Search tips
Search criteria

Results 1-25 (1212017)

Clipboard (0)

Related Articles

1.  Cellular characterisation of the GCKR P446L variant associated with type 2 diabetes risk 
Diabetologia  2011;55(1):114-122.
Translation of genetic association signals into molecular mechanisms for diabetes has been slow. The glucokinase regulatory protein (GKRP; gene symbol GCKR) P446L variant, associated with inverse modulation of glucose- and lipid-related traits, has been shown to alter the kinetics of glucokinase (GCK) inhibition. As GCK inhibition is associated with nuclear sequestration, we aimed to determine whether this variant also alters the direct interaction between GKRP and GCK and their intracellular localisation.
Fluorescently tagged rat and human wild-type (WT)- or P446L-GCKR and GCK were transiently transfected into HeLa cells and mouse primary hepatocytes. Whole-cell and nuclear fluorescence was quantified in individual cells exposed to low- or high-glucose conditions (5.5 or 25 mmol/l glucose, respectively). Interaction between GCK and GKRP was measured by sensitised emission-based fluorescence resonance energy transfer (FRET) efficiency.
P446L-GKRP had a decreased degree of nuclear localisation, ability to sequester GCK and direct interaction with GCK as measured by FRET compared with WT-GKRP. Decreased interaction was observed between WT-GKRP and GCK at high compared with low glucose, but not between P446L-GKRP and GCK. Rat WT-GKRP and P446L-GKRP behaved quite differently: both variants responded to high glucose by diminished sequestration of GCK but showed no effect of the P446L variant on nuclear localisation or GCK sequestration.
Our study suggests the common human P446L-GKRP variant protein results in elevated hepatic glucose uptake and disposal by increasing active cytosolic GCK. This would increase hepatic lipid biosynthesis but decrease fasting plasma glucose concentrations and provides a potential mechanism for the protective effect of this allele on type 2 diabetes risk.
PMCID: PMC3276843  PMID: 22038520
Association study; Genetics; Glucokinase; Molecular mechanism
2.  The P446L variant in GCKR associated with fasting plasma glucose and triglyceride levels exerts its effect through increased glucokinase activity in liver 
Human Molecular Genetics  2009;18(21):4081-4088.
Genome-wide association studies have identified a number of signals for both Type 2 Diabetes and related quantitative traits. For the majority of loci, the transition from association signal to mutational mechanism has been difficult to establish. Glucokinase (GCK) regulates glucose storage and disposal in the liver where its activity is regulated by glucokinase regulatory protein (GKRP; gene name GCKR). Fructose-6 and fructose-1 phosphate (F6P and F1P) enhance or reduce GKRP-mediated inhibition, respectively. A common GCKR variant (P446L) is reproducibly associated with triglyceride and fasting plasma glucose levels in the general population. The aim of this study was to determine the mutational mechanism responsible for this genetic association. Recombinant human GCK and both human wild-type (WT) and P446L-GKRP proteins were generated. GCK kinetic activity was observed spectrophotometrically using an NADP+-coupled assay. WT and P446L-GKRP-mediated inhibition of GCK activity and subsequent regulation by phosphate esters were determined. Assays matched for GKRP activity demonstrated no difference in dose-dependent inhibition of GCK activity or F1P-mediated regulation. However, the response to physiologically relevant F6P levels was significantly attenuated with P446L-GKRP (n = 18; P ≤ 0.03). Experiments using equimolar concentrations of both regulatory proteins confirmed these findings (n = 9; P < 0.001). In conclusion, P446L-GKRP has reduced regulation by physiological concentrations of F6P, resulting indirectly in increased GCK activity. Altered GCK regulation in liver is predicted to enhance glycolytic flux, promoting hepatic glucose metabolism and elevating concentrations of malonyl-CoA, a substrate for de novo lipogenesis, providing a mutational mechanism for the reported association of this variant with raised triglycerides and lower glucose levels.
PMCID: PMC2758140  PMID: 19643913
3.  Common Missense Variant in the Glucokinase Regulatory Protein Gene Is Associated With Increased Plasma Triglyceride and C-Reactive Protein but Lower Fasting Glucose Concentrations 
Diabetes  2008;57(11):3112-3121.
OBJECTIVE—Using the genome-wide association approach, we recently identified the glucokinase regulatory protein gene (GCKR, rs780094) region as a novel quantitative trait locus for plasma triglyceride concentration in Europeans. Here, we sought to study the association of GCKR variants with metabolic phenotypes, including measures of glucose homeostasis, to evaluate the GCKR locus in samples of non-European ancestry and to fine- map across the associated genomic interval.
RESEARCH DESIGN AND METHODS—We performed association studies in 12 independent cohorts comprising >45,000 individuals representing several ancestral groups (whites from Northern and Southern Europe, whites from the U.S., African Americans from the U.S., Hispanics of Caribbean origin, and Chinese, Malays, and Asian Indians from Singapore). We conducted genetic fine-mapping across the ∼417-kb region of linkage disequilibrium spanning GCKR and 16 other genes on chromosome 2p23 by imputing untyped HapMap single nucleotide polymorphisms (SNPs) and genotyping 104 SNPs across the associated genomic interval.
RESULTS—We provide comprehensive evidence that GCKR rs780094 is associated with opposite effects on fasting plasma triglyceride (Pmeta = 3 × 10−56) and glucose (Pmeta = 1 × 10−13) concentrations. In addition, we confirmed recent reports that the same SNP is associated with C-reactive protein (CRP) level (P = 5 × 10−5). Both fine-mapping approaches revealed a common missense GCKR variant (rs1260326, Pro446Leu, 34% frequency, r2 = 0.93 with rs780094) as the strongest association signal in the region.
CONCLUSIONS—These findings point to a molecular mechanism in humans by which higher triglycerides and CRP can be coupled with lower plasma glucose concentrations and position GCKR in central pathways regulating both hepatic triglyceride and glucose metabolism.
PMCID: PMC2570409  PMID: 18678614
4.  Cellular characterization of the GCKR P446L variant associated with type 2 diabetes risk 
Diabetologia  2011;55(1):114-122.
Translation of genetic association signals into molecular mechanisms for diabetes has been slow. The glucokinase regulatory protein (GKRP) P446L variant, associated with inverse modulation of glucose- and lipid-related traits, has been shown to alter the kinetics of glucokinase (GCK) inhibition. As GCK inhibition is associated with nuclear sequestration, we aimed to determine whether this variant also alters the direct interaction between GKRP and GCK and their intra-cellular localization.
Fluorescently-tagged rat and human wild-type or P446L-GKRP and GCK were transiently transfected into HeLa cells and mouse primary hepatocytes. Whole-cell and nuclear fluorescence was quantified in individual cells exposed to low (5.5mmol/l) or high (25mmol/l) glucose conditions. Interaction between GCK and GKRP were measured by sensitized emission-based FRET efficiency (FRETN).
P446L-GKRP had a decreased degree of nuclear localization, ability to sequester GCK, and direct interaction with GCK as measured by FRET compared to WT-GKRP. Decreased interaction was observed between WT-GKRP and GCK at high (25mmol/l) compared to low glucose (5.5mmol/l) but not between P446L-GKRP and GCK. Rat WT-GKRP and P446L-GKRP behaved quite differently: both variants responded to high glucose by diminished sequestration of GCK but showed no effect of the P446L variant on nuclear localization or GCK sequestration.
Our study suggests the common human GKRP-P446L variant results in elevated hepatic glucose uptake and disposal by increasing active, cytosolic GCK. This would increase hepatic lipid biosynthesis but decrease fasting plasma glucose concentrations and provides a potential mechanism for the protective effect of this allele on type 2 diabetes risk.
PMCID: PMC3276843  PMID: 22038520
Genetics; association study; molecular mechanism; glucokinase
5.  Inheritance of rare functional GCKR variants and their contribution to triglyceride levels in families 
Human Molecular Genetics  2014;23(20):5570-5578.
Significant resources have been invested in sequencing studies to investigate the role of rare variants in complex disease etiology. However, the diagnostic interpretation of individual rare variants remains a major challenge, and may require accurate variant functional classification and the collection of large numbers of variant carriers. Utilizing sequence data from 458 individuals with hypertriglyceridemia and 333 controls with normal plasma triglyceride levels, we investigated these issues using GCKR, encoding glucokinase regulatory protein. Eighteen rare non-synonymous GCKR variants identified in these 791 individuals were comprehensively characterized by a range of biochemical and cell biological assays, including a novel high-throughput-screening-based approach capable of measuring all variant proteins simultaneously. Functionally deleterious variants were collectively associated with hypertriglyceridemia, but a range of in silico prediction algorithms showed little consistency between algorithms and poor agreement with functional data. We extended our study by obtaining sequence data on family members; however, functional variants did not co-segregate with triglyceride levels. Therefore, despite evidence for their collective functional and clinical relevance, our results emphasize the low predictive value of rare GCKR variants in individuals and the complex heritability of lipid traits.
PMCID: PMC4168830  PMID: 24879641
6.  Evolution of Hepatic Glucose Metabolism: Liver-Specific Glucokinase Deficiency Explained by Parallel Loss of the Gene for Glucokinase Regulatory Protein (GCKR) 
PLoS ONE  2013;8(4):e60896.
Glucokinase (GCK) plays an important role in the regulation of carbohydrate metabolism. In the liver, phosphorylation of glucose to glucose-6-phosphate by GCK is the first step for both glycolysis and glycogen synthesis. However, some vertebrate species are deficient in GCK activity in the liver, despite containing GCK genes that appear to be compatible with function in their genomes. Glucokinase regulatory protein (GCKR) is the most important post-transcriptional regulator of GCK in the liver; it participates in the modulation of GCK activity and location depending upon changes in glucose levels. In experimental models, loss of GCKR has been shown to associate with reduced hepatic GCK protein levels and activity.
Methodology/Principal Findings
GCKR genes and GCKR-like sequences were identified in the genomes of all vertebrate species with available genome sequences. The coding sequences of GCKR and GCKR-like genes were identified and aligned; base changes likely to disrupt coding potential or splicing were also identified.
GCKR genes could not be found in the genomes of 9 vertebrate species, including all birds. In addition, in multiple mammalian genomes, whereas GCKR-like gene sequences could be identified, these genes could not predict a functional protein. Vertebrate species that were previously reported to be deficient in hepatic GCK activity were found to have deleted (birds and lizard) or mutated (mammals) GCKR genes. Our results suggest that mutation of the GCKR gene leads to hepatic GCK deficiency due to the loss of the stabilizing effect of GCKR.
PMCID: PMC3613411  PMID: 23573289
7.  Common Polymorphisms in MTNR1B, G6PC2 and GCK Are Associated with Increased Fasting Plasma Glucose and Impaired Beta-Cell Function in Chinese Subjects 
PLoS ONE  2010;5(7):e11428.
Previous studies identified melatonin receptor 1B (MTNR1B), islet-specific glucose 6 phosphatase catalytic subunit-related protein (G6PC2), glucokinase (GCK) and glucokinase regulatory protein (GCKR) as candidate genes for type 2 diabetes (T2D) acting through elevated fasting plasma glucose (FPG). We examined the associations of the reported common variants of these genes with T2D and glucose homeostasis in three independent Chinese cohorts.
Methodology/Principal Findings
Five single nucleotide polymorphisms (SNPs), MTNR1B rs10830963, G6PC2 rs16856187 and rs478333, GCK rs1799884 and GCKR rs780094, were genotyped in 1644 controls (583 adults and 1061 adolescents) and 1342 T2D patients. The G-allele of MTNR1B rs10830963 and the C-alleles of both G6PC2 rs16856187 and rs478333 were associated with higher FPG (0.0034
Common variants of MTNR1B, G6PC2 and GCK are associated with elevated FPG and impaired insulin secretion, both individually and jointly, suggesting that these risk alleles may precipitate or perpetuate hyperglycemia in predisposed individuals.
PMCID: PMC2900202  PMID: 20628598
Diabetes Care  2011;34(5):1205-1210.
In genome-wide association studies, performed mostly in nondiabetic individuals, genetic variability of glucokinase regulatory protein (GCKR) affects type 2 diabetes-related phenotypes, kidney function, and risk of chronic kidney disease (CKD). We tested whether GCKR variability affects type 2 diabetes or kidney-related phenotypes in newly diagnosed type 2 diabetes.
In 509 GAD-negative patients with newly diagnosed type 2 diabetes, we 1) genotyped six single nucleotide polymorphisms in GCKR genomic region: rs6717980, rs1049817, rs6547626, rs780094, rs2384628, and rs8731; 2) assessed clinical phenotypes, insulin sensitivity by the euglycemic insulin clamp, and β-cell function by state-of-the-art modeling of glucose/C-peptide curves during an oral glucose tolerance test; and 3) estimated glomerular filtration rate (eGFR) by the Modification of Diet in Renal Disease formula.
The major alleles of rs6717980 and rs2384628 were associated with reduced β-cell function (P < 0.05), with mutual additive effects of each variant (P < 0.01). The minor alleles of rs1049817 and rs6547626 and the major allele of rs780094 were associated with reduced eGFR according to a recessive model (P < 0.03), but with no mutual additive effects of the variants. Additional associations were found between rs780094 and 2-h plasma glucose (P < 0.05) and rs8731 and insulin sensitivity (P < 0.05) and triglycerides (P < 0.05).
Our findings are compatible with the idea that GCKR variability may play a pathogenetic role in both type 2 diabetes and CKD. Genotyping GCKR in patients with newly diagnosed type 2 diabetes might help in identifying patients at high risk for metabolic derangements or CKD.
PMCID: PMC3114499  PMID: 21411509
Diabetes  2009;58(3):765-769.
OBJECTIVE— Recent studies in European populations have reported a reciprocal association of glucokinase regulatory protein (GCKR) gene with triglyceride versus fasting plasma glucose (FPG) levels and type 2 diabetes risk. GCKR is a rate-limiting factor of glucokinase (GCK), which functions as a key glycolytic enzyme for maintaining glucose homeostasis. We examined the associations of two common genetic polymorphisms of GCKR and GCK with metabolic traits in healthy Chinese adults and adolescents.
RESEARCH DESIGN AND METHODS— Two single nucleotide polymorphisms (SNPs), rs780094 at GCKR and rs1799884 at GCK, were genotyped in 600 healthy adults and 986 healthy adolescents. The associations of these SNPs with metabolic traits were assessed by linear regression adjusted for age, sex, and/or BMI. We also tested for the epistasis between these two SNPs and performed a meta-analysis among European and Asian populations.
RESULTS— The T-allele of GCKR rs780094 was associated with increased triglycerides (P = 5.4 × 10−7), while the A-allele of GCK rs1799884 was associated with higher FPG (P = 3.1 × 10−7). A novel interaction effect between the two SNPs on FPG was also observed (P = 0.0025). Meta-analyses strongly supported the additive effects of the two SNPs on FPG and triglycerides, respectively.
CONCLUSIONS— In support of the intimate relationship between glucose and lipid metabolisms, GCKR and GCK genetic polymorphisms interact to increase FPG in healthy adults and adolescents. These risk alleles may contribute to increased diabetes risk in subjects who harbor other genetic or environmental/lifestyle risk factors.
PMCID: PMC2646078  PMID: 19073768
Diabetologia  2009;52(9):1866-1870.
Variation in fasting plasma glucose (FPG) within the normal range is a known risk factor for the development of type 2 diabetes. Several reports have shown that genetic variation in the genes for glucokinase (GCK), glucokinase regulatory protein (GCKR), islet-specific glucose 6 phosphatase catalytic subunit-related protein (G6PC2) and melatonin receptor type 1B (MTNR1B) is associated with FPG. In this study we examined whether these loci also contribute to type 2 diabetes susceptibility.
A random selection from the Dutch New Hoorn Study was used for replication of the association with FGP (2,361 non-diabetic participants). For the genetic association study we extended the study sample with 2,628 participants with type 2 diabetes. Risk allele counting was used to calculate a four-gene risk allele score for each individual.
Variants of the GCK, G6PC2 and MTNR1B genes but not GCKR were associated with FPG (all, p ≤ 0.001; GCKR, p = 0.23). Combining these four genes in a risk allele score resulted in an increase of 0.05 mmol/l (0.04–0.07) per additional risk allele (p = 2 × 10−13). Furthermore, participants with less than three or more than five risk alleles showed significantly different type 2 diabetes susceptibility compared with the most common group with four risk alleles (OR 0.77 [0.65–0.93], p = 0.005 and OR 2.05 [1.50–2.80], p = 4 × 10−6 respectively). The age at diagnosis was also significantly associated with the number of risk alleles (p = 0.009).
A combined risk allele score for single-nucleotide polymorphisms in four known FPG loci is significantly associated with FPG and HbA1c in a Dutch population-based sample of non-diabetic participants. Carriers of low or high numbers of risk alleles show significantly different risks for type 2 diabetes compared with the reference group.
Electronic supplementary material
The online version of this article (doi:10.1007/s00125-009-1413-9) contains supplementary material, which is available to authorised users.
PMCID: PMC2723681  PMID: 19533084
Fasting plasma glucose; Genetics; Single-nucleotide polymorphism; Type 2 diabetes
PLoS ONE  2011;6(6):e20555.
Glucokinase Regulatory Protein (GCKR) plays a central role regulating both hepatic triglyceride and glucose metabolism. Fatty acids are key metabolic regulators, which interact with genetic factors and influence glucose metabolism and other metabolic traits. Omega-3 polyunsaturated fatty acids (n-3 PUFA) have been of considerable interest, due to their potential to reduce metabolic syndrome (MetS) risk.
To examine whether genetic variability at the GCKR gene locus was associated with the degree of insulin resistance, plasma concentrations of C-reactive protein (CRP) and n-3 PUFA in MetS subjects.
Homeostasis model assessment of insulin resistance (HOMA-IR), HOMA-B, plasma concentrations of C-peptide, CRP, fatty acid composition and the GCKR rs1260326-P446L polymorphism, were determined in a cross-sectional analysis of 379 subjects with MetS participating in the LIPGENE dietary cohort.
Among subjects with n-3 PUFA levels below the population median, carriers of the common C/C genotype had higher plasma concentrations of fasting insulin (P = 0.019), C-peptide (P = 0.004), HOMA-IR (P = 0.008) and CRP (P = 0.032) as compared with subjects carrying the minor T-allele (Leu446). In contrast, homozygous C/C carriers with n-3 PUFA levels above the median showed lower plasma concentrations of fasting insulin, peptide C, HOMA-IR and CRP, as compared with individuals with the T-allele.
We have demonstrated a significant interaction between the GCKR rs1260326-P446L polymorphism and plasma n-3 PUFA levels modulating insulin resistance and inflammatory markers in MetS subjects. Further studies are needed to confirm this gene-diet interaction in the general population and whether targeted dietary recommendations can prevent MetS in genetically susceptible individuals.
Trial Registration NCT00429195
PMCID: PMC3108949  PMID: 21674002
PLoS ONE  2012;7(4):e34541.
Heterozygous glucokinase (GCK) mutations cause a subtype of maturity-onset diabetes of the young (GCK-MODY). Over 600 GCK mutations have been reported of which ∼65% are missense. In many cases co-segregation has not been established and despite the importance of functional studies in ascribing pathogenicity for missense variants these have only been performed for <10% of mutations. The aim of this study was to determine the minimum prevalence of GCK-MODY amongst diabetic subjects in Slovakia by sequencing GCK in 100 Slovakian probands with a phenotype consistent with GCK-MODY and to explore the pathogenicity of identified variants through family and functional studies.
Twenty-two mutations were identified in 36 families (17 missense) of which 7 (I110N, V200A, N204D, G258R, F419S, c.580-2A>C, c.1113–1114delGC) were novel. Parental DNA was available for 22 probands (covering 14/22 mutations) and co-segregation established in all cases. Bioinformatic analysis predicted all missense mutations to be damaging. Nine (I110N, V200A, N204D, G223S, G258R, F419S, V244G, L315H, I436N) mutations were functionally evaluated. Basic kinetic analysis explained pathogenicity for 7 mutants which showed reduced glucokinase activity with relative activity indices (RAI) between 0.6 to <0.001 compared to wild-type GCK (1.0). For the remaining 2 mutants additional molecular mechanisms were investigated. Differences in glucokinase regulatory protein (GKRP) –mediated-inhibition of GCK were observed for both L315H & I436N when compared to wild type (IC50 14.6±0.1 mM & 20.3±1.6 mM vs.13.3±0.1 mM respectively [p<0.03]). Protein instability as assessed by thermal lability studies demonstrated that both L315H and I436N show marked thermal instability compared to wild-type GCK (RAI at 55°C 8.8±0.8% & 3.1±0.4% vs. 42.5±3.9% respectively [p<0.001]). The minimum prevalence of GCK-MODY amongst Slovakian patients with diabetes was 0.03%.
In conclusion, we have identified 22 GCK mutations in 36 Slovakian probands and demonstrate that combining family, bioinformatic and functional studies can aid the interpretation of variants identified by molecular diagnostic screening.
PMCID: PMC3321013  PMID: 22493702
Recent studies revealed that glucokinase regulatory protein (GCKR) variants (rs780094 and rs1260326) are associated with serum triglycerides and plasma glucose levels. Here we analyzed primarily the association of these two variants with the lipid profile and plasma glucose levels in Hungarian subjects with type 2 diabetes mellitus and metabolic syndrome; and also correlated the genotypes with the carotid intima-media thickness records.
A total of 321 type 2 diabetic patients, 455 metabolic syndrome patients, and 172 healthy controls were genotyped by PCR-RFLP.
Both GCKR variants were found to associate with serum triglycerides and with fasting plasma glucose. However, significant association with the development of type 2 diabetes mellitus and metabolic syndrome could not be observed. Analyzing the records of the patients, a positive association of prevalence the GCKR homozygous functional variants and carotid intima-media thickness was found in the metabolic syndrome patients.
Our results support that rs780094 and rs1260326 functional variants of the GCKR gene are inversely associated with serum triglycerides and fasting plasma glucose levels, as it was already reported for diabetic and metabolic syndrome patients in some other populations. Besides this positive replication, as a novel feature, our preliminary findings also suggest a cardiovascular risk role of the GCKR minor allele carriage based on the carotid intima-media thickness association.
PMCID: PMC3009616  PMID: 21114848
Nature genetics  2010;42(8):684-687.
Genome-wide association studies (GWAS) have replicably identified multiple loci associated with population-based plasma lipid concentrations1-5. Common genetic variants at these loci together explain <10% of the total variation of each lipid trait4,5. Rare variants of individually large effect may contribute additionally to the “missing heritability” of lipid traits6,7, however it remains to be shown to what extent rare variants will affect lipid phenotypes. Here, we demonstrate a significant accumulation of rare variants in GWAS-identified genes in patients with an extreme phenotype of abnormal plasma triglyceride (TG) metabolism. A GWAS of hypertriglyceridemia (HTG) patients revealed that common variants in APOA5, GCKR, LPL and APOB genes were associated with the HTG phenotype at genome-wide significance. We subsequently resequenced protein coding regions of these genes and found a significant burden of 154 rare missense or nonsense variants in 438 HTG patients, in contrast to 53 variants in 327 controls (P=6.2X10-8); this corresponds to a carrier frequency of 28.1% of HTG patients and 15.3% of controls (P=2.6X10-5). Many rare variants were predicted in silico to have compromised function; additionally some had previously demonstrated dysfunctionality in vitro. Rare variants in these 4 genes explained 1.1% of total variation in HTG diagnoses. Our study demonstrates a marked mutation skew that likely contributes to disease pathophysiology in patients with HTG.
PMCID: PMC3017369  PMID: 20657596
PLoS ONE  2013;8(1):e55350.
Variants in gene encoding glucokinase regulator protein (GCKR) were found to have converse effects on triglycerides and glucose metabolic traits. We aimed to investigate the influence of GCKR variants for triglycerides and glucose metabolic traits in Chinese children and adults.
Methods and Results
We genotyped two GCKR variants rs1260326 and rs1260333 in children and adults, and analyzed the association between two variants and triglycerides, glucose, insulin and HOMA-IR using linear regression model, and estimated the effect on insulin resistance using logistic regression model. Rs1260326 and rs1260333 associated with increased triglycerides in children and adults (p<0.05). In children, both variants significantly reduced insulin (p<0.05. for rs1260326, β = −0.07; for rs1260333, β = −0.07) and HOMA-IR (p<0.05. for rs1260326, β = −0.03; for rs1260333, β = −0.03). There were significant associations between two variants and insulin resistance for children. Under co-dominant model, for CT vs. CC, OR is 0.83 (95%CI 0.69–1.00) for rs1260326, and 0.83 (95%CI 0.68–1.00) for rs1260333; for TT vs. CC, OR is 0.72 (95%CI 0.58–0.88) for rs1260326, and 0.72 (95%CI 0.58–0.89) for rs1260333. Under allele model, for allele T vs. C, the ORs are 0.85 (95%CI 0.76–0.94) and 0.85 (95%CI 0.76–0.94) for rs1260326 and rs1260333, respectively).
Our study confirmed the associations between GCKR variants and triglycerides in Chinese children and adults. Triglycerides-increasing alleles of GCKR variants reduce insulin and HOMA-IR index, and protect from insulin resistance in children. Our results suggested GCKR has an effect on development of insulin resistance in Chinese children.
PMCID: PMC3561266  PMID: 23383164
Diabetes  2008;57(8):2253-2257.
OBJECTIVE— Hepatic glucokinase (GCK) is a key regulator of glucose storage and disposal in the liver, where its activity is competitively modulated, with respect to glucose, by binding to glucokinase regulatory protein (GCKR) in the presence of fructose 6-phosphate. Genome-wide association studies for type 2 diabetes identified GCKR as a potential locus for modulating triglyceride levels. We evaluated, in a general French population, the contribution of the GCKR rs1260326-P446L polymorphism to quantitative metabolic parameters and to dyslipidemia and hyperglycemia risk.
RESEARCH DESIGN AND METHODS— Genotype effects of rs1260326 were studied in 4,833 participants from the prospective DESIR (Data from an Epidemiological Study on the Insulin Resistance syndrome) cohort both at inclusion and using the measurements at follow-up.
RESULTS— The minor T-allele of rs1260326 was strongly associated with lower fasting glucose (−1.43% per T-allele; P = 8 × 10−13) and fasting insulin levels (−4.23%; P = 3 × 10−7), lower homeostasis model assessment of insulin resistance index (−5.69%; P = 1 × 10−8), and, conversely, higher triglyceride levels (3.41%; P = 1 × 10−4) during the 9-year study. These effects relate to a lower risk of hyperglycemia (odds ratio [OR] 0.79 [95% CI 0.70–0.88]; P = 4 × 10−5) and of incident cases during the study (hazard ratio [HR] 0.83 [0.74–0.95]; P = 0.005). Moreover, an additive effect of GCKR rs1260326(T) and GCK (−30G) alleles conferred lower fasting glycemia (P = 1 × 10−13), insulinemia (P = 5 × 10−6), and hyperglycemia risk (P = 1 × 10−6).
CONCLUSIONS— GCKR-L446 carriers are protected against type 2 diabetes despite higher triglyceride levels and risk of dyslipidemia, which suggests a potential molecular mechanism by which these two components of the metabolic syndrome can be dissociated.
PMCID: PMC2494697  PMID: 18556336
Human genetics  2009;126(4):567-574.
Postprandial triglyceridemia is an emerging risk factor for cardiovascular disease. However, most of the genes that influence postprandial triglyceridemia are not known. We evaluated whether a common nonsynonymous SNP rs1260326/P446L in the glucokinase regulatory protein (GCKR) gene influenced variation in the postprandial lipid response after a high-fat challenge in seven hundred and seventy participants in the Amish HAPI Heart Study who underwent an oral high-fat challenge and had blood samples taken in the fasting state and during the postprandial phase at 1, 2, 3, 4, and 6 hours. We found that the minor T allele at rs1260326 was associated with significantly higher fasting TG levels after adjusting for age, sex, and family structure (Pa = 0.06 for additive model, and Pr=0.0003 for recessive model). During the fat challenge, the T allele was associated with significantly higher maximum TG level (Pa = 0.006), incremental maximum TG level (Pa = 0.006), TG area under the curve (Pa = 0.02) and incremental TG area under the curve (Pa = 0.03). Our data indicate that the rs1260326 T allele of GCKR is associated with both higher fasting levels of TG as well as the postprandial TG response, which may result in higher atherogenic risk.
PMCID: PMC2918876  PMID: 19526250
GCKR; polymorphism; postprandial; lipid
Molecular Vision  2010;16:2718-2726.
To find the gene(s) responsible for macular telangiectasia type 2 (MacTel) by a candidate-gene screening approach.
Candidate genes were selected based on the following criteria: those known to cause or be associated with diseases with phenotypes similar to MacTel, genes with known function in the retinal vasculature or macular pigment transport, genes that emerged from expression microarray data from mouse models designed to mimic MacTel phenotype characteristics, and genes expressed in the retina that are also related to diabetes or hypertension, which have increased prevalence in MacTel patients. Probands from eight families with at least two affected individuals were screened by direct sequencing of 27 candidate genes. Identified nonsynonymous variants were analyzed to determine whether they co-segregate with the disease in families. Allele frequencies were determined by TaqMan analysis of the large MacTel and control cohorts.
We identified 23 nonsynonymous variants in 27 candidate genes in at least one proband. Of these, eight were known single nucleotide polymorphisms (SNPs) with allele frequencies of >0.05; these variants were excluded from further analyses. Three previously unidentified missense variants, three missense variants with reported disease association, and five rare variants were analyzed for segregation and/or allele frequencies. No variant fulfilled the criteria of being causal for MacTel. A missense mutation, p.Pro33Ser in frizzled homolog (Drosophila) 4 (FZD4), previously suggested as a disease-causing variant in familial exudative vitreoretinopathy, was determined to be a rare benign polymorphism.
We have ruled out the exons and flanking intronic regions in 27 candidate genes as harboring causal mutations for MacTel.
PMCID: PMC3002960  PMID: 21179236
PLoS Genetics  2009;5(6):e1000504.
Elevated serum uric acid levels cause gout and are a risk factor for cardiovascular disease and diabetes. To investigate the polygenetic basis of serum uric acid levels, we conducted a meta-analysis of genome-wide association scans from 14 studies totalling 28,141 participants of European descent, resulting in identification of 954 SNPs distributed across nine loci that exceeded the threshold of genome-wide significance, five of which are novel. Overall, the common variants associated with serum uric acid levels fall in the following nine regions: SLC2A9 (p = 5.2×10−201), ABCG2 (p = 3.1×10−26), SLC17A1 (p = 3.0×10−14), SLC22A11 (p = 6.7×10−14), SLC22A12 (p = 2.0×10−9), SLC16A9 (p = 1.1×10−8), GCKR (p = 1.4×10−9), LRRC16A (p = 8.5×10−9), and near PDZK1 (p = 2.7×10−9). Identified variants were analyzed for gender differences. We found that the minor allele for rs734553 in SLC2A9 has greater influence in lowering uric acid levels in women and the minor allele of rs2231142 in ABCG2 elevates uric acid levels more strongly in men compared to women. To further characterize the identified variants, we analyzed their association with a panel of metabolites. rs12356193 within SLC16A9 was associated with DL-carnitine (p = 4.0×10−26) and propionyl-L-carnitine (p = 5.0×10−8) concentrations, which in turn were associated with serum UA levels (p = 1.4×10−57 and p = 8.1×10−54, respectively), forming a triangle between SNP, metabolites, and UA levels. Taken together, these associations highlight additional pathways that are important in the regulation of serum uric acid levels and point toward novel potential targets for pharmacological intervention to prevent or treat hyperuricemia. In addition, these findings strongly support the hypothesis that transport proteins are key in regulating serum uric acid levels.
Author Summary
Elevated serum uric acid levels cause gout and are a risk factor for cardiovascular disease and diabetes. The regulation of serum uric acid levels is under a strong genetic control. This study describes the first meta-analysis of genome-wide association scans from 14 studies totalling 28,141 participants of European descent. We show that common DNA variants at nine different loci are associated with uric acid concentrations, five of which are novel. These variants are located within the genes coding for organic anion transporter 4 (SLC22A11), monocarboxylic acid transporter 9 (SLC16A9), glucokinase regulatory protein (GCKR), Carmil (LRRC16A), and near PDZ domain-containing 1 (PDZK1). Gender-specific effects are shown for variants within the recently identified genes coding for glucose transporter 9 (SLC2A9) and the ATP-binding cassette transporter (ABCG2). Based on screening of 163 metabolites, we show an association of one of the identified variants within SLC16A9 with DL-carnitine and propionyl-L-carnitine. Moreover, DL-carnitine and propionyl-L-carnitine were strongly correlated with serum UA levels, forming a triangle between SNP, metabolites and UA levels. Taken together, these associations highlight pathways that are important in the regulation of serum uric acid levels and point toward novel potential targets for pharmacological intervention to prevent or treat hyperuricemia.
PMCID: PMC2683940  PMID: 19503597
Diabetes  2011;60(12):3110-3120.
The induction of hepatic glucose 6-phosphatase (G6pc) by glucose presents a paradox of glucose-induced glucose intolerance. We tested whether glucose regulation of liver gene expression is geared toward intracellular homeostasis.
The effect of glucose-induced accumulation of phosphorylated intermediates on expression of glucokinase (Gck) and its regulator Gckr was determined in hepatocytes. Cell ATP and uric acid production were measured as indices of cell phosphate homeostasis.
Accumulation of phosphorylated intermediates in hepatocytes incubated at elevated glucose induced rapid and inverse changes in Gck (repression) and Gckr (induction) mRNA concomitantly with induction of G6pc, but had slower effects on the Gckr-to-Gck protein ratio. Dynamic metabolic labeling in mice and liver proteome analysis confirmed that Gckr and Gck are low-turnover proteins. Involvement of Max-like protein X in glucose-mediated Gck-repression was confirmed by chromatin immunoprecipitation analysis. Elevation of the Gck-to-Gckr ratio in hepatocytes was associated with glucose-dependent ATP depletion and elevated urate production confirming compromised phosphate homeostasis.
The lowering by glucose of the Gck-to-Gckr ratio provides a potential explanation for the impaired hepatic glucose uptake in diabetes. Elevated uric acid production at an elevated Gck-to-Gckr ratio supports a role for glucose regulation of gene expression in hepatic phosphate homeostasis.
PMCID: PMC3219956  PMID: 22013014
A genome-wide association study associated 5 genetic variants with hepatic steatosis (identified by computerized tomography) in individuals of European ancestry. We investigated whether these variants were associated with measures of hepatic steatosis (HS) in non-Hispanic white (NHW), non-Hispanic black, and Mexican American (MA) participants in the US population-based National Health and Nutrition Examination Survey III, phase 2.
We analyzed data from 4804 adults (1825 NHW, 1442 non-Hispanic black, and 1537 MA; 51.7% women; mean age at examination, 42.5 y); the weighted prevalence of HS was 37.3%. We investigated whether ultrasound-measured HS, with and without increased levels of alanine aminotransferase (ALT), or level of ALT alone, was associated with rs738409 (patatin-like phospholipase domain-containing protein 3 [PNPLA3]), rs2228603 (neurocan [NCAN]), rs12137855 (lysophospholipase-like 1), rs780094 (glucokinase regulatory protein [GCKR]), and rs4240624 (protein phosphatase 1, regulatory subunit 3b [PPP1R3B]) using regression modeling in an additive genetic model, controlling for age, age-squared, sex, and alcohol consumption.
The G allele of rs738409 (PNPLA3) and the T allele of rs780094 (GCKR) were associated with HS with a high level of ALT (odds ratio [OR], 1.36; P = .01; and OR, 1.30; P = .03, respectively). The A allele of rs4240624 (PPP1R3B) and the T allele of rs2228603 (NCAN) were associated with HS (OR, 1.28; P = .03; and OR, 1.40; P = .04, respectively). Variants of PNPLA3 and NCAN were associated with ALT level among all 3 ancestries. Some single-nucleotide polymorphisms were associated with particular races or ethnicities: variants in PNPLA3, NCAN, GCKR, and PPP1R3B were associated with NHW and variants in PNPLA3 were associated with MA. No variants were associated with NHB.
We used data from the National Health and Nutrition Examination Survey III to validate the association between rs738409 (PNPLA3), rs780094 (GCKR), and rs4240624 (PPP1R3B) with HS, with or without increased levels of ALT, among 3 different ancestries. Some, but not all, associations between variants in NCAN, lysophospholipase-like 1, GCKR, and PPP1R3B with HS (with and without increased ALT level) were significant within subpopulations.
PMCID: PMC4197011  PMID: 23416328
Nonalcoholic Fatty Liver Disease; Replication; Candidate Gene Study; Genome-wide Association Study; SNP
BMC Medical Genetics  2008;9:29.
Von Hippel-Lindau disease (VHL) is a rare autosomal dominant disease characterized by development of cystic and tumorous lesions at multiple sites, including the brain, spinal cord, kidneys, adrenals, pancreas, epididymis and eyes. The clinical phenotype results from molecular abnormalities of the VHL tumor suppressor gene, mapped to human chromosome 3p25-26. The VHL gene encodes two functionally active VHL proteins due to the presence of two translational initiation sites separated by 53 codons. The majority of disease-causing mutations have been detected downstream of the second translational initiation site, but there are conflicting data as to whether few mutations located in the first 53 codons, such as the Pro25Leu could have a pathogenic role. In this paper we report a large Hungarian VHL type 2 family consisting of 32 members in whom a disease-causing AGT80AAT (Ser80Ile) c.239G>A, p.Ser80Ile mutation, but not the concurrent CCT25CTT (Pro25Leu) c.74C>T, p.Pro25Leu variant co-segregated with the disease. To our knowledge, the Ser80Ile mutation has not been previously described in VHL type 2 patients with high risk of pheochromocytoma and renal cell cancer. Therefore, this finding represents a novel genotype-phenotype association and VHL kindreds with Ser80Ile mutation will require careful surveillance for pheochromocytoma. We concluded that the Pro25Leu variant is a rare, neutral variant, but the presence such a rare gene variant may make genetic counseling difficult.
PMCID: PMC2364614  PMID: 18416845
PLoS ONE  2014;9(2):e89335.
Recent genetic and clinical evidence has implicated glucokinase regulatory protein (GKRP) in the pathogenesis of type 2 diabetes and related traits. The primary role of GKRP is to bind and inhibit hepatic glucokinase (GCK), a critically important protein in human health and disease that exerts a significant degree of control over glucose metabolism. As activation of GCK has been associated with improved glucose tolerance, perturbation of the GCK-GKRP interaction represents a potential therapeutic target for pharmacological modulation. Recent structural and kinetic advances are beginning to provide insight into the interaction of these two proteins. However, tools to comprehensively assess the GCK-GKRP interaction, particularly in the context of small molecules, would be a valuable resource. We therefore developed three robust and miniaturized assays for assessing the interaction between recombinant human GCK and GKRP: an HTRF assay, a diaphorase-coupled assay, and a luciferase-coupled assay. The assays are complementary, featuring distinct mechanisms of detection (luminescence, fluorescence, FRET). Two assays rely on GCK enzyme activity modulation by GKRP while the FRET-based assay measures the GCK-GKRP protein-protein interaction independent of GCK enzymatic substrates and activity. All three assays are scalable to low volumes in 1536-well plate format, with robust Z’ factors (>0.7). Finally, as GKRP sequesters GCK in the hepatocyte nucleus at low glucose concentrations, we explored cellular models of GCK localization and translocation. Previous findings from freshly isolated rat hepatocytes were confirmed in cryopreserved rat hepatocytes, and we further extended this study to cryopreserved human hepatocytes. Consistent with previous reports, there were several key differences between the rat and human systems, with our results suggesting that human hepatocytes can be used to interrogate GCK translocation in response to small molecules. The assay panel developed here should help direct future investigation of the GCK-GKRP interaction in these or other physiologically relevant human systems.
PMCID: PMC3929664  PMID: 24586696
Hepatology (Baltimore, Md.)  2013;58(3):966-975.
Nonalcoholic Fatty Liver Disease (NAFLD) is an obesity-related condition affecting over 50% of individuals in some populations and is expected to become the number one cause of liver disease worldwide by 2020. Common, robustly associated genetic variants in/near five genes were identified for hepatic steatosis, a quantifiable component of NAFLD, in European-ancestry individuals. Here we tested whether these variants were associated with hepatic steatosis in African and/or Hispanic Americans and fine-mapped the observed association signals. We measured hepatic steatosis using computed tomography in five African-American (n=3124) and one Hispanic-American (n=849) cohorts. All analyses controlled for variation in age, age2, gender, alcoholic drinks, and population substructure. Heritability of hepatic steatosis was estimated in three cohorts. Variants in/near PNPLA3, NCAN, LYPLAL1, GCKR, and PPP1R3B were tested for association with hepatic steatosis using a regression framework in each cohort and meta-analyzed. Fine-mapping across African-American cohorts was conducted using meta-analysis. African- and Hispanic-American cohorts were 33.9/37.5% male, with average age of 58.6/42.6 years and body mass index of 31.8/28.9kg/m2, respectively. Hepatic steatosis was 0.20–0.34 heritable in African-and Hispanic-American families (p<0.02 in each cohort). Variants in or near PNPLA3, NCAN, GCKR, PPP1R3B in African Americans and PNPLA3 and PPP1R3B in Hispanic Americans were significantly associated with hepatic steatosis; however, allele frequency and effect size varied across ancestries. Fine-mapping in African Americans highlighted missense variants at PNPLA3 and GCKR and redefined the association region at LYPLAL1.
We show for the first time that multiple genetic variants are associated with hepatic steatosis across ancestries and explain a substantial proportion of the genetic predisposition in African and Hispanic Americans. Missense variants in PNPLA3 and GCKR are likely functional across multiple ancestries.
PMCID: PMC3782998  PMID: 23564467
liver steatosis; single nucleotide polymorphisms; obesity; meta-analysis; genetic variance
PLoS ONE  2013;8(7):e70045.
The glucokinase regulatory protein encoded by GCKR plays an important role in glucose metabolism and a single nucleotide polymorphism (SNP) rs1260326 (P446L) in the gene has been associated with several age-related biomarkers, including triglycerides, glucose, insulin and apolipoproteins. However, associations between SNPs in the gene and other ageing phenotypes such as cognitive and physical capability have not been reported.
As part of the Healthy Ageing across the Life Course (HALCyon) collaborative research programme, men and women from five UK cohorts aged between 44 and 90+ years were genotyped for rs1260326. Meta-analysis was used to pool within-study genotypic associations between the SNP and several age-related phenotypes, including body mass index (BMI), blood lipid levels, lung function, and cognitive and physical capability.
We confirm the associations between the minor allele of the SNP and higher triglycerides and lower glucose levels. We also observed a triglyceride-independent association between the minor allele and lower BMI (pooled beta on z-score = −0.04, p-value = 0.0001, n = 16,251). Furthermore, there was some evidence for gene-environment interactions, including physical activity attenuating the effects on triglycerides. However, no associations were observed with measures of cognitive and physical capability.
Findings from middle-aged to older adults confirm associations between rs1260326 GCKR and triglycerides and glucose, suggest possible gene-environment interactions, but do not provide evidence that its relevance extends to cognitive and physical capability.
PMCID: PMC3720952  PMID: 23894584

Results 1-25 (1212017)