PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (692974)

Clipboard (0)
None

Related Articles

1.  The response regulator ComE in Streptococcus mutans functions both as a transcription activator of mutacin production and repressor of CSP biosynthesis 
Microbiology (Reading, England)  2007;153(Pt 6):1799-1807.
In Streptococcus pneumoniae, competence and bacteriocin genes are controlled by two two-component systems, ComED and BlpRH, respectively. In Streptococcus mutans, both functions are controlled by the ComED system. Recent studies in S. mutans revealed a potential ComE binding site characterized by two 11 bp direct repeats shared by each of the bacteriocin genes responsive to the competence-stimulating peptide (CSP). Interestingly, this sequence was not found in the upstream region of the CSP structural gene comC. Since comC is suggested to be part of a CSP-responsive and ComE-dependent autoregulatory loop, it was of interest to determine how it was possible that the ComED system could simultaneously regulate bacteriocin expression and natural competence. Using the intergenic region IGS1499, shared by the CSP-responsive bacteriocin nlmC and comC, it was demonstrated that both genes are likely to be regulated by a bifunctional ComE. In a comE null mutant, comC gene expression was increased similarly to a fully induced wild-type. In contrast, nlmC gene expression was nearly abolished. Deletion of ComD exerted a similar effect on both genes to that observed with the comE null mutation. Electrophoretic mobility shift assays (EMSAs) with purified ComE revealed specific shift patterns dependent on the presence of one or both direct repeats in the nlmC–comC promoter region. The two direct repeats were also required for the promoter activity of both nlmC and comC. These results suggest that gene regulation of comC in S. mutans is fundamentally different from that reported for S. pneumoniae, which implicates a unique regulatory mechanism that allows the coordination of bacteriocin production with competence development.
doi:10.1099/mic.0.2007/005975-0
PMCID: PMC2062498  PMID: 17526837
2.  Regulation of Bacteriocin Production and Cell Death by the VicRK Signaling System in Streptococcus mutans 
Journal of Bacteriology  2012;194(6):1307-1316.
The VicRK two-component signaling system modulates biofilm formation, genetic competence, and stress tolerance in Streptococcus mutans. We show here that the VicRK modulates bacteriocin production and cell viability, in part by direct modulation of competence-stimulating peptide (CSP) production in S. mutans. Global transcriptome and real-time transcriptional analysis of the VicK-deficient mutant (SmuvicK) revealed significant modulation of several bacteriocin-related loci, including nlmAB, nlmC, and nlmD (P < 0.001), suggesting a role for the VicRK in producing mutacins IV, V, and VI. Bacteriocin overlay assays revealed an altered ability of the vic mutants to kill related species. Since a well-conserved VicR binding site (TGTWAH-N5-TGTWAH) was identified within the comC coding region, we confirmed VicR binding to this sequence using DNA footprinting. Overexpression of the vic operon caused growth-phase-dependent repression of comC, comDE, and comX. In the vic mutants, transcription of nlmC/cipB encoding mutacin V, previously linked to CSP-dependent cell lysis, as well as expression of its putative immunity factor encoded by immB, were significantly affected relative to the wild type (P < 0.05). In contrast to previous reports that proposed a hyper-resistant phenotype for the VicK mutant in cell viability, the release of extracellular genomic DNA was significantly enhanced in SmuvicK (P < 0.05), likely as a result of increased autolysis compared with the parent. The drastic influence of VicRK on cell viability was also demonstrated using vic mutant biofilms. Taken together, we have identified a novel regulatory link between the VicRK and ComDE systems to modulate bacteriocin production and cell viability of S. mutans.
doi:10.1128/JB.06071-11
PMCID: PMC3294852  PMID: 22228735
3.  ABC Transporter CslAB, a Stabilizer of ComCDE Signal in Streptococcus mutans 
Background:
In Streptococcus mutans, ComCDE, a peptide-induced two-component signal transduction system, forms a closed signal transduction, and even if difunctional ComE closes this signal at its headstream to avoid its infinite amplification, it is not enough for ComE to work in a concentration-dependent manner. CslAB has a chance to regulate ComCDE by controlling extracellular competence-stimulating peptide (CSP) concentration through its processing and secretion.
Objectives:
To first confirm the binding properties of cslAB promoter (PcslAB) with ComE, then to uncover in vivo need of cslAB expression, and finally to unveil the role of CslAB.
Materials and Methods:
Electrophoretic mobility shift assay was used to confirm the binding properties of PcslAB with ComE. In vivo cslAB transcription was detected by β-galactosidase activity because its gene has been fused to cslAB operon, and finally the role of CslAB was reviewed.
Results:
PcslAB is a weak promoter responding to ComE and its binding appears to be negative cooperative. Although PcslAB is partially controlled by ComCDE, it can respond to ComCDE regulation. Supported by the obtained molecular evidence, CslAB acts as a stabilizer of ComCDE signal on the patterns of its expression.
Conclusions:
PcslAB is partially controlled by ComCDE. CslAB is a stabilizer of ComCDE signal to ensure that ComE works in a concentration-dependent manner.
doi:10.5812/jjm.22965v2
PMCID: PMC4601000  PMID: 26468366
CslAB; ComCDE;; Two Component Signal Transduction System; Electrophoretic Mobility Shift Assay; Streptococcus mutans
4.  A Quorum-Sensing Signaling System Essential for Genetic Competence in Streptococcus mutans Is Involved in Biofilm Formation 
Journal of Bacteriology  2002;184(10):2699-2708.
In a previous study, a quorum-sensing signaling system essential for genetic competence in Streptococcus mutans was identified, characterized, and found to function optimally in biofilms (Li et al., J. Bacteriol. 183:897-908, 2001). Here, we demonstrate that this system also plays a role in the ability of S. mutans to initiate biofilm formation. To test this hypothesis, S. mutans wild-type strain NG8 and its knockout mutants defective in comC, comD, comE, and comX, as well as a comCDE deletion mutant, were assayed for their ability to initiate biofilm formation. The spatial distribution and architecture of the biofilms were examined by scanning electron microscopy and confocal scanning laser microscopy. The results showed that inactivation of any of the individual genes under study resulted in the formation of an abnormal biofilm. The comC mutant, unable to produce or secrete a competence-stimulating peptide (CSP), formed biofilms with altered architecture, whereas the comD and comE mutants, which were defective in sensing and responding to the CSP, formed biofilms with reduced biomass. Exogenous addition of the CSP and complementation with a plasmid containing the wild-type comC gene into the cultures restored the wild-type biofilm architecture of comC mutants but showed no effect on the comD, comE, or comX mutant biofilms. The fact that biofilms formed by comC mutants differed from the comD, comE, and comX mutant biofilms suggested that multiple signal transduction pathways were affected by CSP. Addition of synthetic CSP into the culture medium or introduction of the wild-type comC gene on a shuttle vector into the comCDE deletion mutant partially restored the wild-type biofilm architecture and further supported this idea. We conclude that the quorum-sensing signaling system essential for genetic competence in S. mutans is important for the formation of biofilms by this gram-positive organism.
doi:10.1128/JB.184.10.2699-2708.2002
PMCID: PMC135014  PMID: 11976299
5.  Genetic Diversity of the Streptococcal Competence (com) Gene Locus 
Journal of Bacteriology  1999;181(10):3144-3154.
The com operon of naturally transformable streptococcal species contains three genes, comC, comD, and comE, involved in the regulation of competence. The comC gene encodes a competence-stimulating peptide (CSP) thought to induce competence in the bacterial population at a critical extracellular concentration. The comD and comE genes are believed to encode the transmembrane histidine kinase and response regulator proteins, respectively, of a two-component regulator, with the comD-encoded protein being a receptor for CSP. Here we report on the genetic variability of comC and comD within Streptococcus pneumoniae isolates. Comparative analysis of sequence variations of comC and comD shows that, despite evidence for horizontal gene transfer at this locus and the lack of transformability of many S. pneumoniae strains in the laboratory, there is a clear correlation between the presence of a particular comC allele and the cognate comD allele. These findings effectively rule out the possibility that the presence of noncognate comC and comD alleles may be responsible for the inability to induce competence in many isolates and indicate the importance of a functional com pathway in these isolates. In addition, we describe a number of novel CSPs from disease-associated strains of S. mitis and S. oralis. The CSPs from these isolates are much more closely related to those from S. pneumoniae than to most CSPs previously reported from S. mitis and S. oralis, suggesting that these particular organisms may be a potential source of DNA in recombination events generating the mosaic structures commonly reported in genes of S. pneumoniae that are under strong selective pressure.
PMCID: PMC93770  PMID: 10322016
6.  Multilevel Control of Competence Development and Stress Tolerance in Streptococcus mutans UA159  
Infection and Immunity  2006;74(3):1631-1642.
Genetic competence appears to be important in establishment of biofilms and tolerance of environmental insults. We report here that the development of competence is controlled at multiple levels in a complex network that includes two signal-transducing two-component systems (TCS). Using Streptococcus mutans strain UA159, we demonstrate that the histidine kinase CiaH, but not the response regulator CiaR, causes a dramatic decrease in biofilm formation and in transformation efficiency. Inactivation of comE or comD had no effect on stress tolerance, but transformability of the mutants was poor and was not restored by addition of competence-stimulating peptide (CSP). Horse serum (HS) or bovine serum albumin (BSA) had no impact on transformability of any strains. Interestingly, though, the presence of HS or BSA in combination with CSP was required for efficient induction of comD, comX, and comYA, and induction was dependent on ComDE and CiaH, but not CiaR. Inactivation of comC, encoding CSP, had no impact on transformation, and CiaH was shown to be required for optimal comC expression. This study reveals that S. mutans integrates multiple environmental signals through CiaHR and ComDE to coordinate induction of com genes and that CiaH can exert its influence through CiaR and as-yet-unidentified regulators. The results highlight critical differences in the role and regulation of CiaRH and com genes in different S. mutans isolates and between S. mutans and Streptococcus pneumoniae, indicating that substantial divergence in the role and regulation of TCS and competence genes has occurred in streptococci.
doi:10.1128/IAI.74.3.1631-1642.2006
PMCID: PMC1418624  PMID: 16495534
7.  Triethylene Glycol Up-Regulates Virulence-Associated Genes and Proteins in Streptococcus mutans 
PLoS ONE  2016;11(11):e0165760.
Triethylene glycol dimethacrylate (TEGDMA) is a diluent monomer used pervasively in dental composite resins. Through hydrolytic degradation of the composites in the oral cavity it yields a hydrophilic biodegradation product, triethylene glycol (TEG), which has been shown to promote the growth of Streptococcus mutans, a dominant cariogenic bacterium. Previously it was shown that TEG up-regulated gtfB, an important gene contributing to polysaccharide synthesis function in biofilms. However, molecular mechanisms related to TEG’s effect on bacterial function remained poorly understood. In the present study, S. mutans UA159 was incubated with clinically relevant concentrations of TEG at pH 5.5 and 7.0. Quantitative real-time PCR, proteomics analysis, and glucosyltransferase enzyme (GTF) activity measurements were employed to identify the bacterial phenotypic response to TEG. A S. mutans vicK isogenic mutant (SMΔvicK1) and its associated complemented strain (SMΔvicK1C), an important regulatory gene for biofilm-associated genes, were used to determine if this signaling pathway was involved in modulation of the S. mutans virulence-associated genes. Extracted proteins from S. mutans biofilms grown in the presence and absence of TEG were subjected to mass spectrometry for protein identification, characterization and quantification. TEG up-regulated gtfB/C, gbpB, comC, comD and comE more significantly in biofilms at cariogenic pH (5.5) and defined concentrations. Differential response of the vicK knock-out (SMΔvicK1) and complemented strains (SMΔvicK1C) implicated this signalling pathway in TEG-modulated cellular responses. TEG resulted in increased GTF enzyme activity, responsible for synthesizing insoluble glucans involved in the formation of cariogenic biofilms. As well, TEG increased protein abundance related to biofilm formation, carbohydrate transport, acid tolerance, and stress-response. Proteomics data was consistent with gene expression findings for the selected genes. These findings demonstrate a mechanistic pathway by which TEG derived from commercial resin materials in the oral cavity promote S. mutans pathogenicity, which is typically associated with secondary caries.
doi:10.1371/journal.pone.0165760
PMCID: PMC5098727  PMID: 27820867
8.  Bidirectional signaling in the competence regulatory pathway of Streptococcus mutans 
FEMS Microbiology Letters  2015;362(19):fnv159.
Streptococcus mutans expresses comX (also known as sigX), which encodes a sigma factor that is required for development of genetic competence, in response to the peptide signals XIP and CSP and environmental factors. XIP (sigX inducing peptide) is derived from ComS and activates comX unimodally in chemically defined media via the ComRS system. CSP (competence stimulating peptide) activates comX bimodally in peptide-rich media through the ComDE two-component system. However, CSP-ComDE activation of comX is indirect and involves ComRS. Therefore, the bimodality of CSP-dependent activation of comX may arise from either ComRS or ComDE. Here we study, at the single-cell level, how genes in the CSP signaling pathway respond to CSP, XIP and media. Our data indicate that activation of comX stimulates expression of comE. In addition, activation of comE requires intact comR and comS genes. Therefore, not only does CSP-ComDE stimulate the ComRS pathway to activate comX expression, but ComRS activation of comX also stimulates expression of the CSP-ComDE pathway and its regulon. The results demonstrate the mutual interconnection of the signaling pathways that control bacteriocin expression (ComDE) and genetic competence (ComRS), both of which are linked to lytic and virulence behaviors.
Single-cell studies show that signaling is bidirectional between the two quorum-sensing systems that regulate genetic competence in Streptococcus mutans.
Graphical Abstract Figure.Single-cell studies show that signaling is bidirectional between the two quorum-sensing systems that regulate genetic competence in Streptococcus mutans.
doi:10.1093/femsle/fnv159
PMCID: PMC4809993  PMID: 26363019
transformation; single cell; bistability; fluorescence; feedback; bimodality; quorum sensing
9.  Identification of a New Regulator in Streptococcus pneumoniae Linking Quorum Sensing to Competence for Genetic Transformation 
Journal of Bacteriology  1999;181(16):5004-5016.
Competence for genetic transformation in Streptococcus pneumoniae is regulated by a quorum-sensing system encoded by two genetic loci, comCDE and comAB. Additional competence-specific operons, cilA, cilB, cilC, cilD, cilE, cinA-recA, coiA, and cfl, involved in the DNA uptake process and recombination, share an unusual consensus sequence at −10 and −25 in the promoter, which is absent from the promoters of comAB and comCDE. This pattern suggests that a factor regulating transcription of these transformation machinery genes but not involved with comCDE and comAB expression might be an alternative sigma factor. A search for such a global transcriptional regulator was begun by purifying pneumococcal RNA polymerase holoenzyme. In preparations from competent pneumococcal cultures a protein which seemed to be responsible for cilA transcription in vitro was identified. The corresponding gene was identified and found to be present in two copies, designated comX1 and comX2, located adjacent to two of the repeated rRNA operons. Expression of transformation machinery operons, such as cilA, cilD, cilE, and cfl, but not that of the quorum-sensing operons comAB and comCDE, was shown to depend on comX, while comX expression depended on ComE but not on ComX itself. We conclude that the factor is a competence-specific global transcription modulator which links quorum-sensing information transduced to ComE to competence and propose that it acts as an alternate sigma factor. We also report that comAB and comCDE are not sufficient for shutoff of competence-stimulating peptide-induced gene expression nor for the subsequent refractory period, suggesting that these phenomena depend on one or more ComX-dependent genes.
PMCID: PMC93990  PMID: 10438773
10.  Pheromone Recognition and Selectivity by ComR Proteins among Streptococcus Species 
PLoS Pathogens  2016;12(12):e1005979.
Natural transformation, or competence, is an ability inherent to bacteria for the uptake of extracellular DNA. This process is central to bacterial evolution and allows for the rapid acquirement of new traits, such as antibiotic resistance in pathogenic microorganisms. For the Gram-positive bacteria genus Streptococcus, genes required for competence are under the regulation of quorum sensing (QS) mediated by peptide pheromones. One such system, ComRS, consists of a peptide (ComS) that is processed (XIP), secreted, and later imported into the cytoplasm, where it binds and activates the transcription factor ComR. ComR then engages in a positive feedback loop for the expression of ComS and the alternative sigma-factor SigX. Although ComRS are present in the majority of Streptococcus species, the sequence of both ComS/XIP and ComR diverge significantly, suggesting a mechanism for species-specific communication. To study possible cross-talk between streptococcal species in the regulation of competence, and to explore in detail the molecular interaction between ComR and XIP we undertook an interdisciplinary approach. We developed a ‘test-bed’ assay to measure the activity of different ComR proteins in response to cognate and heterologous XIP peptides in vivo, revealing distinct ComR classes of strict, intermediate, and promiscuous specificity among species. We then solved an X-ray crystal structure of ComR from S. suis to further understand the interaction with XIP and to search for structural features in ComR proteins that may explain XIP recognition. Using the structure as a guide, we probed the apo conformation of the XIP-binding pocket by site-directed mutagenesis, both in test-bed cultures and biochemically in vitro. In alignments with ComR proteins from other species, we find that the pocket is lined by a variable and a conserved face, where residues of the conserved face contribute to ligand binding and the variable face discriminate among XIP peptides. Together, our results not only provide a model for XIP recognition and specificity, but also allow for the prediction of novel XIP peptides that induce ComR activity.
Author Summary
Bacteria transmit chemical signals to each other in a process known as quorum sensing. This adaptation is central to pathogenesis as it allows bacteria to coordinate a group response, such as when to form a biofilm, secrete virulence factors, or uptake new DNA. Quorum sensing in many species of Gram-positive bacteria utilizes secreted short peptide signals that are sensed by protein receptors that alter gene expression. The ComR-ComS receptor-signal pair is a regulator of competence for genetic transformation that is broadly conserved in a majority of Streptococcus species, including those pathogenic in humans and animals. Despite this conservation, we observe sequence diversity among ComRS orthologs that raises questions relating to sensory specificity and the molecular mechanism of peptide recognition. To address this, we directly tested the possibility for signaling cross-talk and identified three general categories of ComR receptors displaying strict, intermediate, and promiscuous responses to heterologous peptides. To elucidate the molecular mechanism of receptor specificity we determined an X-ray crystal structure of ComR from S. suis. We observe a conserved face of the ligand pocket important for peptide binding and a variable face that functions in peptide specificity. Finally, basic criteria necessary for peptide responses were used to redesign active peptides from inactive templates.
doi:10.1371/journal.ppat.1005979
PMCID: PMC5131902  PMID: 27907154
11.  Extracellular Identification of a Processed Type II ComR/ComS Pheromone of Streptococcus mutans 
Journal of Bacteriology  2012;194(15):3781-3788.
The competence-stimulating peptide (CSP) and the sigX-inducing peptide (XIP) are known to induce Streptococcus mutans competence for genetic transformation. For both pheromones, direct identification of the native peptides has not been accomplished. The fact that extracellular XIP activity was recently observed in a chemically defined medium devoid of peptides, as mentioned in an accompanying paper (K. Desai, L. Mashburn-Warren, M. J. Federle, and D. A. Morrison, J. Bacteriol. 194:3774–3780, 2012), provided ideal conditions for native XIP identification. To search for the XIP identity, culture supernatants were filtered to select for peptides of less than 3 kDa, followed by C18 extraction. One peptide, not detected in the supernatant of a comS deletion mutant, was identified by tandem mass spectrometry (MS/MS) fragmentation as identical to the ComS C-terminal sequence GLDWWSL. ComS processing did not require Eep, a peptidase involved in processing or import of bacterial small hydrophobic peptides, since eep deletion had no inhibitory effect on XIP production or on synthetic XIP response. We investigated whether extracellular CSP was also produced. A reporter assay for CSP activity detection, as well as MS analysis of supernatants, revealed that CSP was not present at detectable levels. In addition, a mutant with deletion of the CSP-encoding gene comC produced endogenous XIP levels similar to those of a nondeletion mutant. The results indicate that XIP pheromone production is a natural phenomenon that may occur in the absence of natural CSP pheromone activity and that the heptapeptide GLDWWSL is an extracellular processed form of ComS, possibly the active XIP pheromone. This is the first report of direct identification of a ComR/ComS pheromone.
doi:10.1128/JB.00624-12
PMCID: PMC3416549  PMID: 22609914
12.  Oligomerization of the Response Regulator ComE from Streptococcus mutans Is Affected by Phosphorylation 
Journal of Bacteriology  2012;194(5):1127-1135.
We have previously characterized the interactions of the response regulator ComE from Streptococcus mutans and DNA binding sites through DNase I footprinting and electrophoretic mobility shift assay analysis. Since response regulator functions are often affected by their phosphorylation state, we investigated how phosphorylation affects the biochemical function of ComE. Unlike many response regulators, we found that the phosphorylation state of ComE does not likely play a role in DNA binding affinity but rather seems to induce the formation of an oligomeric form of the protein. The role of this oligomerization state for ComE function is discussed.
doi:10.1128/JB.06565-11
PMCID: PMC3294772  PMID: 22210762
13.  The hdrRM Operon of Streptococcus mutans Encodes a Novel Regulatory System for Coordinated Competence Development and Bacteriocin Production▿  
Journal of Bacteriology  2010;192(7):1844-1852.
The Streptococcus mutans hdrRM operon encodes a novel two-gene regulatory system induced by high cell density. Previous studies identified hdrM as the only known negative regulator of competence development in S. mutans. In the present study, we demonstrated that the HdrRM system bypasses the prototypical competence gene regulators ComC and ComDE in the transcriptional regulation of the competence-specific sigma factor comX and the late competence genes. Similarly, the HdrRM system can abrogate the requirement for ComE to produce the bacteriocin mutacin IV. To further probe the regulatory mechanism of hdrRM, we created an hdrR overexpression strain and showed that it could reproduce each of the hdrM competence and mutacin phenotypes, indicating that HdrM acts as a negative regulator of HdrR activity. Using a mutacin IV-luciferase reporter, we also demonstrated that the hdrRM system utilizes the same promoter elements recognized by ComE and thus appears to comprise a novel regulatory pathway parallel to ComCDE.
doi:10.1128/JB.01667-09
PMCID: PMC2838059  PMID: 20118256
14.  Natural Genetic Transformation of Streptococcus mutans Growing in Biofilms 
Journal of Bacteriology  2001;183(3):897-908.
Streptococcus mutans is a bacterium that has evolved to be dependent upon a biofilm “lifestyle” for survival and persistence in its natural ecosystem, dental plaque. We initiated this study to identify the genes involved in the development of genetic competence in S. mutans and to assay the natural genetic transformability of biofilm-grown cells. Using genomic analyses, we identified a quorum-sensing peptide pheromone signaling system similar to those previously found in other streptococci. The genetic locus of this system comprises three genes, comC, comD, and comE, that encode a precursor to the peptide competence factor, a histidine kinase, and a response regulator, respectively. We deduced the sequence of comC and its active pheromone product and chemically synthesized the corresponding 21-amino-acid competence-stimulating peptide (CSP). Addition of CSP to noncompetent cells facilitated increased transformation frequencies, with typically 1% of the total cell population transformed. To further confirm the roles of these genes in genetic competence, we inactivated them by insertion-duplication mutagenesis or allelic replacement followed by assays of transformation efficiency. We also demonstrated that biofilm-grown S. mutans cells were transformed at a rate 10- to 600-fold higher than planktonic S. mutans cells. Donor DNA included a suicide plasmid, S. mutans chromosomal DNA harboring a heterologous erythromycin resistance gene, and a replicative plasmid. The cells were optimally transformed during the formation of 8- to 16-h-old biofilms primarily consisting of microcolonies on solid surfaces. We also found that dead cells in the biofilms could act as donors of a chromosomally encoded antibiotic resistance determinant. This work demonstrated that a peptide pheromone system controls genetic competence in S. mutans and that the system functions optimally when the cells are living in actively growing biofilms.
doi:10.1128/JB.183.3.897-908.2001
PMCID: PMC94956  PMID: 11208787
15.  Transcriptional regulation of comC: evidence for a competence-specific transcription factor in Bacillus subtilis. 
Journal of Bacteriology  1990;172(7):4064-4071.
comC specifies a protein product that is required for genetic competence in Bacillus subtilis. The probable transcriptional start site of comC has been localized by high-resolution primer extension analysis and shown to be preceded by an appropriately positioned sequence that resembles the consensus promoter for the sigma A form of RNA polymerase. Low-resolution S1 nuclease transcription mapping was used to identify the comC terminator, which is located near a palindromic element recognizable in the DNA sequence. Deletion analysis of the sequence upstream from the likely promoter identified a region required in cis for the expression of comC. An overlapping, and possibly identical, sequence was shown to inhibit the expression of competence and of several late competence genes, when present in multiple copies. This was interpreted as due to the titration of a positively acting competence transcription factor (CTF) by multiple copies of the promoter-bearing fragment. In crude lysates of B. subtilis grown to competence, a DNA-binding activity that appeared to be specific for the comC promoter fragment was detected by gel retardation assays. This activity, postulated to be due to CTF, was detected only following growth in competence medium, only in the stationary phase of growth, and was dependent on the expression of ComA, a known competence-regulatory factor. In the presence of the mecA42 mutation, the ComA requirement for CTF activity was bypassed, and CTF activity could be detected in lysates prepared from a strain grown in complex medium. This behavior suggested that either the expression or the activation of CTF was regulated in a competence-specific manner. Comparison of the putative CTF-binding site defined by deletion analysis with a similarly positioned sequence upstream from the start site of the late competence gene comG revealed that both sequences contained palindromes, with 5 of 6 identical base pairs in each arm. It is suggested that these palindromic sequences comprise recognition elements for CTF binding and that CTF binding must occur for the appropriate expression of late competence genes.
Images
PMCID: PMC213393  PMID: 1694528
16.  Molecular cloning and characterization of comC, a late competence gene of Bacillus subtilis. 
Journal of Bacteriology  1989;171(11):6043-6051.
comC is a Bacillus subtilis gene required for the development of genetic competence. We have cloned a fragment from the B. subtilis chromosome that carries comC and contains all the information required to complement a Tn917lac insertion in comC. Genetic tests further localized comC to a 2.0-kilobase HindIII fragment. Northern (RNA) blotting experiments revealed that an 800-base-pair comC-specific transcript appeared at the time of transition from exponential to stationary phase during growth through the competence regimen. The DNA sequence of the comC region revealed two open reading frames (ORFs), transcribed in the same direction. The upstream ORF encoded a protein with apparent sequence similarity to the folC gene of Escherichia coli. Insertion of a chloramphenicol resistance determinant into this ORF and integration of the disrupted construct into the bacterial chromosome by replacement did not result in competence deficiency. The downstream ORF, which contained the Tn917lac insertion that resulted in a lack of competence, is therefore the comC gene. The predicted protein product of comC consisted of 248 amino acid residues and was quite hydrophobic. The comC gene product was not required for the expression of any other com genes tested, and this fact, together with the marked hydrophobicity of ComC, suggests that it may be a component of the DNA-processing apparatus of competent cells.
Images
PMCID: PMC210470  PMID: 2553669
17.  Characterization of irvR, a Novel Regulator of the irvA-Dependent Pathway Required for Genetic Competence and Dextran-Dependent Aggregation in Streptococcus mutans▿  
Journal of Bacteriology  2008;190(21):7268-7274.
Previous studies identified irvA as a normally repressed but highly inducible transcription regulator capable of repressing mutacin I gene expression in Streptococcus mutans. In this study, we aimed to identify and characterize the regulator(s) responsible for repressing the expression of irvA. An uncharacterized open reading frame (SMU.1398) located immediately adjacent to irvA and annotated as a putative transcription repressor was identified as a likely candidate. The results of mutation studies confirmed that the expression of irvA was greatly increased in the SMU.1398 background. Mutation of SMU.1398 (“irvR”) abolished genetic competence and reduced the expression of the late competence genes/operons comEA, comY, and dprA without affecting the expression of the known competence regulators comC, comED, or comX. In addition, irvR was found to be a potent negative regulator of dextran-dependent aggregation (DDAG) and gbpC expression. Each of these irvR mutant phenotypes could be rescued with a double mutation of irvA or complemented by introducing a wild-type copy of irvR on a shuttle vector. These data indicate that the repression of irvA is critically dependent upon irvR and that irvA repression is essential for the development of genetic competence and the proper control of DDAG in S. mutans.
doi:10.1128/JB.00967-08
PMCID: PMC2580701  PMID: 18757533
18.  Regulation of Bacteriocin Production in Streptococcus mutans by the Quorum-Sensing System Required for Development of Genetic Competence 
Journal of Bacteriology  2005;187(12):3980-3989.
In Streptococcus mutans, competence for genetic transformation and biofilm formation are dependent on the two-component signal transduction system ComDE together with the inducer peptide pheromone competence-stimulating peptide (CSP) (encoded by comC). Here, it is shown that the same system is also required for expression of the nlmAB genes, which encode a two-peptide nonlantibiotic bacteriocin. Expression from a transcriptional nlmAB′-lacZ fusion was highest at high cell density and was increased up to 60-fold following addition of CSP, but it was abolished when the comDE genes were interrupted. Two more genes, encoding another putative bacteriocin and a putative bacteriocin immunity protein, were also regulated by this system. The regions upstream of these genes and of two further putative bacteriocin-encoding genes and a gene encoding a putative bacteriocin immunity protein contained a conserved 9-bp repeat element just upstream of the transcription start, which suggests that expression of these genes is also dependent on the ComCDE regulatory system. Mutations in the repeat element of the nlmAB promoter region led to a decrease in CSP-dependent expression of nlmAB′-lacZ. In agreement with these results, a comDE mutant and mutants unable to synthesize or export CSP did not produce bacteriocins. It is speculated that, at high cell density, bacteriocin production is induced to liberate DNA from competing streptococci.
doi:10.1128/JB.187.12.3980-3989.2005
PMCID: PMC1151730  PMID: 15937160
19.  Comprehensive Transcriptome Profiles of Streptococcus mutans UA159 Map Core Streptococcal Competence Genes 
mSystems  2016;1(2):e00038-15.
S. mutans has the hard surfaces of the oral cavity as its natural habitat, where it depends on its ability to form biofilms in order to survive. The comprehensive identification of S. mutans regulons activated in response to peptide pheromones provides an important basis for understanding how S. mutans can transition from individual to social behavior. Our study placed 27 of the 29 transcripts activated during competence within three major regulons and revealed a core set of 27 panstreptococcal competence-activated genes within the SigX regulon.
ABSTRACT
In Streptococcus mutans, an oral colonizer associated with dental caries, development of competence for natural genetic transformation is triggered by either of two types of peptide pheromones, competence-stimulating peptides (CSPs) (18 amino acids [aa]) or SigX-inducing peptides (XIPs) (7 aa). Competence induced by CSP is a late response to the pheromone that requires the response regulator ComE and the XIP-encoding gene comS. XIP binds to ComR to allow expression of the alternative sigma factor SigX and the effector genes it controls. While these regulatory links are established, the precise set of effectors controlled by each regulator is poorly defined. To improve the definition of all three regulons, we used a high-resolution tiling array to map global changes in gene expression in the early and late phases of the CSP response. The early phase of the CSP response was limited to increased gene expression at four loci associated with bacteriocin production and immunity. In the late phase, upregulated regions expanded to a total of 29 loci, including comS and genes required for DNA uptake and recombination. The results indicate that the entire late response to CSP depends on the expression of comS and that the immediate transcriptional response to CSP, mediated by ComE, is restricted to just four bacteriocin-related loci. Comparison of the new data with published transcriptome data permitted the identification of all of the operons in each regulon: 4 for ComE, 2 for ComR, and 21 for SigX. Finally, a core set of 27 panstreptococcal competence genes was identified within the SigX regulon by comparison of transcriptome data from diverse streptococcal species.
IMPORTANCE S. mutans has the hard surfaces of the oral cavity as its natural habitat, where it depends on its ability to form biofilms in order to survive. The comprehensive identification of S. mutans regulons activated in response to peptide pheromones provides an important basis for understanding how S. mutans can transition from individual to social behavior. Our study placed 27 of the 29 transcripts activated during competence within three major regulons and revealed a core set of 27 panstreptococcal competence-activated genes within the SigX regulon.
doi:10.1128/mSystems.00038-15
PMCID: PMC5069739  PMID: 27822519
CSP; Streptococcus; XIP; genetic competence; natural transformation systems; pheromone; quorum sensing
20.  The Alternative Sigma Factor SigX Controls Bacteriocin Synthesis and Competence, the Two Quorum Sensing Regulated Traits in Streptococcus mutans 
PLoS Genetics  2015;11(7):e1005353.
Two small quorum sensing (QS) peptides regulate competence in S. mutans in a cell density dependent manner: XIP (sigX inducing peptide) and CSP (competence stimulating peptide). Depending on the environmental conditions isogenic S. mutans cells can split into a competent and non-competent subpopulation. The origin of this population heterogeneity has not been experimentally determined and it is unknown how the two QS systems are connected. We developed a toolbox of single and dual fluorescent reporter strains and systematically knocked out key genes of the competence signaling cascade in the reporter strain backgrounds. By following signal propagation on the single cell level we discovered that the master regulator of competence, the alternative sigma factor SigX, directly controls expression of the response regulator for bacteriocin synthesis ComE. Consequently, a SigX binding motif (cin-box) was identified in the promoter region of comE. Overexpressing the genetic components involved in competence development demonstrated that ComRS represents the origin of bimodality and determines the modality of the downstream regulators SigX and ComE. Moreover these analysis showed that there is no direct regulatory link between the two QS signaling cascades. Competence is induced through a hierarchical XIP signaling cascade, which has no regulatory input from the CSP cascade. CSP exclusively regulates bacteriocin synthesis. We suggest renaming it mutacin inducing peptide (MIP). Finally, using phosphomimetic comE mutants we show that unimodal bacteriocin production is controlled posttranslationally, thus solving the puzzling observation that in complex media competence is observed in a subpopulation only, while at the same time all cells produce bacteriocins. The control of both bacteriocin synthesis and competence through the alternative sigma-factor SigX suggests that S. mutans increases its genetic repertoire via QS controlled predation on neighboring species in its natural habitat.
Author Summary
Streptococcus mutans is a bacterium of the human dental plaque that contributes to caries development. It controls two important survival mechanisms via a cell-density dependent communication system (quorum sensing): The synthesis of peptide antibiotics, and of a membrane apparatus for genetic competence, i.e. the ability to take up external DNA and integrate it into its own genome. S. mutans synthesizes two different signalling peptides to this end. It has remained elusive, how exactly these signals are propagated within the cell and why only a fraction of the population becomes competent. To actually observe under the microscope which bacterium in the population is activated, and which genes are required for the activation, we constructed strains of S. mutans that reported on the transcription of a gene by starting to fluoresce green. We even constructed strains that reported on two genes simultaneously, by fluorescing either green or blue or both. With these tools, and by additionally knocking out or modifying key genes as needed, we investigated the complete signaling cascade under various conditions. Thus we discovered a central regulatory switch. S. mutans makes sure that external DNA is available when it becomes genetically competent–by killing cells in the environment.
doi:10.1371/journal.pgen.1005353
PMCID: PMC4497675  PMID: 26158727
21.  Subpopulation-Specific Transcriptome Analysis of Competence-Stimulating-Peptide-Induced Streptococcus mutans▿† 
Journal of Bacteriology  2011;193(8):1863-1877.
Competence-stimulating-peptide (CSP)-mediated competence development in Streptococcus mutans is a transient and biphasic process, since only a subpopulation induces the expression of ComX in the presence of CSP, and the activation of the DNA uptake machinery in this fraction shuts down ∼3 to 4 h postinduction. Here, we combine for the first time, to our knowledge, the bacterial flow-cytometric sorting of cells and subpopulation-specific transcriptome analysis of both the competent and noncompetent fraction of CSP-treated S. mutans cells. Sorting was guided by a ComX-green fluorescent protein (ComX-GFP) reporter, and the transcriptome analysis demonstrated the successful combination of both methods, because a strong enrichment of transcripts for comX and its downstream genes was achieved. Three two-component systems were expressed in the competent fraction, and among them was ComDE. Moreover, the recently identified regulator system ComR/S was expressed exclusively in the competent fraction. In contrast, the expression of bacteriocin-related genes was at the same level in all cells. GFP reporter strains for ComE and CipB (mutacin V) confirmed this expression pattern on the single-cell level. Fluorescence microscopy revealed that some ComX-expressing cells committed autolysis in an early stage of competence initiation. In viable ComX-expressing cells, the uptake of DNA could be shown on the single-cell level. This study demonstrates that all cells in the population respond to CSP through the activation of bacteriocin-related genes. Some of these cells start to activate ComX expression but then segregate into two subpopulations, one becoming competent and another one that lyses, resulting in intrapopulation diversity.
doi:10.1128/JB.01363-10
PMCID: PMC3133041  PMID: 21317319
22.  Pherotype Influences Biofilm Growth and Recombination in Streptococcus pneumoniae 
PLoS ONE  2014;9(3):e92138.
In Streptococcus pneumoniae the competence-stimulating peptide (CSP), encoded by the comC gene, controls competence development and influences biofilm growth. We explored the influence of pherotype, defined by the two major comC allelic variants (comC1 and comC2), on biofilm development and recombination efficiency. Among isolates recovered from human infections those presenting comC1 show a higher capacity to form in vitro biofilms. The influence of pherotype on biofilm growth was confirmed by experiments with isogenic strains differing in their comC alleles. Biofilm architecture evaluated by confocal laser scanning microscopy showed that strains carrying comC1 form biofilms that are denser and thicker than those carrying the comC2 allele. Isogenic strains carrying the comC1 allele yielded more transformants than those carrying the comC2 allele in both planktonic and biofilm growth. Transformation assays with comC knockout strains show that ComD1 needs lower doses of the signaling peptide to reach the same biological outcomes. In contrast to mixed planktonic growth, within mixed biofilms inter-pherotype genetic exchange is less frequent than that occurring between bacteria of the same pherotype. Since biofilms are a major bacterial lifestyle, these observations may explain the genetic differentiation between populations with different pherotypes reported previously. Considering that biofilms have been associated with colonization our results suggest that strains carrying the comC1 allele may be more transmissible and more efficient at persisting in carriage. Both effects may help explain the higher prevalence of the comC1 allele in the pneumococcal population.
doi:10.1371/journal.pone.0092138
PMCID: PMC3960169  PMID: 24646937
23.  A unique open reading frame within the comX gene of Streptococcus mutans regulates genetic competence and oxidative stress tolerance 
Molecular microbiology  2015;96(3):463-482.
Streptococcus mutans displays complex regulation of genetic competence, with ComX controlling late competence gene transcription. The rcrRPQ operon has been shown to link oxidative stress tolerance, (p)ppGpp metabolism and competence in S. mutans. Importantly, an rcrR polar (ΔrcrR-P) mutant is hyper-transformable, but an rcrR non-polar (ΔrcrR-NP) mutant cannot be transformed. Transcriptome comparisons of the rcrR mutants using RNA-Seq and quantitative real-time polymerase chain reaction revealed little expression in the 5′ region of comX in ΔrcrR-NP, but high level expression in the 3′ region. Northern blotting with comX probes revealed two distinct transcripts in the ΔrcrR-P and ΔrcrR-NP strains, and 5′ Rapid Amplification of cDNA Ends mapped the 5′ terminus of the shorter transcript to nt +140 of the comX structural gene, where a unique 69-aa open reading frame, termed XrpA, was encoded in a different reading frame than ComX. Two single-nucleotide substitution mutants (comX::T162C; comX::T210A) were introduced to disrupt XrpA without affecting the sequence of ComX. When the mutations were in the ΔrcrR-NP genetic background, ComX production and transformation were restored. Overexpression of xrpA led to impaired growth in aerobic conditions and decreased transformability. These results reveal an unprecedented mechanism for competence regulation and stress tolerance by a gene product encoded within the comX gene that appears unique to S. mutans.
doi:10.1111/mmi.12948
PMCID: PMC4414889  PMID: 25620525
24.  Nucleotide sequence and genetic organization of the Bacillus subtilis comG operon. 
Journal of Bacteriology  1989;171(10):5386-5404.
A series of Tn917lac insertions define the comG region of the Bacillus subtilis chromosome. comG mutants are deficient in competence and specifically in the binding of exogenous DNA. The genes included in the comG region are first expressed during the transition from the exponential to the stationary growth phase. From nucleotide sequence information, it was concluded that the comG locus contains seven open reading frames (ORFs), several of which overlap at their termini. High-resolution S1 nuclease mapping and primer extension were used to identify the 5' terminus of the comG mRNA. The sequence upstream from the comG start site closely resembled the consensus recognition sequence for the major B. subtilis vegetative RNA polymerase holoenzyme. Complementation analysis confirmed that the comG ORF1 protein is required for the ability of competent cultures to resolve into two populations with different cell densities on Renografin (E. R. Squibb & Sons, Princeton, N.J.) gradients, as well as for full expression of comE, another late competence locus. The predicted comG ORF1 protein showed significant similarity to the virB ORF11 protein from Agrobacterium tumefaciens, which is probably involved in T-DNA transfer. The N-terminal sequences of comG ORF3 and, to a lesser extent, the comG ORF4 and ORF5 proteins were similar to a class of pilin proteins from members of the genera Bacteroides, Pseudomonas, Neisseria, and Moraxella. All of the comG proteins except comG ORF1 possessed hydrophobic domains that were potentially capable of spanning the bacterial membrane. It is likely that these proteins are membrane associated, and they may comprise part of the DNA transport machinery. When present in multiple copies, a DNA fragment carrying the comG promoter was capable of inhibiting the development of competence as well as the expression of several late com genes, suggesting a role for a transcriptional activator in the expression of those genes.
Images
PMCID: PMC210376  PMID: 2507524
25.  Structural insights into the dimerization of the response regulator ComE from Streptococcus pneumoniae 
Nucleic Acids Research  2014;42(8):5302-5313.
Natural transformation contributes to the maintenance and to the evolution of the bacterial genomes. In Streptococcus pneumoniae, this function is reached by achieving the competence state, which is under the control of the ComD−ComE two-component system. We present the crystal and solution structures of ComE. We mimicked the active and non-active states by using the phosphorylated mimetic ComED58E and the unphosphorylatable ComED58A mutants. In the crystal, full-length ComED58A dimerizes through its canonical REC receiver domain but with an atypical mode, which is also adopted by the isolated RECD58A and RECD58E. The LytTR domain adopts a tandem arrangement consistent with the two direct repeats of its promoters. However ComED58A is monomeric in solution, as seen by SAXS, by contrast to ComED58E that dimerizes. For both, a relative mobility between the two domains is assumed. Based on these results we propose two possible ways for activation of ComE by phosphorylation.
doi:10.1093/nar/gku110
PMCID: PMC4005675  PMID: 24500202

Results 1-25 (692974)