Search tips
Search criteria

Results 1-25 (879225)

Clipboard (0)

Related Articles

1.  A variable selection method for genome-wide association studies 
Biometrics  2011;27(1):1-8.
Genome-wide association studies (GWAS) involving half a million or more single nucleotide polymorphisms (SNPs) allow genetic dissection of complex diseases in a holistic manner. The common practice of analyzing one SNP at a time does not fully realize the potential of GWAS to identify multiple causal variants and to predict risk of disease. Existing methods for joint analysis of GWAS data tend to miss causal SNPs that are marginally uncorrelated with disease and have high false discovery rates (FDRs).
We introduce GWASelect, a statistically powerful and computationally efficient variable selection method designed to tackle the unique challenges of GWAS data. This method searches iteratively over the potential SNPs conditional on previously selected SNPs and is thus capable of capturing causal SNPs that are marginally correlated with disease as well as those that are marginally uncorrelated with disease. A special resampling mechanism is built into the method to reduce false-positive findings. Simulation studies demonstrate that the GWASelect performs well under a wide spectrum of linkage disequilibrium (LD) patterns and can be substantially more powerful than existing methods in capturing causal variants while having a lower FDR. In addition, the regression models based on the GWASelect tend to yield more accurate prediction of disease risk than existing methods. The advantages of the GWASelect are illustrated with the Wellcome Trust Case-Control Consortium (WTCCC) data.
PMCID: PMC3025714  PMID: 21036813
2.  Finding type 2 diabetes causal single nucleotide polymorphism combinations and functional modules from genome-wide association data 
Due to the low statistical power of individual markers from a genome-wide association study (GWAS), detecting causal single nucleotide polymorphisms (SNPs) for complex diseases is a challenge. SNP combinations are suggested to compensate for the low statistical power of individual markers, but SNP combinations from GWAS generate high computational complexity.
We aim to detect type 2 diabetes (T2D) causal SNP combinations from a GWAS dataset with optimal filtration and to discover the biological meaning of the detected SNP combinations. Optimal filtration can enhance the statistical power of SNP combinations by comparing the error rates of SNP combinations from various Bonferroni thresholds and p-value range-based thresholds combined with linkage disequilibrium (LD) pruning. T2D causal SNP combinations are selected using random forests with variable selection from an optimal SNP dataset. T2D causal SNP combinations and genome-wide SNPs are mapped into functional modules using expanded gene set enrichment analysis (GSEA) considering pathway, transcription factor (TF)-target, miRNA-target, gene ontology, and protein complex functional modules. The prediction error rates are measured for SNP sets from functional module-based filtration that selects SNPs within functional modules from genome-wide SNPs based expanded GSEA.
A T2D causal SNP combination containing 101 SNPs from the Wellcome Trust Case Control Consortium (WTCCC) GWAS dataset are selected using optimal filtration criteria, with an error rate of 10.25%. Matching 101 SNPs with known T2D genes and functional modules reveals the relationships between T2D and SNP combinations. The prediction error rates of SNP sets from functional module-based filtration record no significance compared to the prediction error rates of randomly selected SNP sets and T2D causal SNP combinations from optimal filtration.
We propose a detection method for complex disease causal SNP combinations from an optimal SNP dataset by using random forests with variable selection. Mapping the biological meanings of detected SNP combinations can help uncover complex disease mechanisms.
PMCID: PMC3618247  PMID: 23566118
3.  Prioritized Subset Analysis: Improving Power in Genome-wide Association Studies 
Human Heredity  2007;65(3):129-141.
Genome-wide association studies (GWAS) are now feasible for studying the genetics underlying complex diseases. For many diseases, a list of candidate genes or regions exists and incorporation of such information into data analyses can potentially improve the power to detect disease variants. Traditional approaches for assessing the overall statistical significance of GWAS results ignore such information by inherently treating all markers equally.
We propose the prioritized subset analysis (PSA), in which a prioritized subset of markers is pre-selected from candidate regions, and the false discovery rate (FDR) procedure is carried out in the prioritized subset and its complementary subset, respectively.
The PSA is more powerful than the whole-genome single-step FDR adjustment for a range of alternative models. The degree of power improvement depends on the fraction of associated SNPs in the prioritized subset and their nominal power, with higher fraction of associated SNPs and higher nominal power leading to more power improvement. The power improvement can be substantial; for disease loci not included in the prioritized subset, the power loss is almost negligible.
The PSA has the flexibility of allowing investigators to combine prior information from a variety of sources, and will be a useful tool for GWAS.
PMCID: PMC2858373  PMID: 17934316
Association analysis; False discovery rate; HapMap
4.  Prioritization of SNPs for Genome-Wide Association Studies Using an Interaction Model of Genetic Variation, Gene Expression, and Trait Variation 
Molecules and Cells  2012;33(4):351-361.
The identification of true causal loci to unravel the statistical evidence of genotype-phenotype correlations and the biological relevance of selected single-nucleotide polymorphisms (SNPs) is a challenging issue in genome-wide association studies (GWAS). Here, we introduced a novel method for the prioritization of SNPs based on p-values from GWAS. The method uses functional evidence from populations, including phenotype-associated gene expressions. Based on the concept of genetic interactions, such as perturbation of gene expression by genetic variation, phenotype and gene expression related SNPs were prioritized by adjusting the p-values of SNPs. We applied our method to GWAS data related to drug-induced cytotoxicity. Then, we prioritized loci that potentially play a role in drug-induced cytotoxicity. By generating an interaction model, our approach allowed us not only to identify causal loci, but also to find intermediate nodes that regulate the flow of information among causal loci, perturbed gene expression, and resulting phenotypic variation.
PMCID: PMC3887803  PMID: 22460606
genome-wide association study; interaction network; prioritization; SNP
5.  Improved Detection of Common Variants Associated with Schizophrenia and Bipolar Disorder Using Pleiotropy-Informed Conditional False Discovery Rate 
PLoS Genetics  2013;9(4):e1003455.
Several lines of evidence suggest that genome-wide association studies (GWAS) have the potential to explain more of the “missing heritability” of common complex phenotypes. However, reliable methods to identify a larger proportion of single nucleotide polymorphisms (SNPs) that impact disease risk are currently lacking. Here, we use a genetic pleiotropy-informed conditional false discovery rate (FDR) method on GWAS summary statistics data to identify new loci associated with schizophrenia (SCZ) and bipolar disorders (BD), two highly heritable disorders with significant missing heritability. Epidemiological and clinical evidence suggest similar disease characteristics and overlapping genes between SCZ and BD. Here, we computed conditional Q–Q curves of data from the Psychiatric Genome Consortium (SCZ; n = 9,379 cases and n = 7,736 controls; BD: n = 6,990 cases and n = 4,820 controls) to show enrichment of SNPs associated with SCZ as a function of association with BD and vice versa with a corresponding reduction in FDR. Applying the conditional FDR method, we identified 58 loci associated with SCZ and 35 loci associated with BD below the conditional FDR level of 0.05. Of these, 14 loci were associated with both SCZ and BD (conjunction FDR). Together, these findings show the feasibility of genetic pleiotropy-informed methods to improve gene discovery in SCZ and BD and indicate overlapping genetic mechanisms between these two disorders.
Author Summary
Genome-wide association studies (GWAS) have thus far identified only a small fraction of the heritability of common complex disorders, such as severe mental disorders. We used a conditional false discovery rate approach for analysis of GWAS data, exploiting “genetic pleiotropy” to increase discovery of common gene variants associated with schizophrenia and bipolar disorders. Leveraging the increased power from combining GWAS of two associated phenotypes, we found a striking overlap in polygenic signals, allowing for the discovery of several new common gene variants associated with bipolar disorder and schizophrenia that were not identified in the original analysis using traditional GWAS methods. Some of the gene variants have been identified in other studies with large targeted replication samples, validating the present findings. Our pleiotropy-informed method may be of significant importance for detecting effects that are below the traditional genome-wide significance level in GWAS, particularly in highly polygenic, complex phenotypes, such as schizophrenia and bipolar disorder, where most of the genetic signal is missing (i.e., “missing heritability”). The findings also offer insights into mechanistic relationships between bipolar disorder and schizophrenia pathogenesis.
PMCID: PMC3636100  PMID: 23637625
6.  Two-stage study designs combining genome-wide association studies, tag single-nucleotide polymorphisms, and exome sequencing: accuracy of genetic effect estimates 
BMC Proceedings  2011;5(Suppl 9):S64.
Genome-wide association studies (GWAS) test for disease-trait associations and estimate effect sizes at tag single-nucleotide polymorphisms (SNPs), which imperfectly capture variation at causal SNPs. Sequencing studies can examine potential causal SNPs directly; however, sequencing the whole genome or exome can be prohibitively expensive. Costs can be limited by using a GWAS to detect the associated region(s) at tag SNPs followed by targeted sequencing to identify and estimate the effect size of the causal variant. Genetic effect estimates obtained from association studies can be inflated because of a form of selection bias known as the winner’s curse. Conversely, estimates at tag SNPs can be attenuated compared to the causal SNP because of incomplete linkage disequilibrium. These two effects oppose each other. Analysis of rare SNPs further complicates our understanding of the winner’s curse because rare SNPs are difficult to tag and analysis can involve collapsing over multiple rare variants. In two-stage analysis of Genetic Analysis Workshop 17 simulated data sets, we find that selection at the tag SNP produces upward bias in the estimate of effect at the causal SNP, even when the tag and causal SNPs are not well correlated. The bias similarly carries through to effect estimates for rare variant summary measures. Replication studies designed with sample sizes computed using biased estimates will be under-powered to detect a disease-causing variant. Accounting for bias in the original study is critical to avoid discarding disease-associated SNPs at follow up.
PMCID: PMC3287903  PMID: 22373407
7.  Power of genome-wide association studies in the presence of interacting loci 
Genetic Epidemiology  2007;31(7):748-762.
Though multiple interacting loci are likely involved in the etiology of complex diseases, early genome-wide association studies (GWAS) have depended on the detection of the marginal effects of each locus. Here, we evaluate the power of GWAS in the presence of two linked and potentially associated causal loci for several models of interaction between them and find that interacting loci may give rise to marginal relative risks that are not generally considered in a one-locus model. To derive power under realistic situations, we use empirical data generated by the HapMap ENCODE project for both allele frequencies and LD structure. The power is also evaluated in situations where the causal SNPs may not be genotyped, but rather detected by proxy using a SNP in linkage disequilibrium (LD). A common simplification for such power computations assumes that the sample size necessary to detect the effect at the tSNP is the sample size necessary to detect the causal locus directly divided by the LD measure r2 between the two. This assumption, which we call the “proportionality assumption”, is a simplification of the many factors that contribute to the strength of association at a marker, and has recently been criticized as unreasonable [Terwilliger and Hiekkalinna 2006], in particular in the presence of interacting and associated loci. We find that this assumption does not introduce much error in single locus models of disease, but may do so in so in certain two-locus models.
PMCID: PMC3101367  PMID: 17508359
Genetic Predisposition to Disease; Genome, Human; genetics; Genotype; Humans; Linkage Disequilibrium; Models, Genetic; Polymorphism, Single Nucleotide; Quantitative Trait Loci; genetics; linkage disequilibrium; genome-wide; tagSNPs
8.  ICSNPathway: identify candidate causal SNPs and pathways from genome-wide association study by one analytical framework 
Nucleic Acids Research  2011;39(Web Server issue):W437-W443.
Genome-wide association study (GWAS) is widely utilized to identify genes involved in human complex disease or some other trait. One key challenge for GWAS data interpretation is to identify causal SNPs and provide profound evidence on how they affect the trait. Currently, researches are focusing on identification of candidate causal variants from the most significant SNPs of GWAS, while there is lack of support on biological mechanisms as represented by pathways. Although pathway-based analysis (PBA) has been designed to identify disease-related pathways by analyzing the full list of SNPs from GWAS, it does not emphasize on interpreting causal SNPs. To our knowledge, so far there is no web server available to solve the challenge for GWAS data interpretation within one analytical framework. ICSNPathway is developed to identify candidate causal SNPs and their corresponding candidate causal pathways from GWAS by integrating linkage disequilibrium (LD) analysis, functional SNP annotation and PBA. ICSNPathway provides a feasible solution to bridge the gap between GWAS and disease mechanism study by generating hypothesis of SNP → gene → pathway(s). The ICSNPathway server is freely available at
PMCID: PMC3125783  PMID: 21622953
9.  Using Ascertainment for Targeted Resequencing to Increase Power to Identify Causal Variants 
Statistics and its interface  2011;4(3):285-294.
Researchers continue to use genome-wide association studies (GWAS) to find the genetic markers associated with disease. Recent studies have added to the typical two-stage analysis a third stage that uses targeted resequencing on a randomly selected subset of the cases to detect the causal single-nucleotide polymorphism (SNP). We propose a design for targeted resequencing that increases the power to detect the causal variant. The design features an ascertainment scheme wherein only those cases with the presence of a risk allele are selected for targeted resequencing. We simulated a disease with a single causal SNP to evaluate our method versus a targeted resequencing design using randomly selected individuals. The simulation studies showed that ascertaining individuals for the targeted resequencing can substantially increase the power to detect a causal SNP, without increasing the false-positive rate.
PMCID: PMC3316326  PMID: 22468169
Ascertainment; Genome-Wide Association Study; Causal Polymorphism; Targeted Resequencing
Genetic epidemiology  2010;34(7):716-724.
Many complex diseases are influenced by genetic variations in multiple genes, each with only a small marginal effect on disease susceptibility. Pathway analysis, which identifies biological pathways associated with disease outcome, has become increasingly popular for genome-wide association studies (GWAS). In addition to combining weak signals from a number of SNPs in the same pathway, results from pathway analysis also shed light on the biological processes underlying disease. We propose a new pathway-based analysis method for GWAS, the supervised principal component analysis (SPCA) model. In the proposed SPCA model, a selected subset of SNPs most associated with disease outcome is used to estimate the latent variable for a pathway. The estimated latent variable for each pathway is an optimal linear combination of a selected subset of SNPs; therefore, the proposed SPCA model provides the ability to borrow strength across the SNPs in a pathway. In addition to identifying pathways associated with disease outcome, SPCA also carries out additional within-category selection to identify the most important SNPs within each gene set. The proposed model operates in a well-established statistical framework and can handle design information such as covariate adjustment and matching information in GWAS. We compare the proposed method with currently available methods using data with realistic linkage disequilibrium structures and we illustrate the SPCA method using the Wellcome Trust Case-Control Consortium Crohn Disease (CD) dataset.
PMCID: PMC3480088  PMID: 20842628
SNPs; genome-wide association; pathway analysis; principal component analysis
11.  Maximal conditional chi-square importance in random forests 
Bioinformatics  2010;26(6):831-837.
Motivation: High-dimensional data are frequently generated in genome-wide association studies (GWAS) and other studies. It is important to identify features such as single nucleotide polymorphisms (SNPs) in GWAS that are associated with a disease. Random forests represent a very useful approach for this purpose, using a variable importance score. This importance score has several shortcomings. We propose an alternative importance measure to overcome those shortcomings.
Results: We characterized the effect of multiple SNPs under various models using our proposed importance measure in random forests, which uses maximal conditional chi-square (MCC) as a measure of association between a SNP and the trait conditional on other SNPs. Based on this importance measure, we employed a permutation test to estimate empirical P-values of SNPs. Our method was compared to a univariate test and the permutation test using the Gini and permutation importance. In simulation, the proposed method performed consistently superior to the other methods in identifying of risk SNPs. In a GWAS of age-related macular degeneration, the proposed method confirmed two significant SNPs (at the genome-wide adjusted level of 0.05). Further analysis showed that these two SNPs conformed with a heterogeneity model. Compared with the existing importance measures, the MCC importance measure is more sensitive to complex effects of risk SNPs by utilizing conditional information on different SNPs. The permutation test with the MCC importance measure provides an efficient way to identify candidate SNPs in GWAS and facilitates the understanding of the etiology between genetic variants and complex diseases.
Supplementary information: Supplementary data are available at Bioinformatics online.
PMCID: PMC2832825  PMID: 20130032
12.  Review: A Meta-Analysis of GWAS Studies and Age-Associated Diseases 
Aging cell  2012;11(5):727-731.
Genome-Wide Association studies (GWAS) offer an unbiased means to understand the genetic basis of traits by identifying single nucleotide polymorphisms (SNPs) linked to causal variants of complex phenotypes. GWAS have identified a host of susceptibility SNPs associated with many important human diseases, including diseases associated with aging. In an effort to understand the genetics of broad resistance to age-associated diseases (i.e. ‘wellness’), we performed a meta-analysis of human GWAS. Toward that end, we compiled 372 GWAS that identified 1,775 susceptibility SNPs to 105 unique diseases and used these SNPs to create a genomic landscape of disease susceptibility. This map was constructed by partitioning the genome into 200 kb ‘bins’ and mapping the 1,775 susceptibility SNPs to bins based on their genomic location. Investigation of these data revealed significant heterogeneity of disease association within the genome, with 92% of bins devoid of disease-associated SNPs. In contrast, 10 bins (0.06%) were significantly (p<0.05) enriched for susceptibility to multiple diseases, 5 of which formed two highly significant peaks of disease association (p<0.0001). These peaks mapped to the Major Histocompatibility (MHC) locus on 6p21 and the INK4/ARF (CDKN2a/b) tumor suppressor locus on 9p21.3. Provocatively, all 10 significantly enriched bins contained genes linked to either inflammation or cellular senescence pathways, and SNPs near regulators of senescence were particularly associated with disease of aging (e.g. cancer, atherosclerosis, type 2 diabetes, glaucoma). This analysis suggests that germline genetic heterogeneity in the regulation of immunity and cellular senescence influences the human health span.
PMCID: PMC3444649  PMID: 22888763
p16INK4a; p14ARF; ANRIL; TERT; longevity
13.  Using Linkage Information to Weight a Genome-Wide Association of Bipolar Disorder 
Issues of multiple-testing and statistical significance in genome-wide association studies (GWAS) have prompted statistical methods utilizing prior data to increase the power of association results. Using prior findings from genome-wide linkage studies on bipolar disorder (BPD), we employed a weighted false discovery approach (wFDR; (Roeder et al. 2006)) to previously reported GWAS data drawn from the Systematic Treatment Enhancement Program for Bipolar Disorder (STEP-BD). Using this method, association signals are up or down-weighted given the linkage score in that genomic region. Although no SNPs in our sample reached genome-wide significance through the wFDR approach, the strongest single SNP result from the original GWAS results (rs4939921 in myosin VB) is strongly up-weighted as it occurs on a linkage peak of chromosome 18. We also identify regions on chromosome 9, 17, and 18 where modestly associated SNP clusters coincide with strong linkage scores, implicating them as possible candidate regions for further analysis. Moving forward, we believe the application of prior linkage information will be increasingly useful to future GWAS studies that incorporate rarer variants into their analysis.
PMCID: PMC3082625  PMID: 21480485
14.  A novel algorithm for simultaneous SNP selection in high-dimensional genome-wide association studies 
BMC Bioinformatics  2012;13:284.
Identification of causal SNPs in most genome wide association studies relies on approaches that consider each SNP individually. However, there is a strong correlation structure among SNPs that needs to be taken into account. Hence, increasingly modern computationally expensive regression methods are employed for SNP selection that consider all markers simultaneously and thus incorporate dependencies among SNPs.
We develop a novel multivariate algorithm for large scale SNP selection using CAR score regression, a promising new approach for prioritizing biomarkers. Specifically, we propose a computationally efficient procedure for shrinkage estimation of CAR scores from high-dimensional data. Subsequently, we conduct a comprehensive comparison study including five advanced regression approaches (boosting, lasso, NEG, MCP, and CAR score) and a univariate approach (marginal correlation) to determine the effectiveness in finding true causal SNPs.
Simultaneous SNP selection is a challenging task. We demonstrate that our CAR score-based algorithm consistently outperforms all competing approaches, both uni- and multivariate, in terms of correctly recovered causal SNPs and SNP ranking. An R package implementing the approach as well as R code to reproduce the complete study presented here is available from
PMCID: PMC3558454  PMID: 23113980
15.  DistiLD Database: diseases and traits in linkage disequilibrium blocks 
Nucleic Acids Research  2011;40(D1):D1036-D1040.
Genome-wide association studies (GWAS) have identified thousands of single nucleotide polymorphisms (SNPs) associated with the risk of hundreds of diseases. However, there is currently no database that enables non-specialists to answer the following simple questions: which SNPs associated with diseases are in linkage disequilibrium (LD) with a gene of interest? Which chromosomal regions have been associated with a given disease, and which are the potentially causal genes in each region? To answer these questions, we use data from the HapMap Project to partition each chromosome into so-called LD blocks, so that SNPs in LD with each other are preferentially in the same block, whereas SNPs not in LD are in different blocks. By projecting SNPs and genes onto LD blocks, the DistiLD database aims to increase usage of existing GWAS results by making it easy to query and visualize disease-associated SNPs and genes in their chromosomal context. The database is available at
PMCID: PMC3245128  PMID: 22058129
16.  False-Negative-Rate Based Approach for Selecting Top Single-Nucleotide Polymorphisms in the First Stage of a Two-Stage Genome-Wide Association Study 
Statistics and its interface  2011;4(3):359-371.
Genome-wide association (GWA) studies, where hundreds of thousands of single-nucleotide polymorphisms (SNPs) are tested simultaneously, are becoming popular for identifying disease loci for common diseases. Most commonly, a GWA study involves two stages: the first stage includes testing the association between all SNPs and the disease and the second stage includes replication of SNPs selected from the first stage to validate associations in an independent sample. The first stage is considered to be more fundamental since the second stage is contingent on the results of the first stage. Selection of SNPs from stage one for genotyping in stage two is typically based on an arbitrary threshold or controlling type I errors. These strategies can be inefficient and have potential to exclude genotyping of disease-associated SNPs in stage two. We propose an approach for selecting top SNPs that uses a strategy based on the false-negative rate (FNR). Using the FNR approach, we proposed the number of SNPs that should be selected based on the observed p-values and a pre-specified multi-testing power in the first stage. We applied our method to simulated data and a GWA study of glioma (a rare form of brain tumor) data. Results from simulation and the glioma GWA indicate that the proposed approach provides an FNR-based way to select SNPs using pre-specified power.
PMCID: PMC3467022  PMID: 23060946
False negative rate; SNP selection; Two-stage genome-wide association study
17.  Estimating the posterior probability that genome-wide association findings are true or false 
Bioinformatics  2009;25(14):1807-1813.
Motivation: A limitation of current methods used to declare significance in genome-wide association studies (GWAS) is that they do not provide clear information about the probability that GWAS findings are true of false. This lack of information increases the chance of false discoveries and may result in real effects being missed.
Results: We propose a method to estimate the posterior probability that a marker has (no) effect given its test statistic value, also called the local false discovery rate (FDR), in the GWAS. A critical step involves the estimation the parameters of the distribution of the true alternative tests. For this, we derived and implemented the real maximum likelihood function, which turned out to provide us with significantly more accurate estimates than the widely used mixture model likelihood. Actual GWAS data are used to illustrate properties of the posterior probability estimates empirically. In addition to evaluating individual markers, a variety of applications are conceivable. For instance, posterior probability estimates can be used to control the FDR more precisely than Benjamini–Hochberg procedure.
Availability: The codes are freely downloadable from the web site∼jbukszar.
Supplementary information: Supplementary data are available at Bioinformatics online.
PMCID: PMC2705227  PMID: 19420056
18.  Mining Gold Dust under the Genome Wide Significance Level: A Two-Stage Approach to Analysis of GWAS 
Genetic epidemiology  2010;35(2):111-118.
We propose a two-stage approach to analyze genome-wide association (GWA) data in order to identify a set of promising single-nucleotide polymorphisms (SNPs). In stage one, we select a list of top signals from single SNP analyses by controlling false discovery rate (FDR). In stage two, we use the least absolute shrinkage and selection operator (LASSO) regression to reduce false positives. The proposed approach was evaluated using simulated quantitative traits based on genome-wide SNP data on 8,861 Caucasian individuals from the Atherosclerosis Risk in Communities (ARIC) Study. Our first stage, targeted at controlling false negatives, yields better power than using Bonferroni corrected significance level. The LASSO regression reduces the number of significant SNPs in stage two: it reduces false positive SNPs and it reduces true positive SNPs also at simulated causal loci due to linkage disequilibrium. Interestingly, the LASSO regression preserves the power from stage one, i.e., the number of causal loci detected from the LASSO regression in stage two is almost the same as in stage one, while reducing false positives further. Real data on systolic blood pressure in the ARIC study was analyzed using our two-stage approach which identified two significant SNPs, one of which was reported to be genome-significant in a meta-analysis containing a much larger sample size. On the other hand, a single SNP association scan did not yield any significant results.
PMCID: PMC3624896  PMID: 21254218
LASSO; FDR; multi-marker; association; power
19.  Biomolecular Systems of Disease Buried Across Multiple GWAS Unveiled by Information Theory and Ontology 
A key challenge for genome-wide association studies (GWAS) is to understand how single nucleotide polymorphisms (SNPs) mechanistically underpin complex diseases. While this challenge has been addressed partially by Gene Ontology (GO) enrichment of large list of host genes of SNPs prioritized in GWAS, these enrichment have not been formally evaluated. Here, we develop a novel computational approach anchored in information theoretic similarity, by systematically mining lists of host genes of SNPs prioritized in three adult-onset diabetes mellitus GWAS. The “gold-standard” is based on GO associated with 20 published diabetes SNPs’ host genes and on our own evaluation. We computationally identify 69 similarity-predicted GO independently validated in all three GWAS (FDR<5%), enriched with those of the gold-standard (odds ratio=5.89, P=4.81e-05), and these terms can be organized by similarity criteria into 11 groupings termed “biomolecular systems”. Six biomolecular systems were corroborated by the gold-standard and the remaining five were previously uncharacterized.
PMCID: PMC3041547  PMID: 21347143
20.  Meta-analysis of gene-based genome-wide association studies of bone mineral density in Chinese and European subjects 
Osteoporosis International  2011;23(1):131-142.
Gene-based association approach could be regarded as a complementary analysis to the single SNP association analysis. We meta-analyzed the findings from the gene-based association approach using the genome-wide association studies (GWAS) data from Chinese and European subjects, confirmed several well established bone mineral density (BMD) genes, and suggested several novel BMD genes.
The introduction of GWAS has greatly increased the number of genes that are known to be associated with common diseases. Nonetheless, such a single SNP GWAS has a lower power to detect genes with multiple causal variants. We aimed to assess the association of each gene with BMD variation at the spine and hip using gene-based GWAS approach.
We studied 778 Hong Kong Southern Chinese (HKSC) women and 5,858 Northern Europeans (dCG); age, sex, and weight were adjusted in the model. The main outcome measure was BMD at the spine and hip.
Nine genes showed suggestive p value in HKSC, while 4 and 17 genes showed significant and suggestive p values respectively in dCG. Meta-analysis using weighted Z-transformed test confirmed several known BMD genes and suggested some novel ones at 1q21.3, 9q22, 9q33.2, 20p13, and 20q12. Top BMD genes were significantly associated with connective tissue, skeletal, and muscular system development and function (p < 0.05). Gene network inference revealed that a large number of these genes were significantly connected with each other to form a functional gene network, and several signaling pathways were strongly connected with these gene networks.
Our gene-based GWAS confirmed several BMD genes and suggested several novel BMD genes. Genetic contribution to BMD variation may operate through multiple genes identified in this study in functional gene networks. This finding may be useful in identifying and prioritizing candidate genes/loci for further study.
Electronic supplementary material
The online version of this article (doi:10.1007/s00198-011-1779-7) contains supplementary material, which is available to authorized users.
PMCID: PMC3249198  PMID: 21927923
Association study; Bone mineral density; Genetic epidemiology; Meta-analysis; Osteoporosis
21.  Ultrahigh-dimensional variable selection method for whole-genome gene-gene interaction analysis 
BMC Bioinformatics  2012;13:72.
Genome-wide gene-gene interaction analysis using single nucleotide polymorphisms (SNPs) is an attractive way for identification of genetic components that confers susceptibility of human complex diseases. Individual hypothesis testing for SNP-SNP pairs as in common genome-wide association study (GWAS) however involves difficulty in setting overall p-value due to complicated correlation structure, namely, the multiple testing problem that causes unacceptable false negative results. A large number of SNP-SNP pairs than sample size, so-called the large p small n problem, precludes simultaneous analysis using multiple regression. The method that overcomes above issues is thus needed.
We adopt an up-to-date method for ultrahigh-dimensional variable selection termed the sure independence screening (SIS) for appropriate handling of numerous number of SNP-SNP interactions by including them as predictor variables in logistic regression. We propose ranking strategy using promising dummy coding methods and following variable selection procedure in the SIS method suitably modified for gene-gene interaction analysis. We also implemented the procedures in a software program, EPISIS, using the cost-effective GPGPU (General-purpose computing on graphics processing units) technology. EPISIS can complete exhaustive search for SNP-SNP interactions in standard GWAS dataset within several hours. The proposed method works successfully in simulation experiments and in application to real WTCCC (Wellcome Trust Case–control Consortium) data.
Based on the machine-learning principle, the proposed method gives powerful and flexible genome-wide search for various patterns of gene-gene interaction.
PMCID: PMC3531267  PMID: 22554139
22.  Systematic biological prioritization after a genome-wide association study: an application to nicotine dependence 
Bioinformatics  2008;24(16):1805-1811.
Motivation: A challenging problem after a genome-wide association study (GWAS) is to balance the statistical evidence of genotype–phenotype correlation with a priori evidence of biological relevance.
Results: We introduce a method for systematically prioritizing single nucleotide polymorphisms (SNPs) for further study after a GWAS. The method combines evidence across multiple domains including statistical evidence of genotype–phenotype correlation, known pathways in the pathologic development of disease, SNP/gene functional properties, comparative genomics, prior evidence of genetic linkage, and linkage disequilibrium. We apply this method to a GWAS of nicotine dependence, and use simulated data to test it on several commercial SNP microarrays.
Availability: A comprehensive database of biological prioritization scores for all known SNPs is available at This can be used to prioritize nicotine dependence association studies through a straightforward mathematical formula—no special software is necessary.
Supplementary information: Supplementary data are available at Bioinformatics online.
PMCID: PMC2610477  PMID: 18565990
23.  High-throughput analysis of epistasis in genome-wide association studies with BiForce 
Bioinformatics  2012;28(15):1957-1964.
Motivation: Gene–gene interactions (epistasis) are thought to be important in shaping complex traits, but they have been under-explored in genome-wide association studies (GWAS) due to the computational challenge of enumerating billions of single nucleotide polymorphism (SNP) combinations. Fast screening tools are needed to make epistasis analysis routinely available in GWAS.
Results: We present BiForce to support high-throughput analysis of epistasis in GWAS for either quantitative or binary disease (case–control) traits. BiForce achieves great computational efficiency by using memory efficient data structures, Boolean bitwise operations and multithreaded parallelization. It performs a full pair-wise genome scan to detect interactions involving SNPs with or without significant marginal effects using appropriate Bonferroni-corrected significance thresholds. We show that BiForce is more powerful and significantly faster than published tools for both binary and quantitative traits in a series of performance tests on simulated and real datasets. We demonstrate BiForce in analysing eight metabolic traits in a GWAS cohort (323 697 SNPs, >4500 individuals) and two disease traits in another (>340 000 SNPs, >1750 cases and 1500 controls) on a 32-node computing cluster. BiForce completed analyses of the eight metabolic traits within 1 day, identified nine epistatic pairs of SNPs in five metabolic traits and 18 SNP pairs in two disease traits. BiForce can make the analysis of epistasis a routine exercise in GWAS and thus improve our understanding of the role of epistasis in the genetic regulation of complex traits.
Availability and implementation: The software is free and can be downloaded from
Supplementary information: Supplementary data are available at Bioinformatics online.
PMCID: PMC3400955  PMID: 22618535
24.  Development and Evaluation of a Genetic Risk Score for Obesity 
Biodemography and social biology  2013;59(1):85-100.
Results from genome-wide association studies (GWAS) represent a potential resource for etiological and treatment research. GWAS of obesity-related phenotypes have been especially successful. To translate this success into a research tool, we developed and tested a “genetic risk score” (GRS) that summarizes an individual’s genetic predisposition to obesity.
Different GWAS of obesity-related phenotypes report different sets of single nucleotide polymorphisms (SNPs) as the best genomic markers of obesity risk. Therefore, we applied a 3-stage approach that pooled results from multiple GWAS to select SNPs to include in our GRS: The 3 stages are (1) Extraction. SNPs with evidence of association are compiled from published GWAS; (2) Clustering. SNPs are grouped according to patterns of linkage disequilibrium; (3) Selection. Tag SNPs are selected from clusters that meet specific criteria. We applied this 3-stage approach to results from 16 GWAS of obesity-related phenotypes in European-descent samples to create a GRS. We then tested the GRS in the Atherosclerosis Risk in the Communities (ARIC) Study cohort (N=10,745, 55% female, 77% white, 23% African American).
Our 32-locus GRS was a statistically significant predictor of body mass index (BMI) and obesity among ARIC whites (for BMI, r=0.13, p<1×10−30; for obesity, area under the receiver operating characteristic curve (AUC)=0.57 [95% CI 0.55–0.58]). The GRS improved prediction of obesity (as measured by delta-AUC and integrated discrimination index) when added to models that included demographic and geographic information. FTO- and MC4R-linked SNPs, and a non-genetic risk assessment consisting of a socioeconomic index (p<0.01 for all comparisons). The GRS also predicted increased mortality risk over 17 years of follow-up. The GRS performed less well among African Americans.
The obesity GRS derived using our 3-stage approach is not useful for clinical risk prediction, but may have value as a tool for etiological and treatment research.
PMCID: PMC3671353  PMID: 23701538
25.  Evaluating diabetes and hypertension disease causality using mouse phenotypes 
BMC Systems Biology  2010;4:97.
Genome-wide association studies (GWAS) have found hundreds of single nucleotide polymorphisms (SNPs) associated with common diseases. However, it is largely unknown what genes linked with the SNPs actually implicate disease causality. A definitive proof for disease causality can be demonstration of disease-like phenotypes through genetic perturbation of the genes or alleles, which is obviously a daunting task for complex diseases where only mammalian models can be used.
Here we tapped the rich resource of mouse phenotype data and developed a method to quantify the probability that a gene perturbation causes the phenotypes of a disease. Using type II diabetes (T2D) and hypertension (HT) as study cases, we found that the genes, when perturbed, having high probability to cause T2D and HT phenotypes tend to be hubs in the interactome networks and are enriched for signaling pathways regulating metabolism but not metabolic pathways, even though the genes in these metabolic pathways are often the most significantly changed in expression levels in these diseases.
Compared to human genetic disease-based predictions, our mouse phenotype based predictors greatly increased the coverage while keeping a similarly high specificity. The disease phenotype probabilities given by our approach can be used to evaluate the likelihood of disease causality of disease-associated genes and genes surrounding disease-associated SNPs.
PMCID: PMC2917432  PMID: 20642857

Results 1-25 (879225)