PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (1380896)

Clipboard (0)
None

Related Articles

1.  Ethanol exhibits specificity in its effects on differentiation of hematopoietic progenitors1 
Cellular immunology  2008;255(1-2):1-7.
Ethanol is a known teratogen but the mechanisms by which this simple compound affects fetal development remain unresolved. The goal of the current study was to determine the mechanism by which ethanol affects lymphoid differentiation using an in vitro model of ethanol exposure. Primitive hematopoietic oligoclonal neonatal progenitor cells (ONP), with the phenotype Lin−HSAloCD43loSca-1−c-Kit+ that are present in neonatal but not adult bone marrow were sorted from the bone marrow of 2-week-old C57BL/6J mice and cultured under conditions that favor either B cell or myeloid cell differentiation with or without addition of ethanol. The overall growth of the ONP cells was not significantly affected by inclusion of up to 100mM ethanol in the culture medium. However, the differentiation of the progenitor cells along the B-cell pathway was significantly impaired by ethanol in a dose dependent manner. Exposure of ONP cells to 100mM ethanol resulted in greater than 95% inhibition of B cell differentiation. Conversely, ethanol concentrations up to and including 100mM had no significant effect on differentiation along the myeloid pathway. The effect of ethanol on transcription factor expression was consistent with the effects on differentiation. ONP cells grown in 100mM ethanol failed to up-regulate Pax5 and EBF, transcriptional regulators that are necessary for B cell development. However, ethanol had no significant effect on the up-regulation of PU.1, a transcription factor that, when expressed in high concentration, favors myeloid cell development. Taken together, these results suggest that ethanol has specificity in its effects on differentiation of hematopoietic progenitors.
doi:10.1016/j.cellimm.2008.08.008
PMCID: PMC2702472  PMID: 18834972
Rodent; B cells; Monocytes/macrophages; Cell differentiation; Hematopoiesis
2.  Progressive severe lung injury by zinc oxide nanoparticles; the role of Zn2+ dissolution inside lysosomes 
Background
Large production volumes of zinc oxide nanoparticles (ZnONP) might be anticipated to pose risks, of accidental inhalation in occupational and even in consumer settings. Herein, we further investigated the pathological changes induced by ZnONP and their possible mechanism of action.
Methods
Two doses of ZnONP (50 and 150 cm2/rat) were intratracheally instilled into the lungs of rats with assessments made at 24 h, 1 wk, and 4 wks after instillation to evaluate dose- and time-course responses. Assessments included bronchoalveolar lavage (BAL) fluid analysis, histological analysis, transmission electron microscopy, and IgE and IgA measurement in the serum and BAL fluid. To evaluate the mechanism, alternative ZnONP, ZnONP-free bronchoalveolar lavage exudate, and dissolved Zn2+ (92.5 μg/rat) were also instilled to rats. Acridine orange staining was utilized in macrophages in culture to evaluate the lysosomal membrane destabilization by NP.
Results
ZnONP induced eosinophilia, proliferation of airway epithelial cells, goblet cell hyperplasia, and pulmonary fibrosis. Bronchocentric interstitial pulmonary fibrosis at the chronic phase was associated with increased myofibroblast accumulation and transforming growth factor-β positivity. Serum IgE levels were up-regulated by ZnONP along with the eosinophilia whilst serum IgA levels were down-regulated by ZnONP. ZnONP are rapidly dissolved under acidic conditions (pH 4.5) whilst they remained intact around neutrality (pH 7.4). The instillation of dissolved Zn2+ into rat lungs showed similar pathologies (eg., eosinophilia, bronchocentric interstitial fibrosis) as were elicited by ZnONP. Lysosomal stability was decreased and cell death resulted following treatment of macrophages with ZnONP in vitro.
Conclusions
We hypothesise that rapid, pH-dependent dissolution of ZnONP inside of phagosomes is the main cause of ZnONP-induced diverse progressive severe lung injuries.
doi:10.1186/1743-8977-8-27
PMCID: PMC3179432  PMID: 21896169
3.  Adult Human Olfactory Epithelial-Derived Progenitors: A Potential Autologous Source for Cell-Based Treatment for Parkinson's Disease 
Human adult olfactory neural progenitors (hONPs) can differentiate along several neural lineages in response to morphogenic signals in vitro. This study engrafted cells modified by the most efficient transfection paradigm for dopaminergic neural restriction and pretransfected controls into a unilateral neurotoxin, 6-hydroxydopamine-induced parkinsonian rat model. The results suggest that human adult olfactory epithelial-derived progenitors represent a unique autologous cell type with promising potential for future use in a cell-based therapy for patients with Parkinson's disease.
Human adult olfactory epithelial-derived neural progenitors (hONPs) can differentiate along several neural lineages in response to morphogenic signals in vitro. A previous study optimized the transfection paradigm for the differentiation of hONPs to dopaminergic neurons. This study engrafted cells modified by the most efficient transfection paradigm for dopaminergic neural restriction and pretransfected controls into a unilateral neurotoxin, 6-hydroxydopamine-induced parkinsonian rat model. Approximately 35% of the animals engrafted with hONPs had improved behavioral recovery as demonstrated by the amphetamine-induced rotation test, as well as a corner preference and cylinder paw preference, over a period of 24 weeks. The pre- and post-transfected groups produced equivalent responses, indicating that the toxic host environment supported hONP dopaminergic differentiation in situ. Human fibroblasts used as a cellular control did not diminish the parkinsonian rotational deficits at any point during the study. Increased numbers of tyrosine hydroxylase (TH)-positive cells were detected in the engrafted brains compared with the fibroblast-implanted and medium-only controls. Engrafted TH-positive hONPs were detected for a minimum of 6 months in vivo; they were multipolar, had long processes, and migrated beyond their initial injection sites. Higher dopamine levels were detected in the striatum of behaviorally improved animals than in equivalent regions of their nonrecovered counterparts. Throughout these experiments, no evidence of tumorigenicity was observed. These results support our hypothesis that human adult olfactory epithelial-derived progenitors represent a unique autologous cell type with promising potential for future use in a cell-based therapy for patients with Parkinson's disease.
doi:10.5966/sctm.2012-0012
PMCID: PMC3659713  PMID: 23197853
Adult stem cells; Autologous; Autologous stem cell transplantation; Cell transplantation; Cellular therapy; Parkinson's disease; Stem cell-microenvironment interactions; Transcription factors
4.  Dynamic interaction networks in a hierarchically organized tissue 
We have integrated gene expression profiling with database and literature mining, mechanistic modeling, and cell culture experiments to identify intercellular and intracellular networks regulating blood stem cell self-renewal.Blood stem cell fate in vitro is regulated non-autonomously by a coupled positive–negative intercellular feedback circuit, composed of megakaryocyte-derived stimulatory growth factors (VEGF, PDGF, EGF, and serotonin) versus monocyte-derived inhibitory factors (CCL3, CCL4, CXCL10, TGFB2, and TNFSF9).The antagonistic signals converge in a core intracellular network focused around PI3K, Raf, PLC, and Akt.Model simulations enable functional classification of the novel endogenous ligands and signaling molecules.
Intercellular (between cell) communication networks are required to maintain homeostasis and coordinate regenerative and developmental cues in multicellular organisms. Despite the recognized importance of intercellular networks in regulating adult stem and progenitor cell fate, the specific cell populations involved, and the underlying molecular mechanisms are largely undefined. Although a limited number of studies have applied novel bioinformatic approaches to unravel intercellular signaling in other cell systems (Frankenstein et al, 2006), a comprehensive analysis of intercellular communication in a stem cell-derived, hierarchical tissue network has yet to be reported.
As a model system to explore intercellular communication networks in a hierarchically organized tissue, we cultured human umbilical cord blood (UCB)-derived stem and progenitor cells in defined, minimal cytokine-supplemented liquid culture (Madlambayan et al, 2006). To systematically explore the molecular and cellular dynamics underlying primitive progenitor growth and differentiation, gene expression profiles of primitive (lineage negative; Lin−) and mature (lineage positive; Lin+) populations were generated during phases of stem cell expansion versus depletion. Parallel phenotypic and subproteomic experiments validated that mRNA expression correlated with complex measures of proteome activity (protein secretion and cell surface expression). Using a curated list of secreted ligand–receptor interactions and published expression profiles of purified mature blood populations, we implemented a novel algorithm to reconstruct the intercellular signaling networks established between stem cells and multi-lineage progeny in vitro. By correlating differential expression patterns with stem cell growth, we predict cell populations, pathways, and secreted ligands associated with stem cell self-renewal and differentiation (Figure 3A).
We then tested the correlative predictions in a series of cell culture experiments. UCB progenitor cell cultures were supplemented with saturating amounts of 18 putative regulatory ligands, or cocultured with purified mature blood lineages (megakaryocytes, monocytes, and erythrocytes), and analyzed for effects on total cell, progenitor, and primitive progenitor growth. At the primitive progenitor level, 3/5 novel predicted stimulatory ligands (EGF, PDGFB, and VEGF) displayed significant positive effects, 5/7 predicted inhibitory factors (CCL3, CCL4, CXCL10, TNFSF9, and TGFB2) displayed negative effects, whereas only 1/5 non-correlated ligand (CXCL7) displayed an effect. Also consistent with predictions from gene expression data, megakaryocytes and monocytes were found to stimulate and inhibit primitive progenitor growth, respectively, and these effects were attributable to differential secretome profiles of stimulatory versus inhibitory ligands.
Cellular responses to external stimuli, particularly in heterogeneous and dynamic cell populations, represent complex functions of multiple cell fate decisions acting both directly and indirectly on the target (stem cell) populations. Experimentally distinguishing the mode of action of cytokines is thus a difficult task. To address this we used our previously published interactive model of hematopoiesis (Kirouac et al, 2009) to classify experimentally identified regulatory ligands into one of four distinct functional categories based on their differential effects on cell population growth. TGFB2 was classified as a proliferation inhibitor, CCL4, CXCL10, SPARC, and TNFSF9 as self-renewal inhibitors, CCL3 a proliferation stimulator, and EGF, VEGF, and PDGFB as self-renewal stimulators.
Stem and progenitor cells exposed to combinatorial extracellular signals must propagate this information through intracellular molecular networks, and respond appropriately by modifying cell fate decisions. To explore how our experimentally identified positive and negative regulatory signals are integrated at the intracellular level, we constructed a blood stem cell self-renewal signaling network through extensive literature curation and protein–protein interaction (PPI) network mapping. We find that signal transduction pathways activated by the various stimulatory and inhibitory ligands converge on a limited set of molecular control nodes, forming a core subnetwork enriched for known regulators of self-renewal (Figure 6A). To experimentally test the intracellular signaling molecules computationally predicted as regulators of stem cell self-renewal, we obtained five small molecule antagonists against the kinases Phosphatidylinositol 3-kinase (PI3K), Raf, Akt, Phospholipase C (PLC), and MEK1. Liquid cultures were supplemented with the five molecules individually, and resultant cell population outputs compared against model simulations to deconvolute the functional effects on proliferation (and survival) versus self-renewal. This analysis classifies inhibition of PI3K and Raf activity as selectively targeting self-renewal, PLC as selectively targeting survival, and Akt as selectively targeting proliferation; MEK inhibition appears non-specific for these processes.
This represents the first systematic characterization of how cell fate decisions are regulated non-autonomously through lineage-specific interactions with differentiated progeny. The complex intercellular communication networks can be approximated as an antagonistic positive–negative feedback circuit, wherein progenitor expansion is modulated by a balance of megakaryocyte-derived stimulatory factors (EGF, PDGF, VEGF, and possibly serotonin) versus monocyte-derived inhibitory factors (CCL3, CCL4, CXCL10, TGFB2, and TNFSF9). This complex milieu of endogenous regulatory signals is integrated and processed within a core intracellular signaling network, resulting in modulation of cell-level kinetic parameters (proliferation, survival, and self-renewal). We reconstruct a stem cell associated intracellular network, and identify PI3K, Raf, Akt, and PLC as functionally distinct signal integration nodes, linking extracellular and intracellular signaling. These findings lay the groundwork for novel strategies to control blood stem cell self-renewal in vitro and in vivo.
Intercellular (between cell) communication networks maintain homeostasis and coordinate regenerative and developmental cues in multicellular organisms. Despite the importance of intercellular networks in stem cell biology, their rules, structure and molecular components are poorly understood. Herein, we describe the structure and dynamics of intercellular and intracellular networks in a stem cell derived, hierarchically organized tissue using experimental and theoretical analyses of cultured human umbilical cord blood progenitors. By integrating high-throughput molecular profiling, database and literature mining, mechanistic modeling, and cell culture experiments, we show that secreted factor-mediated intercellular communication networks regulate blood stem cell fate decisions. In particular, self-renewal is modulated by a coupled positive–negative intercellular feedback circuit composed of megakaryocyte-derived stimulatory growth factors (VEGF, PDGF, EGF, and serotonin) versus monocyte-derived inhibitory factors (CCL3, CCL4, CXCL10, TGFB2, and TNFSF9). We reconstruct a stem cell intracellular network, and identify PI3K, Raf, Akt, and PLC as functionally distinct signal integration nodes, linking extracellular, and intracellular signaling. This represents the first systematic characterization of how stem cell fate decisions are regulated non-autonomously through lineage-specific interactions with differentiated progeny.
doi:10.1038/msb.2010.71
PMCID: PMC2990637  PMID: 20924352
cellular networks; hematopoiesis; intercellular signaling; self-renewal; stem cells
5.  Metal Oxide Nanoparticles Induce Unique Inflammatory Footprints in the Lung: Important Implications for Nanoparticle Testing 
Environmental Health Perspectives  2010;118(12):1699-1706.
Background
Metal oxide nanoparticles (NPs) have been widely used in industry, cosmetics, and biomedicine.
Objectives
We examined hazards of several well-characterized high production volume NPs because of increasing concern about occupational exposure via inhalation.
Methods
A panel of well-characterized NPs [cerium oxide (CeO2NP), titanium dioxide (TiO2NP), carbon black (CBNP), silicon dioxide (SiO2NP), nickel oxide (NiONP), zinc oxide (ZnONP), copper oxide (CuONP), and amine-modified polystyrene beads] was instilled into lungs of rats. We evaluated the inflammation potencies of these NPs 24 hr and 4 weeks postinstillation. For NPs that caused significant inflammation at 24 hr, we then investigated the characteristics of the inflammation. All exposures were carried out at equal-surface-area doses.
Results
Only CeO2NP, NiONP, ZnONP, and CuONP were inflammogenic to the lungs of rats at the high doses used. Strikingly, each of these induced a unique inflammatory footprint both acutely (24 hr) and chronically (4 weeks). Acutely, patterns of neutrophil and eosinophil infiltrates differed after CeO2NP, NiONP, ZnONP, and CuONP treatment. Chronic inflammatory responses also differed after 4 weeks, with neutrophilic, neutrophilic/lymphocytic, eosinophilic/fibrotic/granulomatous, and fibrotic/granulomatous inflammation being caused respectively by CeO2NP, NiONP, ZnONP, and CuONP.
Conclusion
Different types of inflammation imply different hazards in terms of pathology, risks, and risk severity. In vitro testing could not have differentiated these complex hazard outcomes, and this has important implications for the global strategy for NP hazard assessment. Our results demonstrate that NPs cannot be viewed as a single hazard entity and that risk assessment should be performed separately and with caution for different NPs.
doi:10.1289/ehp.1002201
PMCID: PMC3002189  PMID: 20729176
eosinophilic inflammation; intratracheal instillation; in vitro assay; in vivo assay; lymphocytic inflammation; metal oxide nanoparticles; neutrophilic inflammation; risk assessment; surface area dose; Wistar rat
6.  Pilot Study of iPS-derived Neural Cells to Examine Biological Effects of Alcohol on Human Neurons in vitro 
Background
Studies of the effects of alcohol on NMDA receptor function and gene expression have depended on rodent or post-mortem human brain models. Ideally, the effects of alcohol might better be examined in living neural tissue derived from human subjects. In this study, we used new technologies to reprogram human subject-specific tissue into pluripotent cell colonies and generate human neural cultures as a model system to examine the molecular actions of alcohol.
Methods
Induced pluripotent stem (iPS) cells were generated from skin biopsies taken from 7 individuals, 4 alcohol dependent subjects and 3 social drinkers.. We differentiated the iPS cells into neural cultures and characterized them by immunocytochemistry using antibodies for the neuronal marker beta III-tubulin, glial marker s100β, and synaptic marker synpasin1. Electrophysiology was performed to characterize the iPS-derived neurons and measure the effects of acute alcohol exposure on the NMDA receptor response in chronically alcohol exposed and non-exposed neural cultures from one non-alcoholic. Finally, we examined changes in mRNA expression of the NMDA receptor subunit genes GRIN1, GRIN2A, GRIN2B, and GRIN2D after 7 days of alcohol exposure and after 24-hour withdrawal from chronic alcohol exposure.
Results
Immunocytochemistry revealed positive staining for neuronal, glial, and synaptic markers. iPS-derived neurons displayed spontaneous electrical properties and functional ionotropic receptors. Acute alcohol exposure significantly attenuated the NMDA response, an effect that was not observed after 7 days of chronic alcohol exposure. After 7 days of chronic alcohol exposure, there were significant increases in mRNA expression of GRIN1, GRIN2A, and GRIN2D in cultures derived from alcoholic subjects but not in cultures derived from non-alcoholics.
Conclusions
These findings support the potential utility of human iPS-derived neural cultures as in vitro models to examine the molecular actions of alcohol on human neural cells.
doi:10.1111/j.1530-0277.2012.01792.x
PMCID: PMC3424319  PMID: 22486492
iPS cell; alcohol; NMDA receptor; electrophysiology; gene expression
7.  Activation of Erk and p53 regulates copper oxide nanoparticle-induced cytotoxicity in keratinocytes and fibroblasts 
Copper oxide nanoparticles (CuONP) have attracted increasing attention due to their unique properties and have been extensively utilized in industrial and commercial applications. For example, their antimicrobial capability endows CuONP with applications in dressings and textiles against bacterial infections. Along with the wide applications, concerns about the possible effects of CuONP on humans are also increasing. It is crucial to evaluate the safety and impact of CuONP on humans, and especially the skin, prior to their practical application. The potential toxicity of CuONP to skin keratinocytes has been reported recently. However, the underlying mechanism of toxicity in skin cells has remained unclear. In the present work, we explored the possible mechanism of the cytotoxicity of CuONP in HaCaT human keratinocytes and mouse embryonic fibroblasts (MEF). CuONP exposure induced viability loss, migration inhibition, and G2/M phase cycle arrest in both cell types. CuONP significantly induced mitogen-activated protein kinase (extracellular signal-regulated kinase [Erk], p38, and c-Jun N-terminal kinase [JNK]) activation in dose- and time-dependent manners. U0126 (an inhibitor of Erk), but not SB 239063 (an inhibitor of p38) or SP600125 (an inhibitor of JNK), enhanced CuONP-induced viability loss. CuONP also induced decreases in p53 and p-p53 levels in both cell types. Cyclic pifithrin-α, an inhibitor of p53 transcriptional activity, enhanced CuONP-induced viability loss. Nutlin-3α, a p53 stabilizer, prevented CuONP-induced viability loss in HaCaT cells, but not in MEF cells, due to the inherent toxicity of nutlin-3α to MEF. Moreover, the experiments on primary keratinocytes are in accordance with the conclusions acquired from HaCaT and MEF cells. These data demonstrate that the activation of Erk and p53 plays an important role in CuONP-induced cytotoxicity, and agents that preserve Erk or p53 activation may prevent CuONP-induced cytotoxicity.
doi:10.2147/IJN.S67688
PMCID: PMC4200036  PMID: 25336953
cell cycle arrest; CuONP; MAPK; nutlin-3α; cyclic pifithrin-α
8.  Division of labor by dual feedback regulators controls JAK2/STAT5 signaling over broad ligand range 
Quantitative analysis of time-resolved data in primary erythroid progenitor cells reveals that a dual negative transcriptional feedback mechanism underlies the ability of STAT5 to respond to the broad spectrum of physiologically relevant Epo concentrations.
A mathematical dual feedback model of the Epo-induced JAK2/STAT5 signaling pathway was calibrated with extensive time-resolved quantitative data sets from immunoblotting, mass spectrometry and qRT–PCR experiments in primary erythroid progenitor cells.We show that the amount of nuclear phosphorylated STAT5 integrated for 60 min post Epo stimulation directly correlates with the fraction of surviving cells 24 h later.CIS and SOCS3 were identified as the most relevant transcriptional feedback regulators of JAK2/STAT5 signaling in primary erythroid progenitor cells. Applying the model, we revealed that CIS-mediated inhibitory effects are most important at low ligand concentrations, whereas SOCS3 inhibition is more effective at high ligand doses.The distinct modes of inhibition of CIS and SOCS3 at various Epo concentrations provide a strategy for achieving control of JAK2/STAT5 signaling over the entire range of physiological Epo concentrations.
Cells interpret information encoded by extracellular stimuli through the activation of intracellular signaling networks and translate this information into cellular decisions. A prime example for a system that is exposed to extremely variable ligand concentrations is the erythroid lineage. The key regulator Erythropoietin (Epo) facilitates continuous renewal of erythrocytes at low basal levels but also secures compensation in case of, e.g., blood loss through an up to 1000-fold increase in hormone concentration. The Epo receptor (EpoR) is expressed on erythroid progenitor cells at the colony forming unit erythroid (CFU-E) stage. Stimulation of these cells with Epo leads to rapid but transient activation of receptor and JAK2 phosphorylation followed by phosphorylation of the latent transcription factor STAT5. Although STAT5 is known to be an essential regulator of survival and differentiation of erythroid progenitor cells, a quantitative link between the dynamic properties of STAT5 signaling and survival decisions remained unknown. STAT5-mediated responses in CFU-E cells are modulated by multiple attenuation mechanisms that operate on different time scales. Fast-acting mechanisms such as depletion of Epo by rapid receptor turnover and recruitment of the phosphatase SHP-1 control the initial signal amplitude at the receptor level. Transcriptional feedback regulators such as suppressor of cytokine signaling (SOCS) family members CIS and SOCS3 operate at a slower time scale. Despite the ample knowledge of the individual components involved, only little is known about the specific contributions of these regulators in controlling dynamic properties of STAT5 in response to a broad range of input signals. Therefore, dynamic pathway modeling is required to understand the complex regulatory network of feedback regulators.
To address these questions, we established a dual negative feedback model of JAK2/STAT5 signaling in primary erythroid progenitor cells isolated from mouse fetal livers. We provide a large data set of JAK2/STAT5 signaling dynamics employing quantitative immunoblotting, mass spectrometry and quantitative RT–PCR measured under different perturbation conditions to calibrate our model (Figure 3). The structure of our model was constructed to comprise the minimal number of parameters necessary to explain the data. Thereby, we aimed at a model with fully identifiable parameters that are essential to obtain high predictive power. Parameter identifiability was analyzed by the profile likelihood approach. Applying this method, we could establish a dual negative feedback model of JAK2-STAT5 signaling with structurally and in most cases practically identifiable parameters.
A major bottle-neck in combining signal transduction events with cellular phenotypes is the discrepancy in the time scale and stimuli concentrations that are applied in the different experiments. The sensitivity of biochemical assays to determine phosphorylation events within minutes or hours after stimulation is usually lower than the threshold of sensitivity in assays to determine the physiological response after one or more days. Facilitated by the model, we were able to compute the integrated response of JAK2/STAT5 signaling components for experimentally unaddressable Epo concentrations. Our results demonstrate that the integrated response of pSTAT5 in the nucleus accurately correlates with the experimentally determined survival of CFU-E cells. This provides a quantitative link of the dependency of primary CFU-E cells on pSTAT5 activation dynamics. By correlation analysis, we could identify the early signaling phase (⩽1 h) of STAT5 to be the most predictive for the fraction of surviving cells, which was determined ∼24 h later. Thus, we hypothesize that as a general principle in apoptotic decisions, ligand concentrations translated into kinetic-encoded information of early signaling events downstream of receptors can be predictive for survival decisions 24 h later.
After the first hour of stimulation, it is important to constrain signaling to a residual steady-state level. Constitutive phosphorylation of the JAK2/STAT5 pathway has a crucial role in the onset of polycythemia vera (PV), a disease associated with Epo-independent erythroid differentiation. The two identified transcriptional feedback proteins, CIS and SOCS3, are responsible for adjusting the phosphorylation level of STAT5 after 1 h of stimulation. Since the Epo input signal can vary over a broad range of ligand concentrations, we asked how CIS and SOCS3 can facilitate control of STAT5 long-term phosphorylation levels over the entire physiological relevant hormone concentrations. By using model simulations, we revealed that the two feedbacks are most effective at different Epo concentration ranges. Predicted by our mathematical model, the major role of CIS in modulating STAT5 phosphorylation levels is at low, basal Epo concentrations, whereas SOCS3 is essential to control the STAT5 phosphorylation levels at high Epo doses (Figure 6). As a potential molecular mechanism of this dose-dependent inhibitory effect, we could identify the quantity of pJAK2 relative to pEpoR that increases with higher Epo concentrations. Since SOCS3 can inhibit JAK2 directly via its KIR domain to attenuate downstream STAT5 activation, SOCS3 becomes more effective with the relative increase of JAK2 activation. Hence, CIS and SOCS3 act in a concerted manner to ensure tight regulation of STAT5 responses over the broad physiological range of Epo concentrations.
In summary, our mathematical approach provided new insights into the specific function of feedback regulation in STAT5-mediated life or death decisions of primary erythroid cells. We dissected the roles of the transcriptionally induced proteins CIS and SOCS3 that operate as dual feedback with divided function thereby facilitating the control of STAT5 activation levels over the entire range of physiological Epo concentrations. The detailed understanding of the molecular processes and control distribution of Epo-induced JAK/STAT signaling can be further applied to gain insights into alterations promoting malignant hematopoietic diseases.
Cellular signal transduction is governed by multiple feedback mechanisms to elicit robust cellular decisions. The specific contributions of individual feedback regulators, however, remain unclear. Based on extensive time-resolved data sets in primary erythroid progenitor cells, we established a dynamic pathway model to dissect the roles of the two transcriptional negative feedback regulators of the suppressor of cytokine signaling (SOCS) family, CIS and SOCS3, in JAK2/STAT5 signaling. Facilitated by the model, we calculated the STAT5 response for experimentally unobservable Epo concentrations and provide a quantitative link between cell survival and the integrated response of STAT5 in the nucleus. Model predictions show that the two feedbacks CIS and SOCS3 are most effective at different ligand concentration ranges due to their distinct inhibitory mechanisms. This divided function of dual feedback regulation enables control of STAT5 responses for Epo concentrations that can vary 1000-fold in vivo. Our modeling approach reveals dose-dependent feedback control as key property to regulate STAT5-mediated survival decisions over a broad range of ligand concentrations.
doi:10.1038/msb.2011.50
PMCID: PMC3159971  PMID: 21772264
apoptosis; erythropoietin; mathematical modeling; negative feedback; SOCS
9.  Effects of size and surface of zinc oxide and aluminum-doped zinc oxide nanoparticles on cell viability inferred by proteomic analyses 
Although the health effects of zinc oxide nanoparticles (ZnONPs) on the respiratory system have been reported, the fate, potential toxicity, and mechanisms in biological cells of these particles, as related to particle size and surface characteristics, have not been well elucidated. To determine the physicochemical properties of ZnONPs that govern cytotoxicity, we investigated the effects of size, electronic properties, zinc concentration, and pH on cell viability using human alveolar-basal epithelial A549 cells as a model. We observed that a 2-hour or longer exposure to ZnONPs induced changes in cell viability. The alteration in cell viability was associated with the zeta potentials and pH values of the ZnONPs. Proteomic profiling of A549 exposed to ZnONPs for 2 and 4 hours was used to determine the biological mechanisms of ZnONP toxicity. p53-pathway activation was the core mechanism regulating cell viability in response to particle size. Activation of the Wnt and TGFβ signaling pathways was also important in the cellular response to ZnONPs of different sizes. The cadherin and Wnt signaling pathways were important cellular mechanisms triggered by surface differences. These results suggested that the size and surface characteristics of ZnONPs might play an important role in their observed cytotoxicity. This approach facilitates the design of more comprehensive systems for the evaluation of nanoparticles.
doi:10.2147/IJN.S66651
PMCID: PMC4128792  PMID: 25120361
aluminium-doped zinc oxide; nanoparticle; pH; toxicology; WNT pathway; zeta potential
10.  Short-term memory in gene induction reveals the regulatory principle behind stochastic IL-4 expression 
Combining experiments on primary T cells and mathematical modeling, we characterized the stochastic expression of the interleukin-4 cytokine gene in its physiologic context, showing that a two-step model of transcriptional regulation acting on chromatin rearrangement and RNA polymerase recruitment accounts for the level, kinetics, and population variability of expression.A rate-limiting step upstream of transcription initiation, but occurring at the level of an individual allele, controls whether the interleukin-4 gene is expressed during antigenic stimulation, suggesting that the observed stochasticity of expression is linked to the dynamics of chromatin rearrangement.The computational analysis predicts that the probability to re-express an interleukin-4 gene that has been expressed once is transiently increased. In support, we experimentally demonstrate a short-term memory for interleukin-4 expression at the predicted time scale of several days.The model provides a unifying framework that accounts for both graded and binary modes of gene regulation. Graded changes in expression level can be achieved by controlling transcription initiation, whereas binary regulation acts at the level of chromatin rearrangement and is targeted during the differentiation of T cells that specialize in interleukin-4 production.
Cell populations are typically heterogeneous with respect to protein expression even when clonally derived from a single progenitor. In bacteria and yeast, such heterogeneity has been shown to be due to intrinsically stochastic dynamics of gene expression (Raj and van Oudenaarden, 2008). Thus, cross-population heterogeneity may be an unavoidable by-product of random fluctuations in molecular interactions (Raser and O'Shea, 2004; Pedraza and van Oudenaarden, 2005). The phenotypic variability deriving from it may also be beneficial for cell function, differentiation, or adaptation to changing environments (Chang et al, 2008; Feinerman et al, 2008; Losick and Desplan, 2008). However, little is known about how gene-expression variability is caused in mammalian cells.
Two principal modes of gene regulation have been identified: graded and binary. In the graded mode, transcriptional regulators can tune the level of a gene product in a continuous manner (Hazzalin and Mahadevan, 2002). In the binary mode, the gene is expressed at an invariant level, whereas its probability of being expressed in a given cell is regulated, so that the gene has discrete ‘on' and ‘off' states (Walters et al, 1995; Hume, 2000; Biggar and Crabtree, 2001). In humans and mice, cytokine genes are expressed in a binary manner (Bix and Locksley, 1998; Riviere et al, 1998; Hu-Li et al, 2001; Apostolou and Thanos, 2008). A particularly well-studied case is the interleukin-4 (il4) gene that is critical for antibody-based immune responses. This gene is expressed by antigen-stimulated T cells initially with low probability, so that in most IL-4-positive cells only one allele is active (Bix and Locksley, 1998; Riviere et al, 1998). The expressed allele is not imprinted but chosen stochastically during each cell stimulation (Hu-Li et al, 2001).
Here, we have studied the dynamics of IL-4 expression quantitatively. Primary murine CD4+ T cells have been differentiated uniformly into type-2 T-helper (Th2) cells that express the lineage-specifying transcription factor (TF) Gata-3 and are competent to activate the il4 gene upon challenge with antigen. Using T cells heterozygous for an il4 wild-type allele and an il4 allele with GFP knock-in after the promoter, the alleles are found to be expressed stochastically and in an uncorrelated manner (Figure 2A; Hu-Li et al, 2001). To account for the observed stochastic dynamics of IL-4 expression, we considered a basic model of gene transcription, mRNA translation, turnover, and protein secretion (Figure 2B). However, our experimental estimates of the intracellular life times of IL-4 mRNA and protein (∼1 h) and their absolute numbers (mRNA∼103, protein∼105) rule out random fluctuations in transcription, translation as well as mRNA and protein turnover as an explanation for the observed stochastic properties of IL-4 expression (Thattai and van Oudenaarden, 2001; Paulsson, 2004).
As il4 is known to be strongly regulated at the chromatin level (Ansel et al, 2006), we included in the model a reversible step of chromatin opening that is permissive for transcription (Figure 2C and D). Both chromatin opening and transcription initiation are driven by TFs that are transiently activated during the antigen stimulus, with NFAT1 playing a prominent role (Agarwal et al, 2000; Avni et al, 2002; Guo et al, 2004). The model accounts for the kinetics of NFAT1 TF activity (Figure 2E) (Loh et al, 1996). Using a best-fit procedure for estimating the kinetics of the chromatin transition and TF activity from experimental data, we found that the model accurately reproduces the distribution of IL-4 expression within the cell population over the entire time course of a stimulation (Figure 3A). At the same time, it accounts for the measured kinetics of IL-4 mRNA, intracellular and secreted protein (Figure 3B). Additional data show that the model can also explain IL-4 expression at different stages of Th2 differentiation and upon pharmacological inhibition of NFAT1 activity. In each case, the model predicts a slow and stochastic chromatin opening (Step 1 in Figure 2C) that is the limiting step for the activation of the gene.
The slowness of chromatin opening inferred by the model implies an extended lifetime of the open chromatin state (several days), which lasts longer than TF activity during antigenic stimulation (several hours). This indicates that acute IL-4 expression is terminated by the cessation of TF activity (Step 2 in Figure 2C), rather than by the closing of the chromatin (Step 1). In support of this prediction, we observed an elevated fraction of IL-4-producing cells after secondary stimulations administered within a few days of the primary stimulus. Consistent with the model, this elevation disappeared with a half-life of ∼3 days (Figure 4B). To test whether this ‘short-term memory' for activation of the il4 gene is indeed due to the IL-4 producers in the primary stimulation, we sorted stimulated Th2 cells into viable IL-4-producing and non-producing fractions using the cytokine secretion assay (Ouyang et al, 2000) and cultured them separately for different resting periods. The probability of IL-4 re-expression in the positive-sorted cells was consistently larger than in negative-sorted cells and decreased progressively over several days (Figure 4C). By contrast, the sorted IL-4 negative cells exhibited a constant induction probability indistinguishable from the unsorted population. This behavior was not due to differential cell proliferation in the sorted populations or different success of Th2 differentiation. Moreover, using heterozygous il4-wild-type/il4-gfp cells, and sorting for expression of the wild-type allele, we observed that expression of the il4-gfp allele was similar in IL-4-positive and negative sorted fractions. Taken together, these findings imply that stochastic, slow chromatin changes at individual il4 genes govern the binary expression pattern of this cytokine.
In conclusion, we propose an experimentally based model of inducible gene expression where strong stochasticity arises from slow (hours to days) chromatin opening and closing transitions, rather than being due to small numbers of mRNA or protein molecules or transcriptional bursting (Raj et al, 2006). This rate-limiting step upstream of transcription initiation (which may entail several interacting epigenetic processes) naturally gives rise to a binary expression pattern of the gene. By contrast, regulation at the level of transcription initiation can have a graded effect on the expression level. We provide evidence that both binary and graded regulation can occur for the il4 gene. Physiological regulation of il4 seems to be mainly binary, thus enabling a dose–response within a population while producing an unequivocal all-or-none signal at the single-cell level.
Although cell-to-cell variability has been recognized as an unavoidable consequence of stochasticity in gene expression, it may also serve a functional role for tuning physiological responses within a cell population. In the immune system, remarkably large variability in the expression of cytokine genes has been observed in homogeneous populations of lymphocytes, but the underlying molecular mechanisms are incompletely understood. Here, we study the interleukin-4 gene (il4) in T-helper lymphocytes, combining mathematical modeling with the experimental quantification of expression variability and critical parameters. We show that a stochastic rate-limiting step upstream of transcription initiation, but acting at the level of an individual allele, controls il4 expression. Only a fraction of cells reaches an active, transcription-competent state in the transient time window determined by antigen stimulation. We support this finding by experimental evidence of a previously unknown short-term memory that was predicted by the model to arise from the long lifetime of the active state. Our analysis shows how a stochastic mechanism acting at the chromatin level can be integrated with transcriptional regulation to quantitatively control cell-to-cell variability.
doi:10.1038/msb.2010.13
PMCID: PMC2872609  PMID: 20393579
cytokines; cytokine secretion assay; epigenetic regulation; gene expression; stochastic model
11.  Gene Expression Profile and Functionality of ESC-Derived Lin-ckit+Sca-1+ Cells Are Distinct from Lin-ckit+Sca-1+ Cells Isolated from Fetal Liver or Bone Marrow 
PLoS ONE  2012;7(12):e51944.
In vitro bioreactor-based cultures are being extensively investigated for large-scale production of differentiated cells from embryonic stem cells (ESCs). However, it is unclear whether in vitro ESC-derived progenitors have similar gene expression profiles and functionalities as their in vivo counterparts. This is crucial in establishing the validity of ESC-derived cells as replacements for adult-isolated cells for clinical therapies. In this study, we compared the gene expression profiles of Lin-ckit+Sca-1+ (LKS) cells generated in vitro from mouse ESCs using either static or bioreactor-based cultures, with that of native LKS cells isolated from mouse fetal liver (FL) or bone marrow (BM). We found that in vitro-generated LKS cells were more similar to FL- than to BM LKS cells in gene expression. Further, when compared to cells derived from bioreactor cultures, static culture-derived LKS cells showed fewer differentially expressed genes relative to both in vivo LKS populations. Overall, the expression of hematopoietic genes was lower in ESC-derived LKS cells compared to cells from BM and FL, while the levels of non-hematopoietic genes were up-regulated. In order to determine if these molecular profiles correlated with functionality, we evaluated ESC-derived LKS cells for in vitro hematopoietic-differentiation and colony formation (CFU assay). Although static culture-generated cells failed to form any colonies, they did differentiate into CD11c+ and B220+ cells indicating some hematopoietic potential. In contrast, bioreactor-derived LKS cells, when differentiated under the same conditions failed to produce any B220+ or CD11c+ cells and did not form colonies, indicating that these cells are not hematopoietic progenitors. We conclude that in vitro culture conditions significantly affect the transcriptome and functionality of ESC-derived LKS cells and although in vitro differentiated LKS cells were lineage negative and expressed both ckit and Sca-1, these cells, especially those obtained from dynamic cultures, are significantly different from native cells of the same phenotype.
doi:10.1371/journal.pone.0051944
PMCID: PMC3531429  PMID: 23300581
12.  Asthma Pregnancy Alters Postnatal Development of Chromaffin Cells in the Rat Adrenal Medulla 
PLoS ONE  2011;6(5):e20337.
Background
Adrenal neuroendocrine plays an important role in asthma. The activity of the sympathoadrenal system could be altered by early life events. The effects of maternal asthma during pregnancy on the adrenal medulla of offspring remain unknown.
Methodology/Principal Findings
This study aims to explore the influence of maternal asthma during pregnancy on the development and function of adrenal medulla in offspring from postnatal day 3 (P3) to postnatal day 60 (P60). Asthmatic pregnant rats (AP), nerve growth factor (NGF)-treated pregnant rats (NP) and NGF antibody-treated pregnant rats (ANP) were sensitized and challenged with ovalbumin (OVA); NP and ANP were treated with NGF and NGF antibody respectively. Offspring rats from the maternal group were divided into four groups: offspring from control pregnant rats (OCP), offspring from AP (OAP), offspring from NP (ONP), and offspring from ANP (OANP). The expressions of phenylethanolamine N-methyltransferase (PNMT) protein in adrenal medulla were analyzed. The concentrations of epinephrine (EPI), corticosterone and NGF in serum were measured. Adrenal medulla chromaffin cells (AMCC) were prone to differentiate into sympathetic nerve cells in OAP and ONP. Both EPI and PNMT were decreased in OAP from P3 to P14, and then reached normal level gradually from P30 to P60, which were lower from birth to adulthood in ONP. Corticosterone concentration increased significantly in OAP and ONP.
Conclusion/Significance
Asthma pregnancy may promote AMCC to differentiate into sympathetic neurons in offspring rats and inhibit the synthesis of EPI, resulting in dysfunction of bronchial relaxation.
doi:10.1371/journal.pone.0020337
PMCID: PMC3103586  PMID: 21647384
13.  Alcohol inhibition of neurogenesis: A mechanism of hippocampal neurodegeneration in an adolescent alcohol abuse model 
Hippocampus  2010;20(5):596-607.
Adolescents diagnosed with an alcohol use disorder show neurodegeneration in the hippocampus, a region important for learning, memory, and mood regulation. This study examines a potential mechanism by which excessive alcohol intake, characteristic of an alcohol use disorder, produces neurodegeneration. As hippocampal neural stem cells underlie ongoing neurogenesis, a phenomenon that contributes to hippocampal structure and function, we investigated aspects of cell death and cell birth in an adolescent rat model of an alcohol use disorder. Immunohistochemistry of various markers along with Bromo-deoxy-Uridine (BrdU) injections were used to examine different aspects of neurogenesis. After 4 days of binge alcohol exposure, neurogenesis was decreased by 33% and 28% at 0 and 2 days after the last dose according to doublecortin expression. To determine whether this decrease in neurogenesis was due to effects on neural stem cell proliferation, quantification of BrdU-labeled cells revealed a 21% decrease in the dentate gyrus of alcohol-exposed brains. Cell survival and phenotype of BrdU-labeled cells were assessed 28 days after alcohol exposure and revealed a significant, 50% decrease in the number of surviving cells in the alcohol-exposed group. Reduced survival was supported by significant increases in the number of pyknotic-, FluoroJade B positive-, and TUNEL-positive cells. However, so few cells were TUNEL-positive that cell death is likely necrotic in this model. Although alcohol decreased the number of newborn cells, it did not affect the percentage of cells that matured into neurons (differentiation). Thus, our data support that in a model of an adolescent alcohol use disorder, neurogenesis is impaired by two mechanisms: alcohol-inhibition of neural stem cell proliferation and alcohol effects on new cell survival. Remarkably, alcohol inhibition of neurogenesis may outweigh the few dying cells per section, which implies that alcohol inhibition of neurogenesis contributes to hippocampal neurodegeneration in alcohol use disorders.
doi:10.1002/hipo.20665
PMCID: PMC2861155  PMID: 19554644
ethanol; alcoholism; neural stem cell; progenitor; cell death
14.  A Mechanism for the Inhibition of Neural Progenitor Cell Proliferation by Cocaine 
PLoS Medicine  2008;5(6):e117.
Background
Prenatal exposure of the developing brain to cocaine causes morphological and behavioral abnormalities. Recent studies indicate that cocaine-induced proliferation inhibition and/or apoptosis in neural progenitor cells may play a pivotal role in causing these abnormalities. To understand the molecular mechanism through which cocaine inhibits cell proliferation in neural progenitors, we sought to identify the molecules that are responsible for mediating the effect of cocaine on cell cycle regulation.
Methods and Findings
Microarray analysis followed by quantitative real-time reverse transcription PCR was used to screen cocaine-responsive and cell cycle-related genes in a neural progenitor cell line where cocaine exposure caused a robust anti-proliferative effect by interfering with the G1-to-S transition. Cyclin A2, among genes related to the G1-to-S cell cycle transition, was most strongly down-regulated by cocaine. Down-regulation of cyclin A was also found in cocaine-treated human primary neural and A2B5+ progenitor cells, as well as in rat fetal brains exposed to cocaine in utero. Reversing cyclin A down-regulation by gene transfer counteracted the proliferation inhibition caused by cocaine. Further, we found that cocaine-induced accumulation of reactive oxygen species, which involves N-oxidation of cocaine via cytochrome P450, promotes cyclin A down-regulation by causing an endoplasmic reticulum (ER) stress response, as indicated by increased phosphorylation of eIF2α and expression of ATF4. In the developing rat brain, the P450 inhibitor cimetidine counteracted cocaine-induced inhibition of neural progenitor cell proliferation as well as down-regulation of cyclin A.
Conclusions
Our results demonstrate that down-regulation of cyclin A underlies cocaine-induced proliferation inhibition in neural progenitors. The down-regulation of cyclin A is initiated by N-oxidative metabolism of cocaine and consequent ER stress. Inhibition of cocaine N-oxidative metabolism by P450 inhibitors may provide a preventive strategy for counteracting the adverse effects of cocaine on fetal brain development.
Investigating the mechanism of cocaine's effect on fetal brain development, Chun-Ting Lee and colleagues find that down-regulation of cyclin A by a cocaine metabolite inhibits neural proliferation.
Editors' Summary
Background.
Every year, cocaine abuse by mothers during pregnancy exposes thousands of unborn infants (fetuses) to this powerful and addictive stimulant. Maternal cocaine abuse during early pregnancy increases the risk of miscarriage; its use during late pregnancy slows the baby's growth and can trigger premature labor. Babies exposed to cocaine shortly before birth are often irritable and have disturbed sleep patterns. They can also be very sensitive to sound and touch and consequently hard to comfort. These problems usually resolve spontaneously within the first few weeks of life but some permanent birth defects are also associated with frequent cocaine abuse during pregnancy. In particular, babies exposed to cocaine before birth sometimes have small heads—an abnormality that generally indicates a small brain—and, although they usually have normal intelligence, the development of their thinking skills and language is often delayed, and they can have behavioral problems.
Why Was This Study Done?
Exposure to cocaine before birth clearly interferes with some aspects of brain development. More specifically, it reduces the number and position of neurons (the cells that transmit information in the form of electrical impulses around the body) within the brain. All neurons develop from neural progenitor cells, and previous research suggests that cocaine exposure before birth inhibits the proliferation of these cells in the developing brain. It would be useful to understand exactly how cocaine affects neural progenitor cells, because it might then be possible to prevent the drug's adverse effects on brain development. In this study, therefore, the researchers investigate the molecular mechanism that underlies cocaine's effect on neural progenitor cells.
What Did the Researchers Do and Find?
When the researchers investigated the effects of cocaine on AF5 cells (rat neural progenitor cells that grow indefinitely in the laboratory), they found that concentrations of cocaine similar to those measured in fetal brains after maternal drug exposure inhibited the proliferation of AF5 cells by blocking the “G1-to-S transition.” This is a stage that cells have to pass through between each round of cell division (the production of two daughter cells from one parent cell). Next, the researchers showed that cocaine-treated AF5 cells made much less cyclin A2, a protein that controls the G1-to-S transition, than untreated cells. Cocaine also decreased cyclin A2 levels in neural progenitor cells freshly isolated from human fetal brains and in fetal rat brains exposed to the drug while in their mother's womb. Treatment of AF5 cells with a cyclin A2 expression vector (a piece of DNA that directs the production of cyclin A2) counteracted the down-regulation of cyclin A2 and restored AF5 proliferation in the presence of cocaine. Other experiments indicate that the reduction of cyclin A2 by cocaine in AF5 cells involves the accumulation of “reactive oxygen species,” by-products of the breakdown of cocaine by a protein that is a member of a family of proteins called cytochrome P450. Finally, treatment of pregnant rats with cimetidine (which inhibits the action of cytochrome P450) counteracted both the inhibition of neural progenitor cell proliferation and the cyclin A2 down-regulation that cocaine exposure induced in the brains of their unborn pups.
What Do These Findings Mean?
These findings show that the cocaine-induced inhibition of neural progenitor cell proliferation involves, at least in part, interfering with the production (that is, causing down-regulation) of cyclin A2. They also show that this down-regulation is induced by the breakdown of cocaine by cytochrome P450, and that in both a rat cell line and in fetal rats, the cytochrome P450 inhibitor cimetidine (a drug that is already used clinically for stomach problems) can block the adverse effects of cocaine on the proliferation of neural progenitor cells. These findings need to be confirmed in animals more closely related to people than rats, and the long-term effects of cimetidine need to be investigated, in particular its effects on cocaine toxicity. Nevertheless these results raise the possibility that giving cimetidine or other drugs with similar effects to pregnant women who are addicted to cocaine might prevent some of the harm that their drug habit does to their unborn children, although it is not clear whether there is a dosage of cimetidine that might be both safe and adequate for this purpose.
Additional Information.
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.0050117.
A PLoS Medicine Perspective article by Steven Hyman further discusses this study
The US National Institute on Drug Abuse provides a fact sheet on cocaine (in English and Spanish)
The UK charity Release provides information and advice to the public and professionals about the law and drugs, including information about cocaine
MedlinePlus also provides a list of links to information about cocaine (in English and Spanish)
The March of Dimes Foundation, a US nonprofit organization for the improvement of child health, provides information about illicit drug use during pregnancy (in English and Spanish)
The Organization of Teratology Information Specialists also provides a fact sheet on cocaine and pregnancy (in English, Spanish, and French)
doi:10.1371/journal.pmed.0050117
PMCID: PMC2504032  PMID: 18593214
15.  Human Immunodeficiency Virus Type 1 Infection of Human Brain-Derived Progenitor Cells 
Journal of Virology  2004;78(14):7319-7328.
Although cells of monocytic lineage are the primary source of human immunodeficiency virus type 1 (HIV-1) in the brain, other cell types in the central nervous system, including astrocytes, can harbor a latent or persistent HIV-1 infection. In the present study, we examined whether immature, multipotential human brain-derived progenitor cells (nestin positive) are also permissive for infection. When exposed to IIIB and NL4-3 strains of HIV-1, progenitor cells and progenitor-derived astrocytes became infected, with peak p24 levels of 100 to 500 pg/ml at 3 to 6 days postinfection. After 10 days, virus production was undetectable but could be stimulated by the addition of tumor necrosis factor alpha (TNF-α). To bypass limitations to receptor entry, we compared the fate of infection in these cell populations by transfection with the infectious HIV-1 clone, pNL4-3. Again, transfected progenitors and astrocytes produced virus for 7 days but diminished to low levels beyond 8 days posttransfection. During the nonproductive phase, TNF-α stimulated virus production from progenitors as late as 5 weeks posttransfection. Astrocytes produced 5- to 20-fold more infectious virus (27 ng of p24/106 cells) than progenitors at the peak of 3 days posttransfection. Differentiation of infected progenitors toward an astrocyte phenotype increased virus production to levels consistent with infected astrocytes, suggesting a phenotypic difference in viral replication. Using this cell culture system of multipotential human brain-derived progenitor cells, we provide evidence that progenitor cells may be a reservoir for HIV-1 in the brains of AIDS patients.
doi:10.1128/JVI.78.14.7319-7328.2004
PMCID: PMC434111  PMID: 15220405
16.  Isoform-Specific Potentiation of Stem and Progenitor Cell Engraftment by AML1/RUNX1  
PLoS Medicine  2007;4(5):e172.
Background
AML1/RUNX1 is the most frequently mutated gene in leukaemia and is central to the normal biology of hematopoietic stem and progenitor cells. However, the role of different AML1 isoforms within these primitive compartments is unclear. Here we investigate whether altering relative expression of AML1 isoforms impacts the balance between cell self-renewal and differentiation in vitro and in vivo.
Methods and Findings
The human AML1a isoform encodes a truncated molecule with DNA-binding but no transactivation capacity. We used a retrovirus-based approach to transduce AML1a into primitive haematopoietic cells isolated from the mouse. We observed that enforced AML1a expression increased the competitive engraftment potential of murine long-term reconstituting stem cells with the proportion of AML1a-expressing cells increasing over time in both primary and secondary recipients. Furthermore, AML1a expression dramatically increased primitive and committed progenitor activity in engrafted animals as assessed by long-term culture, cobblestone formation, and colony assays. In contrast, expression of the full-length isoform AML1b abrogated engraftment potential. In vitro, AML1b promoted differentiation while AML1a promoted proliferation of progenitors capable of short-term lymphomyeloid engraftment. Consistent with these findings, the relative abundance of AML1a was highest in the primitive stem/progenitor compartment of human cord blood, and forced expression of AML1a in these cells enhanced maintenance of primitive potential both in vitro and in vivo.
Conclusions
These data demonstrate that the “a” isoform of AML1 has the capacity to potentiate stem and progenitor cell engraftment, both of which are required for successful clinical transplantation. This activity is consistent with its expression pattern in both normal and leukaemic cells. Manipulating the balance of AML1 isoform expression may offer novel therapeutic strategies, exploitable in the contexts of leukaemia and also in cord blood transplantation in adults, in whom stem and progenitor cell numbers are often limiting.
The truncated "a" isoform of AML1 is shown to have the capacity to potentiate stem and progenitor cell engraftment, both of which are required for successful clinical transplantation.
Editors' Summary
Background.
Blood contains red blood cells (which carry oxygen round the body), platelets (which help the blood to clot), and white blood cells (which fight off infections). All these cells, which are regularly replaced, are derived from hematopoietic stem cells, blood-forming cells present in the bone marrow. Like all stem cells, hematopoietic stem cells self-renew (reproduce themselves) and produce committed progenitor cells, which develop into mature blood cells in a process called hematopoiesis. Many proteins control hematopoiesis, some of which are called transcription factors; these factors bind to DNA through their DNA-binding domain and then control the expression of genes (that is, how DNA is turned into proteins) through particular parts of the protein (their transcription regulatory domains). An important hematopoietic transcription factor is AML1—a protein first identified because of its involvement in acute myelogenous leukemia (AML, a form of blood cancer). Mutations (changes) in the AML1 gene are now known to be present in other types of leukemia, which are often characterized by overproliferation of immature blood cells.
Why Was This Study Done?
Because of AML1′s crucial role in hematopoiesis, knowing more about which genes it regulates and how its activity is regulated could provide clues to treating leukemia and to improving hematopoietic cell transplantation. Many cancer treatments destroy hematopoietic stem cells, leaving patients vulnerable to infection. Transplants of bone marrow or cord blood (the cord that links mother and baby during pregnancy contains peripheral blood stem cells) can replace the missing cells, but cord blood in particular often contains insufficient stem cells for successful transplantation. It would be useful, therefore, to expand the stem cell content of these tissues before transplantation. In this study, the researchers investigated the effect of AML1 on self-renewal and differentiation of hematopoietic stem and progenitor cells in the laboratory (in vitro) and in animals (in vivo). In particular, they have asked how two isoforms (closely related versions) of AML1 affect the ability of these cells to grow and differentiate (engraft) in mice after transplantation.
What Did the Researchers Do and Find?
The researchers artificially expressed AML1a and AML1b (both isoforms contain a DNA binding domain, but only AML1b has transcription regulatory domains) in mouse hematopoietic stem and progenitor cells and then tested the cells' ability to engraft in mice. AML1a-expressing cells engrafted better than unaltered cells and outgrew unaltered cells when transplanted as a mixture. AML1b-expressing cells, however, did not engraft. In vitro, AML1a-expressing cells grew more than AML1b-expressing cells, whereas differentiation was promoted in AML1b-expressing cells. To investigate whether the isoforms have the same effects in human cells, the researchers measured the amount of AML1a and AML1b mRNA (the template for protein production) made by progenitor cells in human cord blood. Although AML1b (together with AML1c, an isoform with similar characteristics) mRNA predominated in all the progenitor cell types, the relative abundance of AML1a was greatest in the stem and progenitor cells. Furthermore, forced expression of AML1a in these cells improved their ability to divide in vitro and to engraft in mice.
What Do These Findings Mean?
These findings indicate that AML1a expression increases the self-renewal capacity of hematopoietic stem and progenitor cells and consequently improves their ability to engraft in mice, whereas AML1b expression encourages the differentiation of these cell types. These activities are consistent with the expression patterns of the two isoforms in normal hematopoietic cells and in leukemic cells—the mutated AML made by many leukemic cells resembles AML1a. Because the AML1 isoforms were expressed at higher than normal levels in these experiments, the physiological relevance of these findings needs to be confirmed by showing that normal levels of AML1a and AML1b produce similar results. Nevertheless, these results suggest that manipulating the balance of AML1 isoforms made by hematopoietic cells might be useful clinically. In leukemia, a shift toward AML1b expression might slow the proliferation of leukemic cells and encourage their differentiation. Conversely, in cord blood transplantation, a shift toward AML1a expression might improve patient outcomes by expanding the stem and progenitor cell populations.
Additional Information.
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.0040172.
Wikipedia has pages on hematopoiesis and hematopoietic stem cells (note: Wikipedia is a free online encyclopedia that anyone can edit; available in several languages)
The US National Cancer Institute has a fact sheet on bone marrow and peripheral blood stem cell transplantation (in English and Spanish) and information for patients and professionals on leukemia (in English)
The American Society of Hematology provides patient information about blood diseases, including information on bone marrow and stem cell transplantation
doi:10.1371/journal.pmed.0040172
PMCID: PMC1868041  PMID: 17503961
17.  Effects of 2',3'-dideoxynucleosides on proliferation and differentiation of human pluripotent progenitors in liquid culture and their effects on mitochondrial DNA synthesis. 
2',3'-Dideoxynucleosides (ddNs) including 3'-azido-3'-deoxythymidine (AZT), 3'-fluoro-3'-deoxythymidine (FLT), 3'-amino-3'-deoxythymidine (AMT), 2',3'-dideoxycytidine (ddC), and 2',3'-didehydro-3'-deoxythymidine (D4T) were tested for their effects on proliferation and differentiation of pluripotent progenitor cells (CD34+) purified from human bone marrow cells grown in liquid cultures. These highly purified progenitor cells undergo extensive proliferation during 14 days, with a marked differentiation during the last 7 days. These differentiated cells exhibit normal morphological features in response to specific hematopoietic growth factors of both erythroid and granulocyte-macrophage lineages, as demonstrated by flow cytometry cell phenotyping. The potencies of these ddNs in inhibiting proliferation of granulocyte-macrophage lineage cells were in the order FLT > AMT = ddC > AZT >> D4T, and the potencies in inhibiting proliferation of erythroid lineage cultures were in the order FLT > AMT > AZT > ddC >> D4T. The toxic effects of ddNs assessed in these liquid cultures were in agreement with data obtained by using semisolid cultures, demonstrating the consistency of these two in vitro hematopoietic systems toward ddN toxicity. ddC was toxic to CD34+ progenitor cells and/or cells in the early stages of differentiation, whereas the inhibitory effect of AZT on the erythroid lineage was predominantly observed on a more mature population of erythroid progenitors during the differentiation process. Slot blot analysis of granulocyte-macrophage cultures demonstrated that exposure to ddC and FLT was associated with a decrease in total mitochondrial DNA (mtDNA) content, suggesting that these two ddNs inhibit mtDNA synthesis. In contrast, no difference in the ratio of nuclear DNA to mtDNA was observed in cells exposed to toxic concentrations of AZT and AMT is not associated with an inhibition of mtDNA synthesis. This human pluripotent progenitor liquid culture system should permit detailed investigations of the cellular and molecular events involved in ddN-induced hematological toxicity.
PMCID: PMC188128  PMID: 7520683
18.  Promoted Neuronal Differentiation after Activation of Alpha4/Beta2 Nicotinic Acetylcholine Receptors in Undifferentiated Neural Progenitors 
PLoS ONE  2012;7(10):e46177.
Background
Neural progenitor is a generic term used for undifferentiated cell populations of neural stem, neuronal progenitor and glial progenitor cells with abilities for proliferation and differentiation. We have shown functional expression of ionotropic N-methyl-D-aspartate (NMDA) and gamma-aminobutyrate type-A receptors endowed to positively and negatively regulate subsequent neuronal differentiation in undifferentiated neural progenitors, respectively. In this study, we attempted to evaluate the possible functional expression of nicotinic acetylcholine receptor (nAChR) by undifferentiated neural progenitors prepared from neocortex of embryonic rodent brains.
Methodology/Principal Findings
Reverse transcription polymerase chain reaction analysis revealed mRNA expression of particular nAChR subunits in undifferentiated rat and mouse progenitors prepared before and after the culture with epidermal growth factor under floating conditions. Sustained exposure to nicotine significantly inhibited the formation of neurospheres composed of clustered proliferating cells and 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide reduction activity at a concentration range of 1 µM to 1 mM without affecting cell survival. In these rodent progenitors previously exposed to nicotine, marked promotion was invariably seen for subsequent differentiation into cells immunoreactive for a neuronal marker protein following the culture of dispersed cells under adherent conditions. Both effects of nicotine were significantly prevented by the heteromeric α4β2 nAChR subtype antagonists dihydro-β-erythroidine and 4-(5-ethoxy-3-pyridinyl)-N-methyl-(3E)-3-buten-1-amine, but not by the homomeric α7 nAChR subtype antagonist methyllycaconitine, in murine progenitors. Sustained exposure to nicotine preferentially increased the expression of Math1 among different basic helix-loop-helix proneural genes examined. In undifferentiated progenitors from embryonic mice defective of NMDA receptor subunit-1, nicotine was still effective in significantly inhibiting the proliferation.
Conclusions/Significance
Functional α4β2 nAChR subtype would be constitutively expressed to play a role in the mechanism underlying the determination of proliferation and subsequent differentiation fate into a neuronal lineage in association with preferential promotion of Math1 expression in undifferentiated neural progenitors of developing rodent neocortex independently of NMDA receptor activation.
doi:10.1371/journal.pone.0046177
PMCID: PMC3464277  PMID: 23056257
19.  Ethanol Upregulates Glucocorticoid-induced Leucine Zipper Expression and Modulates Cellular Inflammatory Responses in Lung Epithelial Cells 
Alcohol abuse is associated with immunosuppressive and infectious sequelae. Particularly, alcoholics are more susceptible to pulmonary infections. In this report, gene transcriptional profiles of primary human airway epithelial cells, exposed to varying doses of alcohol (0, 50 and 100 mM), were obtained. Comparison of gene transcription levels between 0 mM and 50 mM alcohol treatments resulted in 2 genes being up-regulated and 16 genes down-regulated by at least two-fold. Moreover, 0 mM and 100 mM alcohol exposure led to the up-regulation of 14 genes and down-regulation of 157 genes. Among the up-regulated genes, glucocorticoid-induced leucine zipper (GILZ) responded to alcohol in a dose-dependent manner. Moreover, GILZ protein levels also correlated with this transcriptional pattern. Lentiviral expression of GILZ siRNA in human airway epithelial cells diminished the alcohol-induced upregulation, confirming that GILZ is indeed an alcohol-responsive gene. Gene-silencing of GILZ in A549 cells resulted in secretion of significantly higher amounts of inflammatory cytokines in response to IL-1β stimulation. The GILZ-silenced cells were more resistant to alcohol-mediated suppression of cytokine secretion. Further data demonstrated that the glucocorticoid receptor is involved in the regulation of GILZ by alcohol. Because GILZ is a key glucocorticoid-responsive factor mediating the anti-inflammatory and immunosuppressive actions of steroids, we propose that similar signaling pathways may play a role in the anti-inflammatory and immunosuppressive effects of alcohol.
doi:10.4049/jimmunol.0903521
PMCID: PMC2901557  PMID: 20382889
Alcohol; Airway Epithelia; Lung; Microarray; Transcriptome; GILZ; Glucocorticoids; Glucocorticoid Receptor
20.  Stochastic Cytokine Expression Induces Mixed T Helper Cell States 
PLoS Biology  2013;11(7):e1001618.
During early differentiation of T helper cells, stochastic cytokine expression triggers the co-expression of antagonistic transcription factors at high levels, buffered by the interplay between extracellular and intracellular signaling components.
During eukaryotic development, the induction of a lineage-specific transcription factor typically drives differentiation of multipotent progenitor cells, while repressing that of alternative lineages. This process is often mediated by some extracellular signaling molecules, such as cytokines that can bind to cell surface receptors, leading to activation and/or repression of transcription factors. We explored the early differentiation of naive CD4 T helper (Th) cells into Th1 versus Th2 states by counting single transcripts and quantifying immunofluorescence in individual cells. Contrary to mutually exclusive expression of antagonistic transcription factors, we observed their ubiquitous co-expression in individual cells at high levels that are distinct from basal-level co-expression during lineage priming. We observed that cytokines are expressed only in a small subpopulation of cells, independent from the expression of transcription factors in these single cells. This cell-to-cell variation in the cytokine expression during the early phase of T helper cell differentiation is significantly larger than in the fully differentiated state. Upon inhibition of cytokine signaling, we observed the classic mutual exclusion of antagonistic transcription factors, thus revealing a weak intracellular network otherwise overruled by the strong signals that emanate from extracellular cytokines. These results suggest that during the early differentiation process CD4 T cells acquire a mixed Th1/Th2 state, instructed by extracellular cytokines. The interplay between extracellular and intracellular signaling components unveiled in Th1/Th2 differentiation may be a common strategy for mammalian cells to buffer against noisy cytokine expression.
Author Summary
During the development of a multicellular organism, the progenitor cells, which have the potential to become any of several different cell lineages with specialized functions, commit and differentiate into one particular lineage. This differentiation of progenitors is driven by the induction of lineage-specific transcription factors, molecules that regulate gene expression. This process is often mediated by extracellular signaling molecules, including a class of molecules called cytokines that can bind to cell surface receptors, activating and/or repressing transcription factors. Here we explored the early differentiation of naive T helper (Th) cells, an important class of T lymphocytes that help effector immune cells to defend the body against various pathogens. We measured both mRNA and protein levels of cytokines and transcription factors in individual cells. In particular, mRNA levels were measured with single-molecule resolution. Contrary to the expression of only one set of lineage-specific transcription factors, we observed ubiquitous high-level co-expression of antagonistic transcription factors in individual cells. We found that cytokines are expressed only in a small subpopulation of cells, independent from the expression of transcription factors in individual cells. When cytokine signaling is inhibited, each cell expressed only one of the antagonistic transcription factors at high levels. This reveals a weak intracellular network that is otherwise overruled by the strong signals that emanate from extracellular cytokines. These results suggest that during the early differentiation process T helper cells acquire a mixed Th1/Th2 state, instructed by extracellular cytokines. The interplay between extracellular and intracellular signaling components unveiled in Th1/Th2 differentiation may be a common strategy for mammalian cells to buffer against noisy cytokine expression.
doi:10.1371/journal.pbio.1001618
PMCID: PMC3728019  PMID: 23935453
21.  Tendon proper- and peritenon-derived progenitor cells have unique tenogenic properties 
Introduction
Multipotent progenitor populations exist within the tendon proper and peritenon of the Achilles tendon. Progenitor populations derived from the tendon proper and peritenon are enriched with distinct cell types that are distinguished by expression of markers of tendon and vascular or pericyte origins, respectively. The objective of this study was to discern the unique tenogenic properties of tendon proper- and peritenon-derived progenitors within an in vitro model. We hypothesized that progenitors from each region contribute differently to tendon formation; thus, when incorporated into a regenerative model, progenitors from each region will respond uniquely. Moreover, we hypothesized that cell populations like progenitors were capable of stimulating tenogenic differentiation, so we generated conditioned media from these cell types to analyze their stimulatory potentials.
Methods
Isolated progenitors were seeded within fibrinogen/thrombin gel-based constructs with or without supplementation with recombinant growth/differentiation factor-5 (GDF5). Early and late in culture, gene expression of differentiation markers and matrix assembly genes was analyzed. Tendon construct ultrastructure was also compared after 45 days. Moreover, conditioned media from tendon proper-derived progenitors, peritenon-derived progenitors, or tenocytes was applied to each of the three cell types to determine paracrine stimulatory effects of the factors secreted from each of the respective cell types.
Results
The cell orientation, extracellular domain and fibril organization of constructs were comparable to embryonic tendon. The tendon proper-derived progenitors produced a more tendon-like construct than the peritenon-derived progenitors. Seeded tendon proper-derived progenitors expressed greater levels of tenogenic markers and matrix assembly genes, relative to peritenon-derived progenitors. However, GDF5 supplementation improved expression of matrix assembly genes in peritenon progenitors and structurally led to increased mean fibril diameters. It also was found that peritenon-derived progenitors secrete factor(s) stimulatory to tenocytes and tendon proper progenitors.
Conclusions
Data demonstrate that, relative to peritenon-derived progenitors, tendon proper progenitors have greater potential for forming functional tendon-like tissue. Furthermore, factors secreted by peritenon-derived progenitors suggest a trophic role for this cell type as well. Thus, these findings highlight the synergistic potential of including these progenitor populations in restorative tendon engineering strategies.
doi:10.1186/scrt475
PMCID: PMC4230637  PMID: 25005797
22.  Chronic binge-like alcohol consumption in adolescence causes depression-like symptoms possibly mediated by the effects of BDNF on neurogenesis 
Neuroscience  2013;254:324-334.
Here we investigated whether changes in neurogenesis and BDNF expression are possible mechanisms involved in the depression-like symptom during the withdrawal/abstinence period after chronic binge-pattern alcohol consumption given the limited number of studies addressing the link between these factors in the adolescent brain. Forty-seven male Sprague-Dawley rats were used in the study and the experimental protocol started when rats were 25-days old. Rats were assigned to either: (a) ethanol or (b) control group. Animals in each group were further randomized to receive either: brain-derived neurotrophic factor (BDNF) receptor agonist or vehicle. Rats were trained to self-administer ethanol and the binge protocol consisted of daily 30-min experimental sessions 4 hours into the dark period for 12 days. Two days after the last drinking session, rats were tested in the sucrose preference test to evaluate anhedonia and the open field test after habituation to evaluate behavioral despair. Our data showed that: (1) self-administration of alcohol in a binge-like pattern causes inebriation as defined by the National Institute on Alcohol Abuse and Alcoholism (NIAAA) and this pattern of alcohol exposure is associated with the development of depression-like symptom; (2) no significant difference in blood alcohol levels between the 2 ethanol groups; and (3) chronic binge drinking resulted in the development of depressive phenotype, decrease survival and neuronal differentiation of neural progenitor cells in the hippocampus, and decrease BDNF effect during the withdrawal period. But the most important finding in our study is that augmenting BDNF actions through the use of tyrosine kinase receptor B (TrkB, a BDNF receptor) agonist restored neurogenesis and abolished the alcohol-induced anhedonia and despair behaviors seen during the withdrawal/abstinence period. Our results suggest that BDNF might be a molecule that can be targeted for interventions in alcoholism–depression co-incidence.
doi:10.1016/j.neuroscience.2013.09.031
PMCID: PMC3983287  PMID: 24076087
sucrose preference test; open field test; hippocampus; TrkB; immunohistochemistry; doublecortin
23.  The Effectiveness of Community Action in Reducing Risky Alcohol Consumption and Harm: A Cluster Randomised Controlled Trial 
PLoS Medicine  2014;11(3):e1001617.
In a cluster randomized controlled trial, Anthony Shakeshaft and colleagues measure the effectiveness of a multi-component community-based intervention for reducing alcohol-related harm.
Background
The World Health Organization, governments, and communities agree that community action is likely to reduce risky alcohol consumption and harm. Despite this agreement, there is little rigorous evidence that community action is effective: of the six randomised trials of community action published to date, all were US-based and focused on young people (rather than the whole community), and their outcomes were limited to self-report or alcohol purchase attempts. The objective of this study was to conduct the first non-US randomised controlled trial (RCT) of community action to quantify the effectiveness of this approach in reducing risky alcohol consumption and harms measured using both self-report and routinely collected data.
Methods and Findings
We conducted a cluster RCT comprising 20 communities in Australia that had populations of 5,000–20,000, were at least 100 km from an urban centre (population ≥ 100,000), and were not involved in another community alcohol project. Communities were pair-matched, and one member of each pair was randomly allocated to the experimental group. Thirteen interventions were implemented in the experimental communities from 2005 to 2009: community engagement; general practitioner training in alcohol screening and brief intervention (SBI); feedback to key stakeholders; media campaign; workplace policies/practices training; school-based intervention; general practitioner feedback on their prescribing of alcohol medications; community pharmacy-based SBI; web-based SBI; Aboriginal Community Controlled Health Services support for SBI; Good Sports program for sports clubs; identifying and targeting high-risk weekends; and hospital emergency department–based SBI. Primary outcomes based on routinely collected data were alcohol-related crime, traffic crashes, and hospital inpatient admissions. Routinely collected data for the entire study period (2001–2009) were obtained in 2010. Secondary outcomes based on pre- and post-intervention surveys (n = 2,977 and 2,255, respectively) were the following: long-term risky drinking, short-term high-risk drinking, short-term risky drinking, weekly consumption, hazardous/harmful alcohol use, and experience of alcohol harm. At the 5% level of statistical significance, there was insufficient evidence to conclude that the interventions were effective in the experimental, relative to control, communities for alcohol-related crime, traffic crashes, and hospital inpatient admissions, and for rates of risky alcohol consumption and hazardous/harmful alcohol use. Although respondents in the experimental communities reported statistically significantly lower average weekly consumption (1.90 fewer standard drinks per week, 95% CI = −3.37 to −0.43, p = 0.01) and less alcohol-related verbal abuse (odds ratio = 0.58, 95% CI = 0.35 to 0.96, p = 0.04) post-intervention, the low survey response rates (40% and 24% for the pre- and post-intervention surveys, respectively) require conservative interpretation. The main limitations of this study are as follows: (1) that the study may have been under-powered to detect differences in routinely collected data outcomes as statistically significant, and (2) the low survey response rates.
Conclusions
This RCT provides little evidence that community action significantly reduces risky alcohol consumption and alcohol-related harms, other than potential reductions in self-reported average weekly consumption and experience of alcohol-related verbal abuse. Complementary legislative action may be required to more effectively reduce alcohol harms.
Trial registration
Australian New Zealand Clinical Trials Registry ACTRN12607000123448
Please see later in the article for the Editors' Summary
Editors' Summary
Background
People have consumed alcoholic beverages throughout history, but alcohol use is now an increasing global public health problem. According to the World Health Organization's 2010 Global Burden of Disease Study, alcohol use is the fifth leading risk factor (after high blood pressure and smoking) for disease and is responsible for 3.9% of the global disease burden. Alcohol use contributes to heart disease, liver disease, depression, some cancers, and many other health conditions. Alcohol also affects the well-being and health of people around those who drink, through alcohol-related crimes and road traffic crashes. The impact of alcohol use on disease and injury depends on the amount of alcohol consumed and the pattern of drinking. Most guidelines define long-term risky drinking as more than four drinks per day on average for men or more than two drinks per day for women (a “drink” is, roughly speaking, a can of beer or a small glass of wine), and short-term risky drinking (also called binge drinking) as seven or more drinks on a single occasion for men or five or more drinks on a single occasion for women. However, recent changes to the Australian guidelines acknowledge that a lower level of alcohol consumption is considered risky (with lifetime risky drinking defined as more than two drinks a day and binge drinking defined as more than four drinks on one occasion).
Why Was This Study Done?
In 2010, the World Health Assembly endorsed a global strategy to reduce the harmful use of alcohol. This strategy emphasizes the importance of community action–a process in which a community defines its own needs and determines the actions that are required to meet these needs. Although community action is highly acceptable to community members, few studies have looked at the effectiveness of community action in reducing risky alcohol consumption and alcohol-related harm. Here, the researchers undertake a cluster randomized controlled trial (the Alcohol Action in Rural Communities [AARC] project) to quantify the effectiveness of community action in reducing risky alcohol consumption and harms in rural communities in Australia. A cluster randomized trial compares outcomes in clusters of people (here, communities) who receive alternative interventions assigned through the play of chance.
What Did the Researchers Do and Find?
The researchers pair-matched 20 rural Australian communities according to the proportion of their population that was Aboriginal (rates of alcohol-related harm are disproportionately higher among Aboriginal individuals than among non-Aboriginal individuals in Australia; they are also higher among young people and males, but the proportions of these two groups across communities was comparable). They randomly assigned one member of each pair to the experimental group and implemented 13 interventions in these communities by negotiating with key individuals in each community to define and implement each intervention. Examples of interventions included general practitioner training in screening for alcohol use disorders and in implementing a brief intervention, and a school-based interactive session designed to reduce alcohol harm among young people. The researchers quantified the effectiveness of the interventions using routinely collected data on alcohol-related crime and road traffic crashes, and on hospital inpatient admissions for alcohol dependence or abuse (which were expected to increase in the experimental group if the intervention was effective because of more people seeking or being referred for treatment). They also examined drinking habits and experiences of alcohol-related harm, such as verbal abuse, among community members using pre- and post-intervention surveys. After implementation of the interventions, the rates of alcohol-related crime, road traffic crashes, and hospital admissions, and of risky and hazardous/harmful alcohol consumption (measured using a validated tool called the Alcohol Use Disorders Identification Test) were not statistically significantly different in the experimental and control communities (a difference in outcomes that is not statistically significantly different can occur by chance). However, the reported average weekly consumption of alcohol was 20% lower in the experimental communities after the intervention than in the control communities (equivalent to 1.9 fewer standard drinks per week per respondent) and there was less alcohol-related verbal abuse post-intervention in the experimental communities than in the control communities.
What Do These Findings Mean?
These findings provide little evidence that community action reduced risky alcohol consumption and alcohol-related harms in rural Australian communities. Although there was some evidence of significant reductions in self-reported weekly alcohol consumption and in experiences of alcohol-related verbal abuse, these findings must be interpreted cautiously because they are based on surveys with very low response rates. A larger or differently designed study might provide statistically significant evidence for the effectiveness of community action in reducing risky alcohol consumption. However, given their findings, the researchers suggest that legislative approaches that are beyond the control of individual communities, such as alcohol taxation and restrictions on alcohol availability, may be required to effectively reduce alcohol harms. In other words, community action alone may not be the most effective way to reduce alcohol-related harm.
Additional Information
Please access these websites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1001617.
The World Health Organization provides detailed information about alcohol; its fact sheet on alcohol includes information about the global strategy to reduce the harmful use of alcohol; the Global Information System on Alcohol and Health provides further information about alcohol, including information on control policies around the world
The US National Institute on Alcohol Abuse and Alcoholism has information about alcohol and its effects on health
The US Centers for Disease Control and Prevention has a website on alcohol and public health that includes information on the health risks of excessive drinking
The UK National Health Service Choices website provides detailed information about drinking and alcohol, including information on the risks of drinking too much, tools for calculating alcohol consumption, and personal stories about alcohol use problems
MedlinePlus provides links to many other resources on alcohol
More information about the Alcohol Action in Rural Communities project is available
doi:10.1371/journal.pmed.1001617
PMCID: PMC3949675  PMID: 24618831
24.  Distinct roles of IL-7 and stem cell factor in the OP9-DL1 T cell differentiation culture system 
Experimental hematology  2006;34(12):1730-1740.
Objective
The OP9-DL1 culture system is an in vitro model for T cell development in which activation of the Notch pathway by Delta-like 1 promotes differentiation of mature T cells from progenitors. The roles of specific cytokines in this culture system have not been well defined, and controversy regarding the role of IL7 has recently emerged. We examined the roles played by IL7, Flt3 ligand, and stem cell factor (SCF) in differentiation of adult bone marrow cells in the OP9-DL1 culture system.
Methods
Hematopoietic progenitor cells isolated from mouse bone marrow were cultured with OP9 or OP9-DL1 stromal cells and evaluated for T and B lymphocyte differentiation using immunofluorescent staining.
Results
IL-7 provided both survival/proliferation and differentiation signals in a dose-dependent manner. T cell development from the CD4/CD8 double negative (DN) stage to the CD4/CD8 double positive (DP) stage required IL-7 provided by the stromal cells, while differentiation from the DP to the CD8 single positive (SP) stage required addition of exogenous IL-7. SCF favored the proliferation of DN lymphoid progenitors and inhibited differentiation to the DP stage in a dose-dependent manner. Conversely, blocking the function of SCF expressed endogenously by OP9-DL1 cells inhibited proliferation of lymphoid progenitors and accelerated T lineage differentiation. Flt3 ligand promoted proliferation without affecting differentiation.
Conclusion
These results validate the OP9-DL1 model for the analysis of T cell development from bone marrow-derived progenitor cells, and demonstrate specific roles of SCF, IL-7, and Flt3L in promoting efficient T lineage differentiation.
doi:10.1016/j.exphem.2006.08.001
PMCID: PMC1762031  PMID: 17157170
25.  Generation of Immortal Cell Lines from the Adult Pituitary: Role of cAMP on Differentiation of SOX2-Expressing Progenitor Cells to Mature Gonadotropes 
PLoS ONE  2011;6(11):e27799.
The pituitary is a complex endocrine tissue composed of a number of unique cell types distinguished by the expression and secretion of specific hormones, which in turn control critical components of overall physiology. The basic function of these cells is understood; however, the molecular events involved in their hormonal regulation are not yet fully defined. While previously established cell lines have provided much insight into these regulatory mechanisms, the availability of representative cell lines from each cell lineage is limited, and currently none are derived from adult pituitary. We have therefore used retroviral transfer of SV40 T-antigen to mass immortalize primary pituitary cell culture from an adult mouse. We have generated 19 mixed cell cultures that contain cells from pituitary cell lineages, as determined by RT-PCR analysis and immunocytochemistry for specific hormones. Some lines expressed markers associated with multipotent adult progenitor cells or transit-amplifying cells, including SOX2, nestin, S100, and SOX9. The progenitor lines were exposed to an adenylate cyclase activator, forskolin, over 7 days and were induced to differentiate to a more mature gonadotrope cell, expressing significant levels of α-subunit, LHβ, and FSHβ mRNAs. Additionally, clonal populations of differentiated gonadotropes were exposed to 30 nM gonadotropin-releasing hormone and responded appropriately with a significant increase in α-subunit and LHβ transcription. Further, exposure of the lines to a pulse paradigm of GnRH, in combination with 17β-estradiol and dexamethasone, significantly increased GnRH receptor mRNA levels. This array of adult-derived pituitary cell models will be valuable for both studies of progenitor cell characteristics and modulation, and the molecular analysis of individual pituitary cell lineages.
doi:10.1371/journal.pone.0027799
PMCID: PMC3221660  PMID: 22132145

Results 1-25 (1380896)