Search tips
Search criteria

Results 1-25 (363826)

Clipboard (0)

Related Articles

1.  D-Serine metabolism in C6 glioma cells: Involvement of alanine-serine-cysteine transporter (ASCT2) and serine racemase (SRR) but not D-amino acid oxidase (DAO) 
Journal of Neuroscience Research  2010;88(8):1829-1840.
D-serine is an endogenous N-methyl-D-aspartate (NMDA) receptor coagonist. It is synthesized from L-serine by serine racemase (SRR), but many aspects of its metabolism remain unclear, especially in the forebrain, which lacks active D-amino acid oxidase (DAO), the major D-serine degradative enzyme. Candidate mechanisms include SRR operating in α,β-eliminase mode (converting D-serine to pyruvate) and regulation by serine transport, in which the alanine-serine-cysteine transporter ASCT2 is implicated. Here we report studies in C6 glioma cells, which “simulate” the forebrain, in that the cells express SRR and ASCT2 but lack DAO activity. We measured D-serine, ASCT2, SRR, and DAO expression and DAO activity in two situations: after incubation of cells for 48 hr with serine isomers and after increased or decreased SRR expression by transfection and RNA interference, respectively. Incubation with serine enantiomers decreased [3H]D-serine uptake and ASCT2 mRNA and increased SRR immunoreactivity but did not alter DAO immunoreactivity, and DAO activity remained undetectable. SRR overexpression increased D-serine and pyruvate and decreased [3H]D-serine uptake and ASCT2 mRNA but did not affect DAO. SRR knockdown did not alter any of the parameters. Our data suggest that D-serine transport mediated by ASCT2 contributes prominently to D-serine homeostasis when DAO activity is absent. The factors regulating D-serine are important for understanding normal NMDA receptor function and because D-serine, along with DAO and SRR, is implicated in the pathogenesis and treatment of schizophrenia. © 2010 Wiley-Liss, Inc.
PMCID: PMC2883191  PMID: 20091774
D-serine; eliminase; racemase; uptake; transporter; glia; DAAO
2.  Induction of serine racemase expression and D-serine release from microglia by amyloid β-peptide 
Roles for excitotoxicity and inflammation in Alzheimer's disease have been hypothesized. Proinflammatory stimuli, including amyloid β-peptide (Aβ), elicit a release of glutamate from microglia. We tested the possibility that a coagonist at the NMDA class of glutamate receptors, D-serine, could respond similarly.
Cultured microglial cells were exposed to Aβ. The culture medium was assayed for levels of D-serine by HPLC and for effects on calcium and survival on primary cultures of rat hippocampal neurons. Microglial cell lysates were examined for the levels of mRNA and protein for serine racemase, the enzyme that forms D-serine from L-serine. The racemase mRNA was also assayed in Alzheimer hippocampus and age-matched controls. A microglial cell line was transfected with a luciferase reporter construct driven by the putative regulatory region of human serine racemase.
Conditioned medium from Aβ-treated microglia contained elevated levels of D-serine. Bioassays of hippocampal neurons with the microglia-conditioned medium indicated that Aβ elevated a NMDA receptor agonist that was sensitive to an antagonist of the D-serine/glycine site (5,7-dicholorokynurenic acid; DCKA) and to enzymatic degradation of D-amino acids by D-amino acid oxidase (DAAOx). In the microglia, Aβ elevated steady-state levels of dimeric serine racemase, the apparent active form of the enzyme. Promoter-reporter and mRNA analyses suggest that serine racemase is transcriptionally induced by Aβ. Finally, the levels of serine racemase mRNA were elevated in Alzheimer's disease hippocampus, relative to age-matched controls.
These data suggest that Aβ could contribute to neurodegeneration through stimulating microglia to release cooperative excitatory amino acids, including D-serine.
PMCID: PMC483052  PMID: 15285800
3.  D-Serine Production, Degradation, and Transport in ALS: Critical Role of Methodology 
In mammalian systems, D-serine is perhaps the most biologically active D-amino acid described to date. D-serine is a coagonist at the NMDA-receptor, and receptor activation is dependent on D-serine binding. Because D-serine binding dramatically increases receptor affinity for glutamate, it can produce excitotoxicity without any change in glutamate per se. D-serine is twofold higher in the spinal cords of mSOD1 (G93A) ALS mice, and the deletion of serine racemase (SR), the enzyme that produces D-serine, results in an earlier onset of symptoms, but with a much slower rate of disease progression. Localization studies within the brain suggest that mSOD1 and subsequent glial activation could contribute to the alterations in SR and D-serine seen in ALS. By also degrading both D-serine and L-serine, SR appears to be a prime bidirectional regulator of free serine levels in vivo. Therefore, accurate and reproducible measurements of D-serine are critical to understanding its regulation by SR. Several methods for measuring D-serine have been employed, and significant issues related to validation and standardization remain unresolved. Further insights into the intracellular transport and tissue-specific compartmentalization of D-serine within the CNS will aid in the understanding of the role of D-serine in the pathogenesis of ALS.
PMCID: PMC3458282  PMID: 23029613
4.  Localization of Serine Racemase and Its Role in the Skin 
D-Serine is an endogenous coagonist of the N-methyl-D-aspartate (NMDA)–type glutamate receptor in the central nervous system and its synthesis is catalyzed by serine racemase (SR). Recently, the NMDA receptor has been found to be expressed in keratinocytes (KCs) of the skin and involved in the regulation of KC growth and differentiation. However, the localization and role of SR in the skin remain unknown. Here, using SR-knockout (SR-KO) mice as the control, we demonstrated the localization of the SR protein in the granular and cornified layer of the epidermis of wild-type (WT) mice and its appearance in confluent WT KCs. We also demonstrated the existence of a mechanism for conversion of L-serine to D-serine in epidermal KCs. Furthermore, we found increased expression levels of genes involved in the differentiation of epidermal KCs in adult SR-KO mice, and alterations in the barrier function and ultrastructure of the epidermis in postnatal day 5 SR-KO mice. Our findings suggest that SR in the skin epidermis is involved in the differentiation of epidermal KCs and the formation of the skin barrier.
PMCID: PMC4021815  PMID: 24441099
5.  D-Serine Influences Synaptogenesis in a P19 Cell Model 
JIMD Reports  2012;6:47-53.
Recently, d-serine has been identified as an important NMDA-receptor co-agonist, which might play a role in central nervous system development. We investigated this by studying rat P19 cells, an established model for neuronal and glial differentiation. Our results show that (1) the d-serine synthesizing enzyme serine racemase was expressed upon differentiation, (2) extracellular d-serine concentrations increased upon differentiation, which was inhibited by serine racemase antagonism, and (3) inhibition of d-serine synthesis or prevention of d-serine binding to the NMDA-receptor increased synaptophysin expression and intercellular connections, supporting a role for NMDA-receptor activation by d-serine, synthesized by serine racemase, in shaping synaptogenesis and neuronal circuitry during central nervous system development. In conjunction with recent evidence from literature, we therefore suggest that d-serine deficiency might be responsible for the severe neurological phenotype seen in patients with serine deficiency disorders. In addition, this may provide a pathophysiological mechanism for a role of d-serine deficiency in psychiatric disorders.
PMCID: PMC3565666  PMID: 23430939
6.  D-Serine as a putative glial neurotransmitter 
Neuron glia biology  2004;1(3):275-281.
Abundant recent evidence favors a neurotransmitter/neuromodulator role for D-serine. D-serine is synthesized from L-serine by serine racemase in astrocytic glia that ensheath synapses, especially in regions of the brain that are enriched in NMDA-glutamate receptors. D-serine is more potent than glycine at activating the ‘glycine’ site of these receptors. Moreover, selective degradation of D-serine but not glycine by D-amino acid oxidase markedly reduces NMDA neurotransmission. D-serine appears to be released physiologically in response to activation by glutamate of AMPA-glutamate receptors on D-serine-containing glia. This causes glutamate-receptor-interacting protein, which binds serine racemase, to stimulate enzyme activity and D-serine release. Thus, glutamate triggers the release of D-serine so that the two amino acids can act together on postsynaptic NMDA receptors. D-serine also plays a role in neural development, being released from Bergmann glia to chemokinetically enhance the migration of granule cell cerebellar neurons from the external to the internal granular layer.
PMCID: PMC1403160  PMID: 16543946
α-amino-3-hydroxyl-5-methyl-4-isoxazolepropionate receptor; D-serine; N-methyl-D-aspartate receptor; serine racemase
7.  Purification and Characterization of Serine Racemase from a Hyperthermophilic Archaeon, Pyrobaculum islandicum▿ †  
Journal of Bacteriology  2007;190(4):1359-1365.
Pyrobaculum islandicum is an anaerobic hyperthermophilic archaeon that is most active at 100°C. A pyridoxal 5′-phosphate-dependent serine racemase called Srr was purified from the organism. The corresponding srr gene was cloned, and recombinant Srr was purified from Escherichia coli. It showed the highest racemase activity toward l-serine, followed by l-threonine, d-serine, and d-threonine. Like rodent and plant serine racemases, Srr is bifunctional, showing high l-serine/l-threonine dehydratase activity. The sequence of Srr is 87% similar to that of Pyrobaculum aerophilum IlvA (a putative threonine dehydratase) but less than 32% similar to any other serine racemases and threonine dehydratases. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and gel filtration analyses revealed that Srr is a homotrimer of a 44,000-molecular-weight subunit. Both racemase and dehydratase activities were highest at 95°C, while racemization and dehydration were maximum at pH 8.2 and 7.8, respectively. Unlike other, related Ilv enzymes, Srr showed no allosteric properties: neither of these enzymatic activities was affected by either l-amino acids (isoleucine and valine) or most of the metal ions. Only Fe2+ and Cu2+ caused 20 to 30% inhibition and 30 to 40% stimulation of both enzyme activities, respectively. ATP inhibited racemase activity by 10 to 20%. The Km and Vmax values of the racemase activity of Srr for l-serine were 185 mM and 20.1 μmol/min/mg, respectively, while the corresponding values of the dehydratase activity of l-serine were 2.2 mM and 80.4 μmol/min/mg, respectively.
PMCID: PMC2238205  PMID: 17965169
8.  Functional Comparison of the Two Bacillus anthracis Glutamate Racemases▿  
Journal of Bacteriology  2007;189(14):5265-5275.
Glutamate racemase activity in Bacillus anthracis is of significant interest with respect to chemotherapeutic drug design, because l-glutamate stereoisomerization to d-glutamate is predicted to be closely associated with peptidoglycan and capsule biosynthesis, which are important for growth and virulence, respectively. In contrast to most bacteria, which harbor a single glutamate racemase gene, the genomic sequence of B. anthracis predicts two genes encoding glutamate racemases, racE1 and racE2. To evaluate whether racE1 and racE2 encode functional glutamate racemases, we cloned and expressed racE1 and racE2 in Escherichia coli. Size exclusion chromatography of the two purified recombinant proteins suggested differences in their quaternary structures, as RacE1 eluted primarily as a monomer, while RacE2 demonstrated characteristics of a higher-order species. Analysis of purified recombinant RacE1 and RacE2 revealed that the two proteins catalyze the reversible stereoisomerization of l-glutamate and d-glutamate with similar, but not identical, steady-state kinetic properties. Analysis of the pH dependence of l-glutamate stereoisomerization suggested that RacE1 and RacE2 both possess two titratable active site residues important for catalysis. Moreover, directed mutagenesis of predicted active site residues resulted in complete attenuation of the enzymatic activities of both RacE1 and RacE2. Homology modeling of RacE1 and RacE2 revealed potential differences within the active site pocket that might affect the design of inhibitory pharmacophores. These results suggest that racE1 and racE2 encode functional glutamate racemases with similar, but not identical, active site features.
PMCID: PMC1951872  PMID: 17496086
9.  Effects of Chronic D-Serine Elevation on Animal Models of Depression and Anxiety-Related Behavior 
PLoS ONE  2013;8(6):e67131.
NMDA receptors are activated after binding of the agonist glutamate to the NR2 subunit along with a co-agonist, either L-glycine or D-serine, to the NR1 subunit. There is substantial evidence to suggest that D-serine is the most relevant co-agonist in forebrain regions and that alterations in D-serine levels contribute to psychiatric disorders. D-serine is produced through isomerization of L-serine by serine racemase (Srr), either in neurons or in astrocytes. It is released by astrocytes by an activity-dependent mechanism involving secretory vesicles. In the present study we generated transgenic mice (SrrTg) expressing serine racemase under a human GFAP promoter. These mice were biochemically and behaviorally analyzed using paradigms of anxiety, depression and cognition. Furthermore, we investigated the behavioral effects of long-term administration of D-serine added to the drinking water. Elevated brain D-serine levels in SrrTg mice resulted in specific behavioral phenotypes in the forced swim, novelty suppression of feeding and olfactory bulbectomy paradigms that are indicative of a reduced proneness towards depression-related behavior. Chronic dietary D-serine supplement mimics the depression-related behavioral phenotype observed in SrrTg mice. Our results suggest that D-serine supplementation may improve mood disorders.
PMCID: PMC3689701  PMID: 23805296
10.  Mechanism of d-Cycloserine Action: Alanine Racemase from Escherichia coli W1 
Journal of Bacteriology  1972;110(3):978-987.
The antibiotic d-cycloserine is an effective inhibitor of alanine racemase. The lack of inhibition by l-cycloserine of alanine racemase from Staphylococcus aureus led Roze and Strominger to formulate the cycloserine hypothesis. This hypothesis states that d-cycloserine has the conformation required of the substrates on the enzyme surface and that l-cycloserine cannot have this conformation. Alanine racemase from Escherichia coli W has been examined to establish whether these observations are a general feature of all alanine racemases. The enzyme (molecular weight = 95,000) has Michaelis-Menten constants of 4.6 × 10−4m and 9.7 × 10−4m for d- and l-alanine, respectively. The ratio of Vmax in the d- to l-direction is 2.3. The equilibrium constant calculated from the Haldane relationship is 1.11 ± 0.15. Both d- and l-cycloserine are competitive inhibitors with constants (Ki) of 6.5 × 10−4m and 2.1 × 10−3m, respectively. The ratio of Kmd-alanine to Kid-cycloserine is 0.71, and the ratio of Kml-alanine to Kil-cycloserine is 0.46. Since l-cycloserine is an effective inhibitor, it is concluded that the cycloserine hypothesis does not apply to the enzyme from E. coli W.
PMCID: PMC247518  PMID: 4555420
11.  Modulation of d-Serine Levels in Brains of Mice Lacking PICK1 
Biological psychiatry  2008;63(10):997-1000.
d-serine is an endogenous coagonist of the N-methyl-d-aspartate subtype glutamate receptor. Genetic association studies have implicated genes coding for enzymes associated with d-serine metabolism in schizophrenia and bipolar disorder.
Protein expression of serine racemase (SR) and its binding partner, protein interacting with C-kinase (PICK1), were examined by Western blotting in brains from wildtype and PICK1 knockout mice. Levels of d-serine in wildtype and PICK1 mice were also examined by an established high-pressure liquid chromatography protocol.
Expression of SR and PICK1 proteins was developmentally regulated. Although no change was observed in the level of SR protein, levels of d-serine were selectively decreased in the forebrain of neonatal PICK1 knockout mice, compared with those in wildtype mice.
PICK1 may be involved in the regulation of brain d-serine levels and SR in a spatially and temporally specific manner.
PMCID: PMC2715963  PMID: 18191108
Bipolar disorder; d-serine; knockout mice; PICK1; schizophrenia; serine racemase
12.  The N-methyl D-aspartate receptor glycine site and D-serine metabolism: an evolutionary perspective. 
The N-methyl D-aspartate (NMDA) type of glutamate receptor requires two distinct agonists to operate. Glycine is assumed to be the endogenous ligand for the NMDA receptor glycine site, but this notion has been challenged by the discovery of high levels of endogenous d-serine in the mammalian forebrain. I have outlined an evolutionary framework for the appearance of a glycine site in animals and the metabolic events leading to high levels of D-serine in brain. Sequence alignments of the glycine-binding regions, along with the scant experimental data available, suggest that the properties of invertebrate NMDA receptor glycine sites are probably different from those in vertebrates. The synthesis of D-serine in brain is due to a pyridoxal-5'-phosphate (B(6))-requiring serine racemase in glia. Although it remains unknown when serine racemase first evolved, data concerning the evolution of B(6) enzymes, along with the known occurrences of serine racemases in animals, point to D-serine synthesis arising around the divergence time of arthropods. D-Serine catabolism occurs via the ancient peroxisomal enzyme d-amino acid oxidase (DAO), whose ontogenetic expression in the hindbrain of mammals is delayed until the postnatal period and absent from the forebrain. The phylogeny of D-serine metabolism has relevance to our understanding of brain ontogeny, schizophrenia and neurotransmitter dynamics.
PMCID: PMC1693380  PMID: 15306409
13.  AMPA receptor mediated D-serine release from retinal glial cells 
Journal of neurochemistry  2010;115(6):1681-1689.
The NMDA receptor coagonist D-serine is important in a number of different processes in the central nervous system, ranging from synaptic plasticity to disease states, including schizophrenia. D-serine appears to be the major coagonist acting on retinal ganglion cell NMDA receptors, but the cell type from which it originates and whether its release can be modulated by activity are unknown. In this study, we utilized a mutant mouse line with elevated D-serine to investigate this question. Direct measurements of extracellular D-serine using capillary electrophoresis demonstrate that D-serine can be released from the intact mouse retina through an AMPA receptor dependent mechanism. AMPA-evoked D-serine release persisted in the presence of a cocktail of neural inhibitors but was abolished after administration of a glial toxin. These findings provide the first evidence that extracellular D-serine levels in the retina can be modulated, and that such modulation is contingent upon glial cell activity.
PMCID: PMC3003602  PMID: 20969576
Retina; D-serine; NMDA receptor; AMPA receptor; capillary electrophoresis; glia
14.  Association Study of Serine Racemase Gene with Methamphetamine Psychosis 
Current Neuropharmacology  2011;9(1):169-175.
Experimental studies have demonstrated that not only dopaminergic signaling but also glutamatergic/NMDA receptor signaling play indispensable roles in the development of methamphetamine psychosis. Our recent genetic studies provided evidence that genetic variants of glutamate-related genes such as DTNBP1, GLYT1, and G72, which are involved in glutamate release and regulation of co-agonists for NMDA receptors, conferred susceptibility to methamphetamine psychosis. Serine racemase converts l-serine to d-serine, which is an endogenous co-agonist for NMDA receptors. Three single nucleotide polymorphisms (SNPs) in the promoter region of the serine racemase gene (SRR), rs224770, rs3760229, and rs408067, were proven to affect the transcription activity of SRR. Therefore, we examined these SNPs in 225 patients with methamphetamine psychosis and 291 age- and sex-matched controls. There was no significant association between methamphetamine psychosis and any SNP examined or between the disorder and haplotypes comprising the three SNPs. However, rs408067 was significantly associated with the prognosis for methamphetamine psychosis and multi-substance abuse status. The patients with C-positive genotypes (CC or CG) of rs408067 showed better prognosis of psychosis after therapy and less abuse of multiple substances than the patients with GG genotypes. Because the C allele of rs408067 reduces the expression of SRR, a lower d-serine level or reduced NMDA receptor activation may affect the prognosis of methamphetamine psychosis and multiple substance abuse. Our sample size is, however, not large enough to eliminate the possibility of a type I error, our findings must be confirmed by replicate studies with larger samples.
PMCID: PMC3137175  PMID: 21886585
Methamphetamine psychosis; serine racemase; glutamate; NMDA receptors; SNP.
15.  Functional Characterization of Alanine Racemase from Schizosaccharomyces pombe: a Eucaryotic Counterpart to Bacterial Alanine Racemase 
Journal of Bacteriology  2001;183(7):2226-2233.
Schizosaccharomyces pombe has an open reading frame, which we named alr1+, encoding a putative protein similar to bacterial alanine racemase. We cloned the alr1+ gene in Escherichia coli and purified the gene product (Alr1p), with an Mr of 41,590, to homogeneity. Alr1p contains pyridoxal 5′-phosphate as a coenzyme and catalyzes the racemization of alanine with apparent Km and Vmax values as follows: for l-alanine, 5.0 mM and 670 μmol/min/mg, respectively, and for d-alanine, 2.4 mM and 350 μmol/min/mg, respectively. The enzyme is almost specific to alanine, but l-serine and l-2-aminobutyrate are racemized slowly at rates 3.7 and 0.37% of that of l-alanine, respectively. S. pombe uses d-alanine as a sole nitrogen source, but deletion of the alr1+ gene resulted in retarded growth on the same medium. This indicates that S. pombe has catabolic pathways for both enantiomers of alanine and that the pathway for l-alanine coupled with racemization plays a major role in the catabolism of d-alanine. Saccharomyces cerevisiae differs markedly from S. pombe: S. cerevisiae uses l-alanine but not d-alanine as a sole nitrogen source. Moreover, d-alanine is toxic to S. cerevisiae. However, heterologous expression of the alr1+ gene enabled S. cerevisiae to grow efficiently on d-alanine as a sole nitrogen source. The recombinant yeast was relieved from the toxicity of d-alanine.
PMCID: PMC95128  PMID: 11244061
16.  Cross-Linking of Serine Racemase Dimer by Reactive Oxygen Species and Reactive Nitrogen Species 
Journal of Neuroscience Research  2012;90(6):1218-1229.
Serine racemase (SR) is the only identified enzyme in mammals responsible for isomerization of L-serine to D-serine, a co-agonist at NMDA receptors in the forebrain. Our previous data reported that an apparent SR dimer resistant to SDS and β-mercaptoethanol was elevated in microglial cells after proinflammatory activation. Because the activation of microglia is typically associated with an oxidative burst, oxidative cross-linking between SR subunits was speculated. In this study, an siRNA technique was employed to confirm the identity of this SR dimer band. The oxidative species potentially responsible for the cross-linking was investigated with recombinant SR protein. The data indicate that nitric oxide, peroxynitrite, and hydroxyl radical were the likely candidates, while superoxide and hydrogen peroxide per se failed to contribute. Furthermore, the mechanism of formation of SR dimer by peroxynitrite oxidation was studied by mass spectrometry. A disulfide bond between Cys6 and Cys113 was identified in both SIN-1 treated SR monomer and dimer. Activity assays indicated that SIN-1 treatment decreased SR activity, confirming our previous conclusion that noncovalent dimer is the most active form of SR. These findings suggest a compensatory feedback whereby the consequences of neuroinflammation might dampen D-serine production to limit excitotoxic stimulation of NMDA receptors.
PMCID: PMC3323679  PMID: 22354542
Dimerization; Disulfide; Mass spectrometry; Nitric oxide; Oxidation; Peroxynitrite
17.  l-Serine Deaminase of Escherichia coli 
Journal of Bacteriology  1968;96(5):1512-1518.
The native l-serine deaminase (l-serine hydrolyase, deaminating, EC of Escherichia coli K-12, which seems to be a very labile protein, is rather stable in concentrated solution. Dilution rapidly inactivates it, but in the presence of a saturating concentration of l-serine the molecule is protected from inactivation. It is a very specific enzyme; l-serine is the sole substrate with a Km value of 6.60 × 10−3m. d-Serine and l-cysteine are competitive inhibitors. Substrate saturation curves of the native enzyme show sigmoid shape, whereas the enzyme liberated from the bacteria in the presence of l-serine exhibits normal Michaelis-Menten kinetics.
PMCID: PMC315203  PMID: 4882014
18.  Functional and Molecular Analysis of D-Serine Transport in Retinal Müller Cells 
Experimental eye research  2006;84(1):191-199.
D-serine, an endogenous co-agonist of NMDA receptors in vertebrate retina, may modulate glutamate sensitivity of retinal neurons. This study determined at the functional and molecular level the transport process responsible for D-serine in retinal Müller cells. RT-PCR and immunoblotting showed that serine racemase (SR), the synthesizing enzyme for D-serine, is expressed in the rMC-1 Müller cell line and primary cultures of mouse Müller cells (1°MCs). The relative contributions of different amino acid transport systems to D-serine uptake were determined based on differential substrate specificities and ion dependencies. D-serine uptake was obligatorily dependent on Na+, eliminating Na+-independent transporters (asc-1 and system L) for D-serine in Müller cells. The Na+:substrate stoichiometry for the transport process was 1:1. D-serine transport was inhibited by alanine, serine, cysteine, glutamine, and asparagine, but not anionic amino acids or cationic amino acids, suggesting that D-serine transport in Müller cells occurs via ASCT2 rather than ASCT1 or ATB0,+. The expression of mRNAs specific for ASCT1, ASCT2, and ATB0,+ was analyzed by RT-PCR confirming the expression of ASCT2 (and ASCT1) mRNA, but not ATB0,+, in Müller cells. Immunoblotting detected ASCT2 in neural retina and in 1°MCs; immunohistochemistry confirmed these data in retinal sections and in cultures of 1°MCs. The efflux of D-serine via ASCT2 by ASCT2 substrates was demonstrable using the Xenopus laevis oocyte heterologous expression system. These data provide the first molecular evidence for SR and ASCT2 expression in a Müller cell line and in 1°MCs and suggest that D-serine, synthesized in Müller cells by SR, is effluxed via ASCT2 to regulate NMDA receptors in adjacent neurons.
PMCID: PMC3773703  PMID: 17094966
D-serine; retinal transport; retinal Müller cells; serine racemase; neurotransmitter
19.  Paradoxical roles of serine racemase and D-serine in the G93A mSOD1 mouse model of ALS 
Journal of Neurochemistry  2012;120(4):598-610.
D-serine is an endogenous neurotransmitter that binds to the NMDA receptor, thereby increasing the affinity for glutamate, and the potential for excitotoxicity. The primary source of D-serine in vivo is enzymatic racemization by serine racemase (SR). Regulation of D-serine in vivo is poorly understood, but is thought to involve a combination of controlled production, synaptic reuptake by transporters, and intracellular degradation by D-amino acid oxidase (DAO). However, SR itself possesses a well-characterized eliminase activity which effectively degrades D-serine as well. D-serine is increased two-fold in spinal cords of G93A SOD1 mice – the standard model of amyotrophic lateral sclerosis (ALS). ALS mice with SR disruption show earlier symptom onset, but survive longer (progression phase is slowed), in an SR-dependent manner. Paradoxically, administration of D-serine to ALS mice dramatically lowers cord levels of D-serine, leading to changes in onset and survival very similar to SR deletion. D-serine treatment also increases cord levels of the transporter Asc-1. Although the mechanism by which SOD1 mutations increases D-serine is not known, these results strongly suggest that SR and D-serine are fundamentally involved in both the presymptomatic and progression phases of disease, and offer a direct link between mutant SOD1 and a glial-derived toxic mediator.
PMCID: PMC3398808  PMID: 22117694
ALS; D-serine; serine racemase; excitotoxicity; SOD1; DAO; ASC-1
20.  Contribution of the d-Serine-Dependent Pathway to the Cellular Mechanisms Underlying Cognitive Aging 
An association between age-related memory impairments and changes in functional plasticity in the aging brain has been under intense study within the last decade. In this article, we show that an impaired activation of the strychnine-insensitive glycine site of N-methyl-d-aspartate receptors (NMDA-R) by its agonist d-serine contributes to deficits of synaptic plasticity in the hippocampus of memory-impaired aged rats. Supplementation with exogenous d-serine prevents the age-related deficits of isolated NMDA-R-dependent synaptic potentials as well as those of theta-burst-induced long-term potentiation and synaptic depotentiation. Endogenous levels of d-serine are reduced in the hippocampus with aging, that correlates with a weaker expression of serine racemase synthesizing the amino acid. On the contrary, the affinity of d-serine binding to NMDA-R is not affected by aging. These results point to a critical role for the d-serine-dependent pathway in the functional alterations of the brain underlying memory impairment and provide key information in the search for new therapeutic strategies for the treatment of memory deficits in the elderly.
PMCID: PMC2874399  PMID: 20552041
memory; serine racemase; NMDA receptors; hippocampus; synaptic plasticity
21.  Pathogenic disruption of DISC1-serine racemase binding elicits schizophrenia-like behavior via D-serine depletion 
Molecular psychiatry  2012;18(5):557-567.
Perturbation of Disrupted-In-Schizophrenia-1 (DISC1) and D-serine/NMDA receptor hypofunction have both been implicated in the pathophysiology of schizophrenia and other psychiatric disorders. In the present study, we demonstrate that these two pathways intersect with behavioral consequences. DISC1 binds to and stabilizes serine racemase (SR), the enzyme that generates D-serine, an endogenous co-agonist of the NMDA receptor. Mutant DISC1 fails to bind to SR, facilitating ubiquitination and degradation of SR and a decrease in D-serine production. To elucidate DISC1-SR interactions in vivo, we generated a mouse model of selective and inducible expression of mutant DISC1 in astrocytes, the main source of D-serine in the brain. Expression of mutant DISC1 down-regulates endogenous DISC1 and decreases protein but not mRNA levels of SR, resulting in diminished production of D-serine. In contrast, mutant DISC1 does not alter levels of ALDH1L1, connexins, GLT-1 or binding partners of DISC1 and SR, LIS1 or PICK1. Adult male and female mice with life-long expression of mutant DISC1 exhibit behavioral abnormalities consistent with hypofunction of NMDA neurotransmission. Specifically, mutant mice display greater responses to an NMDA antagonist, MK-801, in open field and pre-pulse inhibition of the acoustic startle tests and are significantly more sensitive to the ameliorative effects of D-serine. These findings support a model wherein mutant DISC1 leads to SR degradation via dominant-negative effects, resulting in D-serine deficiency that diminishes NMDA neurotransmission thus linking DISC1 and NMDA pathophysiologic mechanisms in mental illness.
PMCID: PMC3475769  PMID: 22801410
DISC1; serine racemase; astrocytes; D-serine; schizophrenia; MK-801
22.  Neonatal Disruption of Serine Racemase Causes Schizophrenia-Like Behavioral Abnormalities in Adulthood: Clinical Rescue by D-Serine 
PLoS ONE  2013;8(4):e62438.
D-Serine, an endogenous co-agonist of the N-methyl-D-aspartate (NMDA) receptor, is synthesized from L-serine by serine racemase (SRR). Given the role of D-serine in both neurodevelopment and the pathophysiology of schizophrenia, we examined whether neonatal disruption of D-serine synthesis by SRR inhibition could induce behavioral abnormalities relevant to schizophrenia, in later life.
Methodology/Principal Findings
Neonatal mice (7–9 days) were injected with vehicle or phenazine methosulfate (Met-Phen: 3 mg/kg/day), an SRR inhibitor. Behavioral evaluations, such as spontaneous locomotion, novel object recognition test (NORT), and prepulse inhibition (PPI) were performed at juvenile (5–6 weeks old) and adult (10–12 weeks old) stages. In addition, we tested the effects of D-serine on PPI deficits in adult mice after neonatal Met-Phen exposure. Finally, we assessed whether D-serine could prevent the onset of schizophrenia-like behavior in these mice. Neonatal Met-Phen treatment reduced D-serine levels in the brain, 24 hours after the final dose. Additionally, this treatment caused behavioral abnormalities relevant to prodromal symptoms in juveniles and to schizophrenia in adults. A single dose of D-serine improved PPI deficits in adult mice. Interestingly, chronic administration of D-serine (900 mg/kg/day from P35 to P70) significantly prevented the onset of PPI deficits after neonatal Met-Phen exposure.
This study shows that disruption of D-serine synthesis during developmental stages leads to behavioral abnormalities relevant to prodromal symptoms and schizophrenia, in later life. Furthermore, early pharmacological intervention with D-serine may prevent the onset of psychosis in adult.
PMCID: PMC3632541  PMID: 23630632
23.  Serine Racemase Deletion Protects Against Cerebral Ischemia And Excitotoxicity 
D-serine, formed from L-serine by serine racemase (SR), is a physiologic co-agonist at NMDA receptors. Using mice with targeted deletion of SR, we demonstrate a role for D-serine in NMDA receptor mediated neurotoxicity and stroke. Brain cultures of SR deleted mice display markedly diminished nitric oxide (NO) formation and neurotoxicity. In intact SR knockout mice NO formation and nitrosylation of NO targets are substantially reduced. Infarct volume following middle cerebral artery occlusion is dramatically diminished in several regions of the brains of SR mutant mice despite evidence of increased NMDA receptor number and sensitivity.
PMCID: PMC2841469  PMID: 20107067
D-serine; Serine Racemase; Stroke; NMDA receptor; Nitric Oxide; Excitotoxicity
24.  Phenytoin intoxication during concurrent diazepam therapy 
Phenytoin elimination is a saturable process obeying Michaelis-Menten kinetics. Plasma phenytoin levels are not related linearly to dose, and small changes in enzyme activity produced by concurrent drug therapy could alter plasma levels. Two cases of phenytoin intoxication associated with simultaneous administration of diazepam are reported. Intravenous phenytoin infusions were given and the apparent Km and Vmax computed from the resulting plasma phenytoin levels. In one case `Km' and `Vmax' were 0.8 μmol/1 and 1.3 μmol/1/hour respectively during concurrent diazepam administration, and 50.3 μmol/1 and 4.4 μmol/1/hour after discontinuation of diazepam. In the second case phenytoin infusion with diazepam gave `Km' and `Vmax' values of 0.012 μmol/1 and 0.95 μmol/1/hour. Without diazepam these were 28.8 μmol/1 and 0.92 μmol/1/hour respectively.
PMCID: PMC492863  PMID: 599366
25.  Coactivation of NMDA receptors by glutamate and -serine induces dilation of isolated middle cerebral arteries 
N-methyl--aspartate (NMDA) receptors are glutamate-gated cation channels that mediate excitatory neurotransmission in the central nervous system. In addition to glutamate, NMDA receptors are also activated by coagonist binding of the gliotransmitter, -serine. Neuronal NMDA receptors mediate activity-dependent blood flow regulation in the brain. Our objective was to determine whether NMDA receptors expressed by brain endothelial cells can induce vasodilation of isolated brain arteries. Adult mouse middle cerebral arteries (MCAs) were isolated, pressurized, and preconstricted with norepinephrine. N-methyl--aspartate receptor agonists, glutamate and NMDA, significantly dilated MCAs in a concentration-dependent manner in the presence of -serine but not alone. Dilation was significantly inhibited by NMDA receptor antagonists, -2-amino-5-phosphonopentanoate and 5,7-dichlorokynurenic acid, indicating a response dependent on NMDA receptor glutamate and -serine binding sites, respectively. Vasodilation was inhibited by denuding the endothelium and by selective inhibition or genetic knockout of endothelial nitric oxide synthase (eNOS). We also found evidence for expression of the pan-NMDA receptor subunit, NR1, in mouse primary brain endothelial cells, and for the NMDA receptor subunit NR2C in cortical arteries in situ. Overall, we conclude that NMDA receptor coactivation by glutamate and -serine increases lumen diameter in pressurized MCA in an endothelial and eNOS-dependent mechanism.
PMCID: PMC3293118  PMID: 22068228
-serine; eNOS; glutamate; middle cerebral artery; NMDA receptor; NR2C

Results 1-25 (363826)