Search tips
Search criteria

Results 1-25 (1209967)

Clipboard (0)

Related Articles

1.  Up-Regulation of miR-21 Is Associated with Cervicitis and Human Papillomavirus Infection in Cervical Tissues 
PLoS ONE  2015;10(5):e0127109.
MicroRNA-21 (miR-21) is recognized as an oncomir and shows up-regulation in many types of human malignancy. The aim of this study was to investigate the association of miR-21 expression associated with HPV infection in normal and abnormal cervical tissues. Cervical tissue samples with different cytological or histopathological grades were investigated for HPV by PCR and for miR-21 and programmed cell death, protein 4 (PDCD4) expression using quantitative real-time PCR (qRT-PCR). Laser capture microdissection (LCM) of stromal and epithelial tissues and in situ hybridization (ISH) using locked nucleic acid (LNA) probes were performed on a subset of fixed specimens. Cell line experiments were conducted on fibroblasts stimulated in culture media from HeLa cells, which were then assessed for miR-21, PDCD4, IL-6 and α-SMA expression by qRT-PCR. Twenty normal cervical cell, 12 cervicitis, 14 cervical intraepithelial neoplastic I (CIN I), 22 CIN II-III and 43 cervical squamous cell carcinoma (SCC) specimens were investigated. miR-21 levels were significantly lower in normal than in abnormal tissues. The expression of miR-21 in HPV negative normal cytology was significantly lower than in HPV positive samples in abnormal tissue and SCC. The miR-21 expression was significantly higher in HPV negative cervicitis than HPV negative normal cells. LCM and ISH data showed that miR-21 is primarily expressed in the tumor-associated stromal cell microenvironment. Fibroblasts treated with HeLa cell culture media showed up-regulated expression of miR-21, which correlated with increased expression of α-SMA and IL-6 and with down-regulation of PDCD4. These results demonstrate that miR-21 is associated with HPV infection and involved in cervical lesions as well as cervicitis and its up-regulation in tumor-stroma might be involved in the inflammation process and cervical cancer progression.
PMCID: PMC4444121  PMID: 26010154
2.  The miR-545/374a Cluster Encoded in the Ftx lncRNA is Overexpressed in HBV-Related Hepatocellular Carcinoma and Promotes Tumorigenesis and Tumor Progression 
PLoS ONE  2014;9(10):e109782.
Hepatitis B virus (HBV) infection is a major risk factor for hepatocellular carcinoma (HCC). Previous studies have shown several long noncoding RNAs (lncRNAs) play various roles in HCC progression, but no research has focused on the expression pattern of microRNA clusters encoded in lncRNAs. The Ftx gene encodes a lncRNA which harbors 2 clusters of microRNAs in its introns, the miR-374b/421 cluster and the miR-545/374a cluster. To date, no research has focused on the role of the miR-545/374a and miR-374b/421 clusters in HBV-related HCC. In this study, 66 pairs of HBV-related HCC tissue and matched non-cancerous liver tissue specimens were analyzed for the expression of the Ftx microRNA clusters. Our results showed that the miR-545/374a cluster was upregulated in HBV-HCC tissue and significantly correlated with prognosis-related clinical features, including histological grade, metastasis and tumor capsule. Transfection studies with microRNA mimics and inhibitors revealed that miR-545/374a expression promoted in vitro cell proliferation, cell migration and invasion. The wild-type HBV-genome-containing plasmid or full-length HBx protein encoding plasmid was transfected into the Bel-7402 cell line and observed for their influence on miR-545/374a expression. We found that transfection of the HBV genome or HBx alone resulted in an increase in miR-545/374a expression. Next, by monitoring the expression of sera miR-545/374a before and after surgical tumor excision, we found serum miR-545/374a was tumor-derived and exhibited a sharp decrease 25 days after tumor excision. We also examined the gender-based difference in miR-545/374a expression among HCC patients and utilized microRNA target prediction software to find the targets of miR-545/374a. One of these targets, namely estrogen-related receptor gamma (ESRRG) was inversely correlated with miR-545 expression. In conclusion, the overexpression of miR-545/374a cluster located in the Ftx lncRNA is partially responsible for a poor prognosis, and monitoring sera levels of miR-545/374a may be a useful diagnostic marker for HCC.
PMCID: PMC4192320  PMID: 25299640
3.  Methylation-mediated silencing and tumour suppressive function of hsa-miR-124 in cervical cancer 
Molecular Cancer  2010;9:167.
A substantial number of microRNAs (miRNAs) is subject to epigenetic silencing in cancer. Although epigenetic silencing of tumour suppressor genes is an important feature of cervical cancer, little is known about epigenetic silencing of miRNAs. Since DNA methylation-based silencing of hsa-miR-124 occurs in various human cancers, we studied the frequency and functional effects of hsa-miR-124 methylation in cervical carcinogenesis.
Quantitative MSP analysis of all 3 loci encoding the mature hsa-miR-124 (hsa-miR-124-1/-2/-3) showed methylation in cervical cancer cell lines SiHa, CaSki and HeLa as well as in late passages of human papillomavirus (HPV) type 16 or 18 immortalised keratinocytes. Treatment of SiHa cells with a demethylating agent reduced hsa-miR-124 methylation levels and induced hsa-miR-124 expression. In HPV-immortalised keratinocytes increased methylation levels were related to reduced hsa-miR-124 expression and higher mRNA expression of IGFBP7, a potential hsa-miR-124 target gene. Ectopic hsa-miR-124 expression in SiHa and CaSki cells decreased proliferation rates and migratory capacity. Combined hsa-miR-124-1 and/or hsa-miR-124-2 methylation analysis of 139 cervical tissue specimens showed an increasing methylation frequency from 0% in normal tissues up to 93% in cervical carcinomas. Increased methylation levels of hsa-miR-124-1 and hsa-miR-124-2 were significantly correlated with reduced hsa-miR-124 expression in cervical tissue specimens. Combined hsa-miR-124-1 and/or hsa-miR-124-2 methylation analysis of 43 cervical scrapes of high-risk HPV positive women was predictive of underlying high-grade lesions.
DNA methylation-based silencing of hsa-miR-124 is functionally involved in cervical carcinogenesis and may provide a valuable marker for improved detection of cervical cancer and its high-grade precursor lesions.
PMCID: PMC2917428  PMID: 20579385
4.  The Cluster of miR-143 and miR-145 Affects the Risk for Esophageal Squamous Cell Carcinoma through Co-Regulating Fascin Homolog 1 
PLoS ONE  2012;7(3):e33987.
MicroRNAs (miRNAs), 18–24 nt non-coding RNAs, are thought to play important roles in cell proliferation, differentiation, apoptosis, and development. Recent studies suggest that some of the known microRNAs map to a single genomic locale within a single polycistronic transcript. But the roles of the cluster remain to be known. In order to understand the role and mechanism of a cluster of miR-143 and miR-145 in esophageal squamous cell carcinoma (ESCC), the association of mature miR-143 and miR-145 expression with the risk for esophageal cancer was evaluated in ESCC patients with a case-control study, and target protein regulated by mature miRNA was analyzed in ESCC cell lines with 3′UTR luciferase reporter assay. The expression levels of miR-143 and miR-145 were determined in 110 pairs of esophageal cancer tissues and adjacent normal tissues using real-time reverse transcription PCR. The relative expression of miR-143 and miR-145 were statistically different between cancer tissues and matched controls. The combined expression of miR-143 and miR-145 was significantly associated with the risk for esophageal cancer. Meanwhile, the reduced expression of two miRNAs in tumor patient was supposed to have a trend of lymph node metastases. The co-expression pattern of miR-143 and miR-145 was analyzed with Pearson correlation. It showed a significant correlation between these two miRNAs expression both in tissues and tumor cell lines. 3′UTR luciferase reporter assay indicated that Fascin Homolog 1 (FSCN1) could be co-regulated by miR-143 and miR-145. The protein level of FSCN1 showed no significant linear correlation with miR-143 and miR-145 expression in ESCC cell lines with Western blotting analysis. In conclusion, since miR-143 and miR-145 could regulate oncogenic FSCN1 and take part in the modulation of metastases, the result suggested the combination variable of miR-143 and miR-145 as a potential biomarker for earlier diagnosis and prognosis of esophageal cancer.
PMCID: PMC3311581  PMID: 22457808
5.  Aberrant Expression of Oncogenic and Tumor-Suppressive MicroRNAs in Cervical Cancer Is Required for Cancer Cell Growth 
PLoS ONE  2008;3(7):e2557.
MicroRNAs (miRNAs) play important roles in cancer development. By cloning and sequencing of a HPV16+ CaSki cell small RNA library, we isolated 174 miRNAs (including the novel miR-193c) which could be grouped into 46 different miRNA species, with miR-21, miR-24, miR-27a, and miR-205 being most abundant. We chose for further study 10 miRNAs according to their cloning frequency and associated their levels in 10 cervical cancer- or cervical intraepithelial neoplasia-derived cell lines. No correlation was observed between their expression with the presence or absence of an integrated or episomal HPV genome. All cell lines examined contained no detectable miR-143 and miR-145. HPV-infected cell lines expressed a different set of miRNAs when grown in organotypic raft cultured as compared to monolayer cell culture, including expression of miR-143 and miR-145. This suggests a correlation between miRNA expression and tissue differentiation. Using miRNA array analyses for age-matched normal cervix and cervical cancer tissues, in combination with northern blot verification, we identified significantly deregulated miRNAs in cervical cancer tissues, with miR-126, miR-143, and miR-145 downregulation and miR-15b, miR-16, miR-146a, and miR-155 upregulation. Functional studies showed that both miR-143 and miR-145 are suppressive to cell growth. When introduced into cell lines, miR-146a was found to promote cell proliferation. Collectively, our data indicate that downregulation of miR-143 and miR-145 and upregulation of miR-146a play a role in cervical carcinogenesis.
PMCID: PMC2438475  PMID: 18596939
6.  The MicroRNA Expression Signature of Bladder Cancer by Deep Sequencing: The Functional Significance of the miR-195/497 Cluster 
PLoS ONE  2014;9(2):e84311.
Current genome-wide microRNA (miRNA) expression signature analysis using deep sequencing technologies can drive the discovery of novel cancer pathways regulated by oncogenic and/or tumor suppressive miRNAs. We determined the genome-wide miRNA expression signature in bladder cancer (BC) by deep sequencing technology. A total of ten small RNA libraries were sequenced (five BCs and five samples of histologically normal bladder epithelia (NBE)), and 13,190,619 to 18,559,060 clean small RNA reads were obtained. A total of 933 known miRNAs and 17 new miRNA candidates were detected in this analysis. Among the known miRNAs, a total of 60 miRNAs were significantly downregulated in BC compared with NBE. We also found that several miRNAs, such as miR-1/133a, miR-206/133b, let-7c/miR-99a, miR-143/145 and miR-195/497, were located close together at five distinct loci and constituted clustered miRNAs. Among these clustered miRNAs, we focused on the miR-195/497 cluster because this clustered miRNA had not been analyzed in BC. Transfection of mature miR-195 or miR-497 in two BC cell lines (BOY and T24) significantly inhibited cancer cell proliferation, migration and invasion, suggesting that the miR-195/497 cluster functioned as tumor suppressors in BC. Regarding the genes targeted by the miR-195/497 cluster, the TargetScan algorithm showed that 6,730 genes were putative miR-195/497 targets, and 113 significantly enriched signaling pathways were identified in this analysis. The “Pathways in cancer” category was the most enriched, involving 104 candidate target genes. Gene expression data revealed that 27 of 104 candidate target genes were actually upregulated in BC clinical specimens. Luciferase reporter assays and Western blotting demonstrated that BIRC5 and WNT7A were directly targeted by miR-195/497. In conclusion, aberrant expression of clustered miRNAs was identified by deep sequencing, and downregulation of miR-195/497 contributed to BC progression and metastasis. Tumor suppressive miRNA-mediated cancer pathways provide new insights into the potential mechanisms of BC oncogenesis.
PMCID: PMC3919700  PMID: 24520312
7.  Tumor suppressive microRNA-218 inhibits cancer cell migration and invasion by targeting focal adhesion pathways in cervical squamous cell carcinoma 
International Journal of Oncology  2013;42(5):1523-1532.
Cervical cancer is one of the most common cancers in women. More than 275,100 women die from cervical cancer each year. Cervical squamous cell carcinoma (cervical SCC), one of the most frequent types of cervical cancers, is associated with high-risk human papilloma virus (HPV), although HPV infection alone may not be enough to induce malignant transformation. MicroRNAs (miRNAs), a class of small non-coding RNAs, regulate protein-coding gene expression by repressing translation or cleaving RNA transcripts in a sequence-specific manner. A growing body of evidence suggests that miRNAs contribute to cervical SCC progression, development and metastasis. miRNA expression signatures in SCC (hypopharyngeal SCC and esophageal SCC) revealed that miR-218 expression was significantly reduced in cancer tissues compared with adjacent non-cancerous epithelium, suggesting that miR-218 is a candidate tumor suppressor. The aim of this study was to investigate the functional significance of miR-218 in cervical SCC and to identify novel miR-218-mediated cancer pathways in cervical SCC. Restoration of miR-218 significantly inhibited cancer cell migration and invasion in both HPV-positive and HPV-negative cervical SCC cell lines. These data indicated that miR-218 acts as a tumor suppressor in cervical SCC. Our in silico analysis showed that miR-218 appeared to be an important modulator of tumor cell processes through suppression of many targets, particularly those involved in focal adhesion signaling pathways. Gene expression data indicated that LAMB3, a laminin protein known to influence cell differentiation, migration, adhesion, proliferation and survival, was upregulated in cervical SCC clinical specimens, and silencing studies demonstrated that LAMB3 functioned as an oncogene in cervical SCC. The identification of novel tumor-suppressive miR-218-mediated molecular pathways has provided new insights into cervical SCC oncogenesis and metastasis.
PMCID: PMC3661225  PMID: 23483249
microRNA; miR-218; tumor suppressor; cervical cancer; LAMB3; focal adhesion
8.  MicroRNA Profiles in Familial and Sporadic Medullary Thyroid Carcinoma: Preliminary Relationships with RET Status and Outcome 
Thyroid  2012;22(9):890-896.
MicroRNAs (miRNAs) are involved in the pathogenesis of human cancers, including medullary thyroid carcinoma (MTC). The aim of this study was to test the hypothesis that different miRNA profiles are related to RET status and prognosis in patients with hereditary MTC (hMTC) and sporadic MTC (sMTC).
We analyzed the expression of nine miRNAs (miR-21, miR-127, miR-154, miR-224, miR-323, miR-370, miR-9*, miR-183, and miR-375) by quantitative real-time–polymerase chain reaction in 34 cases of sMTC, 6 cases of hMTC, and 2 cases of C-cell hyperplasia (CCH). We also analyzed the immunohistochemical expression of PDCD4, an miR-21 gene target. sMTC (n=34) was genotyped for somatic RET and RAS mutations. Disease status was defined on the basis of the concentration of serum calcitonin at the latest follow-up and other parameters as indicated in the results.
MTC and CCH were both characterized by a significant overexpression of the whole set of miRNAs (the increase being 4.2-fold for miR-21, 6.7-fold for miR-127, 8.8-fold for miR-154, 6.6-fold for miR-224, 5.8-fold for miR-323, 6.1-fold for miR-370, 13-fold for miR-9*, 6.7-fold for miR-183, and 10.1 for miR-375, p<0.0001). PDCD4 expression was significantly downregulated in MTC samples, consistent with miR-21 upregulation. Significantly lower miR-127 levels were observed in sMTC carrying somatic RET mutations in comparison to sMTC carrying a wild-type RET. In sMTC and familial MTC, the miR-224 upregulation correlated with the absence of node metastases, lower stages at diagnosis, and with biochemical cure during follow-up.
miRNAs are significantly dysregulated in MTC, and this dysregulation is probably an early event in C-cell carcinogenesis. miR-224 upregulation could represent a prognostic biomarker associated with a better outcome in MTC patients.
PMCID: PMC3429275  PMID: 22747440
9.  microRNA-122 as a regulator of mitochondrial metabolic gene network in hepatocellular carcinoma 
A moderate loss of miR-122 function correlates with up-regulation of seed-matched genes and down-regulation of mitochondrially localized genes in both human hepatocellular carcinoma and in normal mice treated with anti-miR-122 antagomir.Putative direct targets up-regulated with loss of miR-122 and secondary targets down-regulated with loss of miR-122 are conserved between human beings and mice and are rapidly regulated in vitro in response to miR-122 over- and under-expression.Loss of miR-122 secondary target expression in either tumorous or adjacent non-tumorous tissue predicts poor survival of heptatocellular carcinoma patients.
Hepatocellular carcinoma (HCC) is one of the most aggressive human malignancies, common in Asia, Africa, and in areas with endemic infections of hepatitis-B or -C viruses (HBV or HCV) (But et al, 2008). Globally, the 5-year survival rate of HCC is <5% and about 600 000 HCC patients die each year. The high mortality associated with this disease is mainly attributed to the failure to diagnose HCC patients at an early stage and a lack of effective therapies for patients with advanced stage HCC. Understanding the relationships between phenotypic and molecular changes in HCC is, therefore, of paramount importance for the development of improved HCC diagnosis and treatment methods.
In this study, we examined mRNA and microRNA (miRNA)-expression profiles of tumor and adjacent non-tumor liver tissue from HCC patients. The patient population was selected from a region of endemic HBV infection, and HBV infection appears to contribute to the etiology of HCC in these patients. A total of 96 HCC patients were included in the study, of which about 88% tested positive for HBV antigen; patients testing positive for HCV antigen were excluded. Among the 220 miRNAs profiled, miR-122 was the most highly expressed miRNA in liver, and its expression was decreased almost two-fold in HCC tissue relative to adjacent non-tumor tissue, confirming earlier observations (Lagos-Quintana et al, 2002; Kutay et al, 2006; Budhu et al, 2008).
Over 1000 transcripts were correlated and over 1000 transcripts were anti-correlated with miR-122 expression. Consistent with the idea that transcripts anti-correlated with miR-122 are potential miR-122 targets, the most highly anti-correlated transcripts were highly enriched for the presence of the miR-122 central seed hexamer, CACTCC, in the 3′UTR. Although the complete set of negatively correlated genes was enriched for cell-cycle genes, the subset of seed-matched genes had no significant KEGG Pathway annotation, suggesting that miR-122 is unlikely to directly regulate the cell cycle in these patients. In contrast, transcripts positively correlated with miR-122 were not enriched for 3′UTR seed matches to miR-122. Interestingly, these 1042 transcripts were enriched for genes coding for mitochondrially localized proteins and for metabolic functions.
To analyze the impact of loss of miR-122 in vivo, silencing of miR-122 was performed by antisense inhibition (anti-miR-122) in wild-type mice (Figure 3). As with the genes negatively correlated with miR-122 in HCC patients, no significant biological annotation was associated with the seed-matched genes up-regulated by anti-miR-122 in mouse livers. The most significantly enriched biological annotation for anti-miR-122 down-regulated genes, as for positively correlated genes in HCC, was mitochondrial localization; the down-regulated mitochondrial genes were enriched for metabolic functions. Putative direct and downstream targets with orthologs on both the human and mouse microarrays showed significant overlap for regulations in the same direction. These overlaps defined sets of putative miR-122 primary and secondary targets. The results were further extended in the analysis of a separate dataset from 180 HCC, 40 cirrhotic, and 6 normal liver tissue samples (Figure 4), showing anti-correlation of proposed primary and secondary targets in non-healthy tissues.
To validate the direct correlation between miR-122 and some of the primary and secondary targets, we determined the expression of putative targets after transfection of miR-122 mimetic into PLC/PRF/5 HCC cells, including the putative direct targets SMARCD1 and MAP3K3 (MEKK3), a target described in the literature, CAT-1 (SLC7A1), and three putative secondary targets, PPARGC1A (PGC-1α) and succinate dehydrogenase subunits A and B. As expected, the putative direct targets showed reduced expression, whereas the putative secondary target genes showed increased expression in cells over-expressing miR-122 (Figure 4).
Functional classification of genes using the total ancestry method (Yu et al, 2007) identified PPARGC1A (PGC-1α) as the most connected secondary target. PPARGC1A has been proposed to function as a master regulator of mitochondrial biogenesis (Ventura-Clapier et al, 2008), suggesting that loss of PPARGC1A expression may contribute to the loss of mitochondrial gene expression correlated with loss of miR-122 expression. To further validate the link of miR-122 and PGC-1α protein, we transfected PLC/PRF/5 cells with miR-122-expression vector, and observed an increase in PGC-1α protein levels. Importantly, transfection of both miR-122 mimetic and miR-122-expression vector significantly reduced the lactate content of PLC/PRF/5 cells, whereas anti-miR-122 treatment increased lactate production. Together, the data support the function of miR-122 in mitochondrial metabolic functions.
Patient survival was not directly associated with miR-122-expression levels. However, miR-122 secondary targets were expressed at significantly higher levels in both tumor and adjacent non-tumor tissues among survivors as compared with deceased patients, providing supporting evidence for the potential relevance of loss of miR-122 function in HCC patient morbidity and mortality.
Overall, our findings reveal potentially new biological functions for miR-122 in liver physiology. We observed decreased expression of miR-122, a liver-specific miRNA, in HBV-associated HCC, and loss of miR-122 seemed to correlate with the decrease of mitochondrion-related metabolic pathway gene expression in HCC and in non-tumor liver tissues, a result that is consistent with the outcome of treatment of mice with anti-miR-122 and is of prognostic significance for HCC patients. Further investigation will be conducted to dissect the regulatory function of miR-122 on mitochondrial metabolism in HCC and to test whether increasing miR-122 expression can improve mitochondrial function in liver and perhaps in liver tumor tissues. Moreover, these results support the idea that primary targets of a given miRNA may be distributed over a variety of functional categories while resulting in a coordinated secondary response, potentially through synergistic action (Linsley et al, 2007).
Tumorigenesis involves multistep genetic alterations. To elucidate the microRNA (miRNA)–gene interaction network in carcinogenesis, we examined their genome-wide expression profiles in 96 pairs of tumor/non-tumor tissues from hepatocellular carcinoma (HCC). Comprehensive analysis of the coordinate expression of miRNAs and mRNAs reveals that miR-122 is under-expressed in HCC and that increased expression of miR-122 seed-matched genes leads to a loss of mitochondrial metabolic function. Furthermore, the miR-122 secondary targets, which decrease in expression, are good prognostic markers for HCC. Transcriptome profiling data from additional 180 HCC and 40 liver cirrhotic patients in the same cohort were used to confirm the anti-correlation of miR-122 primary and secondary target gene sets. The HCC findings can be recapitulated in mouse liver by silencing miR-122 with antagomir treatment followed by gene-expression microarray analysis. In vitro miR-122 data further provided a direct link between induction of miR-122-controlled genes and impairment of mitochondrial metabolism. In conclusion, miR-122 regulates mitochondrial metabolism and its loss may be detrimental to sustaining critical liver function and contribute to morbidity and mortality of liver cancer patients.
PMCID: PMC2950084  PMID: 20739924
hepatocellular carcinoma; microarray; miR-122; mitochondrial; survival
10.  Identification of miR-23a as a novel microRNA normalizer for relative quantification in human uterine cervical tissues 
Experimental & Molecular Medicine  2011;43(6):358-366.
Quantitative real-time RT-PCR (RT-qPCR) is being widely used in microRNA expression research. However, few reports detailed a robust identification and validation strategy for suitable reference genes for normalisation in microRNA RT-qPCR studies. The aim of this study was to identify the most stable reference gene(s) for quantification of microRNA expression analysis in uterine cervical tissues. A microarray was performed on 6 pairs of uterine cervical tissues to identify the candidate reference genes. The stability of candidate reference genes was assessed by RT-qPCR in 23 pairs of uterine cervical tissues. The identified most stable reference genes were further validated in other cohort of 108 clinical uterine cervical samples: (HR-HPV- normal, n = 21; HR-HPV+ normal, n = 19; cervical intraepithelial neoplasia [CIN], n = 47; cancer, n = 21), and the effects of normalizers on the relative quantity of target miR-424 were assessed. In the array experiment, miR-26a, miR-23a, miR-200c, let-7a, and miR-1979 were identified as candidate reference genes for subsequent validation. MiR-23a was identified as the most reliable reference gene followed by miR-191. The use of miR-23a and miR-191 to normalize expression data enabled detection of a significant deregulation of miR-424 between normal, CIN and cancer tissue. Our results suggested that miR-23a and miR-191 are the optimal reference microRNAs that can be used for normalization in profiling studies of cervical tissues; miR-23a is a novel microRNA normalizer.
PMCID: PMC3128914  PMID: 21519184
gene expression profiling; microRNAs; real-time polymerase chain reaction; uterine cervical neoplasms
11.  MicroRNA expression in ovarian carcinoma and its correlation with clinicopathological features 
MicroRNA (miRNA) expression is known to be deregulated in ovarian carcinomas. However, limited data is available about the miRNA expression pattern for the benign or borderline ovarian tumors as well as differential miRNA expression pattern associated with histological types, grades or clinical stages in ovarian carcinomas. We defined patterns of microRNA expression in tissues from normal, benign, borderline, and malignant ovarian tumors and explored the relationship between frequently deregulated miRNAs and clinicopathologic findings, response to therapy, survival, and association with Her-2/neu status in ovarian carcinomas.
We measured the expression of nine miRNAs (miR-181d, miR-30a-3p, miR-30c, miR-30d, miR-30e-3p, miR-368, miR-370, miR-493-5p, miR-532-5p) in 171 formalin-fixed, paraffin-embedded ovarian tissue blocks as well as six normal human ovarian surface epithelial (HOSE) cell lines using Taqman-based real-time PCR assays. Her-2/neu overexpression was assessed in ovarian carcinomas (n = 109 cases) by immunohistochemistry analysis.
Expression of four miRNAs (miR-30c, miR-30d, miR-30e-3p, miR-370) was significantly different between carcinomas and benign ovarian tissues as well as between carcinoma and borderline tissues. An additional three miRNAs (miR-181d, miR-30a-3p, miR-532-5p) were significantly different between borderline and carcinoma tissues. Expression of miR-532-5p was significantly lower in borderline than in benign tissues. Among ovarian carcinomas, expression of four miRNAs (miR-30a-3p, miR-30c, miR-30d, miR-30e-3p) was lowest in mucinous and highest in clear cell samples. Expression of miR-30a-3p was higher in well-differentiated compared to poorly differentiated tumors (P = 0.02), and expression of miR-370 was higher in stage I/II compared to stage III/IV samples (P = 0.03). In multivariate analyses, higher expression of miR-181d, miR-30c, miR-30d, and miR-30e-3p was associated with significantly better disease-free or overall survival. Finally, lower expression of miR-30c, miR-30d, miR-30e-3p and miR-532-5p was significantly associated with overexpression of Her-2/neu.
Aberrant expression of miRNAs is common in ovarian tumor suggesting involvement of miRNA in ovarian tumorigenesis. They are associated with histology, clinical stage, survival and oncogene expression in ovarian carcinoma.
PMCID: PMC3449188  PMID: 22925189
miRNA; Ovarian tumor; Her2/neu; Survival
12.  MiR-506 Is Down-Regulated in Clear Cell Renal Cell Carcinoma and Inhibits Cell Growth and Metastasis via Targeting FLOT1 
PLoS ONE  2015;10(3):e0120258.
Some microRNAs (miRNAs) are abnormally expressed in cancer and contribute to tumorigenesis. In the present study, we investigated the role of miR-506 in clear cell renal cell carcinoma (ccRCC).
miR-506 expression was detected in renal cancer cell lines 786-O, ACHN, Caki-1, and Caki-2 and ccRCC specimens by quantitative real-time-PCR. We assessed the association of miR-506 expression with pathology and prognosis in ccRCC patients. We over-expressed and knocked-down miR-506 expression in two renal cancer cell lines, 786-O and ACHN, and assessed the impact on cell proliferation, migration and invasion. A luciferase reporter assay was conducted to confirm the target gene of miR-506 in renal cancer cell lines.
miR-506 was significantly down-regulated in renal cancer cell lines and ccRCC specimens. Low miR-506 expression in ccRCC specimens was associated with an advanced clinical stage and poor prognosis. miR-506 expression was an independent prognostic marker of overall ccRCC patient survival in a multivariate analysis. Over-expression of miR-506 in renal cancer cells decreased cell growth and metastasis, In contrast, down-regulation of miR-506 expression promoted renal cancer cell growth and metastasis. FLOT1, a potential target gene of miR-506, was inversely correlated with miR-506 expression in ccRCC tissues. Consistent with the effect of miR-506, knockdown of FLOT1 by siRNA inhibited cell malignant behaviors. Rescue of FLOT1 expression partially restored the effects of miR-506.
miR-506 exerts its anti-cancer function by directly targeting FLOT1 in renal cancer, indicating a potential novel therapeutic role in renal cancer treatment.
PMCID: PMC4368579  PMID: 25793370
13.  MiR-124 suppresses cell motility and adhesion by targeting talin 1 in prostate cancer cells 
MicroRNA is a type of endogenous non-coding RNA implicated in various cellular processes, and has been intensely investigated in the field of cancer research for many years. Here, we investigated the functions and mechanisms of miR-124 in prostate cancer, which is a putative tumor suppressor reported in many carcinomas.
Using bioinformatics, talin 1 was indicated as a potential target of miR-124. We examined the expression levels of miR-124 and talin 1 in tissue specimens and cell lines. To explore the relationship between miR-124 and talin 1, miR-124 mimics, miR-124 inhibitors, and talin 1 small interfering RNA (siRNA) were transiently transfected into cancer cell lines, followed by analysis using luciferase reporter assays. Next, to investigate the functions of miR-124 in prostate cancer, we performed cell attachment, migration, and invasion assays. A rescue experiment was also conducted to demonstrate whether miR-124 suppressed cell adhesion and motility by targeting talin 1. Finally, we examined the related signaling pathways of miR-124 and talin 1.
MiR-124 was down-regulated in prostate cancer specimens and cell lines, while talin 1 was over-expressed in prostate cancer specimens and cell lines. These results showed an inverse correlation of miR-124 and talin 1 expression. Similar to talin 1 siRNA, overexpression of miR-124 by transient transfection of mimics led to a significant decrease in talin 1 levels. Luciferase report assays showed that the seed sequence of the talin 1 3’-untranslated region was a target of miR-124. Functional investigations revealed anti-attachment, anti-migration, and invasion-promoting effects of miR-124 in prostate cancer cells. The rescue experiment confirmed that miR-124 exerted its biological functions by targeting talin 1. Finally, we found that miR-124 and talin 1 impaired cellular adhesion and motility through integrins and the focal adhesion kinase/Akt pathway.
Our study demonstrated biological roles and the related mechanism of miR-124 in prostate cancer. The results indicate that talin 1 is very likely a novel player in the anti-metastatic signaling network of miR-124. By down-regulation of talin 1, miR-124 impairs the adhesion, migration, and invasion of prostate cancer cells.
PMCID: PMC4427999  PMID: 25969668
MiR-124; Talin 1; Prostate cancer; Migration; Invasion; Adhesion; Integrins
14.  MicroRNA signatures associate with pathogenesis and progression of osteosarcoma 
Cancer Research  2012;72(7):1865-1877.
Osteosarcoma remains a leading cause of cancer death in adolescents. Treatment paradigms and survival rates have not improved in two decades. Driving the lack of therapeutic inroads, the molecular etiology of osteosarcoma remains elusive. MicroRNAs (miRNAs) have demonstrated far-reaching effects on the cellular biology of development and cancer. Their role in osteosarcomagenesis remains largely unexplored. Here we identify for the first time an miRNA signature reflecting the pathogenesis of osteosarcoma from surgically procured samples from human patients. The signature includes high expression of miR-181a, miR-181b, and miR-181c as well as reduced expression of miR-16, miR-29b, and miR-142-5p. We also demonstrate that miR-181b and miR-29b exhibit restricted expression to distinct cell populations in the tumor tissue. Further, higher expression of miR-27a and miR-181c* in pre-treatment biopsy samples characterized patients who developed clinical metastatic disease. In addition, higher expression of miR-451 and miR-15b in pre-treatment samples correlated with subsequent positive response to chemotherapy. In vitro and in vivo functional validation in osteosarcoma cell lines confirmed the tumor suppressive role of miR-16 and the pro-metastatic role of miR-27a. Furthermore, predicted target genes for miR-16 and miR-27a were confirmed as down-regulated by real-time PCR. Affymetrix array profiling of cDNAs from the osteosarcoma specimens and controls were interrogated according to predicted targets of miR-16, miR142-5p, miR-29b, miR-181a/b, and miR-27a. This analysis revealed positive and negative correlations highlighting pathways of known importance to osteosarcoma, as well as novel genes. Thus, our findings establish a miRNA signature associated with pathogenesis of osteosarcoma as well as critical pre-treatment biomarkers of metastasis and responsiveness to therapy.
PMCID: PMC3328547  PMID: 22350417
osteosarcoma; microRNA; chemotherapy; metastasis-related miRs; gene array
15.  MiR-124 suppresses tumor growth and metastasis by targeting Foxq1 in nasopharyngeal carcinoma 
Molecular Cancer  2014;13:186.
The molecular mechanisms underlying dysregulation of microRNAs have been documented in nasopharyngeal carcinoma (NPC). Our previous study demonstrated that plasma miR-124 was down-regulated in NPC using microarray analysis and quantitative PCR validation. Though growing studies showed that down-regulated miR-124 was closely related to tumourigenesis in various types of cancers, the role of miR-124 in NPC remains largely unknown.
The expression level of miR-124 was evaluated in NPC cell lines and patient specimens using quantitative reverse transcription-PCR (Real-time qPCR). The clinicopathological significance of the resultant data was later analyzed. Then, we explored the role of miR-124 in NPC tumorigenesis by in vitro and in vivo experiments. Homo sapiens forkhead box Q1 (Foxq1) was confirmed as a novel direct target gene of miR-124 by the dual-luciferase assay and western bolt.
We found that miR-124 was commonly down-regulated in NPC specimens and NPC cell lines. The expression of miR-124 was inversely correlation with clinical stages and marked on T stages. Then, the ectopic expression of miR-124 dramatically inhibited cell proliferation, colony formation, migration and invasion in vitro, as well as tumor growth and metastasis in vivo. Furthermore, we identified Foxq1 as a novel direct target of miR-124. Functional studies showed that knockdown of Foxq1 inhibited cell growth, migration and invasion, whereas Foxq1 overexpression partially rescued the suppressive effect of miR-124 in NPC. In clinical specimens, Foxq1 was commonly up-regulated in NPC, and the level increased with clinical stages and T stages. Additionally, the level of Foxq1 was inversely correlated with miR-124.
Our results demonstrate that miR-124 functions as a tumor-suppressive microRNA in NPC, and that its suppressive effects are mediated chiefly by repressing Foxq1 expression. MiR-124 could serve as an independent biomarker to identify patients with different clinical characteristics. Therefore, our findings provide valuable clues toward the understanding the of mechanisms of NPC pathogenesis and provide an opportunity to develop new effective clinical therapies in the future.
Electronic supplementary material
The online version of this article (doi:10.1186/1476-4598-13-186) contains supplementary material, which is available to authorized users.
PMCID: PMC4267157  PMID: 25098939
MicroRNA-124; Tumor growth; Metastasis; Nasopharyngeal carcinoma; Foxq1
16.  MicroRNA-143 suppresses gastric cancer cell growth and induces apoptosis by targeting COX-2 
AIM: To investigate the function of microRNA-143 (miR-143) in gastric cancer and explore the target genes of miR-143.
METHODS: A quantitative real-time reverse transcription-polymerase chain reaction (RT-PCR) analysis was performed to evaluate miR-143 expression in gastric cancer cell lines. After transfecting gastric cancer cells with miR-143-5p and miR-143-3p precursors, Alamar blue and apoptosis assays were used to measure the respective proliferation and apoptosis rates. Cyclooxygenase-2 (COX-2) expression was determined by real-time RT-PCR and Western blot assays after miR-143 transfection. Reporter plasmids were constructed, and a luciferase reporter assay was used to identify the miR-143 binding site on COX-2.
RESULTS: Both miR-143-5p and miR-143-3p were significantly downregulated in multiple gastric cancer cell lines. Forced miR-143-5p and miR-143-3p expression in gastric cancer cells produced a profound cytotoxic effect. MiR-145-5p transfection into gastric cancer cells resulted in a greater growth inhibitory effect (61.23% ± 3.16% vs 46.58% ± 4.28%, P < 0.05 in the MKN-1 cell line) and a higher apoptosis rate (28.74% ± 1.93% vs 22.13% ± 3.31%, P < 0.05 in the MKN-1 cell line) than miR-143-3p transfection. Further analysis indicated that COX-2 expression was potently suppressed by miR-143-5p but not by miR-143-3p. The activity of a luciferase reporter construct that contained the 3’-untranslated region (UTR) of COX-2 was downregulated by miR-143-5p (43.6% ± 4.86%, P < 0.01) but not by miR-143-3p. A mutation in the miR-145-5p binding site completely ablated the regulatory effect on luciferase activity, which suggests that there is a direct miR-145-5p binding site in the 3’-UTR of COX-2.
CONCLUSION: Both miR-143-5p and miR-143-3p function as anti-oncomirs in gastric cancer. However, miR-143-5p alone directly targets COX-2, and it exhibits a stronger tumor suppressive effect than miR-143-3p.
PMCID: PMC3837276  PMID: 24616567
Gastric cancer; MicroRNA-143; Anti-oncomir; Cyclooxygenase-2; Apoptosis
17.  Epstein-Barr Virus Proteins EBNA3A and EBNA3C Together Induce Expression of the Oncogenic MicroRNA Cluster miR-221/miR-222 and Ablate Expression of Its Target p57KIP2 
PLoS Pathogens  2015;11(7):e1005031.
We show that two host-encoded primary RNAs (pri-miRs) and the corresponding microRNA (miR) clusters – widely reported to have cell transformation-associated activity – are regulated by EBNA3A and EBNA3C. Utilising a variety of EBV-transformed lymphoblastoid cell lines (LCLs) carrying knockout-, revertant- or conditional-EBV recombinants, it was possible to demonstrate unambiguously that EBNA3A and EBNA3C are both required for transactivation of the oncogenic miR-221/miR-222 cluster that is expressed at high levels in multiple human tumours – including lymphoma/leukemia. ChIP, ChIP-seq, and chromosome conformation capture analyses indicate that this activation results from direct targeting of both EBV proteins to chromatin at the miR-221/miR-222 genomic locus and activation via a long-range interaction between enhancer elements and the transcription start site of a long non-coding pri-miR located 28kb upstream of the miR sequences. Reduced levels of miR-221/miR-222 produced by inactivation or deletion of EBNA3A or EBNA3C resulted in increased expression of the cyclin-dependent kinase inhibitor p57KIP2, a well-established target of miR-221/miR-222. MiR blocking experiments confirmed that miR-221/miR-222 target p57KIP2 expression in LCLs. In contrast, EBNA3A and EBNA3C are necessary to silence the tumour suppressor cluster miR-143/miR-145, but here ChIP-seq suggests that repression is probably indirect. This miR cluster is frequently down-regulated or deleted in human cancer, however, the targets in B cells are unknown. Together these data indicate that EBNA3A and EBNA3C contribute to B cell transformation by inhibiting multiple tumour suppressor proteins, not only by direct repression of protein-encoding genes, but also by the manipulation of host long non-coding pri-miRs and miRs.
Author Summary
A relatively unbiased screen of human microRNAs (miRs) revealed that in EBV-transformed B cells, a miR cluster, miR-221/miR-222, that is frequently up-regulated in cancer, is induced by the latent EBV only if the viral nuclear proteins EBNA3A and EBNA3C are both expressed. The same two EBV proteins silence a tumour-suppressor miR cluster miR-143/miR-145. The induction of miR-221/miR-222 results from the activation of a long non-coding primary RNA (pri-miR) via long-range chromatin looping between enhancer elements that bind EBNA3A and EBNA3C and the transcription start site of the pri-miR. A well-established target of miR-221/miR-222 is the cyclin-dependent kinase (CDK) inhibitor p57KIP2, which, because it can inactivate various CDKs, can inhibit cell proliferation—but might have additional functions in B cells. Since EBNA3A and EBNA3C also cooperate to repress the expression of at least two other inhibitors of CDKs (p16INK4a and p15INK4b), this implies a degree of functional redundancy in the deregulation of cell cycle checkpoints by latent EBV. This study has shown for the first time that this capacity to reduce expression of multiple cell cycle inhibitors results not only from direct repression of protein-encoding genes, but also the activation of a long non-coding RNA and cluster of oncogenic miRs.
PMCID: PMC4496050  PMID: 26153983
18.  MicroRNA-4723 Inhibits Prostate Cancer Growth through Inactivation of the Abelson Family of Nonreceptor Protein Tyrosine Kinases 
PLoS ONE  2013;8(11):e78023.
The Abelson (c-Abl) proto-oncogene encodes a highly conserved nonreceptor protein tyrosine kinase that plays a role in cell proliferation, differentiation, apoptosis and cell adhesion. c-Abl represents a specific anti-cancer target in prostate cancer as aberrant activity of this kinase has been implicated in the stimulation of prostate cancer growth and progression. However, the mechanism of regulation of c-Abl is not known. Here we report that Abl kinases are regulated by a novel microRNA, miR-4723, in prostate cancer. Expression profiling of miR-4723 expression in a cohort of prostate cancer clinical specimens showed that miR-4723 expression is widely attenuated in prostate cancer. Low miR-4723 expression was significantly correlated with poor survival outcome and our analyses suggest that miR-4723 has significant potential as a disease biomarker for diagnosis and prognosis in prostate cancer. To evaluate the functional significance of decreased miR-4723 expression in prostate cancer, miR-4723 was overexpressed in prostate cancer cell lines followed by functional assays. miR-4723 overexpression led to significant decreases in cell growth, clonability, invasion and migration. Importantly, miR-4723 expression led to dramatic induction of apoptosis in prostate cancer cell lines suggesting that miR-4723 is a pro-apoptotic miRNA regulating prostate carcinogenesis. Analysis of putative miR-4723 targets showed that miR-4723 targets integrin alpha 3 and Methyl CpG binding protein in addition to Abl1 and Abl2 kinases. Further, we found that the expression of Abl kinase is inversely correlated with miR-4723 expression in prostate cancer clinical specimens. Also, Abl1 knockdown partially phenocopies miR-4723 reexpression in prostate cancer cells suggesting that Abl is a functionally relevant target of miR-4723 in prostate cancer. In conclusion, we have identified a novel microRNA that mediates regulation of Abl kinases in prostate cancer. This study suggests that miR-4723 may be an attractive target for therapeutic intervention in prostate cancer.
PMCID: PMC3815229  PMID: 24223753
19.  Tumor-suppressive microRNA-29a inhibits cancer cell migration and invasion via targeting HSP47 in cervical squamous cell carcinoma 
International Journal of Oncology  2013;43(6):1855-1863.
Our recent studies of microRNA (miRNA) expression signatures indicated that microRNA-29a (miR-29a) was significantly downregulated in several types of human cancers, suggesting that miR-29a may be a putative tumor-suppressive miRNA in human cancers. The aim of this study was to investigate the functional significance of miR-29a in cervical squamous cell carcinoma (SCC) and to identify novel miR-29a-regulated cancer pathways and target genes involved in cervical SCC oncogenesis and metastasis. Restoration of miR-29a in cervical cancer cell lines (CaSKi, HeLa, ME180 and Yumoto) revealed that this miRNA significantly inhibited cancer cell migration and invasion. Gene expression data and in silico analysis demonstrated that heat-shock protein 47 (HSP47), a member of the serpin superfamily of serine proteinase inhibitors and a molecular chaperone involved in the maturation of collagen molecules, was a potential target of miR-29a regulation. Luciferase reporter assays showed that miR-29a directly regulated HSP47. Moreover, silencing of the HSP47 gene significantly inhibited cell migration and invasion in cancer cells and the expression of HSP47 was upregulated in cancer tissues and cervical intraepithelial neoplasia (CIN), as demonstrated by immunostaining. Downregulation of miR-29a was a frequent event in cervical SCC and miR-29a acted as a tumor suppressor by directly targeting HSP47. Recognition of tumor-suppressive miRNA-regulated molecular targets provides new insights into the potential mechanisms of cervical SCC oncogenesis and metastasis and suggests novel therapeutic strategies for treatment of this disease.
PMCID: PMC3834344  PMID: 24141696
miR-29a; tumor suppressor; cervical cancer; HSP47; migration; invasion
20.  Serial selection for invasiveness increases expression of miR-143/miR-145 in glioblastoma cell lines 
BMC Cancer  2012;12:143.
Glioblastoma multiforme (GBM) is the most common primary central nervous system malignancy and its unique invasiveness renders it difficult to treat. This invasive phenotype, like other cellular processes, may be controlled in part by microRNAs - a class of small non-coding RNAs that act by altering the expression of targeted messenger RNAs. In this report, we demonstrate a straightforward method for creating invasive subpopulations of glioblastoma cells (IM3 cells). To understand the correlation between the expression of miRNAs and the invasion, we fully profiled 1263 miRNAs on six different cell lines and two miRNAs, miR-143 and miR-145, were selected for validation of their biological properties contributing to invasion. Further, we investigated an ensemble effect of both miR-143 and miR-145 in promoting invasion.
By repeated serial invasion through Matrigel®-coated membranes, we isolated highly invasive subpopulations of glioma cell lines. Phenotypic characterization of these cells included in vitro assays for proliferation, attachment, and invasion. Micro-RNA expression was compared using miRCURY arrays (Exiqon). In situ hybridization allowed visualization of the regional expression of miR-143 and miR-145 in tumor samples, and antisense probes were used investigate in vitro phenotypic changes seen with knockdown in their expression.
The phenotype we created in these selected cells proved stable over multiple passages, and their microRNA expression profiles were measurably different. We found that two specific microRNAs expressed from the same genetic locus, miR-143 and miR-145, were over-expressed in our invasive subpopulations. Further, we also found that combinatorial treatment of these cells with both antisense-miRNAs (antimiR-143 and -145) will abrogated their invasion without decreasing cell attachment or proliferation.
To best of our knowledge, these data demonstrate for the first time that miR-143 and miR-145 regulate the invasion of glioblastoma and that miR-143 and -145 could be potential therapeutic target for anti-invasion therapies of glioblastoma patients.
PMCID: PMC3378456  PMID: 22490015
Glioblastoma; MicroRNA-143; MicroRNA-145; Invasion
21.  MicroRNA-21 induces resistance to the anti-tumour effect of interferon-α/5-fluorouracil in hepatocellular carcinoma cells 
British Journal of Cancer  2010;103(10):1617-1626.
We reported recently the clinical efficiency of interferon (IFN)-α/5-fluorouracil (5-FU) combination therapy in advanced hepatocellular carcinoma (HCC). However, prediction of the response to the combination therapy remains unsatisfactory. The aim of this study was to investigate the anti-tumour effects of microRNA (miR)-21 on the sensitivity of HCC cells to IFN-α/5-FU and whether miR-21 can be used as a predictor of the response to such therapy in HCC.
Changes in the sensitivity of HCC cells (PLC/PRF/5 and HepG2) to IFN-α/5-FU were examined after transfection with pre-miR-21 or anti-miR-21. The correlation between miR-21 expression level, evaluated by qRT–PCR, and response to the therapy was also investigated in clinical HCC specimens.
Hepatocellular carcinoma cells transfected with pre-miR-21 were significantly resistant to IFN-α/5-FU. Annexin V assay showed that the percentage of apoptotic cells was significantly lower in cells transfected with pre-miR-21 than control cells. Transfection of anti-miR-21 rendered HCC cells sensitive to IFN-α/5-FU, and such sensitivity was weakened by transfection of siRNAs of target molecules, PETN and PDCD4. miR-21 expression in clinical HCC specimens was significantly associated with the clinical response to the IFN-α/5-FU combination therapy and survival rate.
The miR-21 in HCC cell lines and clinical HCC samples is a significant modulator of the anti-tumour effect of IFN-α and 5-FU. This suggests that miR-21 is a potentially suitable marker for the prediction of the clinical response to the IFN-α/5-FU combination therapy.
PMCID: PMC2990590  PMID: 20978511
hepatocellular carcinoma (HCC); interferon-α (IFN-α); 5-fluorouracil (5-FU); miR-21; phosphatase and tensin homologue (PTEN); programmed cell death 4 (PDCD4)
22.  MicroRNA-92 regulates cervical tumorigenesis and its expression is upregulated by human papillomavirus-16 E6 in cervical cancer cells 
Oncology Letters  2013;6(2):468-474.
MicroRNA (miR)-92 is overexpressed in a number of tumors and has been proven to negatively regulate a number of tumor suppressor genes, including phosphatase and tensin homologue (PTEN). However, its function and molecular mechanism(s) of action in squamous cervical carcinoma (SCCs) have not been well described. Furthermore, the correlation between miR-92 and human papillomavirus (HPV)-16 E6 has not been studied. In the present study, miR-92 expression levels were quantified using quantitative PCR (qPCR) in cervical cancer tissues, normal cervical tissues and cervical cancer cell lines. SiHa cells were transfected with either miR-92-mimics, anti-miR-92 or negative controls. C33A cells were stably transfected with pEGFP-N1-16E6 and pEGFP-N1-neo plasmids. The levels of PTEN protein expression in the transfected SiHa and C33A cells were evaluated using western blot analysis. The effects of miR-92 were detected using cell counting kit (CCK)-8 and Transwell assays. HPV16 E6 siRNA was used to detect the effectiveness of the E6 protein on miR-92 in the SiHa and C33A cells. miR-92 was highly-expressed in the human cervical cancer tissues compared with the normal tissues. In the HPV16-positive cervical cancer tissues, the expression of miR-92 was higher compared with the HPV16-negative cervical cancer tissues. HPV16 E6 upregulated miR-92 expression in the SiHa- and C33A-pEGFP-N1-16E6 cells. The upregulation of miR-92 promoted cell growth and invasion in the SiHa cells. PTEN protein expression was decreased in the SiHa cells that were transfected with the miR-92 mimic. The data indicated that miR-92 may increase the migration and invasion of SiHa cells, partially through the downregulation of PTEN protein expression. HPV16 E6 was identified to upregulate miR-92 expression.
PMCID: PMC3789088  PMID: 24137349
squamous cervical carcinoma; microRNA -92; phosphatase and tensin homologue; human papillomavirus-16 E6
23.  MiR-20a Promotes Cervical Cancer Proliferation and Metastasis In Vitro and In Vivo 
PLoS ONE  2015;10(3):e0120905.
MicroRNAs (miRNAs) are small, non-coding RNAs that are critical regulators of various diseases. MicroRNA-20a (miR-20a) has previously significantly altered in a range of cancers. In this study, we detected the relationship between miR-20a and the development of cervical cancer by qRT-PCR, we found that the expression level of miR-20a was significantly higher in cervical cancer patients than in normal controls, the aberrant expression of miR-20a was correlated with lymph node metastasis, histological grade and tumor diameter. Then we successfully established the stable anti-miR-20a cervical cancer cell lines by lentivirus. Inhibited miR-20a prevented tumor progression by modulating cell cycle, apoptosis, and metastasis in vitro and in vivo. TIMP2 and ATG7 were proved to be direct targets of miR-20a, using luciferase assay and western blot. These results indicate that miR-20a suppresses the proliferation, migration and invasion of cervical cancer cell through targeting ATG7 and TIMP2. Our results support the involvement of miR-20a in cervical tumorigenesis, especially lymph node metastasis. We propose that miRNAs might be used as therapeutic agent for cervical cancer.
PMCID: PMC4372287  PMID: 25803820
24.  Non-coding MicroRNAs hsa-let-7g and hsa-miR-181b are Associated with Chemoresponse to S-1 in Colon Cancer 
Cancer genomics & proteomics  2006;3(5):317-324.
MicroRNAs (miRNAs) are small non-coding RNAs (~22 nucleotides) that regulate gene expression at a post-transcriptional level via imperfect base pairing to the 3’-UTR of their target mRNAs. Previous studies from our group identified a number of deregulated miRNAs due to the loss of p53 tumor suppressor in colon cancer cell lines. To further investigate the in vivo biological significance of these miRNAs, the expressions of hsa-let-7g, hsa-miR-143, hsa-miR-145, hsa-miR-181b and hsa-miR-200c were investigated using formalin-fixed paraffin-embedded (FFPE) colon cancer specimens to evaluate the potential relationship with chemosensitivity and tumorigenesis.
Patients and Methods
Forty-six patients with recurrent or residual colon cancer lesions were treated with the 5-fluorouracil-based antimetabolite S-1. This includes twenty-one pairs of tumor and normal samples. Total RNAs were isolated and the expression level of each particular miRNA was quantified using real time qRT-PCR analysis.
The expression levels of hsa-let-7g, hsa-miR-181b and hsa-miR-200c were over-expressed in tumor tissues compared to normal tissues. The expression levels of hsa-let-7g (p=0.03; Mann-Whitney test) and hsa-miR-181b (p=0.02; Mann-Whitney test) were strongly associated with clinical response to S-1. Although hsa-let-7g and hsa-miR-181b are strongly associated with patient’s response to S-1 treatment, they are not significant prognostic factors for predicting survival.
hsa-let-7g, hsa-miR-181b and hsa-miR-200c may be associated with tumorigenesis in colon cancer. In addition, hsa-let-7g and hsa-miR-181b may be potential indicators for chemoresponse to S-1 based chemotherapy.
PMCID: PMC2170889  PMID: 18172508
miRNA; colon cancer; S-1
25.  Serum microRNA-205 as a novel biomarker for cervical cancer patients 
Serum microRNAs (miRNAs) are a novel class of diagnostic and prognostic biomarkers for numerous cancers. However, the level and clinical relevance of circulating miR-205 transcripts in human serum of cervical cancer patients are unclear. The purpose of this study was to determine serum miR-205 levels in cervical cancer patients and explore its association with clinicopathological factors and prognosis.
Serum miR-205 expression was investigated in 60 cervical cancer patients and 60 healthy normal controls by using real-time PCR. Correlations between miR-205 expression and the clinicopathological features and prognosis of cervical cancer patients were then evaluated. Receiver operating characteristic curves were used to evaluate the sensitivity and specificity of serum miR-205.
Serum miR-205 was significantly upregulated in cervical cancer patients compared with healthy donors (p < 0.01), and a high level of miR-205 expression was correlated with poor tumor differentiation (p = 0.009), lymph node metastasis (p = 0.015) and increased tumor stage (p = 0.001). The serum miR-205 level was capable of separating advanced stage from early stage metastatic cervical cancer from non-metastatic samples and poorly differentiated tumors from differentiated tumors with an area under the curve values of 0.74, 0.694 and 0.717, respectively. The expression of miR-205 was also higher in the cervical cancer tissues compared with the para-carcinoma tissues. In addition, Kaplan-Meier survival analysis showed that cervical cancer patients with high miR-205 expression tended to have shorter overall survival. In multivariate Cox regression analysis, miR-205 was identified as an independent prognostic marker.
Serum miR-205, which is upregulated in cervical cancer, represents a predictive biomarker for the prognosis of cervical cancer patients.
PMCID: PMC4364049  PMID: 25788864
Cervical cancer; Serum miR-205; Diagnosis; Prognosis; Biomarker

Results 1-25 (1209967)