PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (1107768)

Clipboard (0)
None

Related Articles

1.  Niche-Specific Requirement for Hyphal Wall protein 1 in Virulence of Candida albicans 
PLoS ONE  2013;8(11):e80842.
Specialized Candida albicans cell surface proteins called adhesins mediate binding of the fungus to host cells. The mammalian transglutaminase (TG) substrate and adhesin, Hyphal wall protein 1 (Hwp1), is expressed on the hyphal form of C. albicans where it mediates fungal adhesion to epithelial cells. Hwp1 is also required for biofilm formation and mating thus the protein functions in both fungal-host and self-interactions. Hwp1 is required for full virulence of C. albicans in murine models of disseminated candidiasis and of esophageal candidiasis. Previous studies correlated TG activity on the surface of oral epithelial cells, produced by epithelial TG (TG1), with tight binding of C. albicans via Hwp1 to the host cell surfaces. However, the contribution of other Tgs, specifically tissue TG (TG2), to disseminated candidiasis mediated by Hwp1 was not known. A newly created hwp1 null strain in the wild type SC5314 background was as virulent as the parental strain in C57BL/6 mice, and virulence was retained in C57BL/6 mice deleted for Tgm2 (TG2). Further, the hwp1 null strains displayed modestly reduced virulence in BALB/c mice as did strain DD27-U1, an independently created hwp1Δ/Δ in CAI4 corrected for its ura3Δ defect at the URA3 locus. Hwp1 was still needed to produce wild type biofilms, and persist on murine tongues in an oral model of oropharyngeal candidiasis consistent with previous studies by us and others. Finally, lack of Hwp1 affected the translocation of C. albicans from the mouse intestine into the bloodstream of mice. Together, Hwp1 appears to have a minor role in disseminated candidiasis, independent of tissue TG, but a key function in host- and self-association to the surface of oral mucosa.
doi:10.1371/journal.pone.0080842
PMCID: PMC3832661  PMID: 24260489
2.  Diagnosis of invasive candidiasis by enzyme-linked immunosorbent assay using the N-terminal fragment of Candida albicans hyphal wall protein 1 
BMC Microbiology  2007;7:35.
Background
The diagnosis of invasive candidiasis is difficult because there are no specific clinical manifestations of the disease and colonization and infection are difficult to distinguish. In the last decade, much effort has been made to develop reliable tests for rapid diagnosis of invasive candidiasis, but none of them have found widespread clinical use.
Results
Antibodies against a recombinant N-terminal fragment of the Candida albicans germ tube-specific antigen hyphal wall protein 1 (Hwp1) generated in Escherichia coli were detected by both immunoblotting and ELISA tests in a group of 36 hematological or Intensive Care Unit patients with invasive candidiasis and in a group of 45 control patients at high risk for the mycosis who did not have clinical or microbiological data to document invasive candidiasis. Results were compared with an immunofluorescence test to detect antibodies to C. albicans germ tubes (CAGT). The sensitivity, specificity, positive and negative predictive values of a diagnostic test based on the detection of antibodies against the N-terminal fragment of Hwp1 by immunoblotting were 27.8 %, 95.6 %, 83.3 % and 62.3 %, respectively. Detection of antibodies to the N-terminal fragment of Hwp1 by ELISA increased the sensitivity (88.9 %) and the negative predictive value (90.2 %) but slightly decreased the specificity (82.6 %) and positive predictive values (80 %). The kinetics of antibody response to the N-terminal fragment of Hwp1 by ELISA was very similar to that observed by detecting antibodies to CAGT.
Conclusion
An ELISA test to detect antibodies against a recombinant N-terminal fragment of the C. albicans germ tube cell wall antigen Hwp1 allows the diagnosis of invasive candidiasis with similar results to those obtained by detecting antibodies to CAGT but without the need of treating the sera to adsorb the antibodies against the cell wall surface of the blastospore.
doi:10.1186/1471-2180-7-35
PMCID: PMC1868733  PMID: 17448251
3.  Function of Candida albicans Adhesin Hwp1 in Biofilm Formation 
Eukaryotic Cell  2006;5(10):1604-1610.
Hwp1 is a well-characterized Candida albicans cell surface protein, expressed only on hyphae, that mediates tight binding to oral epithelial cells. Prior studies indicate that HWP1 expression is dependent upon Bcr1, a key regulator of biofilm formation. Here we test the hypothesis that Hwp1 is required for biofilm formation. In an in vitro model, the hwp1/hwp1 mutant produces a thin biofilm that lacks much of the hyphal mass found in the hwp1/HWP1 reconstituted strain. In a biofilm cell retention assay, we find that the hwp1/hwp1 mutant is defective in retention of nonadherent bcr1/bcr1 mutant cells. In an in vivo rat venous catheter model, the hwp1/hwp1 mutant has a severe biofilm defect, yielding only yeast microcolonies in the catheter lumen. These properties of the hwp1/hwp1 mutant are consistent with its role as a hypha-specific adhesin and indicate that it is required for normal biofilm formation. Overexpression of HWP1 in a bcr1/bcr1 mutant background improves adherence in the in vivo catheter model. This finding provides additional support for the model that Hwp1 is critical for biofilm adhesion. Hwp1 is the first cell surface protein known to be required for C. albicans biofilm formation in vivo and is thus an excellent therapeutic target.
doi:10.1128/EC.00194-06
PMCID: PMC1595337  PMID: 17030992
4.  Heterologous Expression of Candida albicans Cell Wall-Associated Adhesins in Saccharomyces cerevisiae Reveals Differential Specificities in Adherence and Biofilm Formation and in Binding Oral Streptococcus gordonii▿ 
Eukaryotic Cell  2010;9(10):1622-1634.
Colonization and infection of the human host by opportunistic pathogen Candida albicans derive from an ability of this fungus to colonize mucosal tissues and prosthetic devices within the polymicrobial communities present. To determine the functions of C. albicans cell wall proteins in interactions with host or bacterial molecules, Saccharomyces cerevisiae was utilized as a surrogate host to express C. albicans cell wall proteins Als3p, Eap1p, Hwp1p, and Rbt1p. Salivary pellicle and fibrinogen were identified as novel substrata for Als3p and Hwp1p, while only Als3p mediated adherence of S. cerevisiae to basement membrane collagen type IV. Parental S. cerevisiae cells failed to form biofilms on salivary pellicle, polystyrene, or silicone, but cells expressing Als3p or Hwp1p exhibited significant attachment to each surface. Virulence factor Rbt1p also conferred lower-level binding to salivary pellicle and polystyrene. S. cerevisiae cells expressing Eap1p formed robust biofilms upon polystyrene surfaces but not salivary pellicle. Proteins Als3p and Eap1p, and to a lesser degree Hwp1p, conferred upon S. cerevisiae the ability to bind cells of the oral primary colonizing bacterium Streptococcus gordonii. These interactions, which occurred independently of amyloid aggregate formation, provide the first examples of specific C. albicans surface proteins serving as receptors for bacterial adhesins. Streptococcus gordonii did not bind parental S. cerevisiae or cells expressing Rbt1p. Taken collectively, these data suggest that a network of cell wall proteins comprising Als3p, Hwp1p, and Eap1p, with complementary adhesive functions, promotes interactions of C. albicans with host and bacterial molecules, thus leading to effective colonization within polymicrobial communities.
doi:10.1128/EC.00103-10
PMCID: PMC2950433  PMID: 20709785
5.  Effect of Piper betle and Brucea javanica on the Differential Expression of Hyphal Wall Protein (HWP1) in Non-Candida albicans Candida (NCAC) Species 
The study aimed to identify the HWP1 gene in non-Candida albicans Candida species and the differential expression of HWP1 following treatment with Piper betle and Brucea javanica aqueous extracts. All candidal suspensions were standardized to 1 × 106 cells/mL. The suspension was incubated overnight at 37 °C (C. parapsilosis, 35°C). Candidal cells were treated with each respective extract at 1, 3, and 6 mg/mL for 24 h. The total RNA was extracted and reverse transcription-polymerase chain reaction was carried out with a specific primer of HWP1. HWP1 mRNAs were only detected in C. albicans, C. parapsilosis, and C. tropicalis. Exposing the cells to the aqueous extracts has affected the expression of HWP1 transcripts. C. albicans, C. parapsilosis, and C. tropicalis have demonstrated different intensity of mRNA. Compared to P. betle, B. javanica demonstrated a higher suppression on the transcript levels of HWP1 in all samples. HWP1 was not detected in C. albicans following the treatment of B. javanica at 1 mg/mL. In contrast, C. parapsilosis and C. tropicalis were shown to have HWP1 regulation. However, the expression levels were reduced upon the addition of higher concentration of B. javanica extract. P. betle and B. javanica have potential to be developed as oral health product.
doi:10.1155/2013/397268
PMCID: PMC3703345  PMID: 23853657
6.  Candida albicans adhesin Als3p is dispensable for virulence in the mouse model of disseminated candidiasis 
Microbiology  2011;157(Pt 6):1806-1815.
The presence of specific proteins, including Ece1p, Hwp1p and Als3p, distinguishes the Candida albicans hyphal cell wall from that of yeast-form cells. These proteins are thought to be important for the ability of C. albicans cells to adhere to living and non-living surfaces and for the cell-to-cell adhesion necessary for biofilm formation, and also to be pivotal in mediating C. albicans interactions with endothelial cells. Using an in vitro flow adhesion assay, we previously observed that yeast cells bind in greater numbers to human microvascular endothelial cells than do hyphal or pseudohyphal cells. This is consistent with previous observations that, in a murine model of disseminated candidiasis, cells locked in the yeast form can efficiently escape the bloodstream and invade host tissues. To more precisely explore the role of Als3p in adhesion and virulence, we deleted both copies of ALS3 in a wild-type C. albicans strain. In agreement with previous studies, our als3Δ null strain formed hyphae normally but was defective in biofilm formation. Whilst ALS3 was not expressed in our null strain, hypha-specific genes such as ECE1 and HWP1 were still induced appropriately. Both the yeast form and the hyphal form of the als3Δ strain adhered to microvascular endothelial cells to the same extent as a wild-type strain under conditions of flow, indicating that Als3p is not a significant mediator of the initial interaction between fungal cells and the endothelium. Finally, in a murine model of haematogenously disseminated candidiasis the mutant als3Δ remained as virulent as the wild-type parent strain.
doi:10.1099/mic.0.046326-0
PMCID: PMC3167918  PMID: 21436220
7.  Reduced Virulence of HWP1-Deficient Mutants of Candida albicans and Their Interactions with Host Cells 
Infection and Immunity  2000;68(4):1997-2002.
The Candida albicans gene HWP1 encodes a surface protein that is required for normal hyphal development in vitro. We used mutants lacking one or both alleles of HWP1 to investigate the role of this gene in virulence. Mice infected intravenously with the homozygous hwp1 null mutant, CAL3, survived a median of >14 days, whereas mice infected with a control strain containing two functional alleles of HWP1 survived only 3.5 days. After 1 day of infection, all strains produced similar levels of infection in the kidneys, spleen, and blood. However, after 2 and 3 days, there was a significant decrease in the number of organisms in the kidneys of the mice infected with CAL3. This finding suggests that the hwp1 homozygous null mutant is normal in its ability to initiate infection but deficient in its capacity to maintain infection. CAL3 also germinated minimally in the kidneys. The ability of the heterozygous null mutant to germinate and cause mortality in mice was intermediate to CAL3, suggesting a gene dosage effect. To investigate potential mechanisms for the diminished virulence of CAL3, we examined its interactions with endothelial cells and neutrophils in vitro. CAL3 caused less endothelial cell injury than the heterozygous hwp1 mutant. We conclude that the HWP1 gene product is important for both in vivo hyphal development and pathogenicity of C. albicans. Also, the ability to form filaments may be critical for candidal virulence by enabling the fungus to induce cellular injury and maintain a deep-seated infection.
PMCID: PMC97378  PMID: 10722594
8.  Cigarette smoke condensate increases C. albicans adhesion, growth, biofilm formation, and EAP1, HWP1 and SAP2 gene expression 
BMC Microbiology  2014;14:61.
Background
Smokers are more prone to oral infections than are non-smokers. Cigarette smoke reaches the host cells but also microorganisms present in the oral cavity. The contact between cigarette smoke and oral bacteria promotes such oral diseases as periodontitis. Cigarette smoke can also modulate C. albicans activities that promote oral candidiasis. The goal of this study was to investigate the effect of cigarette smoke condensate on C. albicans adhesion, growth, and biofilm formation as well as the activation of EAP1, HWP1 and secreted aspartic protease 2.
Results
Cigarette smoke condensate (CSC) increased C. albicans adhesion and growth, as well as biofilm formation. These features may be supported by the activation of certain important genes. Using quantitative RT-PCR, we demonstrated that CSC-exposed C. albicans expressed high levels of EAP1, HWP1 and SAP2 mRNA and that this gene expression increased with increasing concentrations of CSC.
Conclusion
CSC induction of C. albicans adhesion, growth, and biofilm formation may explain the increased persistence of this pathogen in smokers. These findings may also be relevant to other biofilm-induced oral diseases.
doi:10.1186/1471-2180-14-61
PMCID: PMC3995653  PMID: 24618025
Cigarette smoke; Tobacco; C albicans; Adhesion; Growth; Biofilm; Genes; EAP-1; HWP-1; Sap2
9.  Human Serum Promotes Candida albicans Biofilm Growth and Virulence Gene Expression on Silicone Biomaterial 
PLoS ONE  2013;8(5):e62902.
Objectives
Systemic candidal infections are a common problem in hospitalized patients due to central venous catheters fabricated using silicone biomaterial (SB). We therefore evaluated the effect of human serum on C. albicans biofilm morphology, growth, and the expression of virulence-related genes on SB in vitro.
Methods
We cultivated C. albicans SC5314 (wild-type strain, WT) and its derivative HLC54 (hyphal mutant, HM) for 48 h in various conditions, including the presence or absence of SB discs, and human serum. The growth of planktonic and biofilm cells of both strains was monitored at three time points by a tetrazolium salt reduction assay and by scanning electron microscopy. We also analyzed by RT-PCR its expression of the virulence-related genes ALS3, HWP1, EAP1, ECE1, SAP1 - SAP10, PLB1, PLB2, PLC and PLD.
Results
At each time point, planktonic cells of WT strain cultured in yeast nitrogen base displayed a much higher expression of EAP1 and HWP1, and a moderately higher ALS3 expression, than HM cells. In planktonic cells, expression of the ten SAP genes was higher in the WT strain initially, but were highly expressed in the HM strain by 48 h. Biofilm growth of both strains on SB was promoted in the presence of human serum than in its absence. Significant upregulation of ALS3, HWP1, EAP1, ECE1, SAP1, SAP4, SAP6 - SAP10, PLB1, PLB2 and PLC was observed for WT biofilms grown on serum-treated SB discs for at least one time point, compared with biofilms on serum-free SB discs.
Conclusions
Human serum stimulates C. albicans biofilm growth on SB discs and upregulates the expression of virulence genes, particularly adhesion genes ALS3 and HWP1, and hydrolase-encoding genes SAP, PLB1 and PLB2. This response is likely to promote the colonization of this versatile pathogen within the human host.
doi:10.1371/journal.pone.0062902
PMCID: PMC3660551  PMID: 23704884
10.  O-Mannosylation in Candida albicans Enables Development of Interkingdom Biofilm Communities 
mBio  2014;5(2):e00911-14.
ABSTRACT
Candida albicans is a fungus that colonizes oral cavity surfaces, the gut, and the genital tract. Streptococcus gordonii is a ubiquitous oral bacterium that has been shown to form biofilm communities with C. albicans. Formation of dual-species S. gordonii-C. albicans biofilm communities involves interaction of the S. gordonii SspB protein with the Als3 protein on the hyphal filament surface of C. albicans. Mannoproteins comprise a major component of the C. albicans cell wall, and in this study we sought to determine if mannosylation in cell wall biogenesis of C. albicans was necessary for hyphal adhesin functions associated with interkingdom biofilm development. A C. albicans mnt1Δ mnt2Δ mutant, with deleted α-1,2-mannosyltransferase genes and thus defective in O-mannosylation, was abrogated in biofilm formation under various growth conditions and produced hyphal filaments that were not recognized by S. gordonii. Cell wall proteomes of hypha-forming mnt1Δ mnt2Δ mutant cells showed growth medium-dependent alterations, compared to findings for the wild type, in a range of protein components, including Als1, Als3, Rbt1, Scw1, and Sap9. Hyphal filaments formed by mnt1Δ mnt2Δ mutant cells, unlike wild-type hyphae, did not interact with C. albicans Als3 or Hwp1 partner cell wall proteins or with S. gordonii SspB partner adhesin, suggesting defective functionality of adhesins on the mnt1Δ mnt2Δ mutant. These observations imply that early stage O-mannosylation is critical for activation of hyphal adhesin functions required for biofilm formation, recognition by bacteria such as S. gordonii, and microbial community development.
IMPORTANCE
In the human mouth, microorganisms form communities known as biofilms that adhere to the surfaces present. Candida albicans is a fungus that is often found within these biofilms. We have focused on the mechanisms by which C. albicans becomes incorporated into communities containing bacteria, such as Streptococcus. We find that impairment of early stage addition of mannose sugars to C. albicans hyphal filament proteins deleteriously affects their subsequent performance in mediating formation of polymicrobial biofilms. Our analyses provide new understanding of the way that microbial communities develop, and of potential means to control C. albicans infections.
doi:10.1128/mBio.00911-14
PMCID: PMC3993854  PMID: 24736223
11.  Complementary adhesin function in C. albicans biofilm formation 
Current biology : CB  2008;18(14):1017-1024.
Summary
Background:
Biofilms are surface-associated microbial communities with significant environmental and medical impact. Here we focus on an adherence mechanism that permits biofilm formation by Candida albicans, the major invasive fungal pathogen of humans.
Results:
The Als surface protein family has been implicated in biofilm formation, and we show that Als1 and Als3 have critical but redundant roles. Overexpression of several other Als proteins permits biofilm formation in a biofilm-defective als1/als1 als3/als3 strain, thus arguing that Als protein function in this process is governed by their respective expression levels. The surface protein Hwp1 is also required for biofilm formation, and we find that a mixture of biofilm-defective hwp1/hwp1 and als1/als1 als3/als3 strains can form a hybrid biofilm both in vitro and in vivo, in a catheter infection model. Complementary function of Hwp1 and Als1/3 seems to reflect their interaction, because expression of Hwp1 in the heterologous host S. cerevisiae permits adherence to wild-type C. albicans but not to an als1/als1 als3/als3 strain.
Conclusions:
The complementary roles of Hwp1 and Als1/3 in biofilm formation are analogous to the roles of sexual agglutinins in mating reactions. This analogy suggests that biofilm adhesin complementarity may promote formation of monospecies biofilms.
doi:10.1016/j.cub.2008.06.034
PMCID: PMC2504253  PMID: 18635358
Candida albicans; biofilm; adherence; adhesin; cell-surface proteins; complementary adhesins
12.  Real-time PCR expression profiling of genes encoding potential virulence factors in Candida albicans biofilms: identification of model-dependent and -independent gene expression 
BMC Microbiology  2010;10:114.
Background
Candida albicans infections are often associated with biofilm formation. Previous work demonstrated that the expression of HWP1 (hyphal wall protein) and of genes belonging to the ALS (agglutinin-like sequence), SAP (secreted aspartyl protease), PLB (phospholipase B) and LIP (lipase) gene families is associated with biofilm growth on mucosal surfaces. We investigated using real-time PCR whether genes encoding potential virulence factors are also highly expressed in biofilms associated with abiotic surfaces. For this, C. albicans biofilms were grown on silicone in microtiter plates (MTP) or in the Centres for Disease Control (CDC) reactor, on polyurethane in an in vivo subcutaneous catheter rat (SCR) model, and on mucosal surfaces in the reconstituted human epithelium (RHE) model.
Results
HWP1 and genes belonging to the ALS, SAP, PLB and LIP gene families were constitutively expressed in C. albicans biofilms. ALS1-5 were upregulated in all model systems, while ALS9 was mostly downregulated. ALS6 and HWP1 were overexpressed in all models except in the RHE and MTP, respectively. The expression levels of SAP1 were more pronounced in both in vitro models, while those of SAP2, SAP4 and SAP6 were higher in the in vivo model. Furthermore, SAP5 was highly upregulated in the in vivo and RHE models. For SAP9 and SAP10 similar gene expression levels were observed in all model systems. PLB genes were not considerably upregulated in biofilms, while LIP1-3, LIP5-7 and LIP9-10 were highly overexpressed in both in vitro models. Furthermore, an elevated lipase activity was detected in supernatans of biofilms grown in the MTP and RHE model.
Conclusions
Our findings show that HWP1 and most of the genes belonging to the ALS, SAP and LIP gene families are upregulated in C. albicans biofilms. Comparison of the fold expression between the various model systems revealed similar expression levels for some genes, while for others model-dependent expression levels were observed. This suggests that data obtained in one biofilm model cannot be extrapolated to other model systems. Therefore, the need to use multiple model systems when studying the expression of genes encoding potential virulence factors in C. albicans biofilms is highlighted.
doi:10.1186/1471-2180-10-114
PMCID: PMC2862034  PMID: 20398368
13.  Role of Actin Cytoskeletal Dynamics in Activation of the Cyclic AMP Pathway and HWP1 Gene Expression in Candida albicans▿ †  
Eukaryotic Cell  2007;6(10):1824-1840.
Changes in gene expression during reversible bud-hypha transitions of the opportunistic fungal pathogen Candida albicans permit adaptation to environmental conditions that are critical for proliferation in host tissues. Our previous work has shown that the hypha-specific adhesin gene HWP1 is up-regulated by the cyclic AMP (cAMP) signaling pathway. However, little is known about the potential influences of determinants of cell morphology on HWP1 gene expression. We found that blocking hypha formation with cytochalasin A, which destabilizes actin filaments, and with latrunculin A, which sequesters actin monomers, led to a loss of HWP1 gene expression. In contrast, high levels of HWP1 gene expression were observed when the F-actin stabilizer jasplakinolide was used to block hypha formation, suggesting that HWP1 expression could be regulated by actin structures. Mutants defective in formin-mediated nucleation of F-actin were reduced in HWP1 gene expression, providing genetic support for the importance of actin structures. Kinetic experiments with wild-type and actin-deficient cells revealed two distinct phases of HWP1 gene expression, with a slow, actin-independent phase preceding a fast, actin-dependent phase. Low levels of HWP1 gene expression that appeared to be independent of stabilized actin and cAMP signaling were detected using indirect immunofluorescence. A connection between actin structures and the cAMP signaling pathway was shown using hyper- and hypomorphic cAMP mutants, providing a possible mechanism for up-regulation of HWP1 gene expression by stabilized actin. The results reveal a new role for F-actin as a regulatory agent of hypha-specific gene expression at the bud-hypha transition.
doi:10.1128/EC.00188-07
PMCID: PMC2043390  PMID: 17715368
14.  Divergent Targets of Candida albicans Biofilm Regulator Bcr1 In Vitro and In Vivo 
Eukaryotic Cell  2012;11(7):896-904.
Candida albicans is a causative agent of oropharyngeal candidiasis (OPC), a biofilm-like infection of the oral mucosa. Biofilm formation depends upon the C. albicans transcription factor Bcr1, and previous studies indicate that Bcr1 is required for OPC in a mouse model of infection. Here we have used a nanoString gene expression measurement platform to elucidate the role of Bcr1 in OPC-related gene expression. We chose for assays a panel of 134 genes that represent a range of morphogenetic and cell cycle functions as well as environmental and stress response pathways. We assayed gene expression in whole infected tongue samples. The results sketch a portrait of C. albicans gene expression in which numerous stress response pathways are activated during OPC. This one set of experiments identifies 64 new genes with significantly altered RNA levels during OPC, thus increasing substantially the number of known genes in this expression class. The bcr1Δ/Δ mutant had a much more limited gene expression defect during OPC infection than previously reported for in vitro growth conditions. Among major functional Bcr1 targets, we observed that ALS3 was Bcr1 dependent in vivo while HWP1 was not. We used null mutants and complemented strains to verify that Bcr1 and Hwp1 are required for OPC infection in this model. The role of Als3 is transient and mild, though significant. Our findings suggest that the versatility of C. albicans as a pathogen may reflect its ability to persist in the face of multiple stresses and underscore that transcriptional circuitry during infection may be distinct from that detailed during in vitro growth.
doi:10.1128/EC.00103-12
PMCID: PMC3416506  PMID: 22544909
15.  Small-Molecule Inhibitors of the Budded-to-Hyphal-Form Transition in the Pathogenic Yeast Candida albicans 
The pathogenic yeast Candida albicans can exist in multiple morphological states, including budded, pseudohyphal, and true hyphal forms. The ability to convert between the budded and hyphal forms, termed the budded-to-hyphal-form transition, is important for virulence and is regulated by multiple environmental and cellular signals. To identify inhibitors of this morphological transition, a microplate-based morphological assay was developed. With this assay, the known actin-inhibiting drugs latrunculin-A and jasplakinolide were shown to inhibit the transition in a dose-dependent and reversible manner. Five novel small molecules that reversibly inhibited the transition and hyphal elongation without affecting budded growth were identified. These molecules inhibited hyphal growth induced by Spider, Lee's, M199 pH 8, and 10% serum-containing media, with two molecules having a synergistic effect. The molecules also differentially affected the hyphal form-specific gene expression of HWP1 and endocytosis without disrupting the actin cytoskeleton or septin organization. Structural derivatives of one of the molecules were more effective inhibiters than the original molecule, while other derivatives had decreased efficacies. Several of the small molecules were able to reduce C. albicans-dependent damage to endothelial cells by inhibiting the budded-to-hyphal-form transition. These studies substantiated the effectiveness of the morphological assay and identified several novel molecules that, by virtue of their ability to inhibit the budded-to-hyphal-form transition, may be exploited as starting points for effective antifungal therapeutics in the future.
doi:10.1128/AAC.49.3.963-972.2005
PMCID: PMC549276  PMID: 15728890
16.  Role of Bcr1-Activated Genes Hwp1 and Hyr1 in Candida Albicans Oral Mucosal Biofilms and Neutrophil Evasion 
PLoS ONE  2011;6(1):e16218.
Candida albicans triggers recurrent infections of the oropharyngeal mucosa that result from biofilm growth. Prior studies have indicated that the transcription factor Bcr1 regulates biofilm formation in a catheter model, both in vitro and in vivo. We thus hypothesized that Bcr1 plays similar roles in the formation of oral mucosal biofilms and tested this hypothesis in a mouse model of oral infection. We found that a bcr1/bcr1 mutant did not form significant biofilm on the tongues of immunocompromised mice, in contrast to reference and reconstituted strains that formed pseudomembranes covering most of the tongue dorsal surface. Overexpression of HWP1, which specifies an epithelial adhesin that is under the transcriptional control of Bcr1, partly but significantly rescued the bcr1/bcr1 biofilm phenotype in vivo. Since HWP1 overexpression only partly reversed the biofilm phenotype, we investigated whether additional mechanisms, besides adhesin down-regulation, were responsible for the reduced virulence of this mutant. We discovered that the bcr1/bcr1 mutant was more susceptible to damage by human leukocytes when grown on plastic or on the surface of a human oral mucosa tissue analogue. Overexpression of HYR1, but not HWP1, significantly rescued this phenotype. Furthermore a hyr1/hyr1 mutant had significantly attenuated virulence in the mouse oral biofilm model of infection. These discoveries show that Bcr1 is critical for mucosal biofilm infection via regulation of epithelial cell adhesin and neutrophil function.
doi:10.1371/journal.pone.0016218
PMCID: PMC3026825  PMID: 21283544
17.  The Adhesin Hwp1 and the First Daughter Cell Localize to the a/a Portion of the Conjugation Bridge during Candida albicans Mating 
Molecular Biology of the Cell  2003;14(12):4920-4930.
The cell wall protein Hwp1 was originally demonstrated to be expressed exclusively in hyphae of Candida albicans and cross-linked to human epithelium by mammalian transglutaminase. Hwp1 is expressed on the walls of hyphae formed by a/α, a/a, and α/α cells. Hence, it is expressed on hyphae independently of mating type. However, Hwp1 is selectively expressed on the wall of conjugation tubes formed by a/a cells, but not α/α cells, in the mating process. This was demonstrated in all possible crosses between four unrelated natural a/a strains and four unrelated α/α strains. In zygotes, Hwp1 is restricted to that portion of the wall of the conjugation bridge contributed by the a/a parent cell. Hwp1 staining further revealed that the first daughter bud that emerges from the conjugation bridge does so from the a/a-contributed portion. Hwp1 expression and localization during the mating process is, therefore, mating type specific, opaque phase specific, and α-pheromone induced. These results indicate that the mating type-specific contributions to the conjugation bridge during the mating process in C. albicans are qualitatively and functionally distinct and that the a/a portion of the bridge, which selectively contains Hwp1, bears the first daughter cell in the mating process.
doi:10.1091/mbc.E03-04-0264
PMCID: PMC284795  PMID: 14565982
18.  C. albicans growth, transition, biofilm formation, and gene expression modulation by antimicrobial decapeptide KSL-W 
BMC Microbiology  2013;13:246.
Background
Antimicrobial peptides have been the focus of much research over the last decade because of their effectiveness and broad-spectrum activity against microbial pathogens. These peptides also participate in inflammation and the innate host defense system by modulating the immune function that promotes immune cell adhesion and migration as well as the respiratory burst, which makes them even more attractive as therapeutic agents. This has led to the synthesis of various antimicrobial peptides, including KSL-W (KKVVFWVKFK-NH2), for potential clinical use. Because this peptide displays antimicrobial activity against bacteria, we sought to determine its antifungal effect on C. albicans. Growth, hyphal form, biofilm formation, and degradation were thus examined along with EFG1, NRG1, EAP1, HWP1, and SAP 2-4-5-6 gene expression by quantitative RT-PCR.
Results
This study demonstrates that KSL-W markedly reduced C. albicans growth at both early and late incubation times. The significant effect of KSL-W on C. albicans growth was observed beginning at 10 μg/ml after 5 h of contact by reducing C. albicans transition and at 25 μg/ml by completely inhibiting C. albicans transition. Cultured C. albicans under biofilm-inducing conditions revealed that both KSL-W and amphotericin B significantly decreased biofilm formation at 2, 4, and 6 days of culture. KSL-W also disrupted mature C. albicans biofilms. The effect of KSL-W on C. albicans growth, transition, and biofilm formation/disruption may thus occur through gene modulation, as the expression of various genes involved in C. albicans growth, transition and biofilm formation were all downregulated when C. albicans was treated with KSL-W. The effect was greater when C. albicans was cultured under hyphae-inducing conditions.
Conclusions
These data provide new insight into the efficacy of KSL-W against C. albicans and its potential use as an antifungal therapy.
doi:10.1186/1471-2180-13-246
PMCID: PMC4229313  PMID: 24195531
Antimicrobial peptide; KSL-W; C. albicans; Growth; Hyphae; Gene; EFG1; NRG1; HWP1; SAPs
19.  Rbt1 Protein Domains Analysis in Candida albicans Brings Insights into Hyphal Surface Modifications and Rbt1 Potential Role during Adhesion and Biofilm Formation 
PLoS ONE  2013;8(12):e82395.
Cell wall proteins are central to the virulence of Candida albicans. Hwp1, Hwp2 and Rbt1 form a family of hypha-associated cell surface proteins. Hwp1 and Hwp2 have been involved in adhesion and other virulence traits but Rbt1 is still poorly characterized. To assess the role of Rbt1 in the interaction of C. albicans with biotic and abiotic surfaces independently of its morphological state, heterologous expression and promoter swap strategies were applied. The N-terminal domain with features typical of the Flo11 superfamily was found to be essential for adhesiveness to polystyrene through an increase in cell surface hydrophobicity. A 42 amino acid-long domain localized in the central part of the protein was shown to enhance the aggregation function. We demonstrated that a VTTGVVVVT motif within the 42 amino acid domain displayed a high β-aggregation potential and was responsible for cell-to-cell interactions by promoting the aggregation of hyphae. Finally, we showed through constitutive expression that while Rbt1 was directly accessible to antibodies in hyphae, it was not so in yeast. Similar results were obtained for another cell wall protein, namely Iff8, and suggested that modification of the cell wall structure between yeast and hyphae can regulate the extracellular accessibility of cell wall proteins independently of gene regulation.
doi:10.1371/journal.pone.0082395
PMCID: PMC3857780  PMID: 24349274
20.  A Comprehensive Functional Portrait of Two Heat Shock Factor-Type Transcriptional Regulators Involved in Candida albicans Morphogenesis and Virulence 
PLoS Pathogens  2013;9(8):e1003519.
Sfl1p and Sfl2p are two homologous heat shock factor-type transcriptional regulators that antagonistically control morphogenesis in Candida albicans, while being required for full pathogenesis and virulence. To understand how Sfl1p and Sfl2p exert their function, we combined genome-wide location and expression analyses to reveal their transcriptional targets in vivo together with the associated changes of the C. albicans transcriptome. We show that Sfl1p and Sfl2p bind to the promoter of at least 113 common targets through divergent binding motifs and modulate directly the expression of key transcriptional regulators of C. albicans morphogenesis and/or virulence. Surprisingly, we found that Sfl2p additionally binds to the promoter of 75 specific targets, including a high proportion of hyphal-specific genes (HSGs; HWP1, HYR1, ECE1, others), revealing a direct link between Sfl2p and hyphal development. Data mining pointed to a regulatory network in which Sfl1p and Sfl2p act as both transcriptional activators and repressors. Sfl1p directly represses the expression of positive regulators of hyphal growth (BRG1, UME6, TEC1, SFL2), while upregulating both yeast form-associated genes (RME1, RHD1, YWP1) and repressors of morphogenesis (SSN6, NRG1). On the other hand, Sfl2p directly upregulates HSGs and activators of hyphal growth (UME6, TEC1), while downregulating yeast form-associated genes and repressors of morphogenesis (NRG1, RFG1, SFL1). Using genetic interaction analyses, we provide further evidences that Sfl1p and Sfl2p antagonistically control C. albicans morphogenesis through direct modulation of the expression of important regulators of hyphal growth. Bioinformatic analyses suggest that binding of Sfl1p and Sfl2p to their targets occurs with the co-binding of Efg1p and/or Ndt80p. We show, indeed, that Sfl1p and Sfl2p targets are bound by Efg1p and that both Sfl1p and Sfl2p associate in vivo with Efg1p. Taken together, our data suggest that Sfl1p and Sfl2p act as central “switch on/off” proteins to coordinate the regulation of C. albicans morphogenesis.
Author Summary
Candida albicans can switch from a harmless colonizer of body organs to a life-threatening invasive pathogen. This switch is linked to the ability of C. albicans to undergo a yeast-to-filament shift induced by various cues, including temperature. Sfl1p and Sfl2p are two transcription factors required for C. albicans virulence, but antagonistically regulate morphogenesis: Sfl1p represses it, whereas Sfl2p activates it in response to temperature. We show here that Sfl1p and Sfl2p bind in vivo, via divergent motifs, to the regulatory region of a common set of targets encoding key determinants of morphogenesis and virulence and exert both activating and repressing effects on gene expression. Additionally, Sfl2p binds to specific targets, including genes essential for hyphal development. Bioinformatic analyses suggest that Sfl1p and Sfl2p control C. albicans morphogenesis by cooperating with two important regulators of filamentous growth, Efg1p and Ndt80p, a premise that was confirmed by the observation of concomitant binding of Sfl1p, Sfl2p and Efg1p to the promoter of target genes and the demonstration of direct or indirect physical association of Sfl1p and Sfl2p with Efg1p, in vivo. Our data suggest that Sfl1p and Sfl2p act as central “switch on/off” proteins to coordinate the regulation of C. albicans morphogenesis.
doi:10.1371/journal.ppat.1003519
PMCID: PMC3744398  PMID: 23966855
21.  HWP1 Functions in the Morphological Development of Candida albicans Downstream of EFG1, TUP1, and RBF1 
Journal of Bacteriology  1999;181(17):5273-5279.
The morphological plasticity of Candida albicans is an important determinant of pathogenicity, and nonfilamentous mutants are avirulent. HWP1, a hypha-specific gene, was identified in a genetic screen for developmentally regulated genes and encodes a cell surface protein of unknown function. Heterozygous and homozygous deletions of HWP1 resulted in a medium-conditional defect in hyphal development. HWP1 expression was blocked in a Δefg1 mutant, reduced in an Δrbf1 mutant, and derepressed in a Δtup1 mutant. Therefore, HWP1 functions downstream of the developmental regulators EFG1, TUP1, and RBF1. Mutation of CPH1 had no effect on HWP1 expression, suggesting that the positive regulators of hyphal development, CPH1 and EFG1, are components of separate pathways with different target genes. The expression of a second developmentally regulated gene, ECE1, was similarly regulated by EFG1. Since ECE1 is not required for hyphal development, the regulatory role of EFG1 apparently extends beyond the control of cell shape determinants. However, expression of ECE1 was not influenced by TUP1, suggesting that there may be some specificity in the regulation of morphogenic elements during hyphal development.
PMCID: PMC94032  PMID: 10464197
22.  Candida albicans RFX2 Encodes a DNA Binding Protein Involved in DNA Damage Responses, Morphogenesis, and Virulence▿  
Eukaryotic Cell  2009;8(4):627-639.
We previously showed that Candida albicans orf19.4590, which we have renamed RFX2, expresses a protein that is reactive with antibodies in persons with candidiasis. In this study, we demonstrate that C. albicans RFX2 shares some functional redundancy with Saccharomyces cerevisiae RFX1. Complementation of an S. cerevisiae rfx1 mutant with C. albicans RFX2 partially restored UV susceptibility and the repression of DNA damage response genes. DNA damage- and UV-induced genes RAD6 and DDR48 were derepressed in a C. albicans rfx2 null mutant strain under basal conditions, and the mutant was significantly more resistant to UV irradiation, heat shock, and ethanol than wild-type strain SC5314. The rfx2 mutant was hyperfilamentous on solid media and constitutively expressed hypha-specific genes HWP1, ALS3, HYR1, ECE1, and CEK1. The mutant also demonstrated increased invasion of solid agar and significantly increased adherence to human buccal epithelial cells. During hematogenously disseminated candidiasis, mice infected with the mutant had a significantly delayed time to death compared to the wild type. During oropharyngeal candidiasis, mice infected with the mutant had significantly lower tissue burdens in the oral cavity and esophagus at 7 days and they were less likely to develop disseminated infections because of mucosal translocation. The data demonstrate that C. albicans Rfx2p regulates DNA damage responses, morphogenesis, and virulence.
doi:10.1128/EC.00246-08
PMCID: PMC2669197  PMID: 19252121
23.  A Candida albicans Temperature-Sensitive cdc12-6 Mutant Identifies Roles for Septins in Selection of Sites of Germ Tube Formation and Hyphal Morphogenesis 
Eukaryotic Cell  2012;11(10):1210-1218.
Septins were identified for their role in septation in Saccharomyces cerevisiae and were subsequently implicated in other morphogenic processes. To study septins in Candida albicans hyphal morphogenesis, a temperature-sensitive mutation was created that altered the C terminus of the essential Cdc12 septin. The cdc12-6 cells grew well at room temperature, but at 37°C they displayed expected defects in septation, nuclear localization, and bud morphogenesis. Although serum stimulated the cdc12-6 cells at 37°C to form germ tube outgrowths, the mutant could not maintain polarized hyphal growth and instead formed chains of elongated cell compartments. Serum also stimulated the cdc12-6 mutant to induce a hyphal reporter gene (HWP1-GFP) and a characteristic zone of filipin staining at the leading edge of growth. Interestingly, cdc12-6 cells shifted to 37°C in the absence of serum gradually displayed enriched filipin staining at the tip, which may be due to the altered cell cycle regulation. A striking difference from the wild type was that the cdc12-6 cells frequently formed a second germ tube in close proximity to the first. The mutant cells also failed to form the diffuse band of septins at the base of germ tubes and hyphae, indicating that this septin band plays a role in preventing proximal formation of germ tubes in a manner analogous to bud site selection. These studies demonstrate that not only are septins important for cytokinesis, but they also promote polarized morphogenesis and selection of germ tube sites that may help disseminate an infection in host tissues.
doi:10.1128/EC.00216-12
PMCID: PMC3485918  PMID: 22886998
24.  Extracellular DNA release confers heterogeneity in Candida albicans biofilm formation 
BMC Microbiology  2014;14(1):303.
Background
Biofilm formation by Candida albicans has shown to be highly variable and is directly associated with pathogenicity and poor clinical outcomes in patients at risk. The aim of this study was to test the hypotheses that the extracellular DNA release by C. albicans is strain dependent and is associated with biofilm heterogeneity.
Results
Initially, biofilm formed by C. albicans high biofilm formers (HBF) or low biofilm formers (LBF) were treated with DNase to find whether eDNA play a role in their biofilm formation. Digestion of biofilm eDNA significantly reduced the HBF biofilm biomass by five fold compared to untreated controls. In addition, quantification of eDNA over the period of biofilm formation by SYBR green assay demonstrate a significantly higher level of 2 to 6 fold in HBF compared to LBF. Biochemical and transcriptional analyses showed that chitinase activity and mRNA levels of chitinase genes, a marker of autolysis, were upregulated in 24 h biofilm formation by HBF compared to LBF, indicating autolysis pathway possibly involved in causing variation. The biofilm biomass and eDNA release by single (∆cht2, ∆cht3) and double knockout (∆cht2/∆cht3) chitinase mutants were significantly less compared to their parental strain CA14, confirming the role of chitinases in eDNA release and biofilm formation. Correlation analysis found a positive correlation between chitinases and HWP1, suggesting eDNA may release during the hyphal growth. Finally, we showed a combinational treatment of biofilms with DNase or chitinase inhibitor (acetazolamide) plus amphotericin B significantly improved antifungal susceptibility by 2 to 8 fold.
Conclusions
Collectively, these data show that eDNA release by C. albicans clinical isolates is variable and is associated with differential biofilm formation. Digestion of biofilm eDNA by DNase may provide a novel therapeutic strategies to destabilise biofilm growth and improves antifungal sensitivity.
Electronic supplementary material
The online version of this article (doi:10.1186/s12866-014-0303-6) contains supplementary material, which is available to authorized users.
doi:10.1186/s12866-014-0303-6
PMCID: PMC4262977  PMID: 25476750
Candida albicans; Biofilm; eDNA; Chitinases
25.  Therapeutic Potential of Thiazolidinedione-8 as an Antibiofilm Agent against Candida albicans 
PLoS ONE  2014;9(5):e93225.
Candida albicans is known as a commensal microorganism but it is also the most common fungal pathogen in humans, causing both mucosal and systemic infections. Biofilm-associated C. albicans infections present clinically important features due to their high levels of resistance to traditional antifungal agents. Quorum sensing is closely associated with biofilm formation and increasing fungal pathogenicity. We investigated the ability of the novel bacterial quorum sensing quencher thiazolidinedione-8 (S-8) to inhibit the formation of, and eradication of mature C. albicans biofilms. In addition, the capability of S-8 to alter fungal adhesion to mammalian cells was checked. S-8 exhibited specific antibiofilm and antiadhesion activities against C. albicans, at four- to eightfold lower concentrations than the minimum inhibitory concentration (MIC). Using fluorescence microscopy, we observed that S-8 dose-dependently reduces C. albicans–GFP binding to RAW macrophages. S-8 at sub-MICs also interfered with fungal morphogenesis by inhibiting the yeast-to-hyphal form transition. In addition, the tested agent strongly affected fungal cell wall characteristics by modulating its hydrophobicity. We evaluated the molecular mode of S-8 antibiofilm and antiadhesion activities using real-time RT-PCR. The expression levels of genes associated with biofilm formation, adhesion and filamentation, HWP1, ALS3 and EAP1, respectively, were dose-dependently downregulated by S-8. Transcript levels of UME6, responsible for long-term hyphal maintenance, were also significantly decreased by the tested agent. Both signaling pathways of hyphal formation-cAMP-PKA and MAPK-were interrupted by S-8. Their upstream general regulator RAS1 was markedly suppressed by S-8. In addition, the expression levels of MAPK cascade components CST20, HST7 and CPH1 were downregulated by S-8. Finally, transcriptional repressors of filament formation, TUP1 and NRG1, were dramatically upregulated by our compound. Our results indicate that S-8 holds a novel antibiofilm therapeutic mean in the treatment and prevention of biofilm-associated C. albicans infections.
doi:10.1371/journal.pone.0093225
PMCID: PMC4010395  PMID: 24796422

Results 1-25 (1107768)