Search tips
Search criteria

Results 1-25 (679663)

Clipboard (0)

Related Articles

1.  Mechanisms Relevant to the Enhanced Virulence of a Dihydroxynaphthalene-Melanin Metabolically Engineered Entomopathogen 
PLoS ONE  2014;9(3):e90473.
The entomopathogenic fungus Metarhizium anisopliae MA05-169 is a transformant strain that has been metabolically engineered to express dihydroxynaphthalene-melanin biosynthesis genes. In contrast to the wild type strain, the transformant displays a greater resistance to environmental stress and a higher virulence toward target insect host. However, the underlying mechanisms for these characteristics remain unclear; hence experiments were initiated to explore the possible mechanism(s) through physiological and molecular approaches. Although both transformant and wild type strains could infect and share the same insect host range, the former germinated faster and produced more appressoria than the latter, both in vivo and in vitro. The transformant showed a significantly shorter median lethal time (LT50) when infecting the diamondback moth (Plutella xylostella) and the striped flea beetle (Phyllotreta striolata), than the wild type. Additionally, the transformant was more tolerant to reactive oxygen species (ROS), produced 40-fold more orthosporin and notably overexpressed the transcripts of the pathogenicity-relevant hydrolytic enzymes (chitinase, protease, and phospholipase) genes in vivo. In contrast, appressorium turgor pressure and destruxin A content were slightly decreased compared to the wild type. The transformant's high anti-stress tolerance, its high virulence against five important insect pests (cowpea aphid Aphis craccivora, diamondback moth Pl. xylostella, striped flea beetle Ph. striolata, and silverleaf whitefly Bemisia argentifolii) and its capacity to colonize the root system are key properties for its potential bio-control field application.
PMCID: PMC3963850  PMID: 24662974
2.  Genome Sequencing and Comparative Transcriptomics of the Model Entomopathogenic Fungi Metarhizium anisopliae and M. acridum 
PLoS Genetics  2011;7(1):e1001264.
Metarhizium spp. are being used as environmentally friendly alternatives to chemical insecticides, as model systems for studying insect-fungus interactions, and as a resource of genes for biotechnology. We present a comparative analysis of the genome sequences of the broad-spectrum insect pathogen Metarhizium anisopliae and the acridid-specific M. acridum. Whole-genome analyses indicate that the genome structures of these two species are highly syntenic and suggest that the genus Metarhizium evolved from plant endophytes or pathogens. Both M. anisopliae and M. acridum have a strikingly larger proportion of genes encoding secreted proteins than other fungi, while ∼30% of these have no functionally characterized homologs, suggesting hitherto unsuspected interactions between fungal pathogens and insects. The analysis of transposase genes provided evidence of repeat-induced point mutations occurring in M. acridum but not in M. anisopliae. With the help of pathogen-host interaction gene database, ∼16% of Metarhizium genes were identified that are similar to experimentally verified genes involved in pathogenicity in other fungi, particularly plant pathogens. However, relative to M. acridum, M. anisopliae has evolved with many expanded gene families of proteases, chitinases, cytochrome P450s, polyketide synthases, and nonribosomal peptide synthetases for cuticle-degradation, detoxification, and toxin biosynthesis that may facilitate its ability to adapt to heterogenous environments. Transcriptional analysis of both fungi during early infection processes provided further insights into the genes and pathways involved in infectivity and specificity. Of particular note, M. acridum transcribed distinct G-protein coupled receptors on cuticles from locusts (the natural hosts) and cockroaches, whereas M. anisopliae transcribed the same receptor on both hosts. This study will facilitate the identification of virulence genes and the development of improved biocontrol strains with customized properties.
Author Summary
Aside from playing a crucial role in natural ecosystems, entomopathogenic fungi are being developed as environmentally friendly alternatives for the control of insect pests. We conducted the first genomic study of two of the best characterized entomopathogens, Metarhizium anisopliae and M. acridum. M. anisopliae is a ubiquitous pathogen of >200 insect species and a plant growth promoting colonizer of rhizospheres. M. acridum is a specific pathogen of locusts. Important findings of this study included: 1) Both M. anisopliae and M. acridum have a very large number of genes encoding secreted proteins, and many of these play roles in fungus-insect interactions. 2) M. anisopliae has more genes than M. acridum, which may be associated with adaptation to multiple insect hosts. 3) Unlike M. acridum, the M. anisopliae genome contains many more transposase genes and shows no evidence of repeat-induced point mutations. The lack of repeat-induced mutations may have allowed the lineage-specific gene duplications that have contributed to its adaptability. 4) High-throughput transcriptomics identified the strategies by which these fungi overcome their insect hosts and achieve specificity. These genome sequences will provide the basis for a comprehensive understanding of fungal–plant–insect interactions and will contribute to our understanding of fungal evolution and ecology.
PMCID: PMC3017113  PMID: 21253567
3.  A Developmentally Regulated Gene Cluster Involved in Conidial Pigment Biosynthesis in Aspergillus fumigatus 
Journal of Bacteriology  1999;181(20):6469-6477.
Aspergillus fumigatus, a filamentous fungus producing bluish-green conidia, is an important opportunistic pathogen that primarily affects immunocompromised patients. Conidial pigmentation of A. fumigatus significantly influences its virulence in a murine model. In the present study, six genes, forming a gene cluster spanning 19 kb, were identified as involved in conidial pigment biosynthesis in A. fumigatus. Northern blot analyses showed the six genes to be developmentally regulated and expressed during conidiation. The gene products of alb1 (for “albino 1”), arp1 (for “aspergillus reddish-pink 1”), and arp2 have high similarity to polyketide synthases, scytalone dehydratases, and hydroxynaphthalene reductases, respectively, found in the dihydroxynaphthalene (DHN)-melanin pathway of brown and black fungi. The abr1 gene (for “aspergillus brown 1”) encodes a putative protein possessing two signatures of multicopper oxidases. The abr2 gene product has homology to the laccase encoded by the yA gene of Aspergillus nidulans. The function of ayg1 (for “aspergillus yellowish-green 1”) remains unknown. Involvement of the six genes in conidial pigmentation was confirmed by the altered conidial color phenotypes that resulted from disruption of each gene in A. fumigatus. The presence of a DHN-melanin pathway in A. fumigatus was supported by the accumulation of scytalone and flaviolin in the arp1 deletant, whereas only flaviolin was accumulated in the arp2 deletants. Scytalone and flaviolin are well-known signature metabolites of the DHN-melanin pathway. Based on DNA sequence similarity, gene disruption results, and biochemical analyses, we conclude that the 19-kb DNA fragment contains a six-gene cluster which is required for conidial pigment biosynthesis in A. fumigatus. However, the presence of abr1, abr2, and ayg1 in addition to alb1, arp1, and arp2 suggests that conidial pigment biosynthesis in A. fumigatus is more complex than the known DHN-melanin pathway.
PMCID: PMC103784  PMID: 10515939
4.  ChLae1 and ChVel1 Regulate T-toxin Production, Virulence, Oxidative Stress Response, and Development of the Maize Pathogen Cochliobolus heterostrophus 
PLoS Pathogens  2012;8(2):e1002542.
LaeA and VeA coordinate secondary metabolism and differentiation in response to light signals in Aspergillus spp. Their orthologs, ChLae1 and ChVel1, were identified in the maize pathogen Cochliobolus heterostrophus, known to produce a wealth of secondary metabolites, including the host selective toxin, T-toxin. Produced by race T, T-toxin promotes high virulence to maize carrying Texas male sterile cytoplasm (T-cms). T-toxin production is significantly increased in the dark in wild type (WT), whereas Chvel1 and Chlae1 mutant toxin levels are much reduced in the dark compared to WT. Correspondingly, expression of T-toxin biosynthetic genes (Tox1) is up-regulated in the dark in WT, while dark-induced expression is much reduced/minimal in Chvel1 and Chlae1 mutants. Toxin production and Tox1 gene expression are increased in ChVEL1 overexpression (OE) strains grown in the dark and in ChLAE1 strains grown in either light or dark, compared to WT. These observations establish ChLae1 and ChVel1 as the first factors known to regulate host selective toxin production. Virulence of Chlae1 and Chvel1 mutants and OE strains is altered on both T-cms and normal cytoplasm maize, indicating that both T-toxin mediated super virulence and basic pathogenic ability are affected. Deletion of ChLAE1 or ChVEL1 reduces tolerance to H2O2. Expression of CAT3, one of the three catalase genes, is reduced in the Chvel1 mutant. Chlae1 and Chvel1 mutants also show decreased aerial hyphal growth, increased asexual sporulation and female sterility. ChLAE1 OE strains are female sterile, while ChVEL1 OE strains are more fertile than WT. ChLae1 and ChVel1 repress expression of 1,8-dihydroxynaphthalene (DHN) melanin biosynthesis genes, and, accordingly, melanization is enhanced in Chlae1 and Chvel1 mutants, and reduced in OE strains. Thus, ChLae1 and ChVel1 positively regulate T-toxin biosynthesis, pathogenicity and super virulence, oxidative stress responses, sexual development, and aerial hyphal growth, and negatively control melanin biosynthesis and asexual differentiation.
Author Summary
Filamentous fungi produce chemically diverse metabolites that broker positive and negative interactions with other organisms, manage host pathogenicity/virulence, nutritional and environmental stresses, and differentiation of the fungus. The maize pathogen Cochliobolus heterostrophus is notorious as the causal agent of the most economically devastating epidemic to date, in 1970. Disease severity was associated with appearance of a new race, producing T-toxin, a host selective toxin promoting high virulence to Texas male sterile cytoplasm maize, widely planted at the time. LaeA and VeA are central regulators of secondary metabolism in Aspergillus, coordinating metabolite production and differentiation in response to light. Given the significance of effector-type host selective toxins in pathogenic interactions, we characterized ChLae1 and ChVel1 and found that deletion and overexpression affect T-toxin production in planta and in vitro. Both chlorosis due to T-toxin and necrotic lesion formation are altered, establishing these as the first factors known to regulate both super virulence conferred by T-toxin, and basic pathogenicity, due to unknown factors. The mutants are also altered in oxidative stress responses, key to success in the infection court, asexual and sexual development, essential for fungal dissemination in the field, aerial hyphal growth, and pigment biosynthesis, essential for survival in the field.
PMCID: PMC3285592  PMID: 22383877
5.  1,8-Dihydroxynaphthalene (DHN)-Melanin Biosynthesis Inhibitors Increase Erythritol Production in Torula corallina, and DHN-Melanin Inhibits Erythrose Reductase 
The yeast Torula corallina is a strong erythritol producer that is used in the industrial production of erythritol. However, melanin accumulation during culture represents a serious problem for the purification of erythritol from the fermentation broth. Melanin biosynthesis inhibitors such as 3,4-dihydroxyphenylalanine and 1,8-dihydroxynaphthalene (DHN)-melanin inhibitors were added to the T. corallina cultures. Only the DHN-melanin inhibitors showed an effect on melanin production, which suggests that the melanin formed during the culturing of T. corallina is derived from DHN. This finding was confirmed by the detection of a shunt product of the pentaketide pathway, flaviolin, and elemental analysis. Among the DHN-melanin inhibitors, tricyclazole was the most effective. Supplementation with tricyclazole enhanced the production of erythritol while significantly inhibiting the production of DHN-melanin and DHN-melanin biosynthetic enzymes, such as trihydroxynaphthalene reductase. The erythrose reductase from T. corallina was purified to homogeneity by ion-exchange and affinity chromatography. Purified erythrose reductase was significantly inhibited in vitro in a noncompetitive manner by elevated levels of DHN-melanin. In contrast, the level of erythrose reductase activity was unaffected by increasing concentrations of tricyclazole. These results suggest that supplemental tricyclazole reduces the production of DHN-melanin, which may lead to a reduction in the inhibition of erythrose reductase and a higher yield of erythritol. This is the first report to demonstrate that melanin biosynthesis inhibitors increase the production of a sugar alcohol in T. corallina.
PMCID: PMC161539  PMID: 12788746
6.  Genetically altering the expression of neutral trehalase gene affects conidiospore thermotolerance of the entomopathogenic fungus Metarhizium acridum 
BMC Microbiology  2011;11:32.
The entomopathogenic fungus Metarhizium acridum has been used as an important biocontrol agent instead of insecticides for controlling crop pests throughout the world. However, its virulence varies with environmental factors, especially temperature. Neutral trehalase (Ntl) hydrolyzes trehalose, which plays a role in environmental stress response in many organisms, including M. acridum. Demonstration of a relationship between Ntl and thermotolerance or virulence may offer a new strategy for enhancing conidiospore thermotolerance of entomopathogenic fungi through genetic engineering.
We selected four Ntl over-expression and four Ntl RNA interference (RNAi) transformations in which Ntl expression is different. Compared to the wild-type, Ntl mRNA expression was reduced to 35-66% in the RNAi mutants and increased by 2.5-3.5-fold in the over-expression mutants. The RNAi conidiospores exhibited less trehalase activity, accumulated more trehalose, and were much more tolerant of heat stress than the wild-type. The opposite effects were found in conidiospores of over-expression mutants compared to RNAi mutants. Furthermore, virulence was not altered in the two types of mutants compared to the wild type.
Ntl controlled trehalose accumulation in M. acridum by degrading trehalose, and thus affected conidiospore thermotolerance. These results offer a new strategy for enhancing conidiospore thermotolerance of entomopathogenic fungi without affecting virulence.
PMCID: PMC3045870  PMID: 21310069
7.  Gene cluster involved in melanin biosynthesis of the filamentous fungus Alternaria alternata. 
Journal of Bacteriology  1993;175(14):4427-4435.
The filamentous fungus Alternaria alternata produces melanin, a black pigment, from acetate via 1,8-dihydroxynaphthalene. To isolate a fungal gene required for melanin biosynthesis, we transformed an A. alternata Brm1- (light brown) mutant with the DNA of a wild-type strain genomic library constructed by use of a cosmid carrying the hygromycin B phosphotransferase gene. When hygromycin B-resistant transformants were screened for melanin production, 1 of 1,363 transformants appeared to regain melanin production, as judged by black pigmentation of the cultured mycelia. The cosmid, named pMBR1, was recovered by packaging nuclear DNA of the melanin-producing transformant into lambda phage. The gene on pMBR1 that enables the Brm1- mutant to produce melanin was designated BRM1. In addition to the BRM1 gene, pMBR1 was found to carry two more genes involved in melanin biosynthesis. These two genes, designated ALM and BRM2, transformed A. alternata Alm- (albino) and Brm2- (brown) mutants, respectively, to the wild-type phenotype. The three genes are located within a ca. 30-kb genomic region in the order ALM-BRM1-BRM2. Analysis of the gene transcripts indicated approximate sizes of 7.2, 4.0, and 0.9 kb for ALM, BRM1, and BRM2, respectively. The BRM1 and BRM2 transcripts are generated from the same strand, but the ALM transcript is generated from the opposite strand. The three mRNA species accumulate in cultured mycelia of the wild-type strain synchronously with mycelial melanization. The essential roles of the three genes in melanin biosynthesis were confirmed by transformation-mediated gene disruption experiments.
PMCID: PMC204883  PMID: 8392512
8.  MOS1 Osmosensor of Metarhizium anisopliae Is Required for Adaptation to Insect Host Hemolymph▿  
Eukaryotic Cell  2007;7(2):302-309.
Entomopathogenic fungi such as Metarhizium anisopliae infect insects by direct penetration of the cuticle, after which the fungus adapts to the high osmotic pressure of the hemolymph and multiplies. Here we characterize the M. anisopliae Mos1 gene and demonstrate that it encodes the osmosensor required for this process. MOS1 contains transmembrane regions and a C-terminal Src homology 3 domain similar to those of yeast osmotic adaptor proteins, and homologs of MOS1 are widely distributed in the fungal kingdom. Reverse transcription-PCR demonstrated that Mos1 is up-regulated in insect hemolymph as well as artificial media with high osmotic pressure. Transformants containing an antisense vector directed to the Mos1 mRNA depleted transcript levels by 80%. This produced selective alterations in regulation of genes involved in hyphal body formation, cell membrane stiffness, and generation of intracellular turgor pressure, suggesting that these processes are mediated by MOS1. Consistent with a role in stress responses, transcript depletion of Mos1 increased sensitivity to osmotic and oxidative stresses and to compounds that interfere with cell wall biosynthesis. It also disrupted developmental processes, including formation of appressoria and hyphal bodies. Insect bioassays confirmed that Mos1 knockdown significantly reduces virulence. Overall, our data show that M. anisopliae MOS1 mediates cellular responses to high osmotic pressure and subsequent adaptations to colonize host hemolymph.
PMCID: PMC2238159  PMID: 18055914
9.  Transcript and Protein Profiling Analysis of the Destruxin A-Induced Response in Larvae of Plutella xylostella 
PLoS ONE  2013;8(4):e60771.
Destruxins (dtxs) are the mycotoxin produced by certain entomopathogenic fungi, such as Metarhizium anisopliae, Aschersonia sp, Alternaria brassicae and Ophiosphaerella herpotrichae. It can affect a wide variety of biological processes in insects, including innate immune, Ca2+ channel in cells, and apoptosis in a dose-dependent manner. Dtxs have been used as biological control agent for a long time, however, their molecular mechanism of action is still unknown.
Principal Findings
In this study, both digital gene expression (DGE) and two-dimensional electrophoresis (2-DE) approaches were adopted to examine the effects of dtx A on Plutella xyllostella (L.) larvae. By using DGE and 2-DE analyses, 1584 genes and 42 protein points were identified as being up- or down regulated at least 2-fold in response to dtx A. Firstly, injection of dtx A to larvae accelerated the increase of peptidoglycan recognition protein (PGRP), which could activate the Toll signal pathway inducing production of antibacterial substances such as cecropin and gloverin. Dtx A also stimulated prophenoloxidase (proPO) system which plays an important role in innate immunity and leads to melanization of external organisms. Secondly, dtx A suppressed the expression of genes related to the Toll pathway, and induced expression of serine proteinase inhibitors (serpins), especially the serpin 2 that blocked process of the proPO system. Finally, other physiological process like xenobiotics detoxification, apoptosis, calcium signaling pathway and insect hormone biosynthesis, were also mediated in response to dtx A toxicity.
Transcript and protein profiling analyses will provide an insight into the potential molecular mechanism of action in P. xylostella larvae in response to dtx A.
PMCID: PMC3621956  PMID: 23585848
10.  Laccases Involved in 1,8-Dihydroxynaphthalene Melanin Biosynthesis in Aspergillus fumigatus Are Regulated by Developmental Factors and Copper Homeostasis 
Eukaryotic Cell  2013;12(12):1641-1652.
Aspergillus fumigatus produces heavily melanized infectious conidia. The conidial melanin is associated with fungal virulence and resistance to various environmental stresses. This 1,8-dihydroxynaphthalene (DHN) melanin is synthesized by enzymes encoded in a gene cluster in A. fumigatus, including two laccases, Abr1 and Abr2. Although this gene cluster is not conserved in all aspergilli, laccases are critical for melanization in all species examined. Here we show that the expression of A. fumigatus laccases Abr1/2 is upregulated upon hyphal competency and drastically increased during conidiation. The Abr1 protein is localized at the surface of stalks and conidiophores, but not in young hyphae, consistent with the gene expression pattern and its predicted role. The induction of Abr1/2 upon hyphal competency is controlled by BrlA, the master regulator of conidiophore development, and is responsive to the copper level in the medium. We identified a developmentally regulated putative copper transporter, CtpA, and found that CtpA is critical for conidial melanization under copper-limiting conditions. Accordingly, disruption of CtpA enhanced the induction of abr1 and abr2, a response similar to that induced by copper starvation. Furthermore, nonpigmented ctpAΔ conidia elicited much stronger immune responses from the infected invertebrate host Galleria mellonella than the pigmented ctpAΔ or wild-type conidia. Such enhancement in eliciting Galleria immune responses was independent of the ctpAΔ conidial viability, as previously observed for the DHN melanin mutants. Taken together, our findings indicate that both copper homeostasis and developmental regulators control melanin biosynthesis, which affects conidial surface properties that shape the interaction between this pathogen and its host.
PMCID: PMC3889567  PMID: 24123270
11.  Directed evolution of a filamentous fungus for thermotolerance 
BMC Biotechnology  2009;9:74.
Filamentous fungi are the most widely used eukaryotic biocatalysts in industrial and chemical applications. Consequently, there is tremendous interest in methodology that can use the power of genetics to develop strains with improved performance. For example, Metarhizium anisopliae is a broad host range entomopathogenic fungus currently under intensive investigation as a biologically based alternative to chemical pesticides. However, it use is limited by the relatively low tolerance of this species to abiotic stresses such as heat, with most strains displaying little to no growth between 35–37°C. In this study, we used a newly developed automated continuous culture method called the Evolugator™, which takes advantage of a natural selection-adaptation strategy, to select for thermotolerant variants of M. anisopliae strain 2575 displaying robust growth at 37°C.
Over a 4 month time course, 22 cycles of growth and dilution were used to select 2 thermotolerant variants of M. anisopliae. Both variants displayed robust growth at 36.5°C, whereas only one was able to grow at 37°C. Insect bioassays using Melanoplus sanguinipes (grasshoppers) were also performed to determine if thermotolerant variants of M. anisopliae retained entomopathogenicity. Assays confirmed that thermotolerant variants were, indeed, entomopathogenic, albeit with complex alterations in virulence parameters such as lethal dose responses (LD50) and median survival times (ST50).
We report the experimental evolution of a filamentous fungus via the novel application of a powerful new continuous culture device. This is the first example of using continuous culture to select for complex phenotypes such as thermotolerance. Temperature adapted variants of the insect-pathogenic, filamentous fungus M. anisopliae were isolated and demonstrated to show vigorous growth at a temperature that is inhibitory for the parent strain. Insect virulence assays confirmed that pathogenicity can be retained during the selection process. In principle, this technology can be used to adapt filamentous fungi to virtually any environmental condition including abiotic stress and growth substrate utilization.
PMCID: PMC2741439  PMID: 19709419
12.  Effects of disrupting the polyketide synthase gene WdPKS1 in Wangiella [Exophiala] dermatitidis on melanin production and resistance to killing by antifungal compounds, enzymatic degradation, and extremes in temperature 
BMC Microbiology  2006;6:55.
Wangiella dermatitidis is a human pathogenic fungus that is an etiologic agent of phaeohyphomycosis. W. dermatitidis produces a black pigment that has been identified as a dihydroxynaphthalene melanin and the production of this pigment is associated with its virulence. Cell wall pigmentation in W. dermatitidis depends on the WdPKS1 gene, which encodes a polyketide synthase required for generating the key precursor for dihydroxynaphthalene melanin biosynthesis.
We analyzed the effects of disrupting WdPKS1 on dihydroxynaphthalene melanin production and resistance to antifungal compounds. Transmission electron microscopy revealed that wdpks1Δ-1 yeast had thinner cell walls that lacked an electron-opaque layer compared to wild-type cells. However, digestion of the wdpks1Δ-1 yeast revealed small black particles that were consistent with a melanin-like compound, because they were acid-resistant, reacted with melanin-binding antibody, and demonstrated a free radical signature by electron spin resonance analysis. Despite lacking the WdPKS1 gene, the mutant yeast were capable of catalyzing the formation of melanin from L-3,4-dihyroxyphenylalanine. The wdpks1Δ-1 cells were significantly more susceptible to killing by voriconazole, amphotericin B, NP-1 [a microbicidal peptide], heat and cold, and lysing enzymes than the heavily melanized parental or complemented strains.
In summary, W. dermatitidis makes WdPKS-dependent and -independent melanins, and the WdPKS1-dependent deposition of melanin in the cell wall confers protection against antifungal agents and environmental stresses. The biological role of the WdPKS-independent melanin remains unclear.
PMCID: PMC1569847  PMID: 16784529
13.  Biosynthesis and Functions of a Melanoid Pigment Produced by Species of the Sporothrix Complex in the Presence of l-Tyrosine 
Applied and Environmental Microbiology  2012;78(24):8623-8630.
Sporothrix schenckii is the etiological agent of sporotrichosis, the main subcutaneous mycosis in Latin America. Melanin is an important virulence factor of S. schenckii, which produces dihydroxynaphthalene melanin (DHN-melanin) in conidia and yeast cells. Additionally, l-dihydroxyphenylalanine (l-DOPA) can be used to enhance melanin production on these structures as well as on hyphae. Some fungi are able to synthesize another type of melanoid pigment, called pyomelanin, as a result of tyrosine catabolism. Since there is no information about tyrosine catabolism in Sporothrix spp., we cultured 73 strains, including representatives of newly described Sporothrix species of medical interest, such as S. brasiliensis, S. schenckii, and S. globosa, in minimal medium with tyrosine. All strains but one were able to produce a melanoid pigment with a negative charge in this culture medium after 9 days of incubation. An S. schenckii DHN-melanin mutant strain also produced pigment in the presence of tyrosine. Further analysis showed that pigment production occurs in both the filamentous and yeast phases, and pigment accumulates in supernatants during stationary-phase growth. Notably, sulcotrione inhibits pigment production. Melanin ghosts of wild-type and DHN mutant strains obtained when the fungus was cultured with tyrosine were similar to melanin ghosts yielded in the absence of the precursor, indicating that this melanin does not polymerize on the fungal cell wall. However, pyomelanin-producing fungal cells were more resistant to nitrogen-derived oxidants and to UV light. In conclusion, at least three species of the Sporothrix complex are able to produce pyomelanin in the presence of tyrosine, and this pigment might be involved in virulence.
PMCID: PMC3502921  PMID: 23042177
14.  Altered Immunity in Crowded Locust Reduced Fungal (Metarhizium anisopliae) Pathogenesis 
PLoS Pathogens  2013;9(1):e1003102.
The stress of living conditions, similar to infections, alters animal immunity. High population density is empirically considered to induce prophylactic immunity to reduce the infection risk, which was challenged by a model of low connectivity between infectious and susceptible individuals in crowded animals. The migratory locust, which exhibits polyphenism through gregarious and solitary phases in response to population density and displays different resistance to fungal biopesticide (Metarhizium anisopliae), was used to observe the prophylactic immunity of crowded animals. We applied an RNA-sequencing assay to investigate differential expression in fat body samples of gregarious and solitary locusts before and after infection. Solitary locusts devoted at least twice the number of genes for combating M. anisopliae infection than gregarious locusts. The transcription of immune molecules such as pattern recognition proteins, protease inhibitors, and anti-oxidation proteins, was increased in prophylactic immunity of gregarious locusts. The differentially expressed transcripts reducing gregarious locust susceptibility to M. anisopliae were confirmed at the transcriptional and translational level. Further investigation revealed that locust GNBP3 was susceptible to proteolysis while GNBP1, induced by M. anisopliae infection, resisted proteolysis. Silencing of gnbp3 by RNAi significantly shortened the life span of gregarious locusts but not solitary locusts. By contrast, gnbp1 silencing did not affect the life span of both gregarious and solitary locusts after M. anisopliae infection. Thus, the GNBP3-dependent immune responses were involved in the phenotypic resistance of gregarious locusts to fungal infection, but were redundant in solitary locusts. Our results indicated that gregarious locusts prophylactically activated upstream modulators of immune cascades rather than downstream effectors, preferring to quarantine rather than eliminate pathogens to conserve energy meanwhile increasing the “distance” of infectious and target individuals. Our study has obvious implications for bio-pesticides management of crowded pests, and for understanding disease epidemics and adaptiveness of pathogens.
Author Summary
The wide application of fungal biopesticides for insect management has led to concerns over the development of biopesticide resistance. The migratory locust, a globally notorious agricultural pest, has density-dependent phase changes between solitary and gregarious states. The gregarious locusts displayed longer life spans than solitary locusts after biopesticide Metarhizium anisopliae infection. We analyzed prophylactic immunity of the locusts in phase change adaptation by transcriptome analysis. Gregarious locusts optimized immunity by investing more in molecules of upstream immune cascades including pattern recognition proteins, anti-oxidation proteins, protease inhibitors and serine protease. High levels of pattern recognition proteins guided deposition of immune products onto pathogens reducing growth, proliferation and transmission. This prophylactic immunity of gregarious locusts emphasized on quarenteening M. anisopliae pathogens in early infection, which decreased individuals' infection risk in a population and avoids disease epidemics. Pest outbreaks mostly occur in high population densities, thereby, diminishing entomopathogen biopesticide efficiency. Our results provide an insight to an organism's “enhanced” immunity induced by population densities and inspires new paradigms to understand biopesticide tolerance and disease epidemics in the future.
PMCID: PMC3542111  PMID: 23326229
15.  Comparative genome analysis of entomopathogenic fungi reveals a complex set of secreted proteins 
BMC Genomics  2014;15(1):822.
Metarhizium anisopliae is an entomopathogenic fungus used in the biological control of some agricultural insect pests, and efforts are underway to use this fungus in the control of insect-borne human diseases. A large repertoire of proteins must be secreted by M. anisopliae to cope with the various available nutrients as this fungus switches through different lifestyles, i.e., from a saprophytic, to an infectious, to a plant endophytic stage. To further evaluate the predicted secretome of M. anisopliae, we employed genomic and transcriptomic analyses, coupled with phylogenomic analysis, focusing on the identification and characterization of secreted proteins.
We determined the M. anisopliae E6 genome sequence and compared this sequence to other entomopathogenic fungi genomes. A robust pipeline was generated to evaluate the predicted secretomes of M. anisopliae and 15 other filamentous fungi, leading to the identification of a core of secreted proteins. Transcriptomic analysis using the tick Rhipicephalus microplus cuticle as an infection model during two periods of infection (48 and 144 h) allowed the identification of several differentially expressed genes. This analysis concluded that a large proportion of the predicted secretome coding genes contained altered transcript levels in the conditions analyzed in this study. In addition, some specific secreted proteins from Metarhizium have an evolutionary history similar to orthologs found in Beauveria/Cordyceps. This similarity suggests that a set of secreted proteins has evolved to participate in entomopathogenicity.
The data presented represents an important step to the characterization of the role of secreted proteins in the virulence and pathogenicity of M. anisopliae.
Electronic supplementary material
The online version of this article (doi:10.1186/1471-2164-15-822) contains supplementary material, which is available to authorized users.
PMCID: PMC4246632  PMID: 25263348
Genome sequence; Entomopathogenic fungi; Secretome; Phylogenomics
16.  Surface Structure Characterization of Aspergillus fumigatus Conidia Mutated in the Melanin Synthesis Pathway and Their Human Cellular Immune Response 
Infection and Immunity  2014;82(8):3141-3153.
In Aspergillus fumigatus, the conidial surface contains dihydroxynaphthalene (DHN)-melanin. Six-clustered gene products have been identified that mediate sequential catalysis of DHN-melanin biosynthesis. Melanin thus produced is known to be a virulence factor, protecting the fungus from the host defense mechanisms. In the present study, individual deletion of the genes involved in the initial three steps of melanin biosynthesis resulted in an altered conidial surface with masked surface rodlet layer, leaky cell wall allowing the deposition of proteins on the cell surface and exposing the otherwise-masked cell wall polysaccharides at the surface. Melanin as such was immunologically inert; however, deletion mutant conidia with modified surfaces could activate human dendritic cells and the subsequent cytokine production in contrast to the wild-type conidia. Cell surface defects were rectified in the conidia mutated in downstream melanin biosynthetic pathway, and maximum immune inertness was observed upon synthesis of vermelone onward. These observations suggest that although melanin as such is an immunologically inert material, it confers virulence by facilitating proper formation of the A. fumigatus conidial surface.
PMCID: PMC4136205  PMID: 24818666
17.  Melanin in Fonsecaea pedrosoi: a trap for oxidative radicals 
BMC Microbiology  2010;10:80.
The pathogenic fungus Fonsecaea pedrosoi constitutively produces the pigment melanin, an important virulence factor in fungi. Melanin is incorporated in the cell wall structure and provides chemical and physical protection for the fungus.
We evaluated the production of nitric oxide (NO) in macrophages, the oxidative burst and the inducible nitric oxide synthase (i-NOS) activity in interactions between activated murine macrophages and F. pedrosoi. Experiments were carried out with or without tricyclazole (TC) treatment, a selective inhibitor of the dihydroxynaphthalene (DHN)-melanin biosynthesis pathway in F. pedrosoi. The paramagnetisms of melanin and the TC-melanin were analysed by electron spin resonance. The fungal growth responses to H2O2 and to S-nitroso-N-acetylpenicillamine (SNAP), a nitric oxide donor, were also evaluated.
Melanised F. pedrosoi cells were more resistant to both H2O2 and NO. Nitrite was not detected in the supernatant of macrophages incubated with melanised fungal cells. However, i-NOS expression was unaffected by the presence of either untreated control F. pedrosoi or TC-treated F. pedrosoi. In addition, the inhibition of the DHN-melanin pathway by TC improved the oxidative burst capability of the macrophages.
The NO-trapping ability of F. pedrosoi melanin is an important mechanism to escape the oxidative burst of macrophages.
PMCID: PMC2845570  PMID: 20233438
18.  Molecular Cloning and Characterization of WdPKS1, a Gene Involved in Dihydroxynaphthalene Melanin Biosynthesis and Virulence in Wangiella (Exophiala) dermatitidis 
Infection and Immunity  2001;69(3):1781-1794.
1,8-Dihydroxynaphthalene (1,8-DHN) is a fungal polyketide that contributes to virulence when polymerized to 1,8-DHN melanin in the cell walls of Wangiella dermatitidis, an agent of phaeohyphomycosis in humans. To begin a genetic analysis of the initial synthetic steps leading to 1,8-DHN melanin biosynthesis, a 772-bp PCR product was amplified from genomic DNA using primers based on conserved regions of fungal polyketide synthases (Pks) known to produce the first cyclized 1,8-DHN-melanin pathway intermediate, 1,3,6,8-tetrahydroxynaphthalene. The cloned PCR product was then used as a targeting sequence to disrupt the putative polyketide synthase gene, WdPKS1, in W. dermatitidis. The resulting wdpks1Δ disruptants showed no morphological defects other than an albino phenotype and grew at the same rate as their black wild-type parent. Using a marker rescue approach, the intact WdPKS1 gene was then successfully recovered from two plasmids. The WdPKS1 gene was also isolated independently by complementation of the mel3 mutation in an albino mutant of W. dermatitidis using a cosmid library. Sequence analysis substantiated that WdPKS1 encoded a putative polyketide synthase (WdPks1p) in a single open reading frame consisting of three exons separated by two short introns. This conclusion was supported by the identification of highly conserved Pks domains for a β-ketoacyl synthase, an acetyl-malonyl transferase, two acyl carrier proteins, and a thioesterase in the deduced amino acid sequence. Studies using a neutrophil killing assay and a mouse acute-infection model confirmed that all wdpks1Δ strains were less resistant to killing and less virulent, respectively, than their wild-type parent. Reconstitution of 1,8-DHN melanin biosynthesis in a wdpks1Δ strain reestablished its resistance to killing by neutrophils and its ability to cause fatal mouse infections.
PMCID: PMC98085  PMID: 11179356
19.  Spore Density and Viability of Entomopathogenic Fungal Isolates from Indonesia, and Their Virulence against Aphis gossypii Glover (Homoptera: Aphididae) 
The focus of this study was on quantifying fitness attributes, such as spore density and viability, and determining the virulence level against aphid (Aphis gossypii) nymphs of isolates from the fungal species Beauveria bassiana and Metarhizium anisopliae. The fungal isolates were obtained from several insects, including Plutella xylostella, Hypothenemus hampei, Bronstispa longissima, A. gossypii, Tenebrio molitor, and Leptocorisa acuta, that were collected from Indonesian islands, such as Sumatera, Java, and Sulawesi. Third instar aphid nymphs were inoculated via topical application of 106 conidia ml−1 of the entomopathogenic fungal isolates. All of the B. bassiana and M. anisopliae isolates could produce very dense spores. The M. anisopliae isolate MaAg, which was obtained from the aphid, had the highest spore density at 6.70 × 108 conidia ml−1. Among the B. bassiana isolates, the highest conidial viability belonged to isolate CPJW8, which was obtained from Chrysodeixis chalcites, with a 39% average viability. Among the M. anisopliae isolates, the highest viabilities belonged to the isolates MaAg and MaLa, which were obtained from L. acuta, with a 33% and 32% average viabilities, respectively. All of the B. bassiana and M. anisopliae isolates were virulent against aphid nymphs, with mortality rates ranging from 64% to 94%. The three most virulent isolates were BBY715 (94%), MPx (92%), and MaTm (92%), and the least virulent isolate was MaLa (64%). BBY715, the most virulent isolate, had the shortest lethal time median (LT50) against aphid nymphs at 2.97 hours, and MaLa had the longest LT50 at 61.81 hours.
PMCID: PMC3819063  PMID: 24575186
Beauveria bassiana; Metarhizium anisopliae; Aphis gossypii; Entomopathogenic
20.  Entomopathogenic Fungus as a Biological Control for an Important Vector of Livestock Disease: The Culicoides Biting Midge 
PLoS ONE  2011;6(1):e16108.
The recent outbreak of bluetongue virus in northern Europe has led to an urgent need to identify control measures for the Culicoides (Diptera: Ceratopogonidae) biting midges that transmit it. Following successful use of the entomopathogenic fungus Metarhizium anisopliae against larval stages of biting midge Culicoides nubeculosus Meigen, we investigated the efficacy of this strain and other fungi (Beauveria bassiana, Isaria fumosorosea and Lecanicillium longisporum) as biocontrol agents against adult C. nubeculosus in laboratory and greenhouse studies.
Exposure of midges to ‘dry’ conidia of all fungal isolates caused significant reductions in survival compared to untreated controls. Metarhizium anisopliae strain V275 was the most virulent, causing a significantly decrease in midge survival compared to all other fungal strains tested. The LT50 value for strain V275 was 1.42 days compared to 2.21–3.22 days for the other isolates. The virulence of this strain was then further evaluated by exposing C. nubeculosus to varying doses (108–1011 conidia m−2) using different substrates (horse manure, damp peat, leaf litter) as a resting site. All exposed adults were found to be infected with the strain V275 four days after exposure. A further study exposed C. nubeculosus adults to ‘dry’ conidia and ‘wet’ conidia (conidia suspended in 0.03% aq. Tween 80) of strain V275 applied to damp peat and leaf litter in cages within a greenhouse. ‘Dry’ conidia were more effective than ‘wet’ conidia, causing 100% mortality after 5 days.
This is the first study to demonstrate that entomopathogenic fungi are potential biocontrol agents against adult Culicoides, through the application of ‘dry’ conidia on surfaces (e.g., manure, leaf litter, livestock) where the midges tend to rest. Subsequent conidial transmission between males and females may cause an increased level of fungi-induced mortality in midges thus reducing the incidence of disease.
PMCID: PMC3018483  PMID: 21264343
21.  Occurrence of Entomopathogenic Fungi from Agricultural and Natural Ecosystems in Saltillo, México, and their Virulence Towards Thrips and Whiteflies 
Entomopathogenic fungi were collected from soil in four adjacent habitats (oak forest, agricultural soil, pine reforestation and chaparral habitat) in Saltillo, México using the insect bait method with Tenebrio molitor (L.) (Coleoptera: Tenebrionidae) larvae as bait. Overall, of the larvae exposed to soil, 171 (20%) hosted Beauveria bassiana (Balsamo) Vuillemin (Hypocreales: Cordycipitaceae), 25 (3%) hosted Metarhizium anisopliae (Metschnikoff) Sorokin (Hypocreales: Clavicipitaceae) and 1 (0.1%) hosted lsaria (=Paecilomyces) sp. (Hypocreales: Cordycipitaceae). B. bassiana was significantly more frequent on larvae exposed to oak forest soil. M. anisopliae was significantly more frequent on larvae exposed to agricultural soil. From the infected bait insects, 93 isolates of B. bassiana and 24 isolates of M. anisopliae were obtained. Strains were tested for their infectivity against Cuban laurel thrips, Gynaikothrips uzeli Zimmerman (Thysanoptera: Phlaeothripidae) and the greenhouse whitefly, Trialeurodes vaporariorum (Westwood) (Hemiptera: Aleyrodidae). B. bassiana isolates caused the highest mortality on thrips (some causing 88% mortality after 6 days); both fungal species caused similarly high mortality levels against whiteflies (75%) after 6 days. Large amounts of germplasm of entomopathogenic fungi, fundamentally B. bassiana and M. anisopliae, exist in the habitats sampled; pathogenicity varied among strains, and some strains possessed significant virulence. Soils in these habitats are reservoirs of diverse strains with potential for use in biocontrol.
PMCID: PMC3391914  PMID: 21521145
habitat; germplasm; insect-pathogenic fungus; Hemiptera; Thysanoptera
22.  Efficacy of Metarhizium anisopliae isolate MAX-2 from Shangri-la, China under desiccation stress 
BMC Microbiology  2014;14:4.
Metarhizium anisopliae, a soil-borne entomopathogen found worldwide, is an interesting fungus for biological control. However, its efficacy in the fields is significantly affected by environmental conditions, particularly moisture. To overcome the weakness of Metarhizium and determine its isolates with antistress capacity, the efficacies of four M. anisopliae isolates, which were collected from arid regions of Yunnan Province in China during the dry season, were determined at different moisture levels, and the efficacy of the isolate MAX-2 from Shangri-la under desiccation stress was evaluated at low moisture level.
M. anisopliae isolates MAX-2, MAC-6, MAL-1, and MAQ-28 showed gradient descent efficacies against sterile Tenebrio molitor larvae, and gradient descent capacities against desiccation with the decrease in moisture levels. The efficacy of MAX-2 showed no significant differences at 35% moisture level than those of the other isolates. However, significant differences were found at 8% to 30% moisture levels. The efficacies of all isolates decreased with the decrease in moisture levels. MAX-2 was relatively less affected by desiccation stress. Its efficacy was almost unaffected by the decrease at moisture levels > 25%, but slowly decreased at moisture levels < 25%. By contrast, the efficacies of other isolates rapidly decreased with the decrease in moisture levels. MAX-2 caused different infection characteristics on T. molitor larvae under desiccation stress and in wet microhabitat. Local black patches were found on the cuticles of the insects, and the cadavers dried without fungal growth under desiccation stress. However, dark black internodes and fungal growth were found after death of the insects in the wet microhabitat.
MAX-2 showed significantly higher efficacy and superior antistress capacity than the other isolates under desiccation stress. The infection of sterile T. molitor larvae at low moisture level constituted a valid laboratory bioassay system in evaluating M. anisopliae efficacy under desiccation stress.
PMCID: PMC3890646  PMID: 24383424
Biological control; Metarhizium anisopliae; Tenebrio molitor; Desiccation stress; Moisture level
23.  Virulence of Entomopathogenic Fungi Metarhizium anisopliae and Paecilomyces fumosoroseus for the Microbial Control of Spodoptera exigua 
Mycobiology  2014;42(4):385-390.
The beet armyworm Spodoptera exigua (Lepidoptera: Noctuidae) is difficult to control using chemical insecticides because of the development of insecticide resistance. Several pest control agents are used to control the beet armyworm. Entomopathogenic fungi are one of the candidates for eco-friendly pest control instead of chemical control agents. In this study, among various entomopathogenic fungal strains isolated from soil two isolates were selected as high virulence pathogens against larva of beet armyworm. Control efficacy of fungal conidia was influenced by conidia concentration, temperature, and relative humidity (RH). The isolates Metarhizium anisopliae FT83 showed 100% cumulative mortality against second instar larvae of S. exigua 3 days after treatment at 1 × 107 conidia/mL and Paecilomyces fumosoroseus FG340 caused 100% mortality 6 days after treatment at 1 × 104 conidia/mL. Both M. anisopliae FT83 and P. fumosoroseus FG340 effectively controlled the moth at 20~30℃. M. anisopliae FT83 was significantly affected mortality by RH: mortality was 86.7% at 85% RH and 13.4% at 45% RH. P. fumosoroseus FG340 showed high mortality as 90% at 45% RH and 100% at 75% RH 6 days after conidia treatments. These results suggest that P. fumosoroseus FG340 and M. anisopliae FT83 have high potential to develop as a biocontrol agent against the beet armyworm.
PMCID: PMC4298843  PMID: 25606011
Beet armyworm; Entomopathogenic fungi; Metarhizium anisopliae; Paecilomyces fumosoroseus; Spodoptera exigua
24.  Culture Age, Temperature, and pH Affect the Polyol and Trehalose Contents of Fungal Propagules 
The growth and conidial physiology of the entomopathogenic fungi Beauveria bassiana, Metarhizium anisopliae, and Paecilomyces farinosus were studied under different conditions. The effects of culture age (up to 120 days), temperature (5 to 35(deg)C), and pH (2.9 to 11.1) were determined. Growth was optimal at pH 5 to 8 for each isolate and between 20 and 35(deg)C, depending on the isolate. The predominant polyol in conidia was mannitol, with up to 39, 134, and 61 mg g of conidia(sup-1) for B. bassiana, M. anisopliae, and P. farinosus, respectively. Conidia of M. anisopliae contained relatively small amounts of lower-molecular-weight polyols and trehalose (less than 25 mg g(sup-1) in total) in all treatments. Conidia of B. bassiana and P. farinosus contained up to 30, 32, and 25 mg of glycerol, erythritol, and trehalose, respectively, g(sup-1), depending on the treatment. Conidia of P. farinosus contained unusually high amounts of glycerol and erythritol at pH 2.9. The apparent effect of pH on gene expression is discussed in relation to the induction of a water stress response. To our knowledge, this is the first report of polyols and trehalose in fungal propagules produced over a range of temperature or pH. Some conditions and harvesting times were associated with an apparent inhibition of synthesis or accumulation of polyols and trehalose. This shows that culture age and environmental conditions affect the physiological quality of inoculum and can thereby determine its potential for biocontrol.
PMCID: PMC1388892  PMID: 16535354
25.  Insertion of an Esterase Gene into a Specific Locust Pathogen (Metarhizium acridum) Enables It to Infect Caterpillars 
PLoS Pathogens  2011;7(6):e1002097.
An enduring theme in pathogenic microbiology is poor understanding of the mechanisms of host specificity. Metarhizium is a cosmopolitan genus of invertebrate pathogens that contains generalist species with broad host ranges such as M. robertsii (formerly known as M. anisopliae var. anisopliae) as well as specialists such as the acridid-specific grasshopper pathogen M. acridum. During growth on caterpillar (Manduca sexta) cuticle, M. robertsii up-regulates a gene (Mest1) that is absent in M. acridum and most other fungi. Disrupting M. robertsii Mest1 reduced virulence and overexpression increased virulence to caterpillars (Galleria mellonella and M. sexta), while virulence to grasshoppers (Melanoplus femurrubrum) was unaffected. When Mest1 was transferred to M. acridum under control of its native M. robertsii promoter, the transformants killed and colonized caterpillars in a similar fashion to M. robertsii. MEST1 localized exclusively to lipid droplets in M. robertsii conidia and infection structures was up-regulated during nutrient deprivation and had esterase activity against lipids with short chain fatty acids. The mobilization of stored lipids was delayed in the Mest1 disruptant mutant. Overall, our results suggest that expression of Mest1 allows rapid hydrolysis of stored lipids, and promotes germination and infection structure formation by M. robertsii during nutrient deprivation and invasion, while Mest1 expression in M. acridum broadens its host range by bypassing the regulatory signals found on natural hosts that trigger the mobilization of endogenous nutrient reserves. This study suggests that speciation in an insect pathogen could potentially be driven by host shifts resulting from changes in a single gene.
Author Summary
Host selectivity and host switching have been widely documented in diverse pathogens, but in most cases the underlying mechanisms are poorly understood. Entomopathogenic fungi in the genus Metarhizium are being used as environmentally friendly alternatives to chemical insecticides in agricultural and human disease-vector control programs, and as model systems for studying the interactions between invertebrate hosts and pathogenic fungi. In this paper we describe molecular mechanisms controlling the host selectivity of M. robertsii strain Mr2575, a generalist able to infect hundreds of insect species, and M. acridum strain Ma324, a specialist pathogen of grasshoppers and locusts. The esterase gene (Mest1) from Mr2575 is required for virulence against caterpillars but not grasshoppers. Ma324 lacks Mest1, but insertion of Mest1 into Ma324 broadens its host range to include caterpillars. Our results suggest that expression of Mest1 allows rapid mobilization of endogenous lipid reserves and promotes germination and infection structure formation. This study suggests that speciation in insect pathogens can be driven by host shifts due to the gain or loss of a pathogen gene that confers wide host specificity.
PMCID: PMC3121873  PMID: 21731492

Results 1-25 (679663)