PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (1231144)

Clipboard (0)
None

Related Articles

1.  Genetic Variation of the Endangered Gentiana lutea L. var. aurantiaca (Gentianaceae) in Populations from the Northwest Iberian Peninsula 
Gentiana lutea L. (G. lutea L.) is an endangered plant, patchily distributed along the mountains of Central and Southern Europe. In this study, inter-simple sequence repeat (ISSR) markers were used to investigate the genetic variation in this species within and among populations of G. lutea L. var. aurantiaca of the Cantabrian Mountains (Northwest Iberian Peninsula). Samples of G. lutea L. collected at different locations of the Pyrenees and samples of G. lutea L. subsp. vardjanii of the Dolomites Alps were also analyzed for comparison. Using nine ISSR primers, 106 bands were generated, and 89.6% of those were polymorphic. The populations from the Northwest Iberian Peninsula were clustered in three different groups, with a significant correlation between genetic and geographic distances. Gentiana lutea L. var. aurantiaca showed 19.8% private loci and demonstrated a remarkable level of genetic variation, both among populations and within populations; those populations with the highest level of isolation show the lowest genetic variation within populations. The low number of individuals, as well as the observed genetic structure of the analyzed populations makes it necessary to protect them to ensure their survival before they are too small to persist naturally.
doi:10.3390/ijms150610052
PMCID: PMC4100139  PMID: 24905405
alpine plants; aurantiaca; Cantabrian Mountains; genetic diversity; geographical isolation; Gentiana lutea L.; small population; habitat fragmentation; over-exploitation
2.  Multilocus phylogeography of the common lizard Zootoca vivipara at the Ibero-Pyrenean suture zone reveals lowland barriers and high-elevation introgression 
Background
The geographic distribution of evolutionary lineages and the patterns of gene flow upon secondary contact provide insight into the process of divergence and speciation. We explore the evolutionary history of the common lizard Zootoca vivipara (= Lacerta vivipara) in the Iberian Peninsula and test the role of the Pyrenees and the Cantabrian Mountains in restricting gene flow and driving lineage isolation and divergence. We also assess patterns of introgression among lineages upon secondary contact, and test for the role of high-elevation trans-mountain colonisations in explaining spatial patterns of genetic diversity. We use mtDNA sequence data and genome-wide AFLP loci to reconstruct phylogenetic relationships among lineages, and measure genetic structure.
Results
The main genetic split in mtDNA corresponds generally to the French and Spanish sides of the Pyrenees as previously reported, in contrast to genome-wide AFLP data, which show a major division between NW Spain and the rest. Both types of markers support the existence of four distinct and geographically congruent genetic groups, which are consistent with major topographic barriers. Both datasets reveal the presence of three independent contact zones between lineages in the Pyrenean region, one in the Basque lowlands, one in the low-elevation mountains of the western Pyrenees, and one in the French side of the central Pyrenees. The latter shows genetic evidence of a recent, high-altitude trans-Pyrenean incursion from Spain into France.
Conclusions
The distribution and age of major lineages is consistent with a Pleistocene origin and a role for both the Pyrenees and the Cantabrian Mountains in driving isolation and differentiation of Z. vivipara lineages at large geographic scales. However, mountain ranges are not always effective barriers to dispersal, and have not prevented a recent high-elevation trans-Pyrenean incursion that has led to asymmetrical introgression among divergent lineages. Cytonuclear discordance in patterns of genetic structure and introgression at contact zones suggests selection may be involved at various scales. Suture zones are important areas for the study of lineage formation and speciation, and our results show that biogeographic barriers can yield markedly different phylogeographic patterns in different vertebrate and invertebrate taxa.
doi:10.1186/1471-2148-13-192
PMCID: PMC3847509  PMID: 24021154
Cytonuclear incongruence; Gene flow; Phylogeography; Secondary contact; Speciation; Vicariance
3.  Assessing the phylogeographic history of the montane caddisfly Thremma gallicum using mitochondrial and restriction-site-associated DNA (RAD) markers 
Ecology and Evolution  2015;5(3):648-662.
Repeated Quaternary glaciations have significantly shaped the present distribution and diversity of several European species in aquatic and terrestrial habitats. To study the phylogeography of freshwater invertebrates, patterns of intraspecific variation have been examined primarily using mitochondrial DNA markers that may yield results unrepresentative of the true species history. Here, population genetic parameters were inferred for a montane aquatic caddisfly, Thremma gallicum, by sequencing a 658-bp fragment of the mitochondrial CO1 gene, and 12,514 nuclear RAD loci. T. gallicum has a highly disjunct distribution in southern and central Europe, with known populations in the Cantabrian Mountains, Pyrenees, Massif Central, and Black Forest. Both datasets represented rangewide sampling of T. gallicum. For the CO1 dataset, this included 352 specimens from 26 populations, and for the RAD dataset, 17 specimens from eight populations. We tested 20 competing phylogeographic scenarios using approximate Bayesian computation (ABC) and estimated genetic diversity patterns. Support for phylogeographic scenarios and diversity estimates differed between datasets with the RAD data favouring a southern origin of extant populations and indicating the Cantabrian Mountains and Massif Central populations to represent highly diverse populations as compared with the Pyrenees and Black Forest populations. The CO1 data supported a vicariance scenario (north–south) and yielded inconsistent diversity estimates. Permutation tests suggest that a few hundred polymorphic RAD SNPs are necessary for reliable parameter estimates. Our results highlight the potential of RAD and ABC-based hypothesis testing to complement phylogeographic studies on non-model species.
doi:10.1002/ece3.1366
PMCID: PMC4328769
Biogeography; freshwater ecology; next-generation sequencing; phylogeography; Pleistocene glaciations
4.  Biogeographical and evolutionary importance of the European high mountain systems 
Europe is characterised by several high mountain systems dominating major parts of its area, and these structures have strongly influenced the evolution of taxa. For species now restricted to these high mountain systems, characteristic biogeographical patterns of differentiation exist. (i) Many local endemics are found in most of the European high mountain systems especially in the Alps and the more geographically peripheral regions of Europe. Populations isolated in these peripheral mountain ranges often have strongly differentiated endemic genetic lineages, which survived and evolved in the vicinity of these mountain areas over long time periods. (ii) Populations of taxa with wide distributions in the Alps often have two or more genetic lineages, which in some cases even have the status of cryptic species. In many cases, these lineages are the results of several centres of glacial survival in the perialpine areas. Similar patterns also apply to the other geographically extended European high mountain systems, especially the Pyrenees and Carpathians. (iii) Populations from adjoining high mountain systems often show similar genetic lineages, a phenomenon best explained by postglacial retreat to these mountains from one single differentiation centre between them. (iv) The populations of a number of species show gradients of genetic diversity from a genetically richer East to a poorer West. This might indicate better glacial survival conditions for this biogeographical group of species in the more eastern parts of Europe.
doi:10.1186/1742-9994-6-9
PMCID: PMC2700098  PMID: 19480666
5.  Microsatellite Marker Analysis Reveals the Complex Phylogeographic History of Rhododendron ferrugineum (Ericaceae) in the Pyrenees 
PLoS ONE  2014;9(3):e92976.
Genetic variation within plant species is determined by a number of factors such as reproductive mode, breeding system, life history traits and climatic events. In alpine regions, plants experience heterogenic abiotic conditions that influence the population's genetic structure. The aim of this study was to investigate the genetic structure and phylogeographic history of the subalpine shrub Rhododendron ferrugineum across the Pyrenees and the links between the populations in the Pyrenees, the Alps and Jura Mountains. We used 27 microsatellite markers to genotype 645 samples from 29 Pyrenean populations, three from the Alps and one from the Jura Mountains. These data were used to estimate population genetics statistics such as allelic richness, observed heterozygosity, expected heterozygosity, fixation index, inbreeding coefficient and number of migrants. Genetic diversity was found to be higher in the Alps than in the Pyrenees suggesting colonization waves from the Alps to the Pyrenees. Two separate genetic lineages were found in both the Alps and Pyrenees, with a substructure of five genetic clusters in the Pyrenees where a loss of genetic diversity was noted. The strong differentiation among clusters is maintained by low gene flow across populations. Moreover, some populations showed higher genetic diversity than others and presented rare alleles that may indicate the presence of alpine refugia. Two lineages of R. ferrugineum have colonized the Pyrenees from the Alps. Then, during glaciation events R. ferrugineum survived in the Pyrenees in different refugia such as lowland refugia at the eastern part of the chain and nunataks at high elevations leading to a clustered genetic pattern.
doi:10.1371/journal.pone.0092976
PMCID: PMC3965482  PMID: 24667824
6.  Mycoplasma conjunctivae in domestic small ruminants from high mountain habitats in Northern Spain 
Background
Infectious keratoconjunctivitis (IKC) is a clinical condition affecting eyes of domestic and wild Caprinae worldwide, and Mycoplasma conjunctivae is considered the primary causative agent of IKC in sheep, goats and wild Caprinae. Domestic ruminants from high mountain habitats share grazing areas with wild mountain ungulates, such as chamois (Rupicapra spp.), Alpine ibex (Capra ibex) and European mouflon (Ovis aries musimon), and domestic sheep seem to act as M. conjunctivae reservoir. In this study, the presence of M. conjunctivae in domestic sheep and goats from the two main mountain ranges of Northern Spain, the Pyrenees and the Cantabrian Mountains, has been investigated.
Results
Eye swabs were obtained from 439 domestic small ruminants selected from flocks that seasonally graze in alpine meadows during three consecutive years (2011-2012-2013). Seventy-nine out of the 378 domestic sheep (20.9%) tested positive to a M. conjunctivae specific real time-PCR (rt-PCR) in at least one eye, whereas all the 61 sampled domestic goats were negative. Statistically significant higher prevalence and higher proportion of infected flocks (P < 0.001) was observed in the Pyrenees (25.7%; 12 flocks out of 13), where M. conjunctivae is widespread and probably endemic in domestic sheep, than in the Cantabrian Mountains (7.8%; one flock out of six). Twenty-five sheep (three from the Pyrenees and 22 from the Cantabrian Mountains) which showed clinical signs consistent with infectious keratoconjunctivitis (IKC) were negative by rt-PCR. In contrast, 62 out of the 71 (87.3%) M. conjunctivae-positive sheep from the Pyrenees and the eight positive sheep from the Cantabrian Mountains were asymptomatic.
Conclusions
This study provides rt-PCR-based evidences of M. conjunctivae maintenance in domestic sheep, as well as a relationship between prevalence in domestic sheep and previously reported M. conjunctivae and IKC in wild ruminants. Domestic goats do not seem to play an important role in the epidemiology of M. conjunctivae in alpine habitats from Northern Spain.
doi:10.1186/1746-6148-9-253
PMCID: PMC3883482  PMID: 24330682
Goat; Sheep; Infectious keratoconjunctivitis; Mycoplasma conjunctivae; Spain; Pyrenees; Cantabrian mountains
7.  Conservation Genetics of Threatened Hippocampus guttulatus in Vulnerable Habitats in NW Spain: Temporal and Spatial Stability of Wild Populations with Flexible Polygamous Mating System in Captivity 
PLoS ONE  2015;10(2):e0117538.
This study was focused on conservation genetics of threatened Hippocampus guttulatus on the Atlantic coast of NW Iberian Peninsula. Information about spatial structure and temporal stability of wild populations was obtained based on microsatellite markers, and used for monitoring a captive breeding program firstly initiated in this zone at the facilities of the Institute of Marine Research (Vigo, Spain). No significant major genetic structure was observed regarding the biogeographical barrier of Cape Finisterre. However, two management units under continuous gene flow are proposed based on the allelic differentiation between South-Atlantic and Cantabrian subpopulations, with small to moderate contemporary effective size based on single-sample methods. Temporal stability was observed in South-Atlantic population samples of H. guttulatus for the six-year period studied, suggesting large enough effective population size to buffer the effects of genetic drift within the time frame of three generations. Genetic analysis of wild breeders and offspring in captivity since 2009 allowed us to monitor the breeding program founded in 2006 in NW Spain for this species. Similar genetic diversity in the renewed and founder broodstock, regarding the wild population of origin, supports suitable renewal and rearing processes to maintain genetic variation in captivity. Genetic parentage proved single-brood monogamy in the wild and in captivity, but flexible short- and long-term mating system under captive conditions, from strict monogamy to polygamy within and/or among breeding seasons. Family analysis showed high reproductive success in captivity under genetic management assisted by molecular relatedness estimates to avoid inbreeding. This study provides genetic information about H. guttulatus in the wild and captivity within an uncovered geographical range for this data deficient species, to be taken into account for management and conservation purposes.
doi:10.1371/journal.pone.0117538
PMCID: PMC4315495  PMID: 25646777
8.  Nuclear DNA Microsatellites Reveal Genetic Variation but a Lack of Phylogeographical Structure in an Endangered Species, Fraxinus mandshurica, Across North-east China 
Annals of Botany  2008;102(2):195-205.
Background and Aims
The widely accepted paradigm that the modern genetic structure of plant species in the northern hemisphere has been largely determined by recolonization from refugia after the last glacial maximum fails to explain the presence of cold-tolerant species at intermediate latitudes. Another generally accepted paradigm is that mountain ridges act as important barriers causing genetic isolation of species, but this too has been challenged in recent studies. The aims of the work reported here were to determine the genetic diversity and distribution patterns of extant natural populations of an endangered cool temperate species, Faxinus mandshurica, and to examine whether these two paradigms are appropriate when applied to this species over a wide geographical scale.
Methods
1435 adult individuals were sampled from 30 natural populations across the main and central range of the species, covering major mountain ranges across North-east China (NEC). Genetic variation was estimated based on nine polymorphic nuclear microsatellite loci. Phylogeographical analyses were employed using various approaches, including Bayesian clustering, spatial analysis of molecular variance, Monmonier's algorithm, neighbor-joining trees, principal co-ordinate analysis and isolation by distance.
Key Results
Genetic diversity within populations was relatively high, and no significant recent bottlenecks were detected in any of the populations. A significant negative correlation between intra-population genetic diversity and latitude was identified. In contrast, genetic differentiation among all the populations examined was extremely low and no clear geographic genetic structure was identified, with the exception of one distinct population.
Conclusions
The modern genetic structure in this species can be explained by extensive gene flow, an absence of mountains acting as barriers, and the presence of a wide refuge across NEC rather than multiple small refugia. Intra-population genetic variation along latitudes is probably associated with the systematically northward shifts of forest biomes in eastern China during the mid-Holocene. To determine important genetic patterns and identify resources for conservation, however, it will be necessary to examine differentially inherited genetic markers exposed to selection pressures (e.g. chloroplast DNA) and to investigate different generations.
doi:10.1093/aob/mcn074
PMCID: PMC2712365  PMID: 18477559
Fraxinus mandshurica; nuclear microsatellites; latitude variation; historical migration; fossil pollen; spatial genetic structure; genetic barriers
9.  High Genetic Diversity and Insignificant Interspecific Differentiation in Opisthopappus Shih, an Endangered Cliff Genus Endemic to the Taihang Mountains of China 
The Scientific World Journal  2013;2013:275753.
Opisthopappus Shih is endemic to the Taihang Mountains, China. It grows in the crevice of cliffs and is in fragmented distribution. This genus consists of two species, namely, O. taihangensis (Ling) Shih and O. longilobus Shih, which are both endangered plants in China. This study adopted intersimple sequence repeat markers (ISSR) to analyze the genetic diversity and genetic structure from different levels (genus, species, and population) in this genus. A total of 253 loci were obtained from 27 primers, 230 of which were polymorphic loci with a proportion of polymorphic bands (PPB) of up to 90.91% at genus level. At species level, both O. taihangensis (PPB = 90.12%, H = 0.1842, and I = 0.289) and O. longilobus (PPB = 95.21%, H = 0.2226, and I = 0.3542) have high genetic diversity. Their respective genetic variation mostly existed within the population. And genetic variation in O. longilobus (84.95%) was higher than that in O. taihangensis (80.45%). A certain genetic differentiation among populations in O. taihangensis was found (Gst = 0.2740, Φst = 0.196) and genetic differentiation in O. longilobus was very small (Gst = 0.1034, Φst = 0.151). Gene flow in different degrees (Nm = 1.325 and 4.336, resp.) and mating system can form the existing genetic structures of these two species. Furthermore, genetic differentiation coefficient (Gst = 0.0453) between species and the clustering result based on the genetic distance showed that interspecific differentiation between O. taihangensis and O. longilobus was not significant and could occur lately.
doi:10.1155/2013/275753
PMCID: PMC3876899  PMID: 24453824
10.  Molecular biogeography of Europe: Pleistocene cycles and postglacial trends 
Frontiers in Zoology  2007;4:11.
The climatic cycles with subsequent glacial and intergalcial periods have had a great impact on the distribution and evolution of species. Using genetic analytical tools considerably increased our understanding of these processes. In this review I therefore give an overview of the molecular biogeography of Europe. For means of simplification, I distinguish between three major biogeographical entities: (i) "Mediterranean" with Mediterranean differentiation and dispersal centres, (ii) "Continental" with extra-Mediterranean centres and (iii) "Alpine" and/or "Arctic" with recent alpine and/or arctic distribution patterns. These different molecular biogeographical patterns are presented using actual examples.
Many "Mediterranean" species are differentiated into three major European genetic lineages, which are due to glacial isolation in the three major Mediterranean peninsulas. Postglacial expansion in this group of species is mostly influenced by the barriers of the Pyrenees and the Alps with four resulting main patterns of postglacial range expansions. However, some cases are known with less than one genetic lineage per Mediterranean peninsula on the one hand, and others with a considerable genetic substructure within each of the Mediterranean peninsulas, Asia Minor and the Maghreb. These structures within the Mediterranean sub-centres are often rather strong and in several cases even predate the Pleistocene.
For the "Continental" species, it could be shown that the formerly supposed postglacial spread from eastern Palearctic expansion centres is mostly not applicable. Quite the contrary, most of these species apparently had extra-Mediterranean centres of survival in Europe with special importance of the perialpine regions, the Carpathian Basin and parts of the Balkan Peninsula.
In the group of "Alpine" and/or "Arctic" species, several molecular biogeographical patterns have been found, which support and improve the postulates based on distribution patterns and pollen records. Thus, genetic studies support the strong linkage between southwestern Alps and Pyrenees, northeastern Alps and Carpathians as well as southeastern Alps and the Dinaric mountain systems, hereby allowing conclusions on the glacial distribution patterns of these species. Furthermore, genetic analyses of arctic-alpine disjunct species support their broad distribution in the periglacial areas at least during the last glacial period.
The detailed understanding of the different phylogeographical structures is essential for the management of the different evolutionary significant units of species and the conservation of their entire genetic diversity. Furthermore, the distribution of genetic diversity due to biogeographical reasons helps understanding the differing regional vulnerabilities of extant populations.
doi:10.1186/1742-9994-4-11
PMCID: PMC1868914  PMID: 17439649
11.  Genetic diversity and differentiation among populations of the Indian eri silkworm, Samia cynthia ricini, revealed by ISSR markers 
Samia cynthia ricini (Lepidoptera:Saturniidae), the Indian eri silkworm, contributes significantly to the production of commercial silk and is widely distributed in the Brahmaputra river valley in North-Eastern India. Due to over exploitation coupled with rapid deforestation, most of the natural populations of S. cynthia ricini are dwindling rapidly and its preservation has become an important goal. Assessment of the genetic structure of each population is a prerequisite for a sustainable conservation program. DNA fingerprinting to detect genetic variation has been used in different insect species not only between populations, but also between individuals within a population. Since, information on the genetic basis of phenotypic variability and genetic diversity within the S. cynthia ricini populations is scanty, inter simple sequence repeat (ISSR) system was used to assess genetic diversity and differentiation among six commercially exploited S. cynthia ricini populations. Twenty ISSR primers produced 87% of inter population variability among the six populations. Genetic distance was lowest between the populations Khanapara (E5) and Mendipathar (E6) (0.0654) and highest between Dhanubhanga (E4) and Titabar (E3) (0.3811). Within population, heterozygosity was higher in Borduar (E2) (0.1093) and lowest in Titabar (E3) (0.0510). Highest gene flow (0.9035) was between E5 and E6 and the lowest (0.2172) was between E3 and E5. Regression analysis showed positive correlation between genetic distance and geographic distance among the populations. The high GST value (0.657) among the populations combined with low gene flow contributes significantly to the genetic differentiation among the S. cynthia ricini populations. Based on genetic diversity, these populations can be considered as different ecotypes and in situ conservation of them is recommended.
doi:10.1673/2006_6_30.1
PMCID: PMC2990324  PMID: 19537974
Eri phenotype; geographic isolation; gene flow; heterozygosity
12.  Molecular phylogeny of the Trechus brucki group, with description of two new species from the Pyreneo-Cantabrian area (France, Spain) (Coleoptera, Carabidae, Trechinae)  
ZooKeys  2012;11-51.
A molecular phylogeny of the species from the Trechus brucki clade (previously Trechus uhagoni group)based on fragments of four mitochondrial genes and one nuclear gene is given. We describe Trechus (Trechus) bouilloni sp. n. from the western pre–Pyrenees: Sierras de Urbasa–Andía, Navarra, Spain. The species was collected in mesovoid shallow substratum (mss), a subterranean environment. Molecular as well as morphological evidences demonstrate that the new species belongs to the Trechus brucki clade. A narrow endemic species of high altitude in western French Pyrenees merged with Trechus brucki Fairmaire, 1862a, Trechus bruckoides sp. n., is described. A lectotype is designated for Trechus brucki and Trechus planiusculus Fairmaire, 1862b (junior synonym of Trechus brucki). The species group is redefined based on molecular and morphological characters, and renamed as the brucki group, as Trechus brucki was the first described species of the clade. A unique synapomorphy of the male genitalia, a characteristic secondary sclerotization of the sperm duct, which is shared by all the species of the brucki group sensu novo, is described and illustrated. The Trechus brucki group sensu novo is composed of Trechus beusti (Schaufuss, 1863), Trechus bouilloni sp. n., Trechus brucki, Trechus bruckoides sp. n., Trechus grenieri Pandellé, 1867, T. uhagoni uhagoni Crotch, 1869, T. uhagoni ruteri Colas, 1935 and Trechus pieltaini Jeannel, 1920. We discuss the taxonomy of the group and provide illustrations of structures showing the differences between the species, along with distribution data and biogeographical comments.
doi:10.3897/zookeys.217.3136
PMCID: PMC3433701  PMID: 22977341
Carabidae; Trechini; Trechus brucki group ; new species; molecular phylogeny; subterranean environment; Pyrenees; France; Spain
13.  Big mountains but small barriers: Population genetic structure of the Chinese wood frog (Rana chensinensis) in the Tsinling and Daba Mountain region of northern China 
BMC Genetics  2009;10:17.
Background
Amphibians in general are poor dispersers and highly philopatric, and landscape features often have important impacts on their population genetic structure and dispersal patterns. Numerous studies have suggested that genetic differentiation among amphibian populations are particularly pronounced for populations separated by mountain ridges. The Tsinling Mountain range of northern China is a major mountain chain that forms the boundary between the Oriental and Palearctic zoogeographic realms. We studied the population structure of the Chinese wood frog (Rana chensinensis) to test whether the Tsinling Mountains and the nearby Daba Mountains impose major barriers to gene flow.
Results
Using 13 polymorphic microsatellite DNA loci, 523 individuals from 12 breeding sites with geographical distances ranging from 2.6 to 422.8 kilometers were examined. Substantial genetic diversity was detected at all sites with an average of 25.5 alleles per locus and an expected heterozygosity ranging from 0.504 to 0.855, and two peripheral populations revealed significantly lower genetic diversity than the central populations. In addition, the genetic differentiation among the central populations was statistically significant, with pairwise FST values ranging from 0.0175 to 0.1625 with an average of 0.0878. Furthermore, hierarchical AMOVA analysis attributed most genetic variation to the within-population component, and the between-population variation can largely be explained by isolation-by-distance. None of the putative barriers detected from genetic data coincided with the location of the Tsinling Mountains.
Conclusion
The Tsinling and Daba Mountains revealed no significant impact on the population genetic structure of R. chensinensis. High population connectivity and extensive juvenile dispersal may account for the significant, but moderate differentiation between populations. Chinese wood frogs are able to use streams as breeding sites at high elevations, which may significantly contribute to the diminishing barrier effect of mountain ridges. Additionally, a significant decrease in genetic diversity in the peripheral populations supports Mayr's central-peripheral population hypothesis.
doi:10.1186/1471-2156-10-17
PMCID: PMC2679764  PMID: 19358732
14.  Distinct Genetic Diversity of Oncomelania hupensis, Intermediate Host of Schistosoma japonicum in Mainland China as Revealed by ITS Sequences 
Background
Oncomelania hupensis is the unique intermediate host of Schistosoma japonicum, which causes schistosomiasis endemic in the Far East, and especially in mainland China. O. hupensis largely determines the parasite's geographical range. How O. hupensis's genetic diversity is distributed geographically in mainland China has never been well examined with DNA sequence data.
Methodology/Principal Findings
In this study we investigate the genetic variation among O. hupensis from different geographical origins using the combined complete internal transcribed spacer 1 (ITS1) and ITS2 regions of nuclear ribosomal DNA. 165 O. hupensis isolates were obtained in 29 localities from 7 provinces across mainland China: lake/marshland and hill regions in Anhui, Hubei, Hunan, Jiangxi and Jiangsu provinces, located along the middle and lower reaches of Yangtze River, and mountainous regions in Sichuan and Yunnan provinces. Phylogenetic and haplotype network analyses showed distinct genetic diversity and no shared haplotypes between populations from lake/marshland regions of the middle and lower reaches of the Yangtze River and populations from mountainous regions of Sichuan and Yunnan provinces. The genetic distance between these two groups is up to 0.81 based on Fst, and branch time was estimated as 2–6 Ma. As revealed in the phylogenetic tree, snails from Sichuan and Yunnan provinces were also clustered separately. Geographical separation appears to be an important factor accounting for the diversification of the two groups of O. hupensis in mainland China, and probably for the separate clades between snails from Sichuan and Yunnan provinces. In lake/marshland and hill regions along the middle and lower reaches of the Yangtze River, three clades were identified in the phylogenetic tree, but without any obvious clustering of snails from different provinces.
Conclusions
O. hupensis in mainland China may have considerable genetic diversity, and a more complex population structure than expected. It will be of significant importance to consider the genetic diversity of O. hupensis when assessing co-evolutionary interactions with S. japonicum.
Author Summary
The intermediate host of Schistosoma japonicum in Asia is the snail Oncomelania hupensis, which can be separated phenotypically into ribbed- and smooth-shelled morphotypes. In China, the typical morphotype is ribbed-shelled, with its distribution restricted to mainland China. Smooth-shelled snails with varix are also distributed in China, which are considered to belong to the same subspecies as the ribbed-shelled snails. In this study we investigate the genetic variation among O. hupensis from different geographical origins using combined complete ITS1 and ITS2 regions of nuclear ribosomal DNA. Snails including ribbed-shelled and smooth-shelled (but with varix on the shell) from the lake/marshland region of the middle and lower reaches of the Yangtze River, and smooth-shelled snails from mountainous regions of Sichuan and Yunnan provinces, were genetically distinct with no shared haplotypes detected. Furtheremore, the snails from Sichuan and Yunnan provinces were clustered in separate clades in the phylogenetic tree, and three clades were observed for snails from the middle and lower reaches of the Yangtze River. The population diversity of O. hupensis in China is thus considered large, and evolutionary relationships in the host-parasite system of O. hupensis-S. japonicum may be of interest for further research.
doi:10.1371/journal.pntd.0000611
PMCID: PMC2830461  PMID: 20209150
15.  Phylogeography of Pinus armandii and Its Relatives: Heterogeneous Contributions of Geography and Climate Changes to the Genetic Differentiation and Diversification of Chinese White Pines 
PLoS ONE  2014;9(1):e85920.
Geographic barriers and Quaternary climate changes are two major forces driving the evolution, speciation, and genetic structuring of extant organisms. In this study, we used Pinus armandii and eleven other Asian white pines (subsection Strobus, subgenus Pinus) to explore the influences of geographic factors and Pleistocene climatic oscillations on species in South China, a region known to be centers of plant endemism and biodiversity hotspots. Range-wide patterns of genetic variation were investigated using chloroplast and mitochondrial DNA markers, with extensive sampling throughout the entire range of P. armandii. Both cpDNA and mtDNA revealed that P. armandii exhibits high levels of genetic diversity and significant population differentiation. Three geographically distinct subdivisions corresponding to the Qinling-Daba Mountains (QDM), Himalaya-Hengduan Mountains (HHM) and Yungui Plateau (YGP) were revealed in mainland China by cpDNA. Their break zone was located in the southeastern margin of the Qinghai-Tibetan Plateau (QTP). A series of massive mountains, induced by the QTP uplift, imposed significant geographic barriers to genetic exchange. The disjunct distribution patterns of ancestral haplotypes suggest that a large continuous population of the white pines may have existed from southwest to subtropical China. Repeated range shifts in response to the Pleistocene glaciations led to the isolation and diversification of the subtropical species. The two Taiwanese white pines share a common ancestor with the species in mainland China and obtain their chloroplasts via long-distance pollen dispersal from North Asian pines. Distinct genetic patterns were detected in populations from the Qinling-Daba Mountains, Yungui Plateau, Himalaya-Hengduan Mountains, and subtropical China, indicating significant contributions of geographic factors to the genetic differentiation in white pines. Our study depicts a clear picture of the evolutionary history of Chinese white pines and highlights the heterogeneous contributions of geography and Pleistocene climatic fluctuations to the extremely high plant species diversity and endemism in South China.
doi:10.1371/journal.pone.0085920
PMCID: PMC3897548  PMID: 24465789
16.  Genetic Variation in Rheum palmatum and Rheum tanguticum (Polygonaceae), Two Medicinally and Endemic Species in China Using ISSR Markers 
PLoS ONE  2012;7(12):e51667.
Aims
Both Rheum palmatum and R. tanguticum are important but endangered medicinal plants endemic to China. In this study, we aimed to (i) investigate the level and pattern of genetic variability within/among populations of those species; (ii) evaluate genetic differentiation between both species and its relationships and ascertain whether both species are consistent with their current taxonomical treatment as separate species; and (iii) discuss the implications for the effective conservation of two species.
Methods
Total 574 individuals from 30 populations of R. palmatum and R. tanguticum were collected, covering the entire distribution range of two species in China. The genetic variation within and among 30 populations was evaluated using inter-simple sequence repeat (ISSR) markers.
Important Findings
Twelve selected ISSR primers generated a total of 175 fragments, 173 (98.86%) of which were polymorphic. The Nei's gene diversity (H) and Shannon's index (I) of both species were high at species level (H = 0.3107, I = 0.4677 for R. palmatum; H = 0.2848, I = 0.4333 for R. tanguticum). But for both species, the genetic diversity was low at population level, and average within-population diversity of R. palmatum was H = 0.1438, I = 0.2151, and that of R. tanguticum was H = 0.1415, I = 0.2126. The hierarchical AMOVA revealed high levels of among-population genetic differentiation in both species, in line with the gene differentiation coefficient and the limited among-population gene flow (R. palmatum: Φst = 0.592, Gst = 0.537, Nm = 0.432; R. tanguticum: Φst = 0.567, Gst = 0.497, Nm = 0.507). By contrast, only 6.52% of the total genetic variance was partitioned between R. palmatum and R. tanguticum. Bayesian analysis, UPGMA cluster analysis, and PCoA analysis all demonstrated the similar results. A significant isolation-by-distance pattern was revealed in R. palmatum (r = 0.547, P = 0.010), but not in R. tanguticum (r = 0.241, P = 0.100). Based on these results, effective conservation strategies were proposed for these two species. The small molecular variance between R. palmatum and R. tanguticum revealed that they had a common ancestor, and we considered that these two species might not be good species.
doi:10.1371/journal.pone.0051667
PMCID: PMC3527122  PMID: 23289054
17.  The evolutionary history of Antirrhinum in the Pyrenees inferred from phylogeographic analyses 
Background
The origin and colonisation history after the Quaternary ice ages remain largely unresolved for many plant lineages, mainly owing to a lack of fine-scale studies. Here, we present a molecular phylogeny and a phylogeographic analysis of Antirrhinum, an important model system in plant biology, in the Pyrenees range. Our goal was to reconstruct the evolutionary and colonisation history of four taxa endemic to this region (A. majus subsp. majus, A. majus. subsp. striatum, A. molle, and A. sempervirens) by using a dense sampling strategy, with a total of 452 individuals from 99 populations whose collective distribution spans nearly the entirety of the Pyrenees and adjacent mountains.
Results
Phylogenetic and phylogeographic analyses of the sequences of two plastid (trnS-trnG and trnK-matK) regions revealed the following: (i) historical relationship between the Pyrenees and Iberia (but not with the Alps); (ii) the long persistence of populations in the Pyrenees, at least since the Late Pleistocene; (iii) three different colonisation histories for populations from the Western, Central, and Eastern Pyrenees; (iv) the deep phylogeographic separation of the eastern and western populations; and (v) the colonisation of southern France from the Eastern Pyrenees.
Conclusions
The present study underlines the enormous influence of the glacial history of the mountain ranges on the current configuration of intra- and inter-specific genetic diversity in Antirrhinum, as well as the importance of periglacial areas for the survival of species during glacial periods of the Quaternary.
doi:10.1186/1471-2148-14-146
PMCID: PMC4099501  PMID: 24970688
Antirrhinum; Phylogeny; Phylogeography; Pyrenees; Quaternary
18.  Conservation Genetics of an Endangered Lady’s Slipper Orchid: Cypripedium japonicum in China 
Knowledge about the population genetic variation of the endangered orchid, Cypripedium japonicum, is conducive to the development of conservation strategies. Here, we examined the levels and partitioning of inter-simple sequence repeat (ISSR) diversity (109 loci) in five populations of this orchid to gain insight into its genetic variation and population structure in Eastern and Central China. It harbored considerably lower levels of genetic diversity both at the population (percentage of polymorphic loci (PPL) = 11.19%, Nei’s gene diversity (H) = 0.0416 and Shannon’s information index (I) = 0.0613) and species level (PPL = 38.53%, H = 0.1273 and I = 0.1928) and a significantly higher degree of differentiation among populations (the proportion of the total variance among populations (Φpt) = 0.698) than those typical of ISSR-based studies in other orchid species. Furthermore, the Nei’s genetic distances between populations were independent of the corresponding geographical distances. Two main clusters are shown in an arithmetic average (UPGMA) dendrogram, which is in agreement with the results of principal coordinate analysis (PCoA) analysis and the STRUCTURE program. In addition, individuals within a population were more similar to each other than to those in other populations. Based on the genetic data and our field survey, the development of conservation management for this threatened orchid should include habitat protection, artificial gene flow and ex situ measures.
doi:10.3390/ijms150711578
PMCID: PMC4139801  PMID: 24983476
Cypripedium japonicum; genetic diversity; ISSR; Orchidaceae
19.  Geographical Structuring of Genetic Diversity Across the Whole Distribution Range of Narcissus longispathus, a Habitat-specialist, Mediterranean Narrow Endemic 
Annals of Botany  2008;102(2):183-194.
Background and Aims
High mountain ranges of the Mediterranean Basin harbour a large number of narrowly endemic plants. In this study an investigation is made of the levels and partitioning of genetic diversity in Narcissus longispathus, a narrow endemic of south-eastern Spanish mountains characterized by a naturally fragmented distribution due to extreme specialization on a rare habitat type. By using dense sampling of populations across the species' whole geographical range, genetic structuring at different geographical scales is also examined.
Methods
Using horizontal starch-gel electrophoresis, allozyme variability was screened at 19 loci for a total of 858 individuals from 27 populations. The data were analysed by means of standard statistical approaches in order to estimate gene diversity and the genetic structure of the populations.
Key Results
Narcissus longispathus displayed high levels of genetic diversity and extensive diversification among populations. At the species level, the percentage of polymorphic loci was 68 %, with average values of 2·1, 0·11 and 0·14 for the number of alleles per locus, observed heterozygosity and expected heterozygosity, respectively. Southern and more isolated populations tended to have less genetic variability than northern and less-isolated populations. A strong spatial patterning of genetic diversity was found at the various spatial scales. Gene flow/drift equilibrium occurred over distances <4 km. Beyond that distance divergence was relatively more influenced by drift. The populations studied seem to derive from three panmictic units or ‘gene pools’, with levels of admixture being greatest in the central and south-eastern portions of the species' range.
Conclusions
In addition to documenting a case of high genetic diversity in a narrow endemic plant with naturally fragmented populations, the results emphasize the need for dense population sampling and examination of different geographical scales for understanding population genetic structure in habitat specialists restricted to ecological islands.
doi:10.1093/aob/mcn086
PMCID: PMC2712358  PMID: 18556752
Allozymes; genetic diversity; geographical scale; habitat isolation; Narcissus longispathus; Mediterranean endemism; mountain range; natural fragmented distribution
20.  Genetic Structure of the Tree Peony (Paeonia rockii) and the Qinling Mountains as a Geographic Barrier Driving the Fragmentation of a Large Population 
PLoS ONE  2012;7(4):e34955.
Background
Tree peonies are great ornamental plants associated with a rich ethnobotanical history in Chinese culture and have recently been used as an evolutionary model. The Qinling Mountains represent a significant geographic barrier in Asia, dividing mainland China into northern (temperate) and southern (semi–tropical) regions; however, their flora has not been well analyzed. In this study, the genetic differentiation and genetic structure of Paeonia rockii and the role of the Qinling Mountains as a barrier that has driven intraspecific fragmentation were evaluated using 14 microsatellite markers.
Methodology/Principal Findings
Twenty wild populations were sampled from the distributional range of P. rockii. Significant population differentiation was suggested (FST value of 0.302). Moderate genetic diversity at the population level (HS of 0.516) and high population diversity at the species level (HT of 0.749) were detected. Significant excess homozygosity (FIS of 0.076) and recent population bottlenecks were detected in three populations. Bayesian clusters, population genetic trees and principal coordinate analysis all classified the P. rockii populations into three genetic groups and one admixed Wenxian population. An isolation-by-distance model for P. rockii was suggested by Mantel tests (r = 0.6074, P<0.001) and supported by AMOVA (P<0.001), revealing a significant molecular variance among the groups (11.32%) and their populations (21.22%). These data support the five geographic boundaries surrounding the Qinling Mountains and adjacent areas that were detected with Monmonier's maximum-difference algorithm.
Conclusions/Significance
Our data suggest that the current genetic structure of P. rockii has resulted from the fragmentation of a formerly continuously distributed large population following the restriction of gene flow between populations of this species by the Qinling Mountains. This study provides a fundamental genetic profile for the conservation and responsible exploitation of the extant germplasm of this species and for improving the genetic basis for breeding its cultivars.
doi:10.1371/journal.pone.0034955
PMCID: PMC3327690  PMID: 22523566
21.  High Genetic Diversity and Low Differentiation of Michelia coriacea (Magnoliaceae), a Critically Endangered Endemic in Southeast Yunnan, China 
Michelia coriacea, a critically endangered tree, has a restricted and fragmented distribution in Southeast Yunnan Province, China. The genetic diversity, genetic structure and gene flow in the three extant populations of this species were detected by 10 inter-simple sequence repeat (ISSR) markers and 11 simple sequence repeat (SSR) markers. Examination of genetic diversity revealed that the species maintained a relatively high level of genetic diversity at the species level (percentage of polymorphic bands) PPB = 96.36% from ISSRs; PPL (percentage of polymorphic loci) = 95.56% from SSRs, despite several fragmental populations. Low levels of genetic differentiation among the populations of M. coriacea were detected by Nei’s Gst = 0.187 for ISSR and Wright’s Fst = 0.090 for SSR markers, which is further confirmed by Bayesian model-based STRUCTURE and PCoA analysis that could not reveal a clear separation between populations, although YKP was differentiated to other two populations by ISSR markers. Meanwhile, AMOVA analysis also indicated that 22.84% and 13.90% of genetic variation existed among populations for ISSRs and SSRs, respectively. The high level of genetic diversity, low genetic differentiation, and the population, structure imply that the fragmented habitat and the isolated population of M. coriacea may be due to recent over-exploitation. Conservation and management of M. coriacea should concentrate on maintaining the high level of genetic variability through both in and ex-situ conservation actions.
doi:10.3390/ijms13044396
PMCID: PMC3344221  PMID: 22605985
Michelia coriacea; genetic diversity; critically endangered plant; ISSR markers; SSR markers
22.  Ancient Geographical Gaps and Paleo-Climate Shape the Phylogeography of an Endemic Bird in the Sky Islands of Southern India 
PLoS ONE  2010;5(10):e13321.
Background
Sky islands, formed by the highest reaches of mountain tracts physically isolated from one another, represent one of the biodiversity-rich regions of the world. Comparative studies of geographically isolated populations on such islands can provide valuable insights into the biogeography and evolution of species on these islands. The Western Ghats mountains of southern India form a sky island system, where the relationship between the island structure and the evolution of its species remains virtually unknown despite a few population genetic studies.
Methods and Principal Findings
We investigated how ancient geographic gaps and glacial cycles have partitioned genetic variation in modern populations of a threatened endemic bird, the White-bellied Shortwing Brachypteryx major, across the montane Shola forests on these islands and also inferred its evolutionary history. We used Bayesian and maximum likelihood-based phylogenetic and population-genetic analyses on data from three mitochondrial markers and one nuclear marker (totally 2594 bp) obtained from 33 White-bellied Shortwing individuals across five islands. Genetic differentiation between populations of the species correlated with the locations of deep valleys in the Western Ghats but not with geographical distance between these populations. All populations revealed demographic histories consistent with population founding and expansion during the Last Glacial Maximum. Given the level of genetic differentiation north and south of the Palghat Gap, we suggest that these populations be considered two different taxonomic species.
Conclusions and Significance
Our results show that the physiography and paleo-climate of this region historically resulted in multiple glacial refugia that may have subsequently driven the evolutionary history and current population structure of this bird. The first avian genetic study from this biodiversity hotspot, our results provide insights into processes that may have impacted the speciation and evolution of the endemic fauna of this region.
doi:10.1371/journal.pone.0013321
PMCID: PMC2954160  PMID: 20967202
23.  Genetic Diversity of the Endemic and Medicinally Important Plant Rheum officinale as Revealed by Inter-Simpe Sequence Repeat (ISSR) Markers 
Rheum officinale Baill., an important but endangered medicinal herb, is endemic to China. Inter-simple sequence repeat (ISSR) markers were employed to investigate the genetic diversity and differentiation of 12 populations of R. officinale. Thirteen selected primers yielded 189 bright and discernible bands, with an average of 14.54 per primer. The genetic diversity was low at the population level, but pretty high at the species level (H = 0.1008, I = 0.1505, PPB = 28.95% vs. H = 0.3341, I = 0.5000, PPB = 95.24%, respectively) by POPGENE analysis. Analysis of molecular variance (AMOVA) showed that the genetic variation was found mainly among populations (74.38%), in line with the limited gene flow (Nm = 0.2766) among populations. Mantel test revealed a significant correlation between genetic and geographic distances (r = 0.5381, P = 0.002), indicating the role of geographic isolation in shaping the present population genetic structure. Both Bayesian analysis and UPGMA cluster analysis demonstrated the similar results. Our results imply that the conservation efforts should aim to preserve all the extant populations of this endangered species, and cultivation is proposed in this study.
doi:10.3390/ijms13033900
PMCID: PMC3317748  PMID: 22489188
Rheum officinale; inter-simple sequence repeat (ISSR); genetic diversity; genetic differentiation; conservation strategy
24.  Clear Genetic Structure of Pinus kwangtungensis (Pinaceae) Revealed by a Plastid DNA Fragment with a Novel Minisatellite 
Annals of Botany  2008;102(1):69-78.
Background and Aims
Pinus kwangtungensis is a five-needled pine, inhabiting isolated mountain tops, cliffs or slopes in the montane areas of southern China and northern Vietnam. Global warming and long-term deforestation in southern China threaten its existence and genetic integrity, and this species is listed as vulnerable in the China Species Red List. However, the level and distribution of genetic diversity in this vulnerable species are completely unknown. In this paper, the genetic diversity and structure are examined using paternally inherited plastid markers to shed light on its evolutionary history and to provide a genetic perspective for its conservation.
Methods
By means of direct sequencing, a new polymorphic fragment containing a minisatellite site was identified within the plastid genome of P. kwangtungensis. Using the minisatellite site along with five SNPs (one indel and four substitutions) within the same fragment, the population genetic structure and pollen flow were analysed in 17 populations of P. kwangtungensis in southern China.
Key Results
Analysis of 227 individuals from 17 populations revealed ten haplotypes at the minisatellite site. The haplotype diversity at species level was relatively high (0·629). Genetic diversity of each population ranged from 0 to 0·779, and the western populations harboured more genetic variation than the eastern and Hainan populations, although the former appeared to have experienced a bottleneck in recent history. Population subdivision based on this site was high (FST = 0·540 under IAM; RST = 0·677 under SMM). Three major clusters (eastern, western and Hainan) were identified based on a neighbor-joining dendrogram generated from genetic distances among the populations. The genetic structures inferred from all the polymorphic sites and the SNPs were in concordance with that from the minisatellite site.
Conclusions
The results suggest that there are at least three refugia for P. kwangtungensis and that populations in these refugia should be treated as separate evolutionarily significant units or conservation units. The high diversities in the western populations suggest that these were much larger in the past (e.g. glacial stages) and that the shrinking population size might have been caused by recent events (e.g. deforestation, global warming, etc.). The western populations should be given priority for conservation due to their higher genetic diversity and limited population sizes. It is concluded that the newly found minisatellite may serve as a novel and applicable molecular marker for unravelling evolutionary processes in P. kwangtungensis.
doi:10.1093/aob/mcn068
PMCID: PMC2712426  PMID: 18463112
Pinus kwangtungensis; minisatellite; population genetics; conservation
25.  Analysis of the genetic diversity of the nematode parasite Baylisascaris schroederi from wild giant pandas in different mountain ranges in China 
Parasites & Vectors  2013;6:233.
Background
Baylisascaris schroederi is one of the most common nematodes of the giant panda, and can cause severe baylisascarosis in both wild and captive giant pandas. Previous studies of the giant pandas indicated that this population is genetically distinct, implying the presence of a new subspecies. Based on the co-evolution between the parasite and the host, the aim of this study was to investigate the genetic differentiation in the B. schroederi population collected from giant pandas inhabiting different mountain ranges, and further to identify whether the evolution of this parasite correlates with the evolution of giant pandas.
Methods
In this study, 48 B. schroederi were collected from 28 wild giant pandas inhabiting the Qinling, Minshan and Qionglai mountain ranges in China. The complete sequence of the mitochondrial cytochrome b (mtCytb) gene was amplified by PCR, and the corresponding population genetic diversity of the three mountain populations was determined. In addition, we discussed the evolutionary relationship between B. schroederi and its host giant panda.
Results
For the DNA dataset, insignificant Fst values and a significant, high level of gene flow were detected among the three mountain populations of B. schroederi, and high genetic variation within populations and a low genetic distance were observed. Both phylogenetic analyses and network mapping of the 16 haplotypes revealed a dispersed pattern and an absence of branches strictly corresponding to the three mountain range sampling sites. Neutrality tests and mismatch analysis indicated that B. schroederi experienced a population expansion in the past.
Conclusions
Taken together, the dispersed haplotype map, extremely high gene flow among the three populations of B. schroederi, low genetic structure and rapid evolutionary rate suggest that the B. schroederi populations did not follow a pattern of isolation by distance, indicating the existence of physical connections before these populations became geographically separated.
doi:10.1186/1756-3305-6-233
PMCID: PMC3750503  PMID: 23924705
Giant panda; Baylisascaris schroederi; Mountain ranges; Genetic diversity; Genetic structure; Phylogeography

Results 1-25 (1231144)