Search tips
Search criteria

Results 1-25 (1103821)

Clipboard (0)

Related Articles

1.  Arp2/3 Branched Actin Network Mediates Filopodia-Like Bundles Formation In Vitro 
PLoS ONE  2008;3(9):e3297.
During cellular migration, regulated actin assembly takes place at the cell leading edge, with continuous disassembly deeper in the cell interior. Actin polymerization at the plasma membrane results in the extension of cellular protrusions in the form of lamellipodia and filopodia. To understand how cells regulate the transformation of lamellipodia into filopodia, and to determine the major factors that control their transition, we studied actin self-assembly in the presence of Arp2/3 complex, WASp-VCA and fascin, the major proteins participating in the assembly of lamellipodia and filopodia. We show that in the early stages of actin polymerization fascin is passive while Arp2/3 mediates the formation of dense and highly branched aster-like networks of actin. Once filaments in the periphery of an aster get long enough, fascin becomes active, linking the filaments into bundles which emanate radially from the aster's surface, resulting in the formation of star-like structures. We show that the number of bundles nucleated per star, as well as their thickness and length, is controlled by the initial concentration of Arp2/3 complex ([Arp2/3]). Specifically, we tested several values of [Arp2/3] and found that for given initial concentrations of actin and fascin, the number of bundles per star, as well as their length and thickness are larger when [Arp2/3] is lower. Our experimental findings can be interpreted and explained using a theoretical scheme which combines Kinetic Monte Carlo simulations for aster growth, with a simple mechanistic model for bundles' formation and growth. According to this model, bundles emerge from the aster's (sparsely branched) surface layer. Bundles begin to form when the bending energy associated with bringing two filaments into contact is compensated by the energetic gain resulting from their fascin linking energy. As time evolves the initially thin and short bundles elongate, thus reducing their bending energy and allowing them to further associate and create thicker bundles, until all actin monomers are consumed. This process is essentially irreversible on the time scale of actin polymerization. Two structural parameters, L, which is proportional to the length of filament tips at the aster periphery and b, the spacing between their origins, dictate the onset of bundling; both depending on [Arp2/3]. Cells may use a similar mechanism to regulate filopodia formation along the cell leading edge. Such a mechanism may allow cells to have control over the localization of filopodia by recruiting specific proteins that regulate filaments length (e.g., Dia2) to specific sites along lamellipodia.
PMCID: PMC2538570  PMID: 18820726
2.  Computer simulations reveal motor properties generating stable antiparallel microtubule interactions 
The Journal of Cell Biology  2002;158(6):1005-1015.
An aster of microtubules is a set of flexible polar filaments with dynamic plus ends that irradiate from a common location at which the minus ends of the filaments are found. Processive soluble oligomeric motor complexes can bind simultaneously to two microtubules, and thus exert forces between two asters. Using computer simulations, I have explored systematically the possible steady-state regimes reached by two asters under the action of various kinds of oligomeric motors. As expected, motor complexes can induce the asters to fuse, for example when the complexes consist only of minus end–directed motors, or to fully separate, when the motors are plus end directed. More surprisingly, complexes made of two motors of opposite directionalities can also lead to antiparallel interactions between overlapping microtubules that are stable and sustained, like those seen in mitotic spindle structures. This suggests that such heterocomplexes could have a significant biological role, if they exist in the cell.
PMCID: PMC2173220  PMID: 12235120
spindle; cytoskeleton; molecular motor; aster; model
3.  Growth, interaction and positioning of microtubule asters in extremely large vertebrate embryo cells 
Cytoskeleton (Hoboken, N.J.)  2012;69(10):738-750.
Ray Rappaport spent many years studying microtubule asters, and how they induce cleavage furrows. Here we review recent progress on aster structure and dynamics in zygotes and early blastomeres of Xenopus laevis and Zebrafish, where cells are extremely large. Mitotic and interphase asters differ markedly in size, and only interphase asters span the cell. Growth of interphase asters occurs by a mechanism that allows microtubule density at the aster periphery to remain approximately constant as radius increases. We discuss models for aster growth, and favor a branching nucleation process. Neighboring asters that grow into each other interact to block further growth at the shared boundary. We compare the morphology of interaction zones formed between pairs of asters that grow out from the poles of the same mitotic spindle (sister asters) and between pairs not related by mitosis (non-sister asters) that meet following polyspermic fertilization. We argue growing asters recognize each other by interaction between anti-parallel microtubules at the mutual boundary, and discuss models for molecular organization of interaction zones. Finally, we discuss models for how asters, and the centrosomes within them, are positioned by dynein-mediated pulling forces so as to generate stereotyped cleavage patterns. Studying these problems in extremely large cells is starting to reveal how general principles of cell organization scale with cell size.
PMCID: PMC3690567  PMID: 22786885
4.  A Mechanistic Model for the Organization of Microtubule Asters by Motor and Non-Motor Proteins in a Mammalian Mitotic ExtractD⃞ 
Molecular Biology of the Cell  2004;15(5):2116-2132.
We used computer simulation to understand the functional relationships between motor (dynein, HSET, and Eg5) and non-motor (NuMA) proteins involved in microtubule aster organization. The simulation accurately predicted microtubule organization under all combinations of motor and non-motor proteins, provided that microtubule cross-links at minus-ends were dynamic, and dynein and HSET were restricted to cross-linking microtubules in parallel orientation only. A mechanistic model was derived from these data in which a combination of two aggregate properties, Net Minus-end–directed Force and microtubule Cross-linking Orientation Bias, determine microtubule organization. This model uses motor and non-motor proteins, accounts for motor antagonism, and predicts that alterations in microtubule Cross-linking Orientation Bias should compensate for imbalances in motor force during microtubule aster formation. We tested this prediction in the mammalian mitotic extract and, consistent with the model, found that increasing the contribution of microtubule cross-linking by NuMA compensated for the loss of Eg5 motor activity. Thus, this model proposes a precise mechanism of action of each noncentrosomal protein during microtubule aster organization and suggests that microtubule organization in spindles involves both motile forces from motors and static forces from non-motor cross-linking proteins.
PMCID: PMC404009  PMID: 14978218
5.  Force-Velocity Measurements of a Few Growing Actin Filaments 
PLoS Biology  2011;9(4):e1000613.
The authors propose a new mechanism for actin-based force generation based on results using chains of actin-grafted magnetic colloids.
The polymerization of actin in filaments generates forces that play a pivotal role in many cellular processes. We introduce a novel technique to determine the force-velocity relation when a few independent anchored filaments grow between magnetic colloidal particles. When a magnetic field is applied, the colloidal particles assemble into chains under controlled loading or spacing. As the filaments elongate, the beads separate, allowing the force-velocity curve to be precisely measured. In the widely accepted Brownian ratchet model, the transduced force is associated with the slowing down of the on-rate polymerization. Unexpectedly, in our experiments, filaments are shown to grow at the same rate as when they are free in solution. However, as they elongate, filaments are more confined in the interspace between beads. Higher repulsive forces result from this higher confinement, which is associated with a lower entropy. In this mechanism, the production of force is not controlled by the polymerization rate, but is a consequence of the restriction of filaments' orientational fluctuations at their attachment point.
Author Summary
Actin self-assembles into filaments, and this produces forces that deform cell membranes in a large number of motile processes. While physical measurements have been performed of the force produced by growth of either a single filament or a large intricate array of filaments organized in an active macroscopic gel, these measurements don't provide a clear picture of how force is produced by the assembly of each filament within a complex structure. The present study explores a situation between these two extremes by measuring the force produced by the assembly of a small number of filaments. We developed a method in which actin filaments grow from the surface of magnetic beads that are aligned by a controlled magnetic field. The distance between beads in a chain-like arrangement increases with time when the force is kept constant. We observe that the growth of actin filaments is not affected by the load, in contrast to the widely accepted “Brownian ratchet model.” Instead, our results suggest that the surface opposite growing filaments imposes restrictions on the rotational fluctuations of a filament at its free hinge anchoring point, inducing a repulsive force. The confinement of filaments increases as they grow, and this in turn increases the repulsive force developed by their growth. This entropy-based mechanism may operate during motile processes when actin networks are loosely organized.
PMCID: PMC3082516  PMID: 21541364
6.  Cytoplasmic dynein crosslinks and slides anti-parallel microtubules using its two motor domains 
eLife  2013;2:e00943.
Cytoplasmic dynein is the predominant minus-end-directed microtubule (MT) motor in most eukaryotic cells. In addition to transporting vesicular cargos, dynein helps to organize MTs within MT networks such as mitotic spindles. How dynein performs such non-canonical functions is unknown. Here we demonstrate that dynein crosslinks and slides anti-parallel MTs in vitro. Surprisingly, a minimal dimeric motor lacking a tail domain and associated subunits can cause MT sliding. Single molecule imaging reveals that motors pause and frequently reverse direction when encountering an anti-parallel MT overlap, suggesting that the two motor domains can bind both MTs simultaneously. In the mitotic spindle, inward microtubule sliding by dynein counteracts outward sliding generated by kinesin-5, and we show that a tailless, dimeric motor is sufficient to drive this activity in mammalian cells. Our results identify an unexpected mechanism for dynein-driven microtubule sliding, which differs from filament sliding mechanisms described for other motor proteins.
eLife digest
When cells divide, they must also divide their contents. In particular, both ‘mother’ and ‘daughter’ cells require full sets of chromosomes, which must first be duplicated, and then evenly distributed between the cells. Protein filaments called microtubules form a network that helps to accurately segregate the chromosomes. Microtubules emanate from structures at each end of the dividing cell known as spindle poles; after the chromosomes have duplicated, the microtubules latch onto them and align the pairs in the middle of the cell. As the two cells separate, microtubules at opposite spindle poles reel in one chromosome from each pair.
Microtubules are composed of alternating copies of two different types of a protein called tubulin, and have ends with distinct properties. The ‘minus’ ends are directed outwards, away from the chromosomes; the ‘plus’ ends—which can actively add tubulin—grow toward the middle of the cell, and can also bind to chromosomes. Microtubules can be manipulated by motor proteins that ‘walk’ along them carrying cargoes, which can include other microtubules. The combined actions of many motor proteins rearrange the microtubule network into a configuration that enables the chromosomes, and other cellular structures, to partition equally between the mother and daughter cells.
Motor proteins such as dynein and kinesin transport cargoes along microtubules; each motor is composed of two identical copies of the protein bound to each other. Kinesin walks toward the plus end of a microtubule, propelling itself using ‘feet’ that are called motor domains; it binds cargoes (including other microtubules) through additional regions located at the opposite end of the protein. In contrast, dynein walks toward the minus end of a microtubule. Although dynein is known to carry certain cargoes through regions outside its motor domain, how it transports other microtubules is not well understood.
Tanenbaum et al. now show that regions outside the motor domain of dynein are unnecessary to transport microtubule cargoes. When two dynein motor domains are isolated and linked to each other in vitro, each can bind to a separate microtubule. By walking toward the minus ends of their respective microtubules, the motor domains drive the microtubules in opposite directions, sliding them apart. These studies thus provide insight into the mechanism through which dynein works with additional motor proteins (such as kinesin) to rearrange microtubules during cell division—and also to ensure that chromosomes segregate evenly between mother and daughter cells.
PMCID: PMC3762337  PMID: 24015359
dynein; spindle; microtubule; Eg5; cytoskeleton; mitosis; Human; S. cerevisiae
7.  The taccalonolides and paclitaxel cause distinct effects on microtubule dynamics and aster formation 
Molecular Cancer  2014;13:41.
Microtubule stabilizers suppress microtubule dynamics and, at the lowest antiproliferative concentrations, disrupt the function of mitotic spindles, leading to mitotic arrest and apoptosis. At slightly higher concentrations, these agents cause the formation of multiple mitotic asters with distinct morphologies elicited by different microtubule stabilizers.
We tested the hypothesis that two classes of microtubule stabilizing drugs, the taxanes and the taccalonolides, cause the formation of distinct aster structures due, in part, to differential effects on microtubule dynamics. Paclitaxel and the taccalonolides suppressed the dynamics of microtubules formed from purified tubulin as well as in live cells. Both agents suppressed microtubule dynamic instability, with the taccalonolides having a more pronounced inhibition of microtubule catastrophe, suggesting that they stabilize the plus ends of microtubules more effectively than paclitaxel. Live cell microscopy was also used to evaluate the formation and resolution of asters after drug treatment. While each drug had similar effects on initial formation, substantial differences were observed in aster resolution. Paclitaxel-induced asters often coalesced over time resulting in fewer, larger asters whereas numerous compact asters persisted once they were formed in the presence of the taccalonolides.
We conclude that the increased resistance of microtubule plus ends to catastrophe may play a role in the observed inability of taccalonolide-induced asters to coalesce during mitosis, giving rise to the distinct morphologies observed after exposure to these agents.
PMCID: PMC4015978  PMID: 24576146
Taccalonolide; Microtubule; Paclitaxel; Microtubule stabilizer; Tubulin
8.  Intensity of vortices: from soap bubbles to hurricanes 
Scientific Reports  2013;3:3455.
By using a half soap bubble heated from below, we obtain large isolated single vortices whose properties as well as their intensity are measured under different conditions. By studying the effects of rotation of the bubble on the vortex properties, we found that rotation favors vortices near the pole. Rotation also inhibits long life time vortices. The velocity and vorticity profiles of the vortices obtained are well described by a Gaussian vortex. Besides, the intensity of these vortices can be followed over long time spans revealing periods of intensification accompanied by trochoidal motion of the vortex center, features which are reminiscent of the behavior of tropical cyclones. An analysis of this intensification period suggests a simple relation valid for both the vortices observed here and for tropical cyclones.
PMCID: PMC3861805  PMID: 24336410
9.  Transformation of ActoHMM Assembly Confined in Cell-Sized Liposome 
Langmuir  2011;27(18):11528-11535.
To construct a simple model of a cellular system equipped with motor proteins, cell-sized giant liposomes encapsulating various amounts of actoHMM, the complexes of actin filaments (F-actin) and heavy meromyosin (HMM, an actin-related molecular motor), with a depletion reagent to mimic the crowding effect of inside of living cell, were prepared. We adapted the methodology of the spontaneous transfer of water-in-oil (W/O) droplets through a phospholipid monolayer into the bulk aqueous phase and successfully prepared stable giant liposomes encapsulating the solution with a physiological salt concentration containing the desired concentrations of actoHMM, which had been almost impossible to obtain using currently adapted methodologies such as natural swelling and electro-formation on an electrode. We then examined the effect of ATP on the cytoskeleton components confined in those cell-sized liposomes, because ATP is known to drive the sliding motion for actoHMM. We added α-hemolysin, a bacterial membrane pore-forming toxin, to the bathing solution and obtained liposomes with the protein pores embedded on the bilayer membrane to allow the transfer of ATP inside the liposomes. We show that, by the ATP supply, the actoHMM bundles inside the liposomes exhibit specific changes in spatial distribution, caused by the active sliding between F-actin and HMM. Interestingly, all F-actins localized around the inner periphery of liposomes smaller than a critical size, whereas in the bulk solution and also in larger liposomes, the actin bundles formed aster-like structures under the same conditions.
PMCID: PMC3171996  PMID: 21819144
10.  In vitro polymerization of microtubules into asters and spindles in homogenates of surf clam eggs 
The Journal of Cell Biology  1975;64(1):146-158.
The eggs of the surf clam Spisula solidissima were artificially activated, homogenized at various times in cold 0.5 M MES buffer, 1mM EGTA at pH 6.5, and microtubule polymerization was induced by raising the temperature to 28 degrees C. In homogenates of unactivated eggs few microtubules form and no asters are observed. By 2.5 min after activation microtubules polymerize in association with a dense central cylinder, resulting in the formation of small asterlike structures. By 4.5 min after activation the asters formed in vitro contain a distinct centriole, and microtubules now radiate from a larger volume of granular material which surrounds the centriole. By 15 min (metaphase I) the granular material is more disperse and only loosely associated with the centriole. Microtubules are occasionally observed which appear to radiate directly from one end of the centriole. The organizing center can be partially isolated by centrifugation of homogenates of metaphase eggs and will induce aster formation if mixed with tubulin from either activated or unactivated eggs. Pretreatment of the eggs with colchicine does not prevent the formation of a functional organizing center. Complete spindles can also be obtained under polymerizing conditions by either homogenizing the eggs directly into warm buffer or by adding a warm high-speed supernate to spindles which have been isolated in a microtubule stabilizing medium. Extensive addition of new tubulin occurs onto the isolated spindles, resulting primarily in growth of astral fibers, although there occasionally appears to be growth of chromosomal fibers and of pole-to-pole fibers. Negatively stained aster microtubules have a strong tendency to associate side by side, and under some conditions distinct cross bridges can be observed. However, under other conditions large numbers of 300-400-A particles surround the microtubules; the presence of stain between particles can give the appearance of cross bridges.
PMCID: PMC2109483  PMID: 45844
11.  Functional autonomy of monopolar spindle and evidence for oscillatory movement in mitosis 
The Journal of Cell Biology  1982;93(1):33-48.
The oscillations of chromosomes associated with a single spindle pole in monocentric and bipolar spindles were analysed by time-lapse cinematography in mitosis of primary cultures of lung epithelium from the newt Taricha granulosa. Chromosomes oscillate toward and away from the pole in all stages of mitosis including anaphase. The duration, velocity, and amplitude of such oscillations are the same in all stages of mitosis. The movement away from the pole in monocentric spindle is rapid enough to suggest the existence of a previously unrecognized active component in chromosome movement, presumably resulting from a pushing action of the kinetochore fiber. During prometaphase oscillations, chromosomes may approach the pole even more closely than at the end of anaphase. Together, these observations demonstrate that a monopolar spindle is sufficient to generate the forces for chromosome transport, both toward and away from the pole. The coordination of the aster/centrosome migration in prophase with the development of the kinetochore fibers determines the course of mitosis. After the breaking of the nuclear envelope in normal mitosis, aster/centrosome separation is normally followed by the rapid formation of bipolar chromosomal fibers. There are two aberrant extremes that may result from a failure in coordination between these processes: (a) A monocentric spindle will arise when aster separation does not occur, and (b) an anaphaselike prometaphase will result if the aster/centrosomal complexes are already well-separated and bipolar chromosomal fibers do not form. In the latter case, the two monopolar prometaphase half-spindles migrate apart, each containing a random number of two chromatid (metaphase) monopolar-oriented chromosomes. This random segregation of prometaphase chromosome displays many features of a standard anaphase and may be followed by a false cleavage. The process of polar separation during prometaphase occurs without any visible interzonal structures. Aster/centrosomes and monopolar spindles migrate autonomously by an unknown mechanism. There are, however, firm but transitory connections between the aster center and the kinetochores as demonstrated by the occasional synchrony of centrosome-kinetochore movement. The data suggest that aster motility is important in the progress of both prometaphase and anaphase in normal mitosis.
PMCID: PMC2112119  PMID: 7068758
12.  Myosin motors fragment and compact membrane-bound actin filaments 
eLife  2013;2:e00116.
Cell cortex remodeling during cell division is a result of myofilament-driven contractility of the cortical membrane-bound actin meshwork. Little is known about the interaction between individual myofilaments and membrane-bound actin filaments. Here we reconstituted a minimal actin cortex to directly visualize the action of individual myofilaments on membrane-bound actin filaments using TIRF microscopy. We show that synthetic myofilaments fragment and compact membrane-bound actin while processively moving along actin filaments. We propose a mechanism by which tension builds up between the ends of myofilaments, resulting in compressive stress exerted to single actin filaments, causing their buckling and breakage. Modeling of this mechanism revealed that sufficient force (∼20 pN) can be generated by single myofilaments to buckle and break actin filaments. This mechanism of filament fragmentation and compaction may contribute to actin turnover and cortex reorganization during cytokinesis.
eLife digest
Actin is a multi-functional protein that is found in almost all eukaryotic cells. When polymerized, it forms robust filaments that participate in a variety of cellular processes. For example, actin filaments are involved in the contraction of muscles, and they are also a major component in the various structures that maintain and control the shape of cells as they move and divide. These structures include the cell cortex, a meshwork of actin filaments that is bound to the inner surface of the plasma membrane by anchor proteins. However, both the cell cortex and the plasma membrane must undergo dramatic changes when a cell divides, and the forces that drive these changes are generated by another protein, myosin II.
Myosin II contains three domains: a head domain, also known as the motor domain, that binds to actin; a neck domain; and a tail domain. Like actin, myosin II proteins also form filaments, but these myofilaments have a distinctive structure: the tail domains of two Myosin II proteins join together, with the motor domains being found at both ends of the filament. When activated, the motor domains grab actin filaments and pull against them in a ‘powerstroke’. However, the details of the interactions between the myofilament motor domains and the actin filaments in the cell cortex, which are bound to the plasma membrane, are not fully understood.
Studying these processes in living cells is extremely challenging, so Vogel et al. have built an in vitro model of the cell cortex, and then used single-molecule imaging to watch the interactions between the myofilaments and the actin filaments in this model. They show that the myofilaments move along the actin in the cortex, breaking up the filaments and compressing them in the process. They propose that tension builds up between the ends of the myofilaments, leading to compressive stress being exerted on the actin filaments. Computer simulations confirm that the forces generated are high enough to cause the actin filaments to buckle and break. The in vitro model developed by Vogel et al. should allow researchers to clarify the basic biophysical principles that underpin the structure and function of the cell cortex.
PMCID: PMC3545444  PMID: 23326639
Myosin; Actin; Actin Cortex; Myofilaments; TIRF; Membrane; None
13.  Assembly pathway of the anastral Drosophilaoocyte meiosis I spindle 
Journal of cell science  2005;118(Pt 8):1745-1755.
Oocyte meiotic spindles of many species are anastral and lack centrosomes to nucleate microtubules. Assembly of anastral spindles occurs by a pathway that differs from that of most mitotic spindles. Here we analyze assembly of the Drosophila oocyte meiosis I spindle and the role of the Nonclaret disjunctional (Ncd) motor in spindle assembly using wild-type and mutant Ncd fused to GFP. Unexpectedly, we observe motor-associated asters at germinal vesicle breakdown that migrate towards the condensed chromosomes, where they nucleate microtubules at the chromosomes. Newly nucleated microtubules are randomly oriented, then become organized around the bivalent chromosomes. We show that the meiotic spindle forms by lateral associations of microtubule-coated chromosomes into a bipolar spindle. Lateral interactions between microtubule-associated bivalent chromosomes may be mediated by microtubule crosslinking by the Ncd motor, based on analysis of fixed oocytes. We report here that spindle assembly occurs in an ncd mutant defective for microtubule motility, but lateral interactions between microtubule-coated chromosomes are unstable, indicating that Ncd movement along microtubules is needed to stabilize interactions between chromosomes. A more severe ncd mutant that probably lacks ATPase activity prevents formation of lateral interactions between chromosomes and causes defective microtubule elongation. Anastral Drosophila oocyte meiosis I spindle assembly thus involves motor-associated asters to nucleate microtubules and Ncd motor activity to form and stabilize interactions between microtubule-associated chromosomes during the assembly process. This is the first complete account of assembly of an anastral spindle and the specific steps that require Ncd motor activity, revealing new and unexpected features of the process.
PMCID: PMC1568144  PMID: 15797926
Meiotic spindle assembly; Anastral spindles; Microtubule motor; Ncd; Live oocytes
14.  Mitotic Spindle Poles are Organized by Structural and Motor Proteins in Addition to Centrosomes  
The Journal of Cell Biology  1997;138(5):1055-1066.
The focusing of microtubules into mitotic spindle poles in vertebrate somatic cells has been assumed to be the consequence of their nucleation from centrosomes. Contrary to this simple view, in this article we show that an antibody recognizing the light intermediate chain of cytoplasmic dynein (70.1) disrupts both the focused organization of microtubule minus ends and the localization of the nuclear mitotic apparatus protein at spindle poles when injected into cultured cells during metaphase, despite the presence of centrosomes. Examination of the effects of this dynein-specific antibody both in vitro using a cell-free system for mitotic aster assembly and in vivo after injection into cultured cells reveals that in addition to its direct effect on cytoplasmic dynein this antibody reduces the efficiency with which dynactin associates with microtubules, indicating that the antibody perturbs the cooperative binding of dynein and dynactin to microtubules during spindle/aster assembly. These results indicate that microtubule minus ends are focused into spindle poles in vertebrate somatic cells through a mechanism that involves contributions from both centrosomes and structural and microtubule motor proteins. Furthermore, these findings, together with the recent observation that cytoplasmic dynein is required for the formation and maintenance of acentrosomal spindle poles in extracts prepared from Xenopus eggs (Heald, R., R. Tournebize, T. Blank, R. Sandaltzopoulos, P. Becker, A. Hyman, and E. Karsenti. 1996. Nature (Lond.). 382: 420–425) demonstrate that there is a common mechanism for focusing free microtubule minus ends in both centrosomal and acentrosomal spindles. We discuss these observations in the context of a search-capture-focus model for spindle assembly.
PMCID: PMC2136753  PMID: 9281583
15.  Models of the Collective Behavior of Proteins in Cells: Tubulin, Actin and Motor Proteins 
Journal of Biological Physics  2003;29(4):401-428.
One of the most important issues of molecular biophysics is the complex and multifunctional behavior of the cell's cytoskeleton. Interiors of living cells are structurally organized by the cytoskeleton networks of filamentous protein polymers: microtubules, actin and intermediate filaments with motor proteins providing force and directionality needed for transport processes. Microtubules (MT's) take active part in material transport within the cell, constitute the most rigid elements of the cell and hence found many uses in cell motility (e.g. flagella andcilia). At present there is, however, no quantitatively predictable explanation of how these important phenomena are orchestrated at a molecular level. Moreover, microtubules have been demonstrated to self-organize leading to pattern formation. We discuss here several models which attempt to shed light on the assembly of microtubules and their interactions with motor proteins. Subsequently, an overview of actin filaments and their properties isgiven with particular emphasis on actin assembly processes. The lengths of actin filaments have been reported that were formed by spontaneous polymerization of highly purified actin monomers after labeling with rhodamine-phalloidin. The length distributions are exponential with a mean of about 7 μm. This length is independent of the initial concentration of actin monomer, an observation inconsistent with a simple nucleation-elongation mechanism. However, with the addition of physically reasonable rates of filament annealing and fragmenting, a nucleation-elongation mechanism can reproduce the observed average length of filaments in two types of experiments: (1) filaments formed from a wide range of highly purified actin monomer concentrations, and (2) filaments formed from 24 mM actin over a range of CapZ concentrations. In the final part of the paper we briefly review the stochastic models used to describe the motion of motor proteins on protein filaments. The vast majority of these models are based on ratchet potentials with the presence of thermal noise and forcing due to ATP binding and a subsequent hydrolysis. Many outstanding questions remain to be quantitatively addressed on a molecular level in order to explain the structure-to-function relationship for the key elements of the cytoskeleton discussed in this review.
PMCID: PMC3456179  PMID: 23345857
16.  The Kinesin-Related Protein, Hset, Opposes the Activity of Eg5 and Cross-Links Microtubules in the Mammalian Mitotic Spindle 
The Journal of Cell Biology  1999;147(2):351-366.
We have prepared antibodies specific for HSET, the human homologue of the KAR3 family of minus end-directed motors. Immuno-EM with these antibodies indicates that HSET frequently localizes between microtubules within the mammalian metaphase spindle consistent with a microtubule cross-linking function. Microinjection experiments show that HSET activity is essential for meiotic spindle organization in murine oocytes and taxol-induced aster assembly in cultured cells. However, inhibition of HSET did not affect mitotic spindle architecture or function in cultured cells, indicating that centrosomes mask the role of HSET during mitosis. We also show that (acentrosomal) microtubule asters fail to assemble in vitro without HSET activity, but simultaneous inhibition of HSET and Eg5, a plus end-directed motor, redresses the balance of forces acting on microtubules and restores aster organization. In vivo, centrosomes fail to separate and monopolar spindles assemble without Eg5 activity. Simultaneous inhibition of HSET and Eg5 restores centrosome separation and, in some cases, bipolar spindle formation. Thus, through microtubule cross-linking and oppositely oriented motor activity, HSET and Eg5 participate in spindle assembly and promote spindle bipolarity, although the activity of HSET is not essential for spindle assembly and function in cultured cells because of centrosomes.
PMCID: PMC2174226  PMID: 10525540
mitotic spindle; HSET; Eg5; kinesin; microtubule
17.  Contribution of Noncentrosomal Microtubules to Spindle Assembly in Drosophila Spermatocytes 
PLoS Biology  2004;2(1):e8.
Previous data suggested that anastral spindles, morphologically similar to those found in oocytes, can assemble in a centrosome-independent manner in cells that contain centrosomes. It is assumed that the microtubules that build these acentrosomal spindles originate over the chromatin. However, the actual processes of centrosome-independent microtubule nucleation, polymerisation, and sorting have not been documented in centrosome-containing cells. We have identified two experimental conditions in which centrosomes are kept close to the plasma membrane, away from the nuclear region, throughout meiosis I in Drosophila spermatocytes. Time-lapse confocal microscopy of these cells labelled with fluorescent chimeras reveals centrosome-independent microtubule nucleation, growth, and sorting into a bipolar spindle array over the nuclear region, away from the asters. The onset of noncentrosomal microtubule nucleation is significantly delayed with respect to nuclear envelope breakdown and coincides with the end of chromosome condensation. It takes place in foci that are close to the membranes that ensheath the nuclear region, not over the condensed chromosomes. Metaphase plates are formed in these spindles, and, in a fraction of them, some degree of polewards chromosome segregation takes place. In these cells that contain both membrane-bound asters and an anastral spindle, the orientation of the cytokinesis furrow correlates with the position of the asters and is independent of the orientation of the spindle. We conclude that the fenestrated nuclear envelope may significantly contribute to the normal process of spindle assembly in Drosophila spermatocytes. We also conclude that the anastral spindles that we have observed are not likely to provide a robust back-up able to ensure successful cell division. We propose that these anastral microtubule arrays could be a constitutive component of wild-type spindles, normally masked by the abundance of centrosome-derived microtubules and revealed when asters are kept away. These observations are consistent with a model in which centrosomal and noncentrosomal microtubules contribute to the assembly and are required for the robustness of the cell division spindle in cells that contain centrosomes.
Time-lapse confocal microscopy reveals a potential role for noncentrosomal microtubules nucleated near the nuclear envelope in spindle assembly in Drosophila spermatocytes
PMCID: PMC317275  PMID: 14758368
18.  Chemically Diverse Microtubule Stabilizing Agents Initiate Distinct Mitotic Defects and Dysregulated Expression of Key Mitotic Kinases 
Biochemical pharmacology  2013;85(8):1104-1114.
Microtubule stabilizers are some of the most successful drugs used in the treatment of adult solid tumors and yet the molecular events responsible for their antimitotic actions are not well defined. The mitotic events initiated by three structurally and biologically diverse microtubule stabilizers; taccalonolide AJ, laulimalide/fijianolide B and paclitaxel were studied. These microtubule stabilizers cause the formation of aberrant, but structurally distinct mitotic spindles leading to the hypothesis that they differentially affect mitotic signaling. Each microtubule stabilizer initiated different patterns of expression of key mitotic signaling proteins. Taccalonolide AJ causes centrosome separation and disjunction failure to a much greater extent than paclitaxel or laulimalide, which is consistent with the distinct defects in expression and activation of Plk1 and Eg5 caused by each stabilizer. Localization studies revealed that TPX2 and Aurora A are associated with each spindle aster formed by each stabilizer. This suggests a common mechanism of aster formation. However, taccalonolide AJ also causes pericentrin accumulation on every spindle aster. The presence of pericentrin at every spindle aster initiated by taccalonolide AJ might facilitate the maintenance and stability of the highly focused asters formed by this stabilizer. Laulimalide and paclitaxel cause completely different patterns of expression and activation of these proteins, as well as phenotypically different spindle phenotypes. Delineating how diverse microtubule stabilizers affect mitotic signaling pathways could identify key proteins involved in modulating sensitivity and resistance to the antimitotic actions of these compounds.
PMCID: PMC3661198  PMID: 23399639
19.  Three-dimensional vortex wake structure of flapping wings in hovering flight 
Flapping wings continuously create and send vortices into their wake, while imparting downward momentum into the surrounding fluid. However, experimental studies concerning the details of the three-dimensional vorticity distribution and evolution in the far wake are limited. In this study, the three-dimensional vortex wake structure in both the near and far field of a dynamically scaled flapping wing was investigated experimentally, using volumetric three-component velocimetry. A single wing, with shape and kinematics similar to those of a fruitfly, was examined. The overall result of the wing action is to create an integrated vortex structure consisting of a tip vortex (TV), trailing-edge shear layer (TESL) and leading-edge vortex. The TESL rolls up into a root vortex (RV) as it is shed from the wing, and together with the TV, contracts radially and stretches tangentially in the downstream wake. The downwash is distributed in an arc-shaped region enclosed by the stretched tangential vorticity of the TVs and the RVs. A closed vortex ring structure is not observed in the current study owing to the lack of well-established starting and stopping vortex structures that smoothly connect the TV and RV. An evaluation of the vorticity transport equation shows that both the TV and the RV undergo vortex stretching while convecting downwards: a three-dimensional phenomenon in rotating flows. It also confirms that convection and secondary tilting and stretching effects dominate the evolution of vorticity.
PMCID: PMC3869174  PMID: 24335561
flapping wing; vortex wake; far wake; volumetric visualization; induced flow; hovering
20.  The kinetically dominant assembly pathway for centrosomal asters in Caenorhabditis elegans is γ-tubulin dependent 
The Journal of Cell Biology  2002;157(4):591-602.
γ-Tubulin–containing complexes are thought to nucleate and anchor centrosomal microtubules (MTs). Surprisingly, a recent study (Strome, S., J. Powers, M. Dunn, K. Reese, C.J. Malone, J. White, G. Seydoux, and W. Saxton. Mol. Biol. Cell. 12:1751–1764) showed that centrosomal asters form in Caenorhabditis elegans embryos depleted of γ-tubulin by RNA-mediated interference (RNAi). Here, we investigate the nucleation and organization of centrosomal MT asters in C. elegans embryos severely compromised for γ-tubulin function. We characterize embryos depleted of ∼98% centrosomal γ-tubulin by RNAi, embryos expressing a mutant form of γ-tubulin, and embryos depleted of a γ-tubulin–associated protein, CeGrip-1. In all cases, centrosomal asters fail to form during interphase but assemble as embryos enter mitosis. The formation of these mitotic asters does not require ZYG-9, a centrosomal MT-associated protein, or cytoplasmic dynein, a minus end–directed motor that contributes to self-organization of mitotic asters in other organisms. By kinetically monitoring MT regrowth from cold-treated mitotic centrosomes in vivo, we show that centrosomal nucleating activity is severely compromised by γ-tubulin depletion. Thus, although unknown mechanisms can support partial assembly of mitotic centrosomal asters, γ-tubulin is the kinetically dominant centrosomal MT nucleator.
PMCID: PMC2173857  PMID: 12011109
microtubule; mitosis; grip; Spc; tbg-1
21.  Redundant Mechanisms Recruit Actin into the Contractile Ring in Silkworm Spermatocytes 
PLoS Biology  2008;6(9):e209.
Cytokinesis is powered by the contraction of actomyosin filaments within the newly assembled contractile ring. Microtubules are a spindle component that is essential for the induction of cytokinesis. This induction could use central spindle and/or astral microtubules to stimulate cortical contraction around the spindle equator (equatorial stimulation). Alternatively, or in addition, induction could rely on astral microtubules to relax the polar cortex (polar relaxation). To investigate the relationship between microtubules, cortical stiffness, and contractile ring assembly, we used different configurations of microtubules to manipulate the distribution of actin in living silkworm spermatocytes. Mechanically repositioned, noninterdigitating microtubules can induce redistribution of actin at any region of the cortex by locally excluding cortical actin filaments. This cortical flow of actin promotes regional relaxation while increasing tension elsewhere (normally at the equatorial cortex). In contrast, repositioned interdigitating microtubule bundles use a novel mechanism to induce local stimulation of contractility anywhere within the cortex; at the antiparallel plus ends of central spindle microtubules, actin aggregates are rapidly assembled de novo and transported laterally to the equatorial cortex. Relaxation depends on microtubule dynamics but not on RhoA activity, whereas stimulation depends on RhoA activity but is largely independent of microtubule dynamics. We conclude that polar relaxation and equatorial stimulation mechanisms redundantly supply actin for contractile ring assembly, thus increasing the fidelity of cleavage.
Author Summary
In animal cells, the last step of cell division, or cytokinesis, requires the action of a contractile ring—composed largely of actin and myosin filaments—that cleaves the cell in two. Before the cell divides, it first duplicates its genome and separates the chromosomes into the two newly forming daughter cells, a task carried out by a structure called the spindle apparatus, which is composed mostly of long polymers called microtubules. The site of cleavage must occur between the segregating chromosomes—at the spindle equator—to ensure that each cell receives the proper number of chromosomes. In addition to separating the chromosomes, microtubules are also essential for inducing cytokinesis—but how they do this is controversial. For example, the “polar relaxation” hypothesis proposes that the astral microtubules, which radiate outward, cause contractile elements to flow from the polar cortex toward the equator, resulting in furrowing. In contrast, the “equatorial stimulation” hypothesis proposes that the spindle microtubules directly stimulate cleavage exclusively at the equator. Using a novel approach, we demonstrate that both mechanisms are in fact functioning together to recruit actin filaments to the nascent ring, providing redundancy that increases fidelity. Specifically, we were able to mechanically alter the distribution of actin filaments in living, dividing cells by using a microscopic needle to manipulate microtubules while perturbing the cytoskeleton with chemical compounds. Our high-resolution microscopy data advance the understanding of both proposed mechanisms. We also documented a novel, microtubule-based mechanism for transporting actin aggregates to the equatorial cortex. These results help to resolve a long-standing dispute concerning this fundamental cellular process.
How is actin recruited to assemble a contractile ring during cytokinesis? Combining micromanipulation with pharmacological perturbation, this comprehensive study elegantly documents the contributions of two complementary mechanisms within one cell.
PMCID: PMC2528054  PMID: 18767903
22.  Vimentin Rearrangement during African Swine Fever Virus Infection Involves Retrograde Transport along Microtubules and Phosphorylation of Vimentin by Calcium Calmodulin Kinase II 
Journal of Virology  2005;79(18):11766-11775.
African swine fever virus (ASFV) infection leads to rearrangement of vimentin into a cage surrounding virus factories. Vimentin rearrangement in cells generally involves phosphorylation of N-terminal domains of vimentin by cellular kinases to facilitate disassembly and transport of vimentin filaments on microtubules. Here, we demonstrate that the first stage in vimentin rearrangement during ASFV infection involves a microtubule-dependent concentration of vimentin into an “aster” within virus assembly sites located close to the microtubule organizing center. The aster may play a structural role early during the formation of the factory. Conversion of the aster into a cage required ASFV DNA replication. Interestingly, viral DNA replication also resulted in the activation of calcium calmodulin-dependent protein kinase II (CaM kinase II) and phosphorylation of the N-terminal domain of vimentin on serine 82. Immunostaining showed that vimentin within the cage was phosphorylated on serine 82. Significantly, both viral DNA replication and Ser 82 phosphorylation were blocked by KN93, an inhibitor of CaM kinase II, suggesting a link between CaM kinase II activation, DNA replication, and late gene expression. Phosphorylation of vimentin on serine 82 may be necessary for cage formation or may simply be a consequence of activation of CaM kinase II by ASFV. The vimentin cage may serve a cytoprotective function and prevent movement of viral components into the cytoplasm and at the same time concentrate late structural proteins at sites of virus assembly.
PMCID: PMC1212593  PMID: 16140754
23.  Opposing motor activities are required for the organization of the mammalian mitotic spindle pole 
The Journal of Cell Biology  1996;135(2):399-414.
We use both in vitro and in vivo approaches to examine the roles of Eg5 (kinesin-related protein), cytoplasmic dynein, and dynactin in the organization of the microtubules and the localization of NuMA (Nu-clear protein that associates with the Mitotic Apparatus) at the polar ends of the mammalian mitotic spindle. Perturbation of the function of Eg5 through either immunodepletion from a cell free system for assembly of mitotic asters or antibody microinjection into cultured cells leads to organized astral microtubule arrays with expanded polar regions in which the minus ends of the microtubules emanate from a ring-like structure that contains NuMA. Conversely, perturbation of the function of cytoplasmic dynein or dynactin through either specific immunodepletition from the cell free system or expression of a dominant negative subunit of dynactin in cultured cells results in the complete lack of organization of microtubules and the failure to efficiently concentrate the NuMA protein despite its association with the microtubules. Simultaneous immunodepletion of these proteins from the cell free system for mitotic aster assembly indicates that the plus end- directed activity of Eg5 antagonizes the minus end-directed activity of cytoplasmic dynein and a minus end-directed activity associated with NuMA during the organization of the microtubules into a morphologic pole. Taken together, these results demonstrate that the unique organization of the minus ends of microtubules and the localization of NuMA at the polar ends of the mammalian mitotic spindle can be accomplished in a centrosome-independent manner by the opposing activities of plus end- and minus end-directed motors.
PMCID: PMC2121053  PMID: 8896597
24.  The Xenopus TACC Homologue, Maskin, Functions in Mitotic Spindle AssemblyD⃞ 
Molecular Biology of the Cell  2005;16(6):2836-2847.
Maskin is the Xenopus homolog of the transforming acidic coiled coil (TACC)-family of microtubule and centrosome-interacting proteins. Members of this family share a ∼200 amino acid coiled coil motif at their C-termini, but have only limited homology outside of this domain. In all species examined thus far, perturbations of TACC proteins lead to disruptions of cell cycle progression and/or embryonic lethality. In Drosophila, Caenorhabditis elegans, and humans, these disruptions have been attributed to mitotic spindle assembly defects, and the TACC proteins in these organisms are thought to function as structural components of the spindle. In contrast, cell division failure in early Xenopus embryo blastomeres has been attributed to a role of maskin in regulating the translation of, among others, cyclin B1 mRNA. In this study, we show that maskin, like other TACC proteins, plays a direct role in mitotic spindle assembly in Xenopus egg extracts and that this role is independent of cyclin B. Maskin immunodepletion and add-back experiments demonstrate that maskin, or a maskin-associated activity, is required for two distinct steps during spindle assembly in Xenopus egg extracts that can be distinguished by their response to “rescue” experiments. Defects in the “early” step, manifested by greatly reduced aster size during early time points in maskin-depleted extracts, can be rescued by readdition of purified full-length maskin. Moreover, defects in this step can also be rescued by addition of only the TACC-domain of maskin. In contrast, defects in the “late” step during spindle assembly, manifested by abnormal spindles at later time points, cannot be rescued by readdition of maskin. We show that maskin interacts with a number of proteins in egg extracts, including XMAP215, a known modulator of microtubule dynamics, and CPEB, a protein that is involved in translational regulation of important cell cycle regulators. Maskin depletion from egg extracts results in compromised microtubule asters and spindles and the mislocalization of XMAP215, but CPEB localization is unaffected. Together, these data suggest that in addition to its previously reported role as a translational regulator, maskin is also important for mitotic spindle assembly.
PMCID: PMC1142428  PMID: 15788567
25.  NuMA is required for the organization of microtubules into aster-like mitotic arrays 
The Journal of Cell Biology  1995;131(3):693-708.
NuMA (Nuclear protein that associates with the Mitotic Apparatus) is a 235-kD intranuclear protein that accumulates at the pericentrosomal region of the mitotic spindle in vertebrate cells. To determine if NuMA plays an active role in organizing the microtubules at the polar region of the mitotic spindle, we have developed a cell free system for the assembly of mitotic asters derived from synchronized cultured cells. Mitotic asters assembled in this extract are composed of microtubules arranged in a radial array that contain NuMA concentrated at the central core. The organization of microtubules into asters in this cell free system is dependent on NuMA because immunodepletion of NuMA from the extract results in randomly dispersed microtubules instead of organized mitotic asters, and addition of the purified recombinant NuMA protein to the NuMA-depleted extract fully reconstitutes the organization of the microtubules into mitotic asters. Furthermore, we show that NuMA is phosphorylated upon mitotic aster assembly and that NuMA is only required in the late stages of aster assembly in this cell free system consistent with the temporal accumulation of NuMA at the polar ends of the mitotic spindle in vivo. These results, in combination with the phenotype observed in vivo after the prevention of NuMA from targeting onto the mitotic spindle by antibody microinjection, suggest that NuMA plays a functional role in the organization of the microtubules of the mitotic spindle.
PMCID: PMC2120610  PMID: 7593190

Results 1-25 (1103821)