Search tips
Search criteria

Results 1-25 (384497)

Clipboard (0)

Related Articles

1.  Nicotinic α5 receptor subunit mRNA expression is associated with distant 5′ upstream polymorphisms 
CHRNA5, encoding the nicotinic α5 subunit, is implicated in multiple disorders, including nicotine addiction and lung cancer. Previous studies demonstrate significant associations between promoter polymorphisms and CHRNA5 mRNA expression, but the responsible sequence variants remain uncertain. To search for cis-regulatory variants, we measured allele-specific mRNA expression of CHRNA5 in human prefrontal cortex autopsy tissues and scanned the CHRNA5 locus for regulatory variants. A cluster of six frequent single-nucleotide polymorphisms (rs1979905, rs1979906, rs1979907, rs880395, rs905740, and rs7164030), in complete linkage disequilibrium (LD), fully account for a >2.5-fold allelic expression difference and a fourfold increase in overall CHRNA5 mRNA expression. This proposed enhancer region resides more than 13 kilobases upstream of the CHRNA5 transcription start site. The same upstream variants failed to affect CHRNA5 mRNA expression in peripheral blood lymphocytes, indicating tissue-specific gene regulation. Other promoter polymorphisms were also correlated with overall CHRNA5 mRNA expression in the brain, but were inconsistent with allelic mRNA expression ratios, a robust and proximate measure of cis-regulatory variants. The enhancer region and the nonsynonymous polymorphism rs16969968 generate three main haplotypes that alter the risk of developing nicotine dependence. Ethnic differences in LD across the CHRNA5 locus require consideration of upstream enhancer variants when testing clinical associations.
PMCID: PMC2995013  PMID: 20700147
nicotinic receptor; α5 subunit; gene expression; nicotine dependence; lung cancer; enhancer
2.  Risk for nicotine dependence and lung cancer is conferred by mRNA expression levels and amino acid change in CHRNA5 
Human Molecular Genetics  2009;18(16):3125-3135.
Nicotine dependence risk and lung cancer risk are associated with variants in a region of chromosome 15 encompassing genes encoding the nicotinic receptor subunits CHRNA5, CHRNA3 and CHRNB4. To identify potential biological mechanisms that underlie this risk, we tested for cis-acting eQTLs for CHRNA5, CHRNA3 and CHRNB4 in human brain. Using gene expression and disease association studies, we provide evidence that both nicotine-dependence risk and lung cancer risk are influenced by functional variation in CHRNA5. We demonstrated that the risk allele of rs16969968 primarily occurs on the low mRNA expression allele of CHRNA5. The non-risk allele at rs16969968 occurs on both high and low expression alleles tagged by rs588765 within CHRNA5. When the non-risk allele occurs on the background of low mRNA expression of CHRNA5, the risk for nicotine dependence and lung cancer is significantly lower compared to those with the higher mRNA expression. Together, these variants identify three levels of risk associated with CHRNA5. We conclude that there are at least two distinct mechanisms conferring risk for nicotine dependence and lung cancer: altered receptor function caused by a D398N amino acid variant in CHRNA5 (rs16969968) and variability in CHRNA5 mRNA expression.
PMCID: PMC2714722  PMID: 19443489
3.  Cis-Regulatory Variants Affect CHRNA5 mRNA Expression in Populations of African and European Ancestry 
PLoS ONE  2013;8(11):e80204.
Variants within the gene cluster encoding α3, α5, and β4 nicotinic receptor subunits are major risk factors for substance dependence. The strongest impact on risk is associated with variation in the CHRNA5 gene, where at least two mechanisms are at work: amino acid variation and altered mRNA expression levels. The risk allele of the non-synonymous variant (rs16969968; D398N) primarily occurs on the haplotype containing the low mRNA expression allele. In populations of European ancestry, there are approximately 50 highly correlated variants in the CHRNA5-CHRNA3-CHRNB4 gene cluster and the adjacent PSMA4 gene region that are associated with CHRNA5 mRNA levels. It is not clear which of these variants contribute to the changes in CHRNA5 transcript level. Because populations of African ancestry have reduced linkage disequilibrium among variants spanning this gene cluster, eQTL mapping in subjects of African ancestry could potentially aid in defining the functional variants that affect CHRNA5 mRNA levels. We performed quantitative allele specific gene expression using frontal cortices derived from 49 subjects of African ancestry and 111 subjects of European ancestry. This method measures allele-specific transcript levels in the same individual, which eliminates other biological variation that occurs when comparing expression levels between different samples. This analysis confirmed that substance dependence associated variants have a direct cis-regulatory effect on CHRNA5 transcript levels in human frontal cortices of African and European ancestry and identified 10 highly correlated variants, located in a 9 kb region, that are potential functional variants modifying CHRNA5 mRNA expression levels.
PMCID: PMC3841173  PMID: 24303001
4.  In Vitro and Ex Vivo Analysis of CHRNA3 and CHRNA5 Haplotype Expression 
PLoS ONE  2011;6(8):e23373.
Genome-wide association studies implicate variations in CHRNA5 and CHRNA3 as being associated with nicotine addiction (NA). Multiple common haplotypes (“risk”, “mixed” and “protective”) exist in Europeans; however, high linkage disequilibrium between variations in CHRNA5 and CHRNA3 makes assigning causative allele(s) for NA difficult through genotyping experiments alone. We investigated whether CHRNA5 or CHRNA3 promoter haplotypes, associated previously with NA, might influence allelic expression levels. For in vitro analyses, promoter haplotypes were sub-cloned into a luciferase reporter vector. When assessed in BE(2)-C cells, luciferase expression was equivalent among CHRNA3 haplotypes, but the combination of deletion at rs3841324 and variation at rs503464 decreased CHRNA5 promoter-derived luciferase activity, possibly due to loss of an SP-1 and other site(s). Variation within the CHRNA5 5’UTR at rs55853698 and rs55781567 also altered luciferase expression in BE(2)-C cells. Allelic expression imbalance (AEI) from the “risk” or “protective” haplotypes was assessed in post-mortem brain tissue from individuals heterozygous at coding polymorphisms in CHRNA3 (rs1051730) or CHRNA5 (rs16969968). In most cases, equivalent allelic expression was observed; however, one individual showed CHRNA5 AEI that favored the “protective” allele and that was concordant with heterozygosity at polymorphisms ∼13.5 kb upstream of the CHRNA5 transcription start site. Putative enhancer activity from these distal promoter elements was assessed using heterologous promoter constructs. We observed no differences in promoter activity from the two distal promoter haplotypes examined, but found that the distal promoter region strongly repressed transcription. We conclude that CHRNA5 promoter variants may affect relative risk for NA in some heterozygous individuals.
PMCID: PMC3155531  PMID: 21858091
5.  Association of the 5′-upstream regulatory region of the α7 nicotinic acetylcholine receptor subunit gene (CHRNA7) with schizophrenia 
Schizophrenia research  2009;109(1-3):102-112.
The α7 neuronal nicotinic acetylcholine receptor subunit gene (CHRNA7) is localized in a chromosomal region (15q14) linked to schizophrenia in multiple independent studies. CHRNA7 was selected as the best candidate gene in the region for a well-documented endophenotype of schizophrenia, the P50 sensory processing deficit, by genetic linkage and biochemical studies.
Subjects included Caucasian-Non Hispanic and African-American case-control subjects collected in Denver, and schizophrenic subjects from families in the NIMH Genetics Initiative on Schizophrenia. Thirty-five single nucleotide polymorphisms (SNPs) in the 5′-upstream regulatory region of CHRNA7 were genotyped for association with schizophrenia, and for smoking in schizophrenia.
The rs3087454 SNP, located at position −1831 bp in the upstream regulatory region of CHRNA7, was significantly associated with schizophrenia in the case-control samples after multiple-testing correction (P = 0.0009, African American; P = 0.013, Caucasian-Non Hispanic); the association was supported in family members. There was nominal association of this SNP with smoking in schizophrenia.
The data support association of regulatory region polymorphisms in the CHRNA7 gene with schizophrenia.
PMCID: PMC2748327  PMID: 19181484
Nicotinic receptor; Schizophrenia; Polymorphism; Association; Sensory Processing; Alpha 7 nicotinic receptor; Regulatory region; Promoter
6.  Association and interaction analysis of variants in CHRNA5/CHRNA3/CHRNB4 gene cluster with nicotine dependence in African and European Americans 
Several previous genome-wide and targeted association studies revealed that variants in the CHRNA5-CHRNA3-CHRNB4 (CHRNA5/A3/B4) gene cluster on chromosome 15 that encode the α5, α3 and β4 subunits of the nicotinic acetylcholine receptor (nAChRs) are associated with nicotine dependence (ND) in European Americans (EAs) or others of European origin. Considering the distinct linkage disequilibrium patterns in European and other ethnic populations such as African Americans (AAs), it would be interesting to determine whether such associations exist in other ethnic populations. We performed a comprehensive association and interaction analysis of the CHRNA5/A3/B4 cluster in two ethnic samples to investigate the role of variants in the risk for ND, which was assessed by Smoking Quantity, Heaviness Smoking Index, and Fagerström test for ND. Using a family-based association test, we found a nominal association of single nucleotide polymorphisms (SNPs) rs1317286 and rs8040868 in CHRNA3 with ND in the AA and combined AA and EA samples. Furthermore, we found that several haplotypes in CHRNA5 and CHRNA3 are nominally associated with ND in AA, EA, and pooled samples. However, none of these associations remained significant after correction for multiple testing. In addition, we performed interaction analysis of SNPs within the CHRNA5/A3/B4 cluster using the pedigree-based generalized multifactor dimensionality reduction method and found significant interactions within CHRNA3 and among the three subunit genes in the AA and pooled samples. Together, these results indicate that variants within CHRNA3 and among CHRNA5, CHRNA3, and CHRNB4 contribute significantly to the etiology of ND through gene-gene interactions, although the association of each subunit gene with ND is weak in both the AA and EA samples.
PMCID: PMC2924635  PMID: 19859904
Association analysis; CHRNA5; CHRNA3; CHRNB4; Interaction analysis; Nicotine dependence; Smoking
7.  Chrna4 A529 knockin mice exhibit altered nicotine sensitivity 
Pharmacogenetics and genomics  2010;20(2):121-130.
The reasons why people smoke are varied, but research has demonstrated that genetic influences on various aspects of nicotine addiction are a major factor. There also is a strong genetic influence on measures of nicotine sensitivity in mice. Despite the established contribution of genetics to nicotine sensitivity in mice and humans, no naturally occurring genetic variation has been identified that demonstrably alters sensitivity to nicotine in either species. However, one genetic variant has been implicated in altering nicotine sensitivity in mice is a T529A polymorphism in Chrna4, the gene that encodes the nicotinic receptor (nAChR) α4 subunit. The Chrna4 T529A polymorphism leads to a threonine to alanine substitution at position 529 of the α4 subunit. To more definitively address whether the Chrna4 T529A polymorphism does, in fact, influence sensitivity to nicotine, knockin mice were generated in which the threonine codon at position 529 was mutated to an alanine codon. Compared to Chrna4 T529 littermate controls, the Chrna4 A529 knockin mice exhibited greater sensitivity to the hypothermic effects of nicotine, reduced oral nicotine consumption and did not develop conditioned place preference to nicotine. The Chrna4 A529 knockin mice also differed from T529 littermates for two parameters of acetylcholine-stimulated 86Rb+ efflux in midbrain: maximal efflux and the percentage of α4β2* receptors with high sensitivity to activation by agonists. Results indicate that the polymorphism affects the function of midbrain α4β2* nAChRs and contributes to individual differences in several behavioral and physiological responses to nicotine thought to be modulated by midbrain α4β2* nAChRs.
PMCID: PMC2919848  PMID: 20061993
Nicotinic receptor; genetics; polymorphism; conditioned place preference; oral consumption; addiction
8.  Nicotinic acetylcholine receptor variants associated with susceptibility to chronic obstructive pulmonary disease: a meta-analysis 
Respiratory Research  2011;12(1):158.
Only 10-15% of smokers develop chronic obstructive pulmonary disease (COPD) which indicates genetic susceptibility to the disease. Recent studies suggested an association between COPD and polymorphisms in CHRNA coding subunits of nicotinic acetylcholine receptor. Herein, we performed a meta-analysis to clarify the impact of CHRNA variants on COPD.
We searched Web of Knowledge and Medline from 1990 through June 2011 for COPD gene studies reporting variants on CHRNA. Pooled odds ratios (ORs) were calculated using the major allele or genotype as reference group.
Among seven reported variants in CHRNA, rs1051730 was finally analyzed with sufficient studies. Totally 3460 COPD and 11437 controls from 7 individual studies were pooled-analyzed. A-allele of rs1051730 was associated with an increased risk of COPD regardless of smoking exposure (pooled OR = 1.26, 95% CI 1.18-1.34, p < 10-5). At the genotypic level, the ORs gradually increased per A-allele (OR = 1.27 and 1.50 for GA and AA respectively, p < 10-5). Besides, AA genotype exhibited an association with reduced FEV1% predicted (mean difference 3.51%, 95%CI 0.87-6.16%, p = 0.009) and increased risk of emphysema (OR 1.93, 95%CI 1.29-2.90, p = 0.001).
Our findings suggest that rs1051730 in CHRNA is a susceptibility variant for COPD, in terms of both airway obstruction and parenchyma destruction.
PMCID: PMC3283485  PMID: 22176972
Chronic Obstructive Pulmonary Disease (COPD); Nicotine acetylcholine receptor (nAChR); CHRNA -; ; Single nucleotide polymorphism (SNP)
9.  Associations of Variants in CHRNA5/A3/B4 Gene Cluster with Smoking Behaviors in a Korean Population 
PLoS ONE  2010;5(8):e12183.
Multiple genome-wide and targeted association studies reveal a significant association of variants in the CHRNA5-CHRNA3-CHRNB4 (CHRNA5/A3/B4) gene cluster on chromosome 15 with nicotine dependence. The subjects examined in most of these studies had a European origin. However, considering the distinct linkage disequilibrium patterns in European and other ethnic populations, it would be of tremendous interest to determine whether such associations could be replicated in populations of other ethnicities, such as Asians. In this study, we performed comprehensive association and interaction analyses for 32 single-nucleotide polymorphisms (SNPs) in CHRNA5/A3/B4 with smoking initiation (SI), smoking quantity (SQ), and smoking cessation (SC) in a Korean sample (N = 8,842). We found nominally significant associations of 7 SNPs with at least one smoking-related phenotype in the total sample (SI: P = 0.015∼0.023; SQ: P = 0.008∼0.028; SC: P = 0.018∼0.047) and the male sample (SI: P = 0.001∼0.023; SQ: P = 0.001∼0.046; SC: P = 0.01). A spectrum of haplotypes formed by three consecutive SNPs located between rs16969948 in CHRNA5 and rs6495316 in the intergenic region downstream from the 5′ end of CHRNB4 was associated with these three smoking-related phenotypes in both the total and the male sample. Notably, associations of these variants and haplotypes with SC appear to be much weaker than those with SI and SQ. In addition, we performed an interaction analysis of SNPs within the cluster using the generalized multifactor dimensionality reduction method and found a significant interaction of SNPs rs7163730 in LOC123688, rs6495308 in CHRNA3, and rs7166158, rs8043123, and rs11072793 in the intergenic region downstream from the 5′ end of CHRNB4 to be influencing SI in the male sample. Considering that fewer than 5% of the female participants were smokers, we did not perform any analysis on female subjects specifically. Together, our detected associations of variants in the CHRNA5/A3/B4 cluster with SI, SQ, and SC in the Korean smoker samples provide strong evidence for the contribution of this cluster to the etiology of SI, ND, and SC in this Asian population.
PMCID: PMC2922326  PMID: 20808433
10.  Impact of human D398N single nucleotide polymorphism on intracellular calcium response mediated by α3β4α5 nicotinic acetylcholine receptors 
Neuropharmacology  2012;63(6):1002-1011.
The human CHRNA5 D398N polymorphism (rs16969968) causes an aspartic acid to asparagine change in the nicotinic acetylcholine receptor (nAChR) α5 subunit gene. The N398 variant of CHRNA5 is linked to increased risk for nicotine dependence. In this study, we explored the effect of the CHRNA5 D398N polymorphism on the properties of human α3β4* nicotinic acetylcholine receptors in human embryonic kidney (HEK) cells.
Addition of either D398 or N398 variant of α5 subunit in the α3β4* receptor did not affect total [125I]-epibatidine binding or surface expression of the receptor. However, addition of α5D398 into α3β4* receptor decreased the maximal response to agonist without significantly affecting EC50 in aequorin intracellular calcium assay. α3β4α5N398 nAChRs showed further decreased maximal response. The differences in agonist efficacy between the receptor subtypes were found to be dependent upon the concentration of external calcium but independent of external sodium. Moreover, activation of α3β4α5 nAChRs led to significantly greater intracellular calcium release from IP3 stores relative to α3β4 nAChRs although no effect of the α5 polymorphism was observed. Finally, inclusion of the α5 variant caused a small shift to the left in IC50 for some of the antagonists tested, depending upon α5 variant but did not affect sensitivity of α3β4* receptors to desensitization in response to incubation with nicotine.
In conclusion, addition of either variant of a5 into an α3β4α5 receptor similarly effects receptor pharmacology and function. However, the N398 variant exhibits a reduced response to agonists when extracellular calcium is high and it may lead to distinct downstream cellular signaling.
PMCID: PMC3661904  PMID: 22820273
Nicotinic acetylcholine receptors; Polymorphism; rs16969968; Alpha5 subunit; CHRNA5; Intracellular calcium
11.  A case-control study of a sex-specific association between a 15q25 variant and lung cancer risk 
Genetic variants located at 15q25, including those in the cholinergic receptor nicotinic cluster (CHRNA5) have been implicated in both lung cancer risk and nicotine dependence in recent genome-wide association studies. Among these variants, a 22 base pair insertion/deletion, rs3841324 showed the strongest association with CHRNA5 mRNA expression levels. However the influence of rs3841324 on lung cancer risk has not been studied in depth.
We have therefore evaluated the association of rs3841324 genotypes with lung cancer risk in a case-control study of 624 Caucasian subjects with lung cancer and 766 age- and sex-matched cancer-free Caucasian controls. We also evaluated the joint effects of rs3841324 with single-nucleotide polymorphisms (SNPs) rs16969968 and rs8034191 in the 15q25 region that have been consistently implicated in lung cancer risk.
We found that the homozygous genotype with both short alleles (SS) of rs3841324 was associated with a decreased lung cancer risk in female ever smokers relative to the homozygous wild-type (LL) and heterozygous (LS) genotypes combined in a recessive model (OR adjusted = 0.55, 95% CI = 0.31–0.89, P = 0.0168). There was no evidence for a sex difference in the association between this variant and cigarettes smoked per day (CPD). Diplotype analysis of rs3841324 with either rs16969968 or rs8034191 showed that these polymorphisms influenced the lung cancer risk independently.
Conclusions and impact
This study has shown a sex difference in the association between the 15q25 variant rs3841324 and lung cancers. Further research is warranted to elucidate the mechanisms underlying these observations.
PMCID: PMC3277830  PMID: 22028403
lung cancer; CHRNA5; Chromosome 15q25; rs3841324; sex-specific association
12.  CHRNA5 as negative regulator of nicotine signaling in normal and cancer bronchial cells: effects on motility, migration and p63 expression 
Carcinogenesis  2011;32(9):1388-1395.
Genome-wide association studies have linked lung cancer risk with a region of chromosome 15q25.1 containing CHRNA3, CHRNA5 and CHRNB4 encoding α3, α5 and β4 subunits of nicotinic acetylcholine receptors (nAChR), respectively. One of the strongest associations was observed for a non-silent single-nucleotide polymorphism at codon 398 in CHRNA5. Here, we have used pharmacological (antagonists) or genetic (RNA interference) interventions to modulate the activity of CHRNA5 in non-transformed bronchial cells and in lung cancer cell lines. In both cell types, silencing CHRNA5 or inhibiting receptors containing nAChR α5 with α-conotoxin MII exerted a nicotine-like effect, with increased motility and invasiveness in vitro and increasing calcium influx. The effects on motility were enhanced by addition of nicotine but blocked by inhibiting CHRNA7, which encodes the homopentameric receptor α7 subunit. Silencing CHRNA5 also decreased the expression of cell adhesion molecules P120 and ZO-1 in lung cancer cells as well as the expression of DeltaNp63α in squamous cell carcinoma cell lines. These results demonstrate a role for CHRNA5 in modulating adhesion and motility in bronchial cells, as well as in regulating p63, a potential oncogene in squamous cell carcinoma.
PMCID: PMC3165122  PMID: 21586512
13.  Association of CHRNA5-A3-B4 Variation with Esophageal Squamous Cell Carcinoma Risk and Smoking Behaviors in a Chinese Population 
PLoS ONE  2013;8(7):e67664.
CHRNA5-A3-B4, the gene cluster encoding nicotinic acetylcholine receptor subunits, is associated with lung cancer risk and smoking behaviors in people of European descent. Because cigarette smoking is also a major risk factor for esophageal squamous cell carcinoma (ESCC), we investigated the associations between variants in CHRNA5-A3-B4 and ESCC risk, as well as smoking behaviors, in a Chinese population.
A case-control study of 866 ESCC patients and 952 healthy controls was performed to study the association of polymorphisms (rs667282 and rs3743073) in CHRNA5-A3-B4 with cancer risk using logistic regression models. The relationships between CHRNA5-A3-B4 polymorphisms and smoking behaviors that can be quantified by cigarettes smoked per day (CPD) and pack-years of smoking were separately estimated with Kruskal-Wallis tests among all 840 smokers.
CHRNA5-A3-B4 rs667282 TT/TG genotypes were associated with significantly increased risk of ESCC [adjusted odds ratio (OR) = 1.32, 95% confidence interval (CI) = 1.03 – 1.69, P = 0.029]. The increased ESCC risk was even higher among younger subjects (≤60 years) (OR = 1.44, 95% CI = 1.04 – 1.98, P = 0.024). These effects were not found in another polymorphism rs3743073. No evident association between the two polymorphisms and smoking behaviors was observed.
These results support the hypothesis that CHRNA5-A3-B4 is a susceptibility gene cluster for ESCC. The relationship between CHRNA5-A3-B4 and smoking behaviors in a Chinese population needs further investigation.
PMCID: PMC3699625  PMID: 23844051
14.  Habenular expression of rare missense variants of the β4 nicotinic receptor subunit alters nicotine consumption 
The CHRNA5-CHRNA3-CHRNB4 gene cluster, encoding the α5, α3, and β4 nicotinic acetylcholine receptor (nAChR) subunits, has been linked to nicotine dependence. The habenulo-interpeduncular (Hb-IPN) tract is particularly enriched in α3β4 nAChRs. We recently showed that modulation of these receptors in the medial habenula (MHb) in mice altered nicotine consumption. Given that β4 is rate-limiting for receptor activity and that single nucleotide polymorphisms (SNPs) in CHRNB4 have been linked to altered risk of nicotine dependence in humans, we were interested in determining the contribution of allelic variants of β4 to nicotine receptor activity in the MHb. We screened for missense SNPs that had allele frequencies >0.0005 and introduced the corresponding substitutions in Chrnb4. Fourteen variants were analyzed by co-expression with α3. We found that β4A90I and β4T374I variants, previously shown to associate with reduced risk of smoking, and an additional variant β4D447Y, significantly increased nicotine-evoked current amplitudes, while β4R348C, the mutation most frequently encountered in sporadic amyotrophic lateral sclerosis (sALS), showed reduced nicotine currents. We employed lentiviruses to express β4 or β4 variants in the MHb. Immunoprecipitation studies confirmed that β4 lentiviral-mediated expression leads to specific upregulation of α3β4 but not β2 nAChRs in the Mhb. Mice injected with the β4-containing virus showed pronounced aversion to nicotine as previously observed in transgenic Tabac mice overexpressing Chrnb4 at endogenous sites including the MHb. Habenular expression of the β4 gain-of-function allele T374I also resulted in strong aversion, while transduction with the β4 loss-of function allele R348C failed to induce nicotine aversion. Altogether, these data confirm the critical role of habenular β4 in nicotine consumption, and identify specific SNPs in CHRNB4 that modify nicotine-elicited currents and alter nicotine consumption in mice.
PMCID: PMC3902282  PMID: 24478678
medial habenula; nicotine consumption; SNP; lentivirus transduction; electrophysiological recordings; smoking dependence
15.  A Risk Allele for Nicotine Dependence in CHRNA5 Is a Protective Allele for Cocaine Dependence 
Biological psychiatry  2008;64(11):922-929.
A non-synonymous coding polymorphism, rs16969968, of the CHRNA5 gene which encodes the alpha-5 subunit of the nicotinic acetylcholine receptor (nAChR) has been found to be associated with nicotine dependence (20). The goal of the present study is to examine the association of this variant with cocaine dependence.
Genetic association analysis in two, independent samples of unrelated cases and controls; 1.) 504 European-American participating in the Family Study on Cocaine Dependence (FSCD); 2.) 814 European Americans participating in the Collaborative Study on the Genetics of Alcoholsim (COGA).
In the FSCD, there was a significant association between the CHRNA5 variant and cocaine dependence (OR = 0.67 per allele, p = 0.0045, assuming an additive genetic model), but in the reverse direction compared to that previously observed for nicotine dependence. In multivariate analyses that controlled for the effects of nicotine dependence, both the protective effect for cocaine dependence and the previously documented risk effect for nicotine dependence were statistically significant. The protective effect for cocaine dependence was replicated in the COGA sample. In COGA, effect sizes for habitual smoking, a proxy phenotype for nicotine dependence, were consistent with those observed in FSCD.
The minor (A) allele of rs16969968, relative to the major G allele, appears to be both a risk factor for nicotine dependence and a protective factor for cocaine dependence. The biological plausibility of such a bidirectional association stems from the involvement of nAChRs with both excitatory and inhibitory modulation of dopamine-mediated reward pathways.
PMCID: PMC2582594  PMID: 18519132
Smoking; Nicotine dependence; Addiction; Substance-use disorders; Genetics; Receptors; nicotinic; Cocaine
16.  Association of CHRNA4 polymorphisms with smoking behavior in two populations 
CHRNA4, the gene that encodes the nicotinic acetylcholine receptor α4 subunit, is a potential candidate gene for nicotine dependence (ND). However, studies of the association of CHNRA4 with smoking behavior have shown inconsistent results. Our meta-analysis of linkage studies of smoking behavior identified a genome-wide significant linkage of the phenotype maximum number of cigarettes smoked in a 24-hour period to a region (20q13.12-q13.32) harboring CHRNA4. This motivated us to examine the association of CHRNA4 with smoking behavior in two independent samples. In this study, we examined five single nucleotide polymorphisms (SNPs) within CHRNA4 and three smoking-related behaviors: one quantitative trait [cigarettes smoked per day (CPD)], and two binary traits [DSM-IV diagnosis of ND and dichotomized Fagerstrom test of ND (FTND)], in 1,249 unrelated European-Americans (EAs) and 1,790 unrelated African-Americans (AAs). Using the combined sample with sex, age and race as covariates, the synonymous SNP rs1044394 was significantly associated with ND (P = 0.001) and FTND (P = 0.01). Rs2236196, which has a low correlation with rs1044394, was also significantly associated with CPD (P = 0.003). The pattern of association for these SNPs was similar in AAs and EAs. After correction for multiple testing, the association between rs1044394 and ND in the combined sample remained significant (P = 0.033). In summary, our study supports association between CHRNA4 common variation and ND in AA and EA samples. Additional studies will be necessary to evaluate the role of rare variants at CHRNA4 for ND.
PMCID: PMC3742073  PMID: 21445957
smoking behavior; nicotine dependence; FTND; SNP; association
17.  The CHRNA5-CHRNA3-CHRNB4 nicotinic receptor subunit gene cluster affects risk for nicotine dependence in African-Americans and in European-Americans 
Cancer research  2009;69(17):6848-6856.
Genetic association studies have demonstrated the importance of variants in the CHRNA5-CHRNA3-CHRNB4 cholinergic nicotinic receptor subunit gene cluster on chromosome 15q24-25.1 in risk for nicotine dependence, smoking, and lung cancer in populations of European descent. We have now carried out a detailed study of this region using dense genotyping in both European- and African-Americans.
We genotyped 75 known single-nucleotide-polymorphisms (SNPs) and one sequencing-discovered SNP in an African-American (AA) sample (N = 710) and European-American (EA) sample (N = 2062). Cases were nicotine-dependent and controls were non-dependent smokers.
The non-synonymous CHRNA5 SNP rs16969968 is the most significant SNP associated with nicotine dependence in the full sample of 2772 subjects (p = 4.49×10−8, OR 1.42 (1.25–1.61)) as well as in AAs only (p = 0.015, OR = 2.04 (1.15–3.62)) and EAs only (p = 4.14×10−7, OR = 1.40 (1.23–1.59)). Other SNPs that have been shown to affect mRNA levels of CHRNA5 in EAs are associated with nicotine dependence in AAs but not in EAs. The CHRNA3 SNP rs578776, which has low correlation with rs16969968, is associated with nicotine dependence in EAs but not in AAs. Less common SNPs (frequency ≤ 5%) also are associated with nicotine dependence.
In summary, multiple variants in this gene cluster contribute to nicotine dependence risk, and some are also associated with functional effects on CHRNA5. The non-synonymous SNP rs16969968, a known risk variant in European-descent populations, is also significantly associated with risk in African-Americans. Additional SNPs contribute in distinct ways to risk in these two populations.
PMCID: PMC2874321  PMID: 19706762
genetic association; smoking; cholinergic nicotinic receptors; nicotinic acetylcholine receptors
18.  Smoking Is Associated with, but Does Not Cause, Depressed Mood in Pregnancy – A Mendelian Randomization Study 
PLoS ONE  2011;6(7):e21689.
Smokers have a higher prevalence of major depressive episodes and depressive symptoms than the general population, but whether this association is causal, or is due to confounding or reverse causation is uncertain because of the problems inherent in some epidemiological studies. Mendelian randomization, in which a genetic variant is used as a surrogate for measuring exposure, is an approach which may be used to better understand this association. We investigated the rs1051730 single nucleotide polymorphism in the nicotine acetylcholine receptor gene cluster (CHRNA5-CHRNA3-CHRNB4), associated with smoking phenotypes, to determine whether women who continued to smoke were also more likely to report a low mood during pregnancy. We found among women who smoked pre-pregnancy, those with the 1051730 T allele smoked more and were less likely to quit smoking during pregnancy, but were also less likely to report high levels of depressed mood at 18 weeks of pregnancy (per allele OR = 0.84, 95%CI 0.72 to 0.99, p = 0.034). The association between genotype and depressed mood was limited to women who were smokers prior to pregnancy, with weak evidence of an interaction between smoking status and genotype (p = 0.07). Our results do not support a causal role of smoking on depressed mood, but are consistent with a self-medication hypothesis, whereby smoking is used to alleviate symptoms of depression. A replication study using multiple genetic variants which influence smoking via different pathways is required to confirm these findings and provide evidence that the genetic variant is reflecting the effect of quitting smoking on depressed mood, and is not directly affecting mood.
PMCID: PMC3139580  PMID: 21818261
19.  Chrna7 genotype is linked with alpha7 nicotinic receptor expression but not alpha7 RNA levels 
Brain research  2009;1263:1-9.
Studies using the radio-labeled nicotinic receptor antagonist [125I]-α-bungarotoxin, which binds to α7 subunit containing nicotinic receptors, have demonstrated that mouse strains vary considerably in the number of α7-containing nicotinic receptors in brain. In addition, brain region specific differences in α-bungarotoxin binding between the mouse strains C3H/Ibg and DBA/2 have been linked to polymorphisms in Chrna7, the gene that encodes the α7 subunit. In the studies described here, we evaluated whether the relationship between Chrna7 genotype and individual differences in α–bungarotoxin binding levels in adult brain might be due to an effect of Chrna7 genotype on α7 RNA levels. Quantitative autoradiography of coronal brain slices from F2 mice derived from the parental strains C3H/Ibg and DBA/2 demonstrate that Chrna7 genotype is not linked toα7 RNA levels. In contrast, quantitative autoradiography confirmed the linkage of Chrna7 genotype with α-bungarotoxin binding levels in hippocampus, striatum, and more precisely defined areas within these brain regions where Chrna7 genotype is associated with the level of α-bungarotoxin binding. The fact that Chrna7 genotype is linked to individual differences in α-bungarotoxin binding, but not α7 RNA levels, suggests that the observed linkage between Chrna7 genotype and α-bungarotoxin levels may be due to genetic influences on the post-transcriptional regulation of α7 nicotinic receptor expression.
PMCID: PMC2670961  PMID: 19368846
nicotinic receptor; genetics; mice; gene expression; post-transcriptional
20.  Genome-wide association scan of tag SNPs identifies a susceptibility locus for lung cancer at 15q25.1 
Nature genetics  2008;40(5):616-622.
To identify risk variants for lung cancer, we conducted a multistage genome-wide association study. In the discovery phase, we analyzed 315,450 tagging SNPs in 1,154 current and former (ever) smoking cases of European ancestry and 1,137 frequency-matched, ever-smoking controls from Houston, Texas. For replication, we evaluated the ten SNPs most significantly associated with lung cancer in an additional 711 cases and 632 controls from Texas and 2,013 cases and 3,062 controls from the UK. Two SNPs, rs1051730 and rs8034191, mapping to a region of strong linkage disequilibrium within 15q25.1 containing PSMA4 and the nicotinic acetylcholine receptor subunit genes CHRNA3 and CHRNA5, were significantly associated with risk in both replication sets. Combined analysis yielded odds ratios of 1.32 (P < 1 × 10−17) for both SNPs. Haplotype analysis was consistent with there being a single risk variant in this region. We conclude that variation in a region of 15q25.1 containing nicotinic acetylcholine receptors genes contributes to lung cancer risk.
PMCID: PMC2713680  PMID: 18385676
21.  New associations of the genetic polymorphisms in nicotinic receptor genes with the risk of lung cancer 
Life sciences  2012;91(21-22):1103-1108.
Previous studies revealed association of lung cancer risk with single nucleotide polymorphisms (SNPs) in chromosome 15q25 region containing CHRNA5-CHRNA3-CHRNB4 nicotinic acetylcholine receptor (nAChR) subunit gene cluster. The genetic variations in other lung nAChRs remained unknown. In this study, we perform case-control analysis of CHRNA9 and CHRNA3 genes using 340 non-small cell lung cancer cases and 435 controls.
Main methods
All exons, 3’UTR, intron 1 and parts of other introns surrounding exons 2–5 of CHRNA9 gene as well as exons 2, 3 of CHRNA3 gene and parts of surrounding intronic regions were sequenced. The study was controlled for gender, age and ethnicity related differences. Each SNP in analyzed groups was assessed by allele frequency, genotype distribution and haplotype analysis.
Key findings
The case-control analysis revealed that an increased risk is associated with two SNPs in CHRNA9, rs56159866 and rs6819385, and one in CHRNA3, rs8040868. The risk was reduced for three SNPs in CHRNA9, rs55998310, rs56291234, and newly discovered ss410759555, and also in carriers of the haplotype NP_060051.2 containing ancestral N442 variant of α9.
The nonsynonymous substitutions can produce receptors exhibiting unique ligand-binding and downstream signaling characteristics, synonymous as well all intronic SNPs may affect protein production at the transcriptional and/or translational levels, or just manifest association with cancer by genetic linkage to other alleles. Elucidation of the mechanisms by which individual genetic variations in α9 affect predisposition to lung cancer may lead to development of personalized approaches to cancer prevention and treatment as well as protection against tobacco consumption.
PMCID: PMC3341501  PMID: 22280835
lung cancer; CHRNA3; CHRNA9; α3 and α9 nicotinic acetylcholine receptors; single nucleotide polymorphisms
22.  Differential Regulation of α7 Nicotinic Receptor Gene (CHRNA7) Expression in Schizophrenic Smokers 
The α7 neuronal nicotinic receptor gene (CHRNA7) has been implicated in the pathophysiology of schizophrenia by genetic and pharmacological studies. Expression of the α7* receptor, as measured by [125I]α-bungarotoxin autoradiography, is decreased in postmortem brain of schizophrenic subjects compared to non-mentally ill controls. Most schizophrenic patients are heavy smokers, with high levels of serum cotinine. Smoking changes the expression of multiple genes and differentially regulates gene expression in schizophrenic hippocampus. We examined the effects of smoking on CHRNA7 expression in the same tissue and find that smoking differentially regulates expression of both mRNA and protein for this gene. CHRNA7 mRNA and protein levels are significantly lower in schizophrenic nonsmokers compared to control nonsmokers and are brought to control levels in schizophrenic smokers. Sufficient protein but low surface expression of the α7* receptor, seen in the autoradiographic studies, suggests aberrant assembly or trafficking of the receptor.
PMCID: PMC2808436  PMID: 19680823
Nicotinic receptor; Schizophrenia; Smoking; Gene expression; α7; CHRNA7
23.  CHRNA5 polymorphism and susceptibility to lung cancer in a Chinese population 
Polymorphisms in the nicotinic acetylcholine receptor subunit CHRNA5 gene have been associated with lung cancer positive susceptibility in European and American populations. In the present hospital-based, case-control study, we determined whether polymorphism in rs503464 of CHRNA5 is associated with lung cancer risk in Chinese individuals. A single nucleotide polymorphism in CHRNA5 rs503464, c.-166T>A (hereafter T>A), was identified using TaqMan-MGB probes with sequencing via PCR in 600 lung cancer cases and 600 healthy individuals. Genotype frequencies for rs503464 (T>A) were in Hardy-Weinberg equilibrium for the control population. However, genotype frequencies were significantly different between cases and controls (P < 0.05), while allele frequencies were not significantly different between groups. Compared to homozygous genotypes (TT or AA), the risk of lung cancer in those with the heterozygous genotype (TA) was significantly lower (OR = 0.611, 95%CI = 0.486-0.768, P = 0.001). Using genotype AA as a reference, the risk of lung cancer for those with genotype TA was increased 1.5 times (OR = 1.496, 95%CI = 1.120-1.997, P = 0.006). However, no difference in risk was observed between T allele carriers and A allele carriers (OR = 0.914, 95%CI = 0.779-1.073, P = 0.270). Stratification analysis showed that the protective effect of TA was more pronounced in those younger than 60 years, nonsmokers, or those without a family history of cancer, as well as in patients with adenocarcinoma or squamous cell carcinoma in clinical stages III or IV (P < 0.05). Therefore, the heterozygous genotype c.-166T>A at rs503464 of CHRNA5 may be associated with reduced risk of lung cancer, thus representing a susceptibility allele in Chinese individuals.
PMCID: PMC3854344  PMID: 23314339
Lung cancer; Nicotinic acetylcholine receptors; CHRNA5 gene; Single nucleotide polymorphisms
24.  CHRNA7 Polymorphisms and Response to Cholinesterase Inhibitors in Alzheimer's Disease 
PLoS ONE  2013;8(12):e84059.
CHRNA7 encodes the α7 nicotinic acetylcholine receptor subunit, which is important to Alzheimer's disease (AD) pathogenesis and cholinergic neurotransmission. Previously, CHRNA7 polymorphisms have not been related to cholinesterase inhibitors (ChEI) response.
Mild to moderate AD patients received ChEIs were recruited from the neurology clinics of three teaching hospitals from 2007 to 2010 (n = 204). Nine haplotype-tagging single nucleotide polymorphisms of CHRNA7 were genotyped. Cognitive responders were those showing improvement in the Mini-Mental State Examination score ≧2 between baseline and 6 months after ChEI treatment.
AD women carrying rs8024987 variants [GG+GC vs. CC: adjusted odds ratio (AOR) = 3.62, 95% confidence interval (CI) = 1.47–8.89] and GG haplotype in block1 (AOR = 3.34, 95% CI = 1.38–8.06) had significantly better response to ChEIs (false discovery rate <0.05). These variant carriers using galantamine were 11 times more likely to be responders than female non-carriers using donepezil or rivastigmine.
For the first time, this study found a significant association between CHRNA7 polymorphisms and better ChEI response. If confirmed by further studies, CHRNA7 polymorphisms may aid in predicting ChEI response and refining treatment choice.
PMCID: PMC3877150  PMID: 24391883
25.  Rare nonsynonymous variants in alpha-4 nicotinic acetylcholine receptor gene protect against nicotine dependence 
Biological psychiatry  2011;70(6):528-536.
There are several studies reporting association of alpha-4 nicotinic acetylcholine receptors (encoded by CHRNA4) with nicotine dependence (ND). A meta-analysis of genomewide linkage studies for ND implicated a single chromosomal region, which includes CHRNA4, as genomewide significant.
After establishing that common variants are unlikely to completely account for this linkage, we investigated the distribution of CHRNA4 rare variants by sequencing the coding exons and flanking intronic regions of CHRNA4 in 209 European American (EA) ND cases and 183 EA controls. Because most of the rare variants that we detected (and all nonsynonymous changes) were in exon 5, we sequenced exon 5 in an additional 1000 ND cases and 1000 non-ND comparison subjects, both of which included equal numbers of EAs and African Americans (AAs).
Comparison subjects had a higher frequency of rare nonsynonymous variants in the exon 5 region (encoding the large intercellular loop of the α4 subunit) (Fisher’s exact test p=0.009; association test p=0.009, OR=0.43; weighted-sum method p=0.014), indicating a protective effect against ND. Considering data from the two stages combined and only nonsynonymous variants predicted to alter protein function, the association was stronger (Fisher’s exact test p=0.005; association test p=0.008, OR=0.29). SPECT imaging results were consistent with functionality.
CHRNA4 functional rare variants may reduce ND risk. This is the first demonstration that rare functional variants at a candidate locus protect against substance dependence, suggesting a novel mechanism of substance dependence heritability that is potentially of general importance.
PMCID: PMC3199609  PMID: 21683344
Nicotine dependence; rare variants; nonsynonymous; CHRNA4; imaging genetics; deep sequencing

Results 1-25 (384497)