additional markers, four of them involved in the plastid protein import machinery. Finally, we introduce the “rhodoplex hypothesis” as a convenient way to designate evolutionary scenarios where CASH plastids are ultimately the product of a single secondary endosymbiosis with a red alga but were subsequently horizontally spread via higher-order eukaryote-to-eukaryote endosymbioses.
doi:10.1093/gbe/evu043
PMCID: PMC3971594  PMID: 24572015
next-generation sequencing; eukaryote-to-eukaryote endosymbioses; horizontal and endosymbiotic gene transfer; chromalveolate hypothesis; long-branch attraction artifacts
14.  Endosymbiotic and horizontal gene transfer in microbial eukaryotes 
Mobile Genetic Elements  2012;2(2):101-105.
The evolution of microbial eukaryotes, in particular of photosynthetic lineages, is complicated by multiple instances of endosymbiotic and horizontal gene transfer (E/HGT) resulting from plastid origin(s). Our recent analysis of diatom membrane transporters provides evidence of red and/or green algal origins of 172 of the genes encoding these proteins (ca. 25% of the examined phylogenies), with the majority putatively derived from green algae. These data suggest that E/HGT has been an important driver of evolutionary innovation among diatoms (and likely other stramenopiles), and lend further support to the hypothesis of an ancient, cryptic green algal endosymbiosis in “chromalveolate” lineages. Here, we discuss the implications of our findings on the understanding of eukaryote evolution and inference of the tree of life.
doi:10.4161/mge.20110
PMCID: PMC3429517  PMID: 22934244
horizontal gene transfer; endosymbiotic gene transfer; diatoms; membrane transporters; eukaryote evolution; tree of life
15.  Molecular Phylogeny and Description of the Novel Katablepharid Roombia truncata gen. et sp. nov., and Establishment of the Hacrobia Taxon nov 
PLoS ONE  2009;4(9):e7080.
Background
Photosynthetic eukaryotes with a secondary plastid of red algal origin (cryptophytes, haptophytes, stramenopiles, dinoflagellates, and apicomplexans) are hypothesized to share a single origin of plastid acquisition according to Chromalveolate hypothesis. Recent phylogenomic analyses suggest that photosynthetic “chromalveolates” form a large clade with inclusion of several non-photosynthetic protist lineages. Katablepharids are one such non-photosynthetic lineage closely related to cryptophytes. Despite their evolutionary and ecological importance, katablepharids are poorly investigated.
Methodology/Principal Findings
Here, we report a newly discovered flagellate, Roombia truncata gen. et sp. nov., that is related to katablepharids, but is morphologically distinct from othermembers of the group in the following ways: (1) two flagella emerge from a papilla-like subapical protrusion, (2) conspicuous ejectisomes are aligned in multiple (5–11) rows, (3) each ejectisome increases in size towards the posterior end of the rows, and (4) upon feeding, a part of cytoplasm elastically stretch to engulf whole prey cell. Molecular phylogenies inferred from Hsp90, SSU rDNA, and LSU rDNA sequences consistently and strongly show R. truncata as the sister lineage to all other katablepharids, including lineages known only from environmental sequence surveys. A close association between katablepharids and cryptophytes was also recovered in most analyses. Katablepharids and cryptophytes are together part of a larger, more inclusive, group that also contains haptophytes, telonemids, centrohelids and perhaps biliphytes. The monophyly of this group is supported by several different molecular phylogenetic datasets and one shared lateral gene transfer; therefore, we formally establish this diverse clade as the “Hacrobia.”
Conclusions/Significance
Our discovery of R. truncata not only expands our knowledge in the less studied flagellate group, but provide a better understanding of phylogenetic relationship and evolutionary view of plastid acquisition/losses of Hacrobia. Being an ancestral to all katablepharids, and readily cultivable, R. truncata is a good candidate for multiple gene analyses that will contribute to future phylogenetic studies of Hacrobia.
doi:10.1371/journal.pone.0007080
PMCID: PMC2741603  PMID: 19759916
16.  A Gene in the Process of Endosymbiotic Transfer 
PLoS ONE  2010;5(10):e13234.
Background
The endosymbiotic birth of organelles is accompanied by massive transfer of endosymbiont genes to the eukaryotic host nucleus. In the centric diatom Thalassiosira pseudonana the Psb28 protein is encoded in the plastid genome while a second version is nuclear-encoded and possesses a bipartite N-terminal presequence necessary to target the protein into the diatom complex plastid. Thus it can represent a gene captured during endosymbiotic gene transfer.
Methodology/Principal Findings
To specify the origin of nuclear- and plastid-encoded Psb28 in T. pseudonana we have performed extensive phylogenetic analyses of both mentioned genes. We have also experimentally tested the intracellular location of the nuclear-encoded Psb28 protein (nuPsb28) through transformation of the diatom Phaeodactylum tricornutum with the gene in question fused to EYFP.
Conclusions/Significance
We show here that both versions of the psb28 gene in T. pseudonana are transcribed. We also provide experimental evidence for successful targeting of the nuPsb28 fused with EYFP to the diatom complex plastid. Extensive phylogenetic analyses demonstrate that nucleotide composition of the analyzed genes deeply influences the tree topology and that appropriate methods designed to deal with a compositional bias of the sequences and the long branch attraction artefact (LBA) need to be used to overcome this obstacle. We propose that nuclear psb28 in T. pseudonana is a duplicate of a plastid localized version, and that it has been transferred from its endosymbiont.
doi:10.1371/journal.pone.0013234
PMCID: PMC2950852  PMID: 20949086
17.  A Model for Carbohydrate Metabolism in the Diatom Phaeodactylum tricornutum Deduced from Comparative Whole Genome Analysis 
PLoS ONE  2008;3(1):e1426.
Background
Diatoms are unicellular algae responsible for approximately 20% of global carbon fixation. Their evolution by secondary endocytobiosis resulted in a complex cellular structure and metabolism compared to algae with primary plastids.
Methodology/Principal Findings
The whole genome sequence of the diatom Phaeodactylum tricornutum has recently been completed. We identified and annotated genes for enzymes involved in carbohydrate pathways based on extensive EST support and comparison to the whole genome sequence of a second diatom, Thalassiosira pseudonana. Protein localization to mitochondria was predicted based on identified similarities to mitochondrial localization motifs in other eukaryotes, whereas protein localization to plastids was based on the presence of signal peptide motifs in combination with plastid localization motifs previously shown to be required in diatoms. We identified genes potentially involved in a C4-like photosynthesis in P. tricornutum and, on the basis of sequence-based putative localization of relevant proteins, discuss possible differences in carbon concentrating mechanisms and CO2 fixation between the two diatoms. We also identified genes encoding enzymes involved in photorespiration with one interesting exception: glycerate kinase was not found in either P. tricornutum or T. pseudonana. Various Calvin cycle enzymes were found in up to five different isoforms, distributed between plastids, mitochondria and the cytosol. Diatoms store energy either as lipids or as chrysolaminaran (a β-1,3-glucan) outside of the plastids. We identified various β-glucanases and large membrane-bound glucan synthases. Interestingly most of the glucanases appear to contain C-terminal anchor domains that may attach the enzymes to membranes.
Conclusions/Significance
Here we present a detailed synthesis of carbohydrate metabolism in diatoms based on the genome sequences of Thalassiosira pseudonana and Phaeodactylum tricornutum. This model provides novel insights into acquisition of dissolved inorganic carbon and primary metabolic pathways of carbon in two different diatoms, which is of significance for an improved understanding of global carbon cycles.
doi:10.1371/journal.pone.0001426
PMCID: PMC2173943  PMID: 18183306
18.  Algal endosymbionts as vectors of horizontal gene transfer in photosynthetic eukaryotes 
Photosynthesis in eukaryotes occurs in the plastid, an organelle that is derived from a single cyanobacterial primary endosymbiosis in the common ancestor of the supergroup Plantae (or Archaeplastida) that includes green, red, and glaucophyte algae and plants. However a variety of other phytoplankton such as the chlorophyll c-containing diatoms, dinoflagellates, and haptophytes contain a red alga-derived plastid that traces its origin to secondary or tertiary (eukaryote engulfs eukaryote) endosymbiosis. The hypothesis of Plantae monophyly has only recently been substantiated, however the extent and role of endosymbiotic and horizontal gene transfer (EGT and HGT) in algal genome evolution still remain to be fully understood. What is becoming clear from analysis of complete genome data is that algal gene complements can no longer be considered essentially eukaryotic in provenance; i.e., with the expected addition of several hundred cyanobacterial genes derived from EGT and a similar number derived from the mitochondrial ancestor. For example, we now know that foreign cells such as Chlamydiae and other prokaryotes have made significant contributions to plastid functions in Plantae. Perhaps more surprising is the recent finding of extensive bacterium-derived HGT in the nuclear genome of the unicellular red alga Porphyridium purpureum that does not relate to plastid functions. These non-endosymbiont gene transfers not only shaped the evolutionary history of Plantae but also were propagated via secondary endosymbiosis to a multitude of other phytoplankton. Here we discuss the idea that Plantae (in particular red algae) are one of the major players in eukaryote genome evolution by virtue of their ability to act as “sinks” and “sources” of foreign genes through HGT and endosymbiosis, respectively. This hypothesis recognizes the often under-appreciated Rhodophyta as major sources of genetic novelty among photosynthetic eukaryotes.
doi:10.3389/fpls.2013.00366
PMCID: PMC3777023  PMID: 24065973
algal evolution; Plantae plastid origin; primary endosymbiosis; chromalveolates; EGT; HGT
19.  Phylogenomic Analysis of “Red” Genes from Two Divergent Species of the “Green” Secondary Phototrophs, the Chlorarachniophytes, Suggests Multiple Horizontal Gene Transfers from the Red Lineage before the Divergence of Extant Chlorarachniophytes 
PLoS ONE  2014;9(6):e101158.
The plastids of chlorarachniophytes were derived from an ancestral green alga via secondary endosymbiosis. Thus, genes from the “green” lineage via secondary endosymbiotic gene transfer (EGT) are expected in the nuclear genomes of the Chlorarachniophyta. However, several recent studies have revealed the presence of “red” genes in their nuclear genomes. To elucidate the origin of such “red” genes in chlorarachniophyte nuclear genomes, we carried out exhaustive single-gene phylogenetic analyses, including two operational taxonomic units (OTUs) that represent two divergent sister lineages of the Chlorarachniophyta, Amorphochlora amoeboformis ( = Lotharella amoeboformis; based on RNA sequences newly determined here) and Bigelowiella natans (based on the published genome sequence). We identified 10 genes of cyanobacterial origin, phylogenetic analysis of which showed the chlorarachniophytes to branch with the red lineage (red algae and/or red algal secondary or tertiary plastid-containing eukaryotes). Of the 10 genes, 7 demonstrated robust monophyly of the two chlorarachniophyte OTUs. Thus, the common ancestor of the extant chlorarachniophytes likely experienced multiple horizontal gene transfers from the red lineage. Because 4 of the 10 genes are obviously photosynthesis- and/or plastid-related, and almost all of the eukaryotic OTUs in the 10 trees possess plastids, such red genes most likely originated directly from photosynthetic eukaryotes. This situation could be explained by a possible cryptic endosymbiosis of a red algal plastid before the secondary endosymbiosis of the green algal plastid, or a long-term feeding on a single (or multiple closely related) red algal plastid-containing eukaryote(s) after the green secondary endosymbiosis.
doi:10.1371/journal.pone.0101158
PMCID: PMC4074131  PMID: 24972019
20.  An extended phylogenetic analysis reveals ancient origin of "non-green" phosphoribulokinase genes from two lineages of "green" secondary photosynthetic eukaryotes: Euglenophyta and Chlorarachniophyta 
BMC Research Notes  2011;4:330.
Background
Euglenophyta and Chlorarachniophyta are groups of photosynthetic eukaryotes harboring secondary plastids of distinct green algal origins. Although previous phylogenetic analyses of genes encoding Calvin cycle enzymes demonstrated the presence of genes apparently not derived from green algal endosymbionts in the nuclear genomes of Euglena gracilis (Euglenophyta) and Bigelowiella natans (Chlorarachniophyta), the origins of these "non-green" genes in "green" secondary phototrophs were unclear due to the limited taxon sampling.
Results
Here, we sequenced five new phosphoribulokinase (PRK) genes (from one euglenophyte, two chlorarachniophytes, and two glaucophytes) and performed an extended phylogenetic analysis of the genes based on a phylum-wide taxon sampling from various photosynthetic eukaryotes. Our phylogenetic analyses demonstrated that the PRK sequences form two genera of Euglenophyta formed a robust monophyletic group within a large clade including stramenopiles, haptophytes and a cryptophyte, and three genera of Chlorarachniophyta were placed within the red algal clade. These "non-green" affiliations were supported by the taxon-specific insertion/deletion sequences in the PRK alignment, especially between euglenophytes and stramenopiles. In addition, phylogenetic analysis of another Calvin cycle enzyme, plastid-targeted sedoheptulose-bisphosphatase (SBP), showed that the SBP sequences from two genera of Chlorarachniophyta were positioned within a red algal clade.
Conclusions
Our results suggest that PRK genes may have been transferred from a "stramenopile" ancestor to Euglenophyta and from a "red algal" ancestor to Chlorarachniophyta before radiation of extant taxa of these two "green" secondary phototrophs. The presence of two of key Calvin cycle enzymes, PRK and SBP, of red algal origins in Chlorarachniophyta indicate that the contribution of "non-green" algae to the plastid proteome in the "green" secondary phototrophs is more significant than ever thought. These "non-green" putative plastid-targeted enzymes from Chlorarachniophyta are likely to have originated from an ancestral red alga via horizontal gene transfer, or from a cryptic red algal endosymbiosis in the common ancestor of the extant chlorarachniophytes.
doi:10.1186/1756-0500-4-330
PMCID: PMC3224528  PMID: 21899749
21.  A phylogenetic mosaic plastid proteome and unusual plastid-targeting signals in the green-colored dinoflagellate Lepidodinium chlorophorum 
Background
Plastid replacements through secondary endosymbioses include massive transfer of genes from the endosymbiont to the host nucleus and require a new targeting system to enable transport of the plastid-targeted proteins across 3-4 plastid membranes. The dinoflagellates are the only eukaryotic lineage that has been shown to have undergone several plastid replacement events, and this group is thus highly relevant for studying the processes involved in plastid evolution. In this study, we analyzed the phylogenetic origin and N-terminal extensions of plastid-targeted proteins from Lepidodinium chlorophorum, a member of the only dinoflagellate genus that harbors a green secondary plastid rather than the red algal-derived, peridinin-containing plastid usually found in photosynthetic dinoflagellates.
Results
We sequenced 4,746 randomly picked clones from a L. chlorophorum cDNA library. 22 of the assembled genes were identified as genes encoding proteins functioning in plastids. Some of these were of green algal origin. This confirms that genes have been transferred from the plastid to the host nucleus of L. chlorophorum and indicates that the plastid is fully integrated as an organelle in the host. Other nuclear-encoded plastid-targeted protein genes, however, are clearly not of green algal origin, but have been derived from a number of different algal groups, including dinoflagellates, streptophytes, heterokonts, and red algae. The characteristics of N-terminal plastid-targeting peptides of all of these genes are substantially different from those found in peridinin-containing dinoflagellates and green algae.
Conclusions
L. chlorophorum expresses plastid-targeted proteins with a range of different origins, which probably arose through endosymbiotic gene transfer (EGT) and horizontal gene transfer (HGT). The N-terminal extension of the genes is different from the extensions found in green alga and other dinoflagellates (peridinin- and haptophyte plastids). These modifications have likely enabled the mosaic proteome of L. chlorophorum.
doi:10.1186/1471-2148-10-191
PMCID: PMC3055265  PMID: 20565933
22.  Do Red and Green Make Brown?: Perspectives on Plastid Acquisitions within Chromalveolates ▿ 
Eukaryotic Cell  2011;10(7):856-868.
The chromalveolate “supergroup” is of key interest in contemporary phycology, as it contains the overwhelming majority of extant algal species, including several phyla of key importance to oceanic net primary productivity such as diatoms, kelps, and dinoflagellates. There is also intense current interest in the exploitation of these algae for industrial purposes, such as biodiesel production. However, the evolution of the constituent species, and in particular the origin and radiation of the chloroplast genomes, remains poorly understood. In this review, we discuss current theories of the origins of the extant red alga-derived chloroplast lineages in the chromalveolates and the potential ramifications of the recent discovery of large numbers of green algal genes in chromalveolate genomes. We consider that the best explanation for this is that chromalveolates historically possessed a cryptic green algal endosymbiont that was subsequently replaced by a red algal chloroplast. We consider how changing selective pressures acting on ancient chromalveolate lineages may have selectively favored the serial endosymbioses of green and red algae and whether a complex endosymbiotic history facilitated the rise of chromalveolates to their current position of ecological prominence.
doi:10.1128/EC.00326-10
PMCID: PMC3147421  PMID: 21622904
23.  Red and Problematic Green Phylogenetic Signals among Thousands of Nuclear Genes from the Photosynthetic and Apicomplexa-Related Chromera velia 
Genome Biology and Evolution  2011;3:1220-1230.
The photosynthetic and basal apicomplexan Chromera velia was recently described, expanding the membership of this otherwise nonphotosynthetic group of parasite protists. Apicomplexans are alveolates with secondary plastids of red algal origin, but the evolutionary history of their nuclear genes is still actively discussed. Using deep sequencing of expressed genes, we investigated the phylogenetic affinities of a stringent filtered set of 3,151 expressed sequence tag-contigs by generating clusters with eukaryotic homologs and constructing phylogenetic trees and networks. The phylogenetic positioning of this alveolate alga was determined and sets of phyla-specific proteins extracted. Phylogenetic trees provided conflicting signals, with 444 trees grouping C. velia with the apicomplexans but 354 trees grouping C. velia with the alveolate oyster pathogen Perkinsus marinus, the latter signal being reinforced from the analysis of shared genes and overall sequence similarity. Among the 513 C. velia nuclear genes that reflect a photosynthetic ancestry and for which nuclear homologs were available both from red and green lineages, 263 indicated a red photosynthetic ancestry, whereas 250 indicated a green photosynthetic ancestry. The same 1:1 signal ratio was found among the putative 255 nuclear-encoded plastid proteins identified. This finding of red and green signals for the alveolate mirrors the result observed in the heterokont lineage and supports a common but not necessarily single origin for the plastid in heterokonts and alveolates. The inference of green endosymbiosis preceding red plastid acquisition in these lineages leads to worryingly complicated evolutionary scenarios, prompting the search for other explanations for the green phylogenetic signal and the amount of hosts involved.
doi:10.1093/gbe/evr100
PMCID: PMC3205606  PMID: 21965651
Chromera; Apicomplexa; Alveolata; chromalveolata; apicoplast; protist evolution
24.  The Complete Plastid Genome Sequence of the Secondarily Nonphotosynthetic Alga Cryptomonas paramecium: Reduction, Compaction, and Accelerated Evolutionary Rate 
The cryptomonads are a group of unicellular algae that acquired photosynthesis through the engulfment of a red algal cell, a process called secondary endosymbiosis. Here, we present the complete plastid genome sequence of the secondarily nonphotosynthetic species Cryptomonas paramecium CCAP977/2a. The ∼78 kilobase pair (Kbp) C. paramecium genome contains 82 predicted protein genes, 29 transfer RNA genes, and a single pseudogene (atpF). The C. paramecium plastid genome is approximately 50 Kbp smaller than those of the photosynthetic cryptomonads Guillardia theta and Rhodomonas salina; 71 genes present in the G. theta and/or R. salina plastid genomes are missing in C. paramecium. The pet, psa, and psb photosynthetic gene families are almost entirely absent. Interestingly, the ribosomal RNA operon, present as inverted repeats in most plastid genomes (including G. theta and R. salina), exists as a single copy in C. paramecium. The G + C content (38%) is higher in C. paramecium than in other cryptomonad plastid genomes, and C. paramecium plastid genes are characterized by significantly different codon usage patterns and increased evolutionary rates. The content and structure of the C. paramecium plastid genome provides insight into the changes associated with recent loss of photosynthesis in a predominantly photosynthetic group of algae and reveals features shared with the plastid genomes of other secondarily nonphotosynthetic eukaryotes.
doi:10.1093/gbe/evp047
PMCID: PMC2839278  PMID: 20333213
cryptomonads; plastids; genome reduction; photosynthesis; secondary endosymbiosis
25.  The Complete Plastid Genomes of the Two ‘Dinotoms’ Durinskia baltica and Kryptoperidinium foliaceum 
PLoS ONE  2010;5(5):e10711.
Background
In one small group of dinoflagellates, photosynthesis is carried out by a tertiary endosymbiont derived from a diatom, giving rise to a complex cell that we collectively refer to as a ‘dinotom’. The endosymbiont is separated from its host by a single membrane and retains plastids, mitochondria, a large nucleus, and many other eukaryotic organelles and structures, a level of complexity suggesting an early stage of integration. Although the evolution of these endosymbionts has attracted considerable interest, the plastid genome has not been examined in detail, and indeed no tertiary plastid genome has yet been sequenced.
Methodology/Principal Findings
Here we describe the complete plastid genomes of two closely related dinotoms, Durinskia baltica and Kryptoperidinium foliaceum. The D. baltica (116470 bp) and K. foliaceum (140426 bp) plastid genomes map as circular molecules featuring two large inverted repeats that separate distinct single copy regions. The organization and gene content of the D. baltica plastid closely resemble those of the pennate diatom Phaeodactylum tricornutum. The K. foliaceum plastid genome is much larger, has undergone more reorganization, and encodes a putative tyrosine recombinase (tyrC) also found in the plastid genome of the heterokont Heterosigma akashiwo, and two putative serine recombinases (serC1 and serC2) homologous to recombinases encoded by plasmids pCf1 and pCf2 in another pennate diatom, Cylindrotheca fusiformis. The K. foliaceum plastid genome also contains an additional copy of serC1, two degenerate copies of another plasmid-encoded ORF, and two non-coding regions whose sequences closely resemble portions of the pCf1 and pCf2 plasmids.
Conclusions/Significance
These results suggest that while the plastid genomes of two dinotoms share very similar gene content and genome organization with that of the free-living pennate diatom P. tricornutum, the K. folicaeum plastid genome has absorbed two exogenous plasmids. Whether this took place before or after the tertiary endosymbiosis is not clear.
doi:10.1371/journal.pone.0010711
PMCID: PMC2873285  PMID: 20502706

Results 1-25 (570172)