PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (428665)

Clipboard (0)
None

Related Articles

1.  Putative Antiparasite Defensive System Involving Ribosomal and Nonribosomal Oligopeptides in Cyanobacteria of the Genus Planktothrix 
Parasitic chytrid fungi can inflict significant mortality on cyanobacteria but frequently fail to keep cyanobacterial dominance and bloom formation in check. Our study tested whether oligopeptide production, a common feature in many cyanobacteria, can be a defensive mechanism against chytrid parasitism. The study employed the cyanobacterial strain Planktothrix NIVA-CYA126/8 and its mutants with knockout mutations for microcystins, anabaenopeptins, and microviridins, major oligopeptide classes to be found in NIVA-CYA126/8. Four chytrid strains were used as parasite models. They are obligate parasites of Planktothrix and are unable to exploit alternative food sources. All chytrid strains were less virulent to the NIVA-CYA126/8 wild type than to at least one of its oligopeptide knockout mutants. One chytrid strain even failed to infect the wild type, while exhibiting considerable virulence to all mutants. It is therefore evident that producing microcystins, microviridins, and/or anabaenopeptins can reduce the virulence of chytrids to Planktothrix, thereby increasing the host's chance of survival. Microcystins and anabaenopeptins are nonribosomal oligopeptides, while microviridins are produced ribosomally, suggesting that Planktothrix resists chytrids by relying on metabolites that are produced via distinct biosynthetic pathways. Chytrids, on the other hand, can adapt to the oligopeptides produced by Planktothrix in different ways. This setting most likely results in an evolutionary arms race, which would probably lead to Planktothrix and chytrid population structures that closely resemble those actually found in nature. In summary, the findings of the present study suggest oligopeptide production in Planktothrix to be part of a defensive mechanism against chytrid parasitism.
doi:10.1128/AEM.03499-12
PMCID: PMC3623205  PMID: 23396340
2.  Recombination and selectional forces in cyanopeptolin NRPS operons from highly similar, but geographically remote Planktothrix strains 
BMC Microbiology  2008;8:141.
Background
Cyanopeptolins are nonribosomally produced heptapetides showing a highly variable composition. The cyanopeptolin synthetase operon has previously been investigated in three strains from the genera Microcystis, Planktothrix and Anabaena. Cyanopeptolins are displaying protease inhibitor activity, but the biological function(s) is (are) unknown. Cyanopeptolin gene cluster variability and biological functions of the peptide variants are likely to be interconnected.
Results
We have investigated two cyanopeptolin gene clusters from highly similar, but geographically remote strains of the same genus. Sequencing of a nonribosomal peptide synthetase (NRPS) cyanopeptolin gene cluster from the Japanese strain Planktothrix NIES 205 (205-oci), showed the 30 kb gene cluster to be highly similar to the oci gene cluster previously described in Planktothrix NIVA CYA 116, isolated in Norway. Both operons contained seven NRPS modules, a sulfotransferase (S) and a glyceric acid loading (GA)-domain. Sequence analyses showed a high degree of conservation, except for the presence of an epimerase domain in NIES 205 and the regions around the epimerase, showing high substitution rates and Ka/Ks values above 1. The two strains produce almost identical cyanopeptolins, cyanopeptolin-1138 and oscillapeptin E respectively, but with slight differences regarding the production of minor cyanopeptolin variants. These variants may be the result of relaxed adenylation (A)-domain specificity in the nonribosomal enzyme complex. Other genetic markers (16S rRNA, ntcA and the phycocyanin cpcBA spacer) were identical, supporting that these geographically separated Planktothrix strains are closely related.
Conclusion
A horizontal gene transfer event resulting in exchange of a whole module-encoding region was observed. Nucleotide statistics indicate that both purifying selection and positive selection forces are operating on the gene cluster. The positive selection forces are acting within and around the epimerase insertion while purifying selection conserves the remaining (major) part of the gene cluster. The presence of an epimerase in the gene cluster is in line with the D-configuration of Htyr, determined experimentally in oscillapeptin E in a previous study.
doi:10.1186/1471-2180-8-141
PMCID: PMC2533009  PMID: 18727817
3.  Plasticity and Evolution of Aeruginosin Biosynthesis in Cyanobacteria▿ †  
Aeruginosins are bioactive oligopeptides that are produced in high structural diversity by strains of the bloom-forming cyanobacterial genera Microcystis and Planktothrix. A hallmark of aeruginosins is the unusual Choi moiety central to the tetrapeptides, while other positions are occupied by variable moieties in individual congeners. Here we report on three aeruginosin synthetase gene clusters (aer) of Microcystis aeruginosa (strains PCC 7806, NIES-98, and NIES-843). The analysis and comparison the aer gene clusters provide the first insight into the molecular basis of biosynthetic and structural plasticity in aeruginosin pathways. Major parts of the aer gene clusters are highly similar in all strains, particularly the genes coding for the first three nonribosomal peptide synthetase (NRPS) modules except for the region coding for the second adenylation domain. However, the gene clusters differ largely in genes coding for tailoring enzymes such as halogenases and sulfotransferases, reflecting structural peculiarities in aeruginosin congeners produced by the individual strains. Significant deviations were further observed in the C-terminal NRPS modules, suggesting two distinct release mechanisms. The architecture of the gene clusters is in agreement with the particular aeruginosin variants that are produced by individual strains, the structures of two of which (aeruginosins 686 A and 686 B) were elucidated. The aer gene clusters of Microcystis and Planktothrix are proposed to originate from a common ancestor and to have evolved to their present-day diversity largely through horizontal gene transfer and recombination events.
doi:10.1128/AEM.02258-08
PMCID: PMC2663223  PMID: 19201978
4.  Halogenase Genes in Nonribosomal Peptide Synthetase Gene Clusters of Microcystis (Cyanobacteria): Sporadic Distribution and Evolution 
Molecular Biology and Evolution  2008;25(9):2031-2041.
Cyanobacteria of the genus Microcystis are known to produce secondary metabolites of large structural diversity by nonribosomal peptide synthetase (NRPS) pathways. For a number of such compounds, halogenated congeners have been reported along with nonhalogenated ones. In the present study, chlorinated cyanopeptolin- and/or aeruginosin-type peptides were detected by mass spectrometry in 17 out of 28 axenic strains of Microcystis. In these strains, a halogenase gene was identified between 2 genes coding for NRPS modules in respective gene clusters, whereas it was consistently absent when the strains produced only nonchlorinated corresponding congeners. Nucleotide sequences were obtained for 12 complete halogenase genes and 14 intermodule regions of gene clusters lacking a halogenase gene or containing only fragments of it. When a halogenase gene was found absent, a specific, identical excision pattern was observed for both synthetase gene clusters in most strains. A phylogenetic analysis including other bacterial halogenases showed that the NRPS-related halogenases of Microcystis form a monophyletic group divided into 2 subgroups, corresponding to either the cyanopeptolin or the aeruginosin peptide synthetases. The distribution of these peptide synthetase gene clusters, among the tested Microcystis strains, was found in relative agreement with their phylogeny reconstructed from 16S–23S rDNA intergenic spacer sequences, whereas the distribution of the associated halogenase genes appears to be sporadic. The presented data suggest that in cyanobacteria these prevalent halogenase genes originated from an ancient horizontal gene transfer followed by duplication in the cyanobacterial lineage. We propose an evolutionary scenario implying repeated gene losses to explain the distribution of halogenase genes in 2 NRPS gene clusters that subsequently defines the seemingly erratic production of halogenated and nonhalogenated aeruginosins and cyanopeptolins among Microcystis strains.
doi:10.1093/molbev/msn150
PMCID: PMC2515870  PMID: 18614525
halogenase; cyanopeptolin; aeruginosin; DNA rearrangement; secondary peptide metabolite; chlorination; internal transcribed spacer; phylogeny
5.  Comparison of Cyanopeptolin Genes in Planktothrix, Microcystis, and Anabaena Strains: Evidence for Independent Evolution within Each Genus▿ † 
Applied and Environmental Microbiology  2007;73(22):7322-7330.
The major cyclic peptide cyanopeptolin 1138, produced by Planktothrix strain NIVA CYA 116, was characterized and shown to be structurally very close to the earlier-characterized oscillapeptin E. A cyanopeptolin gene cluster likely to encode the corresponding peptide synthetase was sequenced from the same strain. The 30-kb oci gene cluster contains two novel domains previously not detected in nonribosomal peptide synthetase gene clusters (a putative glyceric acid-activating domain and a sulfotransferase domain), in addition to seven nonribosomal peptide synthetase modules. Unlike in two previously described cyanopeptolin gene clusters from Anabaena and Microcystis, a halogenase gene is not present. The three cyanopeptolin gene clusters show similar gene and domain arrangements, while the binding pocket signatures deduced from the adenylation domain sequences and the additional tailoring domains vary. This suggests loss and gain of tailoring domains within each genus, after the diversification of the three clades, as major events leading to the present diversity. The ABC transporter genes associated with the cyanopeptolin gene clusters form a monophyletic clade and accordingly are likely to have evolved as part of the functional unit. Phylogenetic analyses of adenylation and condensation domains, including domains from cyanopeptolins and microcystins, show a closer similarity between the Planktothrix and Microcystis cyanopeptolin domains than between these and the Anabaena domain. No clear evidence of recombination between cyanopeptolins and microcystins could be detected. There were no strong indications of horizontal gene transfer of cyanopeptolin gene sequences across the three genera, supporting independent evolution within each genus.
doi:10.1128/AEM.01475-07
PMCID: PMC2168201  PMID: 17921284
6.  Gene Flow, Recombination, and Selection in Cyanobacteria: Population Structure of Geographically Related Planktothrix Freshwater Strains 
Several Planktothrix strains, each producing a distinct oligopeptide profile, have been shown to coexist within Lake Steinsfjorden (Norway). Using nonribosomal peptide synthetase (NRPS) genes as markers, it has been shown that the Planktothrix community comprises distinct genetic variants displaying differences in bloom dynamics, suggesting a Planktothrix subpopulation structure. Here, we investigate the Planktothrix variants inhabiting four lakes in southeast of Norway utilizing both NRPS and non-NRPS genes. Phylogenetic analyses showed similar topologies for both NRPS and non-NRPS genes, and the lakes appear to have similar structuring of Planktothrix genetic variants. The structure of distinct variants was also supported by very low genetic diversity within variants compared to the between-variant diversity. Incongruent topologies and split decomposition revealed recombination events between Planktothrix variants. In several strains the gene variants seem to be a result of recombination. Both NRPS and non-NRPS genes are dominated by purifying selection; however, sites subjected to positive selection were also detected. The presence of similar and well-separated Planktothrix variants with low internal genetic diversity indicates gene flow within Planktothrix populations. Further, the low genetic diversity found between lakes (similar range as within lakes) indicates gene flow also between Planktothrix populations and suggests recent, or recurrent, dispersals. Our data also indicate that recombination has resulted in new genetic variants. Stability within variants and the development of new variants are likely to be influenced by selection patterns and within-variant homologous recombination.
doi:10.1128/AEM.02417-12
PMCID: PMC3553773  PMID: 23124237
7.  NRPS-PKS: a knowledge-based resource for analysis of NRPS/PKS megasynthases 
Nucleic Acids Research  2004;32(Web Server issue):W405-W413.
NRPS-PKS is web-based software for analysing large multi-enzymatic, multi-domain megasynthases that are involved in the biosynthesis of pharmaceutically important natural products such as cyclosporin, rifamycin and erythromycin. NRPS-PKS has been developed based on a comprehensive analysis of the sequence and structural features of several experimentally characterized biosynthetic gene clusters. The results of these analyses have been organized as four integrated searchable databases for elucidating domain organization and substrate specificity of nonribosomal peptide synthetases and three types of polyketide synthases. These databases work as the backend of NRPS-PKS and provide the knowledge base for predicting domain organization and substrate specificity of uncharacterized NRPS/PKS clusters. Benchmarking on a large set of biosynthetic gene clusters has demonstrated that, apart from correct identification of NRPS and PKS domains, NRPS-PKS can also predict specificities of adenylation and acyltransferase domains with reasonably high accuracy. These features of NRPS-PKS make it a valuable resource for identification of natural products biosynthesized by NRPS/PKS gene clusters found in newly sequenced genomes. The training and test sets of gene clusters included in NRPS-PKS correlate information on 307 open reading frames, 2223 functional protein domains, 68 starter/extender precursors and their specific recognition motifs, and also the chemical structure of 101 natural products from four different families. NRPS-PKS is a unique resource which provides a user-friendly interface for correlating chemical structures of natural products with the domains and modules in the corresponding nonribosomal peptide synthetases or polyketide synthases. It also provides guidelines for domain/module swapping as well as site-directed mutagenesis experiments to engineer biosynthesis of novel natural products. NRPS-PKS can be accessed at http://www.nii.res.in/nrps-pks.html.
doi:10.1093/nar/gkh359
PMCID: PMC441497  PMID: 15215420
8.  Exploiting the Natural Diversity of Microviridin Gene Clusters for Discovery of Novel Tricyclic Depsipeptides▿†  
Applied and Environmental Microbiology  2010;76(11):3568-3574.
Microviridins are ribosomally synthesized tricyclic depsipeptides produced by different genera of cyanobacteria. The prevalence of the microviridin gene clusters and the natural diversity of microviridin precursor sequences are currently unknown. Screening of laboratory strains and field samples of the bloom-forming freshwater cyanobacterium Microcystis via PCR revealed global occurrence of the microviridin pathway and an unexpected natural variety. We could detect 15 new variants of the precursor gene mdnA encoding microviridin backbones that differ in up to 4 amino acid positions from known isoforms of the peptide. The survey not only provides insights into the versatility of the biosynthetic enzymes in a closely related group of cyanobacteria, but also facilitates the discovery and characterization of cryptic microviridin variants. This is demonstrated for microviridin L in Microcystis aeruginosa strain NIES843 and heterologously produced variants.
doi:10.1128/AEM.02858-09
PMCID: PMC2876452  PMID: 20363789
9.  Determination of Oligopeptide Diversity within a Natural Population of Microcystis spp. (Cyanobacteria) by Typing Single Colonies by Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry 
Applied and Environmental Microbiology  2001;67(11):5069-5076.
Besides the most prominent peptide toxin, microcystin, the cyanobacteria Microcystis spp. have been shown to produce a large variety of other bioactive oligopeptides. We investigated for the first time the oligopeptide diversity within a natural Microcystis population by analyzing single colonies directly with matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS). The results demonstrate a high diversity of known cyanobacterial peptides such as microcystins, anabaenopeptins, microginins, aeruginosins, and cyanopeptolins, but also many unknown substances in the Microcystis colonies. Oligopeptide patterns were mostly related to specific Microcystis taxa. Microcystis aeruginosa (Kütz.) Kütz. colonies contained mainly microcystins, occasionally accompanied by aeruginosins. In contrast, microcystins were not detected in Microcystis ichthyoblabe Kütz.; instead, colonies of this species contained anabaenopeptins and/or microginins or unknown peptides. Within a third group, Microcystis wesenbergii (Kom.) Kom. in Kondr., chiefly a cyanopeptolin and an unknown peptide were found. Similar patterns, however, were also found in colonies which could not be identified to species level. The significance of oligopeptides as a chemotaxonomic tool within the genus Microcystis is discussed. It could be demonstrated that the typing of single colonies by MALDI-TOF MS may be a valuable tool for ecological studies of the genus Microcystis as well as in early warning of toxic cyanobacterial blooms.
doi:10.1128/AEM.67.11.5069-5076.2001
PMCID: PMC93273  PMID: 11679328
10.  Genes Coding for Hepatotoxic Heptapeptides (Microcystins) in the Cyanobacterium Anabaena Strain 90 
The cluster of microcystin synthetase genes from Anabaena strain 90 was sequenced and characterized. The total size of the region is 55.4 kb, and the genes are organized in three putative operons. The first operon (mcyA-mcyB-mcyC) is transcribed in the opposite direction from the second operon (mcyG-mcyD-mcyJ-mcyE-mcyF-mcyI) and the third operon (mcyH). The genes mcyA, mcyB, and mcyC encode nonribosomal peptide synthetases (NRPS), while mcyD codes for a polyketide synthase (PKS), and mcyG and mcyE are mixed NRPS-PKS genes. The genes mcyJ, mcyF, and mcyI are similar to genes coding for a methyltransferase, an aspartate racemase, and a d-3-phosphoglycerate dehydrogenase, respectively. The region in the first module of mcyB coding for the adenylation domain was found to be 96% identical with the corresponding part of mcyC, suggesting a recent duplication of this fragment and a replacement in mcyB. In Anabaena strain 90, the order of the domains encoded by the genes in the two sets (from mcyG to mcyI and from mcyA to mcyC) is colinear with the hypothetical order of the enzymatic reactions for microcystin biosynthesis. The order of the microcystin synthetase genes in Anabaena strain 90 differs from the arrangement found in two other cyanobacterial species, Microcystis aeruginosa and Planktothrix agardhii. The average sequence match between the microcystin synthetase genes of Anabaena strain 90 and the corresponding genes of the other species is 74%. The identity of the individual proteins varies from 67 to 81%. The genes of microcystin biosynthesis from three major producers of this toxin are now known. This makes it possible to design probes and primers to identify the toxin producers in the environment.
doi:10.1128/AEM.70.2.686-692.2004
PMCID: PMC348879  PMID: 14766543
11.  Genome mining reveals the genus Xanthomonas to be a promising reservoir for new bioactive non-ribosomally synthesized peptides 
BMC Genomics  2013;14:658.
Background
Various bacteria can use non-ribosomal peptide synthesis (NRPS) to produce peptides or other small molecules. Conserved features within the NRPS machinery allow the type, and sometimes even the structure, of the synthesized polypeptide to be predicted. Thus, bacterial genome mining via in silico analyses of NRPS genes offers an attractive opportunity to uncover new bioactive non-ribosomally synthesized peptides. Xanthomonas is a large genus of Gram-negative bacteria that cause disease in hundreds of plant species. To date, the only known small molecule synthesized by NRPS in this genus is albicidin produced by Xanthomonas albilineans. This study aims to estimate the biosynthetic potential of Xanthomonas spp. by in silico analyses of NRPS genes with unknown function recently identified in the sequenced genomes of X. albilineans and related species of Xanthomonas.
Results
We performed in silico analyses of NRPS genes present in all published genome sequences of Xanthomonas spp., as well as in unpublished draft genome sequences of Xanthomonas oryzae pv. oryzae strain BAI3 and Xanthomonas spp. strain XaS3. These two latter strains, together with X. albilineans strain GPE PC73 and X. oryzae pv. oryzae strains X8-1A and X11-5A, possess novel NRPS gene clusters and share related NRPS-associated genes such as those required for the biosynthesis of non-proteinogenic amino acids or the secretion of peptides. In silico prediction of peptide structures according to NRPS architecture suggests eight different peptides, each specific to its producing strain. Interestingly, these eight peptides cannot be assigned to any known gene cluster or related to known compounds from natural product databases. PCR screening of a collection of 94 plant pathogenic bacteria indicates that these novel NRPS gene clusters are specific to the genus Xanthomonas and are also present in Xanthomonas translucens and X. oryzae pv. oryzicola. Further genome mining revealed other novel NRPS genes specific to X. oryzae pv. oryzicola or Xanthomonas sacchari.
Conclusions
This study revealed the significant potential of the genus Xanthomonas to produce new non-ribosomally synthesized peptides. Interestingly, this biosynthetic potential seems to be specific to strains of Xanthomonas associated with monocotyledonous plants, suggesting a putative involvement of non-ribosomally synthesized peptides in plant-bacteria interactions.
doi:10.1186/1471-2164-14-658
PMCID: PMC3849588  PMID: 24069909
12.  Genetic Variation of Adenylation Domains of the Anabaenopeptin Synthesis Operon and Evolution of Substrate Promiscuity▿† 
Journal of Bacteriology  2011;193(15):3822-3831.
Anabaenopeptins (AP) are bioactive cyclic hexapeptides synthesized nonribosomally in cyanobacteria. APs are characterized by several conserved motifs, including the ureido bond, N-methylation in position 5, and d-Lys in position 2. All other positions of the AP molecule are variable, resulting in numerous structural variants. We have identified a nonribosomal peptide synthetase (NRPS) operon from Planktothrix agardhii strain CYA126/8 consisting of five genes (apnA to apnE) encoding six NRPS modules and have confirmed its role in AP synthesis by the generation of a mutant via insertional inactivation of apnC. In order to correlate the genetic diversity among adenylation domains (A domains) with AP structure variation, we sequenced the A domains of all six NRPS modules from seven Planktothrix strains differing in the production of AP congeners. It is remarkable that single strains coproduce APs bearing either of the chemically divergent amino acids Arg and Tyr in exocyclic position 1. Since the A domain of the initiation module (the ApnA A1 domain) has been proposed to activate the amino acid incorporated into exocyclic position 1, we decided to analyze this domain both biochemically and phylogenetically. Only ApnA A1 enzymes from strains producing AP molecules containing Arg or Tyr in position 1 were found to activate these two chemically divergent amino acids in vitro. Phylogenetic analysis of apn A domain sequences revealed that strains with a promiscuous ApnA A1 domain are derived from an ancestor that activates only Arg. Surprisingly, positive selection appears to affect only three codons within the apnA A1 gene, suggesting that this remarkable promiscuity has evolved from point mutations only.
doi:10.1128/JB.00360-11
PMCID: PMC3147517  PMID: 21622740
13.  Genomic Island TnSmu2 of Streptococcus mutans Harbors a Nonribosomal Peptide Synthetase-Polyketide Synthase Gene Cluster Responsible for the Biosynthesis of Pigments Involved in Oxygen and H2O2 Tolerance ▿ †  
Applied and Environmental Microbiology  2010;76(17):5815-5826.
The oral biofilm community consists of >800 microbial species, among which Streptococcus mutans is considered a primary pathogen for dental caries. The genomic island TnSmu2 of S. mutans comprises >2% of the genome. In this study, we demonstrate that TnSmu2 harbors a gene cluster encoding nonribosomal peptide synthetases (NRPS), polyketide synthases (PKS), and accessory proteins and regulators involved in nonribosomal peptide (NRP) and polyketide (PK) biosynthesis. Interestingly, the sequences of these genes and their genomic organizations and locations are highly divergent among different S. mutans strains, yet each TnSmu2 region encodes NRPS/PKS and accessory proteins. Mutagenesis of the structural genes and putative regulatory genes in strains UA159, UA140, and MT4653 resulted in colonies that were devoid of their yellow pigmentation (for strains UA140 and MT4653). In addition, these mutant strains also displayed retarded growth under aerobic conditions and in the presence of H2O2. High-performance liquid chromatography profiling of cell surface extracts identified unique peaks that were missing in the mutant strains, and partial characterization of the purified product from UA159 demonstrated that it is indeed a hybrid NRP/PK, as predicted. A genomic survey of 94 clinical S. mutans isolates suggests that the TnSmu2 gene cluster may be more prevalent than previously recognized.
doi:10.1128/AEM.03079-09
PMCID: PMC2935078  PMID: 20639370
14.  In silico analysis of methyltransferase domains involved in biosynthesis of secondary metabolites 
BMC Bioinformatics  2008;9:454.
Background
Secondary metabolites biosynthesized by polyketide synthase (PKS) and nonribosomal peptide synthetase (NRPS) family of enzymes constitute several classes of therapeutically important natural products like erythromycin, rapamycin, cyclosporine etc. In view of their relevance for natural product based drug discovery, identification of novel secondary metabolite natural products by genome mining has been an area of active research. A number of different tailoring enzymes catalyze a variety of chemical modifications to the polyketide or nonribosomal peptide backbone of these secondary metabolites to enhance their structural diversity. Therefore, development of powerful bioinformatics methods for identification of these tailoring enzymes and assignment of their substrate specificity is crucial for deciphering novel secondary metabolites by genome mining.
Results
In this work, we have carried out a comprehensive bioinformatics analysis of methyltransferase (MT) domains present in multi functional type I PKS and NRPS proteins encoded by PKS/NRPS gene clusters having known secondary metabolite products. Based on the results of this analysis, we have developed a novel knowledge based computational approach for detecting MT domains present in PKS and NRPS megasynthases, delineating their correct boundaries and classifying them as N-MT, C-MT and O-MT using profile HMMs. Analysis of proteins in nr database of NCBI using these class specific profiles has revealed several interesting examples, namely, C-MT domains in NRPS modules, N-MT domains with significant homology to C-MT proteins, and presence of NRPS/PKS MTs in association with other catalytic domains. Our analysis of the chemical structures of the secondary metabolites and their site of methylation suggested that a possible evolutionary basis for the presence of a novel class of N-MT domains with significant homology to C-MT proteins could be the close resemblance of the chemical structures of the acceptor substrates, as in the case of pyochelin and yersiniabactin. These two classes of MTs recognize similar acceptor substrates, but transfer methyl groups to N and C positions on these substrates.
Conclusion
We have developed a novel knowledge based computational approach for identifying MT domains present in type I PKS and NRPS multifunctional enzymes and predicting their site of methylation. Analysis of nr database using this approach has revealed presence of several novel MT domains. Our analysis has also given interesting insight into the evolutionary basis of the novel substrate specificities of these MT proteins.
doi:10.1186/1471-2105-9-454
PMCID: PMC2613160  PMID: 18950525
15.  Transcriptional Regulation of Chemical Diversity in Aspergillus fumigatus by LaeA 
PLoS Pathogens  2007;3(4):e50.
Secondary metabolites, including toxins and melanins, have been implicated as virulence attributes in invasive aspergillosis. Although not definitively proved, this supposition is supported by the decreased virulence of an Aspergillus fumigatus strain, ΔlaeA, that is crippled in the production of numerous secondary metabolites. However, loss of a single LaeA-regulated toxin, gliotoxin, did not recapitulate the hypovirulent ΔlaeA pathotype, thus implicating other toxins whose production is governed by LaeA. Toward this end, a whole-genome comparison of the transcriptional profile of wild-type, ΔlaeA, and complemented control strains showed that genes in 13 of 22 secondary metabolite gene clusters, including several A. fumigatus–specific mycotoxin clusters, were expressed at significantly lower levels in the ΔlaeA mutant. LaeA influences the expression of at least 9.5% of the genome (943 of 9,626 genes in A. fumigatus) but positively controls expression of 20% to 40% of major classes of secondary metabolite biosynthesis genes such as nonribosomal peptide synthetases (NRPSs), polyketide synthases, and P450 monooxygenases. Tight regulation of NRPS-encoding genes was highlighted by quantitative real-time reverse-transcription PCR analysis. In addition, expression of a putative siderophore biosynthesis NRPS (NRPS2/sidE) was greatly reduced in the ΔlaeA mutant in comparison to controls under inducing iron-deficient conditions. Comparative genomic analysis showed that A. fumigatus secondary metabolite gene clusters constitute evolutionarily diverse regions that may be important for niche adaptation and virulence attributes. Our findings suggest that LaeA is a novel target for comprehensive modification of chemical diversity and pathogenicity.
Author Summary
Patients with suppressed immune systems due to cancer treatments, HIV/AIDS, or organ transplantation are at high risk of infection from microbes. Some of the most deadly infections for such patients arise from a fungal pathogen, Aspergillus fumigatus. This species, like several of its close relatives, can produce an array of small chemical compounds that influences both the infection process and its environmental niche outside of the host. The genes dedicated to production of each compound are clustered adjacent to each other in the genome. One protein named LaeA is a master regulator of such clustered small molecule genes, and removal of the gene encoding LaeA cripples the organism's ability to infect. We conducted a genome-wide microarray experiment to identify small molecule gene clusters controlled by the presence of LaeA in A. fumigatus. In doing so, we identified actively expressed gene clusters critical for small molecule production and potentially involved in disease progression. These results also provide insight into evolutionary events shaping the organism's collection of chemical compounds.
doi:10.1371/journal.ppat.0030050
PMCID: PMC1851976  PMID: 17432932
16.  Molecular genetic analysis reveals that a nonribosomal peptide synthetase-like (NRPS-like) gene in Aspergillus nidulans is responsible for microperfuranone biosynthesis 
Genome sequencing of Aspergillus species including A. nidulans has revealed that there are far more secondary metabolite biosynthetic gene clusters than secondary metabolites isolated from these organisms. This implies that these organisms can produce additional secondary metabolites have not yet been elucidated. The A. nidulans genome contains twelve nonribosomal peptide synthetase (NRPS), one hybrid polyketide synthase/nonribosomal peptide synthetase (PKS/NRPS), and fourteen NRPS-like genes. The only NRPS-like gene in A. nidulans with a known product is tdiA which is involved in terrequinone A biosynthesis. To attempt to identify the products of these NRPS-like genes, we replaced the native promoters of the NRPS-like genes with the inducible alcohol dehydrogenase (alcA) promoter. Our results demonstrated that induction of the single NRPS-like gene AN3396.4 led to the enhanced production of microperfuranone. Furthermore, heterologous expression of AN3396.4 in A. niger confirmed that only one NRPS-like gene, AN3396.4, is necessary for the production of microperfuranone.
doi:10.1007/s00253-012-4098-9
PMCID: PMC3713075  PMID: 22627757
Aspergillus nidulans; nonribosomal peptide synthetase-like; microperfuranone; biosynthesis
17.  Genome based analysis of type-I polyketide synthase and nonribosomal peptide synthetase gene clusters in seven strains of five representative Nocardia species 
BMC Genomics  2014;15(1):323.
Background
Actinobacteria of the genus Nocardia usually live in soil or water and play saprophytic roles, but they also opportunistically infect the respiratory system, skin, and other organs of humans and animals. Primarily because of the clinical importance of the strains, some Nocardia genomes have been sequenced, and genome sequences have accumulated. Genome sizes of Nocardia strains are similar to those of Streptomyces strains, the producers of most antibiotics. In the present work, we compared secondary metabolite biosynthesis gene clusters of type-I polyketide synthase (PKS-I) and nonribosomal peptide synthetase (NRPS) among genomes of representative Nocardia species/strains based on domain organization and amino acid sequence homology.
Results
Draft genome sequences of Nocardia asteroides NBRC 15531T, Nocardia otitidiscaviarum IFM 11049, Nocardia brasiliensis NBRC 14402T, and N. brasiliensis IFM 10847 were read and compared with published complete genome sequences of Nocardia farcinica IFM 10152, Nocardia cyriacigeorgica GUH-2, and N. brasiliensis HUJEG-1. Genome sizes are as follows: N. farcinica, 6.0 Mb; N. cyriacigeorgica, 6.2 Mb; N. asteroides, 7.0 Mb; N. otitidiscaviarum, 7.8 Mb; and N. brasiliensis, 8.9 - 9.4 Mb. Predicted numbers of PKS-I, NRPS, and PKS-I/NRPS hybrid clusters ranged between 4–11, 7–13, and 1–6, respectively, depending on strains, and tended to increase with increasing genome size. Domain and module structures of representative or unique clusters are discussed in the text.
Conclusion
We conclude the following: 1) genomes of Nocardia strains carry as many PKS-I and NRPS gene clusters as those of Streptomyces strains, 2) the number of PKS-I and NRPS gene clusters in Nocardia strains varies substantially depending on species, and N. brasiliensis strains carry the largest numbers of clusters among the species studied, 3) the seven Nocardia strains studied in the present work have seven common PKS-I and/or NRPS clusters, some of whose products are yet to be studied, and 4) different N. brasiliensis strains have some different gene clusters of PKS-I/NRPS, although the rest of the clusters are common within the N. brasiliensis strains. Genome sequencing suggested that Nocardia strains are highly promising resources in the search of novel secondary metabolites.
Electronic supplementary material
The online version of this article (doi: 10.1186/1471-2164-15-323) contains supplementary material, which is available to authorized users.
doi:10.1186/1471-2164-15-323
PMCID: PMC4035055  PMID: 24884595
Nocardia asteroides; Nocardia otitidiscaviarum; Nocardia brasiliensis; Nocardia farcinica; Nocardia cyriacigeorgica; Genome sequence; Type-I polyketide synthase; Nonribosomal peptide synthetase
18.  Identification and Characterization of the Anti-Methicillin-Resistant Staphylococcus aureus WAP-8294A2 Biosynthetic Gene Cluster from Lysobacter enzymogenes OH11 ▿ †  
Antimicrobial Agents and Chemotherapy  2011;55(12):5581-5589.
Lysobactor enzymogenes strain OH11 is an emerging biological control agent of fungal and bacterial diseases. We recently completed its genome sequence and found it contains a large number of gene clusters putatively responsible for the biosynthesis of nonribosomal peptides and polyketides, including the previously identified antifungal dihydromaltophilin (HSAF). One of the gene clusters contains two huge open reading frames, together encoding 12 modules of nonribosomal peptide synthetases (NRPS). Gene disruption of one of the NRPS led to the disappearance of a metabolite produced in the wild type and the elimination of its antibacterial activity. The metabolite and antibacterial activity were also affected by the disruption of some of the flanking genes. We subsequently isolated this metabolite and subjected it to spectroscopic analysis. The mass spectrometry and nuclear magnetic resonance data showed that its chemical structure is identical to WAP-8294A2, a cyclic lipodepsipeptide with potent anti-methicillin-resistant Staphylococcus aureus (MRSA) activity and currently in phase I/II clinical trials. The WAP-8294A2 biosynthetic genes had not been described previously. So far, the Gram-positive Streptomyces have been the primary source of anti-infectives. Lysobacter are Gram-negative soil/water bacteria that are genetically amendable and have not been well exploited. The WAP-8294A2 synthetase represents one of the largest NRPS complexes, consisting of 45 functional domains. The identification of these genes sets the foundation for the study of the WAP-8294A2 biosynthetic mechanism and opens the door for producing new anti-MRSA antibiotics through biosynthetic engineering in this new source of Lysobacter.
doi:10.1128/AAC.05370-11
PMCID: PMC3232812  PMID: 21930890
19.  Identification of Sare0718 As an Alanine-Activating Adenylation Domain in Marine Actinomycete Salinispora arenicola CNS-205 
PLoS ONE  2012;7(5):e37487.
Background
Amino acid adenylation domains (A domains) are critical enzymes that dictate the identity of the amino acid building blocks to be incorporated during nonribosomal peptide (NRP) biosynthesis. NRPs represent a large group of valuable natural products that are widely applied in medicine, agriculture, and biochemical research. Salinispora arenicola CNS-205 is a representative strain of the first discovered obligate marine actinomycete genus, whose genome harbors a large number of cryptic secondary metabolite gene clusters.
Methodology/Principal Findings
In order to investigate cryptic NRP-related metabolites in S. arenicola CNS-205, we cloned and identified the putative gene sare0718 annotated “amino acid adenylation domain”. Firstly, the general features and possible functions of sare0718 were predicted by bioinformatics analysis, which suggested that Sare0718 is a soluble protein with an AMP-binding domain contained in the sequence and its cognate substrate is L-Val. Then, a GST-tagged fusion protein was expressed and purified to further explore the exact adenylation activity of Sare0718 in vitro. By a newly mentioned nonradioactive malachite green colorimetric assay, we found that L-Ala but not L-Val is the actual activated amino acid substrate and the basic kinetic parameters of Sare0718 for it are Km = 0.1164±0.0159 (mM), Vmax = 3.1484±0.1278 (µM/min), kcat = 12.5936±0.5112 (min−1).
Conclusions/Significance
By revealing the biochemical role of sare0718 gene, we identified an alanine-activating adenylation domain in marine actinomycete Salinispora arenicola CNS-205, which would provide useful information for next isolation and function elucidation of the whole cryptic nonribosomal peptide synthetase (NRPS)-related gene cluster covering Sare0718. And meanwhile, this work also enriched the biochemical data of A domain substrate specificity in newly discovered marine actinomycete NRPS system, which bioinformatics prediction will largely depend on.
doi:10.1371/journal.pone.0037487
PMCID: PMC3360062  PMID: 22655051
20.  Phylogenomics reveals subfamilies of fungal nonribosomal peptide synthetases and their evolutionary relationships 
Background
Nonribosomal peptide synthetases (NRPSs) are multimodular enzymes, found in fungi and bacteria, which biosynthesize peptides without the aid of ribosomes. Although their metabolite products have been the subject of intense investigation due to their life-saving roles as medicinals and injurious roles as mycotoxins and virulence factors, little is known of the phylogenetic relationships of the corresponding NRPSs or whether they can be ranked into subgroups of common function. We identified genes (NPS) encoding NRPS and NRPS-like proteins in 38 fungal genomes and undertook phylogenomic analyses in order to identify fungal NRPS subfamilies, assess taxonomic distribution, evaluate levels of conservation across subfamilies, and address mechanisms of evolution of multimodular NRPSs. We also characterized relationships of fungal NRPSs, a representative sampling of bacterial NRPSs, and related adenylating enzymes, including α-aminoadipate reductases (AARs) involved in lysine biosynthesis in fungi.
Results
Phylogenomic analysis identified nine major subfamilies of fungal NRPSs which fell into two main groups: one corresponds to NPS genes encoding primarily mono/bi-modular enzymes which grouped with bacterial NRPSs and the other includes genes encoding primarily multimodular and exclusively fungal NRPSs. AARs shared a closer phylogenetic relationship to NRPSs than to other acyl-adenylating enzymes. Phylogenetic analyses and taxonomic distribution suggest that several mono/bi-modular subfamilies arose either prior to, or early in, the evolution of fungi, while two multimodular groups appear restricted to and expanded in fungi. The older mono/bi-modular subfamilies show conserved domain architectures suggestive of functional conservation, while multimodular NRPSs, particularly those unique to euascomycetes, show a diversity of architectures and of genetic mechanisms generating this diversity.
Conclusions
This work is the first to characterize subfamilies of fungal NRPSs. Our analyses suggest that mono/bi-modular NRPSs have more ancient origins and more conserved domain architectures than most multimodular NRPSs. It also demonstrates that the α-aminoadipate reductases involved in lysine biosynthesis in fungi are closely related to mono/bi-modular NRPSs. Several groups of mono/bi-modular NRPS metabolites are predicted to play more pivotal roles in cellular metabolism than products of multimodular NRPSs. In contrast, multimodular subfamilies of NRPSs are of more recent origin, are restricted to fungi, show less stable domain architectures, and biosynthesize metabolites which perform more niche-specific functions than mono/bi-modular NRPS products. The euascomycete-only NRPS subfamily, in particular, shows evidence for extensive gain and loss of domains suggestive of the contribution of domain duplication and loss in responding to niche-specific pressures.
doi:10.1186/1471-2148-10-26
PMCID: PMC2823734  PMID: 20100353
21.  A Single Sfp-Type Phosphopantetheinyl Transferase Plays a Major Role in the Biosynthesis of PKS and NRPS Derived Metabolites in Streptomyces ambofaciens ATCC23877 
PLoS ONE  2014;9(1):e87607.
The phosphopantetheinyl transferases (PPTases) are responsible for the activation of the carrier protein domains of the polyketide synthases (PKS), non ribosomal peptide synthases (NRPS) and fatty acid synthases (FAS). The analysis of the Streptomyces ambofaciens ATCC23877 genome has revealed the presence of four putative PPTase encoding genes. One of these genes appears to be essential and is likely involved in fatty acid biosynthesis. Two other PPTase genes, samT0172 (alpN) and samL0372, are located within a type II PKS gene cluster responsible for the kinamycin production and an hybrid NRPS-PKS cluster involved in antimycin production, respectively, and their products were shown to be specifically involved in the biosynthesis of these secondary metabolites. Surprisingly, the fourth PPTase gene, which is not located within a secondary metabolite gene cluster, appears to play a pleiotropic role. Its product is likely involved in the activation of the acyl- and peptidyl-carrier protein domains within all the other PKS and NRPS complexes encoded by S. ambofaciens. Indeed, the deletion of this gene affects the production of the spiramycin and stambomycin macrolide antibiotics and of the grey spore pigment, all three being PKS-derived metabolites, as well as the production of the nonribosomally produced compounds, the hydroxamate siderophore coelichelin and the pyrrolamide antibiotic congocidine. In addition, this PPTase seems to act in concert with the product of samL0372 to activate the ACP and/or PCP domains of the antimycin biosynthesis cluster which is also responsible for the production of volatile lactones.
doi:10.1371/journal.pone.0087607
PMCID: PMC3909215  PMID: 24498152
22.  Biosynthesis of HSAF, a Tetramic Acid-containing Macrolactam from Lysobacter enzymogenes 
HSAF was isolated from Lysobacter enzymogenes, a bacterium used in the biological control of fungal diseases of plants. Structurally, it is a tetramic acid-containing macrolactam fused to a tricyclic system. HSAF exhibits a novel mode of action by disrupting sphingolipids important to the polarized growth of filamentous fungi. Here, we described the HSAF biosynthetic gene cluster which contains only a single-module polyketide synthase-nonribosomal peptide synthetase (PKS/NRPS), although the biosynthesis of HSAF apparently requires two separate polyketide chains that are linked together by one amino acid (ornithine) via two amide bonds. Flanking the PKS/NRPS are six genes, encoding a cascade of four tightly clustered redox enzymes on one side and a sterol desaturase/fatty acid hydroxylase and a ferredoxin reductase on the other side. The genetic data demonstrate that the four redox genes, in addition to the PKS/NRPS gene and the sterol desaturase/fatty acid hydroxylase gene, are required for HSAF production. The biochemical data show that the adenylation domain of the NRPS specifically activated L-ornithine and the four-domain NRPS was able to catalyze the formation of a tetramic acid-containing product from acyl-S-ACP and ornithinyl-S-NRPS. These results reveal a previously unrecognized biosynthetic mechanism for hybrid PK/NRP in prokaryotic organisms.
doi:10.1021/ja105732c
PMCID: PMC3078565  PMID: 21171605
23.  Genomics-driven discovery of the pneumocandin biosynthetic gene cluster in the fungus Glarea lozoyensis 
BMC Genomics  2013;14:339.
Background
The antifungal therapy caspofungin is a semi-synthetic derivative of pneumocandin B0, a lipohexapeptide produced by the fungus Glarea lozoyensis, and was the first member of the echinocandin class approved for human therapy. The nonribosomal peptide synthetase (NRPS)-polyketide synthases (PKS) gene cluster responsible for pneumocandin biosynthesis from G. lozoyensis has not been elucidated to date. In this study, we report the elucidation of the pneumocandin biosynthetic gene cluster by whole genome sequencing of the G. lozoyensis wild-type strain ATCC 20868.
Results
The pneumocandin biosynthetic gene cluster contains a NRPS (GLNRPS4) and a PKS (GLPKS4) arranged in tandem, two cytochrome P450 monooxygenases, seven other modifying enzymes, and genes for L-homotyrosine biosynthesis, a component of the peptide core. Thus, the pneumocandin biosynthetic gene cluster is significantly more autonomous and organized than that of the recently characterized echinocandin B gene cluster. Disruption mutants of GLNRPS4 and GLPKS4 no longer produced the pneumocandins (A0 and B0), and the Δglnrps4 and Δglpks4 mutants lost antifungal activity against the human pathogenic fungus Candida albicans. In addition to pneumocandins, the G. lozoyensis genome encodes a rich repertoire of natural product-encoding genes including 24 PKSs, six NRPSs, five PKS-NRPS hybrids, two dimethylallyl tryptophan synthases, and 14 terpene synthases.
Conclusions
Characterization of the gene cluster provides a blueprint for engineering new pneumocandin derivatives with improved pharmacological properties. Whole genome estimation of the secondary metabolite-encoding genes from G. lozoyensis provides yet another example of the huge potential for drug discovery from natural products from the fungal kingdom.
doi:10.1186/1471-2164-14-339
PMCID: PMC3672099  PMID: 23688303
24.  Two Different Secondary Metabolism Gene Clusters Occupied the Same Ancestral Locus in Fungal Dermatophytes of the Arthrodermataceae 
PLoS ONE  2012;7(7):e41903.
Background
Dermatophyte fungi of the family Arthrodermataceae (Eurotiomycetes) colonize keratinized tissue, such as skin, frequently causing superficial mycoses in humans and other mammals, reptiles, and birds. Competition with native microflora likely underlies the propensity of these dermatophytes to produce a diversity of antibiotics and compounds for scavenging iron, which is extremely scarce, as well as the presence of an unusually large number of putative secondary metabolism gene clusters, most of which contain non-ribosomal peptide synthetases (NRPS), in their genomes. To better understand the historical origins and diversification of NRPS-containing gene clusters we examined the evolution of a variable locus (VL) that exists in one of three alternative conformations among the genomes of seven dermatophyte species.
Results
The first conformation of the VL (termed VLA) contains only 539 base pairs of sequence and lacks protein-coding genes, whereas the other two conformations (termed VLB and VLC) span 36 Kb and 27 Kb and contain 12 and 10 genes, respectively. Interestingly, both VLB and VLC appear to contain distinct secondary metabolism gene clusters; VLB contains a NRPS gene as well as four porphyrin metabolism genes never found to be physically linked in the genomes of 128 other fungal species, whereas VLC also contains a NRPS gene as well as several others typically found associated with secondary metabolism gene clusters. Phylogenetic evidence suggests that the VL locus was present in the ancestor of all seven species achieving its present distribution through subsequent differential losses or retentions of specific conformations.
Conclusions
We propose that the existence of variable loci, similar to the one we studied, in fungal genomes could potentially explain the dramatic differences in secondary metabolic diversity between closely related species of filamentous fungi, and contribute to host adaptation and the generation of metabolic diversity.
doi:10.1371/journal.pone.0041903
PMCID: PMC3408471  PMID: 22860027
25.  Single Cell Genome Amplification Accelerates Identification of the Apratoxin Biosynthetic Pathway from a Complex Microbial Assemblage 
PLoS ONE  2011;6(4):e18565.
Filamentous marine cyanobacteria are extraordinarily rich sources of structurally novel, biomedically relevant natural products. To understand their biosynthetic origins as well as produce increased supplies and analog molecules, access to the clustered biosynthetic genes that encode for the assembly enzymes is necessary. Complicating these efforts is the universal presence of heterotrophic bacteria in the cell wall and sheath material of cyanobacteria obtained from the environment and those grown in uni-cyanobacterial culture. Moreover, the high similarity in genetic elements across disparate secondary metabolite biosynthetic pathways renders imprecise current gene cluster targeting strategies and contributes sequence complexity resulting in partial genome coverage. Thus, it was necessary to use a dual-method approach of single-cell genomic sequencing based on multiple displacement amplification (MDA) and metagenomic library screening. Here, we report the identification of the putative apratoxin. A biosynthetic gene cluster, a potent cancer cell cytotoxin with promise for medicinal applications. The roughly 58 kb biosynthetic gene cluster is composed of 12 open reading frames and has a type I modular mixed polyketide synthase/nonribosomal peptide synthetase (PKS/NRPS) organization and features loading and off-loading domain architecture never previously described. Moreover, this work represents the first successful isolation of a complete biosynthetic gene cluster from Lyngbya bouillonii, a tropical marine cyanobacterium renowned for its production of diverse bioactive secondary metabolites.
doi:10.1371/journal.pone.0018565
PMCID: PMC3075265  PMID: 21533272

Results 1-25 (428665)