PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (1552560)

Clipboard (0)
None

Related Articles

1.  Promoter Methylation of CDKN2A, RARβ, and RASSF1A in Non-Small Cell Lung Carcinoma: Quantitative Evaluation Using Pyrosequencing 
Background
While qualitative analysis of methylation has been reviewed, the quantitative analysis of methylation has rarely been studied. We evaluated the methylation status of CDKN2A, RARβ, and RASSF1A promoter regions in non-small cell lung carcinomas (NSCLCs) by using pyrosequencing. Then, we evaluated the association between methylation at the promoter regions of these tumor suppressor genes and the clinicopathological parameters of the NSCLCs.
Methods
We collected tumor tissues from a total of 53 patients with NSCLCs and analyzed the methylation level of the CDKN2A, RARβ, and RASSF1A promoter regions by using pyrosequencing. In addition, we investigated the correlation between the hypermethylation of CDKN2A and the loss of p16INK4A immunoexpression.
Results
Hypermethylation of CDKN2A, RARβ, and RASSF1A promoter regions were 16 (30.2%), 22 (41.5%), and 21 tumors (39.6%), respectively. The incidence of hypermethylation at the CDKN2A promoter in the tumors was higher in undifferentiated large cell carcinomas than in other subtypes (p=0.002). Hyperrmethylation of CDKN2A was significantly associated with p16INK4A immunoexpression loss (p=0.045). With regard to the clinicopathological characteristics of NSCLC, certain histopathological subtypes were found to be strongly associated with the loss of p16INK4A immunoexpression (p=0.016). Squamous cell carcinoma and undifferentiated large cell carcinoma showed p16INK4A immunoexpression loss more frequently. The Kaplan-Meier survival curves analysis showed that methylation level and patient survival were barely related to one another.
Conclusion
We quantitatively analyzed the promoter methylation status by using pyrosequencing. We showed a significant correlation between CDKN2A hypermethylation and p16INK4A immunoexpression loss.
doi:10.4046/trd.2012.73.1.11
PMCID: PMC3475475  PMID: 23101020
DNA Methylation; Genes, p16; RASSF1 Protein, Human; Receptors, Retinoic Acid; Sequence Analysis, DNA; Carcinoma, Non-Small Cell Lung
2.  Association between P16INK4a Promoter Methylation and Non-Small Cell Lung Cancer: A Meta-Analysis 
PLoS ONE  2013;8(4):e60107.
Background
Aberrant methylation of CpG islands acquired in tumor cells in promoter regions plays an important role in carcinogenesis. Accumulated evidence demonstrates P16INK4a gene promoter hypermethylation is involved in non-small cell lung carcinoma (NSCLC), indicating it may be a potential biomarker for this disease. The aim of this study is to evaluate the frequency of P16INK4a gene promoter methylation between cancer tissue and autologous controls by summarizing published studies.
Methods
By searching Medline, EMBSE and CNKI databases, the open published studies about P16INK4a gene promoter methylation and NSCLC were identified using a systematic search strategy. The pooled odds of P16INK4A promoter methylation in lung cancer tissue versus autologous controls were calculated by meta-analysis method.
Results
Thirty-four studies, including 2 652 NSCLC patients with 5 175 samples were included in this meta-analysis. Generally, the frequency of P16INK4A promoter methylation ranged from 17% to 80% (median 44%) in the lung cancer tissue and 0 to 80% (median 15%) in the autologous controls, which indicated the methylation frequency in cancer tissue was much higher than that in autologous samples. We also find a strong and significant correlation between tumor tissue and autologous controls of P16INK4A promoter methylation frequency across studies (Correlation coefficient 0.71, 95% CI:0.51–0.83, P<0.0001). And the pooled odds ratio of P16INK4A promoter methylation in cancer tissue was 3.45 (95% CI: 2.63–4.54) compared to controls under random-effect model.
Conclusion
Frequency of P16INK4a promoter methylation in cancer tissue was much higher than that in autologous controls, indicating promoter methylation plays an important role in carcinogenesis of the NSCLC. Strong and significant correlation between tumor tissue and autologous samples of P16INK4A promoter methylation demonstrated a promising biomarker for NSCLC.
doi:10.1371/journal.pone.0060107
PMCID: PMC3618325  PMID: 23577085
3.  p16INK4a and p15INK4b gene promoter methylation in cervical cancer patients 
Oncology Letters  2012;3(6):1331-1335.
The aim of this study was to determine the methylation status of the p16INK4a, p14ARF and p15INK4b genes and the subsequent effect of hypermethylation on the expression of these genes in cervical cancer patients. Methylation-specific PCR (MSP) was performed to analyse the methylation status of p16INK4a, p14ARF and p15INK4b genes and was confirmed by sequencing. Reverse transcription PCR (RT-PCR) was carried out to determine changes in the expression of the genes due to hypermethylation. Hypermethylation of the p16INK4a, p14ARF and p15INK4b gene promoters was observed in 36, 8.8 and 11.2%, respectively, of 125 cervical cancer samples from a north Indian population. Methylation of p16INK4a was significantly (P<0.001) associated with the cervical cancer cases. Significant association of p16INK4a hypermethylation with passive smoking and oral contraceptive use was also observed. Methylation of p15INK4b was also found to be significant (P<0.05). Our findings did not reveal any correlation between the promoter methylation of p16INK4a, p14ARF and p15INK4b with factors, including age and human papillomavirus infection. mRNA expression was significantly reduced in patients with a methylated promoter (P<0.001) of p16INK4a compared to patients with an unmethylated promoter. In conclusion, this is the first study demonstrating significant hypermethylation of p15INK4b and p16INK4a genes among cervical cancer patients in a north Indian population, and a significant association of p16INK4a hypermethylation with passive smoking and oral contraceptive use.
doi:10.3892/ol.2012.655
PMCID: PMC3392578  PMID: 22783444
promoter hypermethylation; methylation-specific PCR; reverse transcription PCR; CpG island; human papillomavirus
4.  Clinicopathological significance and potential drug target of T-cadherin in NSCLC 
Background
Previous studies demonstrate that T-cadherin is a candidate tumor suppressor in several types of human tumors, including non-small cell lung cancer (NSCLC). Lack of protein expression of T-cadherin by hypermethylation has been found to play an important role in lung alveolar differentiation regulation and epithelial tumorigenesis. However, the correlation between T-cadherin hypermethylation and clinicopathological characteristics of NSCLC remains unclear. Here we conducted a systematic review and meta-analysis to quantitatively evaluate the effects of T-cadherin hypermethylation on the incidence of NSCLC and clinicopathological characteristics.
Methods
A detailed literature search was carried out for related research publications. Analyses of pooled data were performed. Odds ratio (OR) and hazard ratio (HR) were calculated and summarized, respectively.
Results
Final analysis of 1,172 NSCLC patients from 15 eligible studies was performed. T-cadherin hypermethylation was observed to be significantly higher in NSCLC than in normal lung tissue, based on the pooled OR from nine studies including 532 NSCLC and 372 normal lung tissue samples (OR=8.19, 95% confidence interval [CI]=5.41–12.39, P<0.00001). T-cadherin hypermethylation may also be associated with pathological types. The pooled OR was obtained from four studies including 111patients with squamous cell carcinoma and 106 with adenocarcinoma (OR=0.35, 95% CI=0.19–0.66, P=0.001), which indicated that T-cadherin hypermethylation plays a more important role in the pathogenesis of adenocarcinoma. We did not find that T-cadherin hypermethylation was correlated with the sex or smoking status, clinical stages, or epidermal growth factor receptor (EGFR) mutation status. However, T-cadherin hypermethylation was found to be significantly higher in poorly differentiated NSCLC than in moderately and highly differentiated NSCLC, and NSCLC patients with T-cadherin hypermethylation had a lower survival rate than those without T-cadherin hypermethylation.
Conclusion
The results of this meta-analysis suggest that T-cadherin hypermethylation is associated with an increased risk and worse survival in NSCLC. T-cadherin hypermethylation, which induces the inactivation of T-cadherin gene, plays an important role in the carcinogenesis, cancer progression, as well as clinical outcome.
doi:10.2147/DDDT.S74259
PMCID: PMC4278732  PMID: 25565774
methylation; lung cancer; meta-analysis; EGFR; odds ratio; hazard ratio
5.  Hypermethylation of p16INK4a in Korean Non-small Cell Lung Cancer Patients 
Journal of Korean Medical Science  2007;22(Suppl):S32-S37.
Promoter hypermethylation of the p16INK4a gene was investigated in 81 sets of samples of tumor tissue and adjacent normal tissue from Korean patients with primary lung cancer, using the modified real-time polymerase chain reaction (PCR)/ SYBR Green detection method. The results showed hypermethylation of p16INK4a in 27.2% of tumor tissues, and in 11.1% of adjacent normal tissue. No significant association was found between the overall aberrant methylation in tumor and corresponding normal specimens (r=0.137, p=0.219). In 22 cases with p16INK4a hypermethylation in tumor tissues, only 4 (18.1%) cases were found to have a hypermethylated normal tissue specimen. The findings of this study show that smoking can influence the methylation level of the promoter region of p16INK4a, and that this occurs in tumor tissues more frequently than in normal tissues. Other clinicopathological characteristics, including age, sex, tumor stage, and histologic type were not found to be correlated with p16INK4a methylation.
doi:10.3346/jkms.2007.22.S.S32
PMCID: PMC2694382  PMID: 17923752
Hypermethylation; p16INK4a; Lung Cancer
6.  Prognostic significance of CDH13 hypermethylation and mRNA in NSCLC 
OncoTargets and therapy  2014;7:1987-1996.
Aberrant methylation of CpG dinucleotides is a commonly observed epigenetic modification in human cancer. Thus, detection of aberrant gene promoter methylation as a tool for diagnosis of tumors or as a prognostic marker has been widely described for many types of cancers, including nonsmall cell lung cancer (NSCLC). Emerging evidence indicates that CDH13 is a candidate tumor suppressor in several types of human tumors, including NSCLC. However, the correlation between CDH13 hypermethylation and clinicopathological characteristics of NSCLC remains unclear. In the current study, we conducted a systematic review and meta-analysis to quantitatively evaluate the effects of CDH13 hypermethylation on the incidence of NSCLC and clinicopathological characteristics. Final analysis of 803 NSCLC patients from eleven eligible studies was performed. CDH13 hypermethylation was observed to be significantly higher in NSCLC than in normal lung tissue, with the pooled odds ratio (OR) from seven studies including 448 NSCLC and 345 normal lung tissue (OR, 7.85; 95% confidence interval, 5.12–12.03; P<0.00001). CDH13 hypermethylation was also associated with pathological types. The pooled OR was obtained from four studies, including 111 squamous cell carcinoma and 106 adenocarcinoma (OR, 0.35; 95% confidence interval, 0.19–0.66; P=0.001), which indicated that CDH13 hypermethylation plays a more important role in the pathogenesis of adenocarcinoma. NSCLC with CDH13 hypermethylation was found more frequently in poorly differentiated NSCLC patients. NSCLC patients with CDH13 hypermethylation had a lower survival rate than those without CDH13 hypermethylation. In addition, CDH13 mRNA high expression was found to correlate with better overall survival for all NSCLC patients followed for 20 years (hazard ratio, 0.81; P=0.0056). Interestingly, CDH13 mRNA overexpression was found to correlate with better overall survival only in adenocarcinoma patients (hazard ratio, 0.42; P=9.6e–09), not in squamous cell carcinoma patients (hazard ratio, 0.93; P=0.59). The results of this meta-analysis suggest that CDH13 hypermethylation is associated with an increased risk and worse survival in NSCLC. CDH13 hypermethylation and mRNA expression play an important role in carcinogenesis, progression, and development, as well as clinical outcomes.
doi:10.2147/OTT.S67355
PMCID: PMC4222896  PMID: 25382980
prognosis; methylation; lung cancer; tumor suppressor gene; meta-analysis; odds ratio; hazard ratio
7.  Methylation of the Candidate Biomarker TCF21 Is Very Frequent Across A Spectrum of Early Stage Non-Small Cell Lung Cancers 
Cancer  2010;117(3):606-617.
Background
The transcription factor TCF21 is involved in mesenchymal-to-epithelial differentiation and was shown to be aberrantly hypermethylated in lung and head and neck cancers. Because of its reported high frequency of hypermethylation in lung cancer, we sought to characterize the stages and types of non-small cell lung cancer (NSCLC) that are hypermethylated and to define the frequency of hypermethylation and associated “second hits”.
Methods
We determined TCF21 promoter hypermethylation in 105 NSCLC including various stages and histologies in smokers and nonsmokers. Additionally, we examined TCF21 loss-of-heterozygosity and mutational status. We also assayed 22 cancer cell lines from varied tissue origins. We validated and expanded our NSCLC results by examining TCF21 immunohistochemical expression on a tissue microarray containing 300 NSCLC cases.
Results
Overall, 81% of NSCLC samples showed TCF21 promoter hypermethylation and 84% showed decreased TCF21 protein expression. Multivariate analysis showed that TCF21 expression, although below normal in both histologies, was lower in adenocarcinoma than squamous cell carcinoma, and was not independently correlated with gender, smoking and EGFR mutation status, or clinical outcome. Cell lines from other cancer types also showed frequent TCF21 promoter hypermethylation.
Conclusions
Hypermethylation and decreased expression of TCF21 were tumor-specific and very frequent in all NSCLC, even early-stage disease, thus making TCF21 a potential candidate methylation biomarker for early-stage NSCLC screening. TCF21 hypermethylation in a variety of tumor cell lines suggests it may also be a valuable methylation biomarker in other tumor types.
doi:10.1002/cncr.25472
PMCID: PMC3023841  PMID: 20945327
TCF21; methylation; biomarker; lung cancer; screening
8.  Aberrant p16INK4A methylation: Relation to viral related chronic liver disease and hepatocellular carcinoma 
Background:
Hepatocellular carcinoma (HCC) is currently the fifth most common solid tumor worldwide and the third leading cause of cancer related deaths. Several studies have shown that the tumor suppressor gene p16INK4A is frequently downregulated by aberrant methylation of the 5’-cytosine-phosphoguanine island within the promoter region.
Aim:
To find out the frequency of methylated p16INK4A in the peripheral blood of HCC and cirrhotic patients and to evaluate its role in hepatocarcinogenesis.
Patients and Methods:
This study was performed on 58 subjects: 30 HCC patients, 20 cirrhotic patients, and eight healthy volunteers. Methylation of p16INK4A was examined using methylation specific polymerase chain reaction (PCR) (MSP). Comparison of quantitative variables between the study groups was done using Mann-Whitney U test for independent samples when not normally distributed. For comparing categorical data, Chi-square (χ2) test was performed. Exact test was used instead when the expected frequency was less than 5.
Results:
Methylation of p16INK4A was found in 6.7% of HCC patients, 5% of liver cirrhosis (LC) patients, and none of the healthy volunteers; 66.67% of the p16INK4A-methylated cases (2/3) were positive for anti-hepatitis C virus (HCV) antibodies (one of them had HCC). All HCC cases with aberrant p16INK4A methylation show very high serum alpha fetoprotein (AFP) level (9,080; 30,000 μg/mL). There were no significant associations between the status of p16INK4A methylation and tumor size.
Conclusion:
Hypermethylation of p16INK4A was found to be infrequent among Egyptian patients with HCC.
doi:10.4103/2278-330X.126498
PMCID: PMC3961859  PMID: 24665436
Hepatocellular carcinoma; methylation; p16INK4A
9.  Up-regulation of expression and lack of 5' CpG island hypermethylation of p16 INK4a in HPV-positive cervical carcinomas 
BMC Cancer  2007;7:47.
Background
High risk type human papilloma viruses (HR-HPV) induce carcinomas of the uterine cervix by expressing viral oncogenes E6 and E7. Oncogene E7 of HR-HPV disrupts the pRb/E2F interaction, which negatively regulates the S phase entry. Expression of tumor suppressor p16ink4a drastically increases in majority of HR-HPV associated carcinomas due to removal of pRb repression. The p16ink4a overexpression is an indicator of an aberrant expression of viral oncogenes and may serve as a marker for early diagnostic of cervical cancer. On the other hand, in 25–57% of cervical carcinomas hypermethylation of the p16 INK4a promoter has been demonstrated using a methylation-specific PCR, MSP. To evaluate a potential usage of the p16 INK4a 5' CpG island hypermethylation as an indicator of tumor cell along with p16ink4a overexpression, we analyzed the methylation status of p16 INK4a in cervical carcinomas
Methods
Methylation status of p16 INK4a was analyzed by MSP and by bisulfite-modified DNA sequencing. The expression of p16ink4a was analyzed by RT-PCR and by immunohistochemical technique.
Results
The extensive methylation within p16 INK4a 5' CpG island was not detected either in 13 primary cervical carcinomas or in 5 cancer cell lines by bisulfite-modified DNA sequencing (including those that were positive by MSP in our hands). The number and distribution of rare partially methylated CpG sites did not differ considerably in tumors and adjacent normal tissues. The levels of the p16 INK4a mRNA were increased in carcinomas compared to the normal tissues independently of the number of partially methylated CpGs within 5'CpG island. The transcriptional activation of p16 INK4a was accompanied by p16ink4a cytoplasmic immunoreactivity in the majority of tumor cells and presence of a varied number of the p16 positive nuclei in different tumors.
Conclusion
Hypermethylaion of the p16INK4a 5' CpG island is not a frequent event in HR-HPV-positive cervical carcinomas and cannot be an effective marker of cancer cells with up-regulated expression of p16ink4a. Our data confirm other previous studies claiming specific p16INK4a up-regulation in the majority of cervical carcinomas at both the protein and mRNA levels. Cytoplasmic accumulation of p16ink4a is a feature of cervical carcinomas.
doi:10.1186/1471-2407-7-47
PMCID: PMC1831478  PMID: 17359536
10.  Cytological examination of pleural cavity lavage accompanied by the study of gene promoter hypermethylation of p16 and O6-methylguanine-DNA-methyltransferase genes in diagnostics of non-small cell lung cancer metastatic changes into pleura 
Contemporary Oncology  2012;16(4):322-327.
Aim of the study
Metastases of non-small cell lung cancer (NSCLC) into pleura disqualify a patient from surgery and present a bad prognostic index. The aim of the study was to find out whether washing out the pleural cavity in such cases and examining obtained washings for presence of cancer cells will help to detect early NSCLC metastases into pleura, and also whether negative results of the cytology determine whether hypermethylation of these genes will increase the sensitivity of this examination.
Material and methods
The study consisted of the examination of 76 patients, including 59 operated on for NSCLC and 17 operated on for other reasons. Pleural washing fluid collected during the surgery was subjected to cytological examination as well as examined to determine the presence of promoter region hypermethylation of p16 and MGMT genes.
Results
Positive cytological results of pleural lavage were confirmed in 4 persons (7%) with NSCLC. The presence of promoter region hypermethylation of one or both examined genes was found in 3 patients (18%) in the control group and in 47 (80%) in the study group. Sex, occupational exposure, smoking cigarettes, and NSCLC histological type did not have an influence on the presence of cancer cells or hypermethylation in the pleural lavage fluid. Positive cytology results were more frequent at the T4 stage of NSCLC. Hypermethylation was more frequent in the research group (p < 0.01). Cancer cells and hypermethylation did not occur more frequently in pleural lavage fluid of patients with metastases into pleura.
Conclusions
The cytological examination and promoter region hypermethylation assessment of the p16 gene and MGMT gene in pleural lavage cells do not allow one to detect early metastasis of NSCLC into pleura.
doi:10.5114/wo.2012.30061
PMCID: PMC3687432  PMID: 23788902
lung cancer; pleura; cytology; DNA methylation; p16 gene; O(6)-methylguanine-DNA methyltransferase
11.  Reduced levels of p15INK4b, p16INK4a, p21cip1 and p27kip1 in pancreatic carcinoma 
Molecular Medicine Reports  2012;5(4):1106-1110.
Pancreatic carcinoma is one of the leading causes of cancer mortality worldwide, although the molecular mechanisms of this disease are poorly understood. The aim of this study was to examine the expression of cyclin-dependent kinase inhibitors (CDKIs) and the epigenetic modifications in the promoters of these genes. We also evaluated the correlation between the methylation status of CDKI genes and smoking habit in clinical pancreatic carcinoma specimens. Western blotting and real-time PCR were performed to assess CDKI expression. Methylation-specific PCR was carried out to examine the methylation status of the promoters of CDKI genes. In this study, we revealed that reduced levels of the CDKI proteins, p15INK4b, p16INK4a, p21cip1 and p27kip1, are a prominent feature of pancreatic carcinoma patients. The DNA hypermethylation of the promoter was observed in 40% (2 of 5) of the p15INK4b genes, 60% (3 of 5) of the p16INK4a genes and 60% of the p21cip1 genes, which markedly correlated with their decreased mRNA expression. No hypermethylation was detected in the p27kip1 gene promoter in 5 pancreatic carcinoma patients with markedly decreased expression of p27kip1 mRNA, suggesting an alternative mechanism of p27kip in these patients. In this study, patients with a smoking habit displayed methylation of 2 CDKI genes in their pancreatic carcinoma specimens. We concluded that epigenetic modification via hypermethylation represents a critical mechanism for the inactivation of CDKI genes in pancreatic carcinoma.
doi:10.3892/mmr.2012.771
PMCID: PMC3493078  PMID: 22293850
p15INK4b; p16INK4a; p21cip1; p27kip1; methylation; pancreatic carcinoma
12.  Clinicopathological significance and potential drug target of p15INK4B in multiple myeloma 
Multiple myeloma (MM) is a clonal malignancy characterized by the proliferation of malignant plasma cells in the bone marrow and the production of monoclonal immunoglobulin. In addition to genetic changes, gene hypermethylation is an alternative mechanism of tumor suppressor gene inactivation in MM. The cyclin-dependent kinase inhibitor 1 (CDKN2B or p15INK4B) gene lies adjacent to the tumor suppressor gene, cyclin-dependent kinase inhibitor 2 (CDKN2A), and is frequently mutated and deleted in a wide variety of tumors, including MM. However, there is a lack of systematic analysis of p15 epigenetic modification such as methylation in MM from different studies that can provide more powerful estimation of an effect. In this study, we have systematically reviewed the studies of p15INK4B promoter methylation in MM and quantified the association between p15INK4B promoter methylation and MM using meta-analysis methods. We observed that the frequency of p15INK4B methylation is significantly higher in MM patients than in normal healthy controls. The pooled odds ratio (OR) from ten studies including 394 MM and 99 normal individuals is 0.08, while confidence interval (CI) is 0.03–0.21 (P<0.00001). This indicates that p15INK4B inactivation through methylation plays an important role in the pathogenesis of MM. In addition, the frequency of p15INK4B methylation was significantly higher in patients with MM than in those with asymptomatic monoclonal gammopathy of undetermined significance. The pooled OR from four studies is 0.40, 95% CI =0.21–0.78 (P=0.007). These results suggest that silencing of p15INK4B gene expression by epigenetic modification such as promoter hypermethylation plays a role not only in the initiation of MM but also in plasma cell malignant transformation, disease progression, and development.
doi:10.2147/DDDT.S71088
PMCID: PMC4222634  PMID: 25382971
multiple myeloma; asymptomatic monoclonal gammopathy of undetermined significance (MGUS); p15; methylation; meta-analysis
13.  Epigenetic Inactivation of Heparan Sulfate (Glucosamine) 3-O-Sulfotransferase 2 in Lung Cancer and Its Role in Tumorigenesis 
PLoS ONE  2013;8(11):e79634.
Background
This study was aimed at investigating the functional significance of heparan sulfate (glucosamine) 3-O-sulfotransferase 2 (HS3ST2) hypermethylation in non-small cell lung cancer (NSCLC).
Methodology/ Principal Findings
HS3ST2 hypermethylation was characterized in six lung cancer cell lines, and its clinical significance was analyzed using 298 formalin-fixed paraffin-embedded tissues and 26 fresh-frozen tissues from 324 NSCLC patients. MS-HRM (methylation-specific high-resolution melting) and EpiTYPERTM assays showed substantial hypermethylation of CpG island at the promoter region of HS3ST2 in six lung cancer cell lines. The silenced gene was demethylated and re-expressed by treatment with 5-aza-2′-deoxycytidine (5-Aza-dC). A promoter assay also showed the core promoter activity of HS3ST2 was regulated by methylation. Exogenous expression of HS3ST2 in lung cancer cells H460 and H23 inhibited cell migration, invasion, cell proliferation and whereas knockdown of HS3ST2 in NHBE cells induced cell migration, invasion, and cell proliferation in vitro. A negative correlation was observed between mRNA and methylation levels of HS3ST2 in 26 fresh-frozen tumors tissues (ρ = -0.51, P = 0.009; Spearman’s rank correlation). HS3ST2 hypermethylation was found in 95 (32%) of 298 primary NSCLCs. Patients with HS3ST2 hypermethylation in 193 node-negative stage I-II NSCLCs with a median follow-up period of 5.8 years had poor overall survival (hazard ratio = 2.12, 95% confidence interval = 1.25–3.58, P = 0.005) compared to those without HS3ST2 hypermethylation, after adjusting for age, sex, tumor size, adjuvant therapy, recurrence, and differentiation.
Conclusions/ Significance
The present study suggests that HS3ST2 hypermethylation may be an independent prognostic indicator for overall survival in node-negative stage I-II NSCLC.
doi:10.1371/journal.pone.0079634
PMCID: PMC3827134  PMID: 24265783
14.  Methylation profiling of twenty promoter-CpG islands of genes which may contribute to hepatocellular carcinogenesis 
BMC Cancer  2002;2:29.
Background
Hepatocellular carcinoma (HCC) presents one of the major health threats in China today. A better understanding of the molecular genetics underlying malignant transformation of hepatocytes is critical to success in the battle against this disease. The methylation state of C5 of the cytosine in the CpG di-nucleotide that is enriched within or near the promoter region of over 50 % of the polymerase II genes has a drastic effect on transcription of these genes. Changes in the methylation profile of the promoters represent an alternative to genetic lesions as causative factors for the tumor-specific aberrant expression of the genes.
Methods
We have used the methylation specific PCR method in conjunction with DNA sequencing to assess the methylation state of the promoter CpG islands of twenty genes. Aberrant expression of these genes have been attributed to the abnormal methylation profile of the corresponding promoter CpG islands in human tumors.
Results
While the following sixteen genes remained the unmethylated in all tumor and normal tissues: CDH1, APAF1, hMLH1, BRCA1, hTERC, VHL, RARβ, TIMP3, DAPK1, SURVIVIN, p14ARF, RB1, p15INK4b, APC, RASSF1c and PTEN, varying degrees of tumor specific hypermethylation were associated with the p16INK4a , RASSF1a, CASP8 and CDH13 genes. For instance, the p16INK4a was highly methylated in HCC (17/29, 58.6%) and less significantly methylated in non-cancerous tissue (4/29. 13.79%). The RASSF1a was fully methylated in all tumor tissues (29/29, 100%), and less frequently methylated in corresponding non-cancerous tissue (24/29, 82.75%).
Conclusions
Furthermore, co-existence of methylated with unmethylated DNA in some cases suggested that both genetic and epigenetic (CpG methylation) mechanisms may act in concert to inactivate the p16INK4a and RASSF1a in HCC. Finally, we found a significant association of cirrhosis with hypermethylation of the p16INK4a and hypomethylation of the CDH13 genes. For the first time, the survey was carried out on such an extent that it would not only provide new insights into the molecular mechanisms underscoring the aberrant expression of the genes in this study in HCC, but also offer essential information required for a good methylation-based diagnosis of HCC.
doi:10.1186/1471-2407-2-29
PMCID: PMC139988  PMID: 12433278
15.  A KRAS-directed transcriptional silencing pathway that mediates the CpG island methylator phenotype 
eLife  2014;3:e02313.
Approximately 70% of KRAS-positive colorectal cancers (CRCs) have a CpG island methylator phenotype (CIMP) characterized by aberrant DNA hypermethylation and transcriptional silencing of many genes. The factors involved in, and the mechanistic basis of, CIMP is not understood. Among the CIMP genes are the tumor suppressors p14ARF, p15INK4B, and p16INK4A, encoded by the INK4-ARF locus. In this study, we perform an RNA interference screen and identify ZNF304, a zinc-finger DNA-binding protein, as the pivotal factor required for INK4-ARF silencing and CIMP in CRCs containing activated KRAS. In KRAS-positive human CRC cell lines and tumors, ZNF304 is bound at the promoters of INK4-ARF and other CIMP genes. Promoter-bound ZNF304 recruits a corepressor complex that includes the DNA methyltransferase DNMT1, resulting in DNA hypermethylation and transcriptional silencing. KRAS promotes silencing through upregulation of ZNF304, which drives DNA binding. Finally, we show that ZNF304 also directs transcriptional silencing of INK4-ARF in human embryonic stem cells.
DOI: http://dx.doi.org/10.7554/eLife.02313.001
eLife digest
Colorectal cancer, which affects the large intestine, is a leading cause of cancer deaths worldwide, ranking fourth after cancers of the lung, stomach, and liver. Like these other cancers, this disease is caused by mutations to genes that allow cells to multiply in an out of control manner. Mutations that change the gene encoding a protein called KRAS are found in many different types of cancer. Moreover, about 70% of colorectal cancers with a KRAS mutation also have an excess of small chemical marks on other genes, some of which are known to suppress the growth of tumors. These marks ‘switch off’ these genes, and although the identities of the enzymes that typically leave these marks on DNA are known, the link between these enzymes and the KRAS protein is unknown.
Now Serra, Fang et al. have identified a protein, called ZNF304, that is required by KRAS to switch off a large number of genes, including multiple tumor suppressors. In the absence of ZNF304, these tumor suppressor genes remained switched on in cancer cells with the KRAS mutation, so the growth of the tumor was slowed down. ZNF304 is a protein that binds to stretches of DNA, including regions of DNA at the start of several tumor suppressor genes, and it recruits the enzymes that add the chemical marks that switch off these genes.
Serra, Fang et al. found that the levels of ZNF304 protein were elevated in colorectal cancer cells with the mutated KRAS, and showed that this was due to the combined activities of two other proteins that prevented ZNF304 from being broken down in the cell. Mutant KRAS caused an increase in the levels of these two proteins, which in turn caused the elevated ZNF304 levels and the excessive marking of the DNA in the tumor suppressor genes.
Furthermore, some of these same tumor suppressor genes are switched off in the earliest cells in a human embryo—which have the potential to become any of 200 or so cell types in the human body. In these embryonic stem cells, Serra, Fang et al. showed that ZNF304, but not KRAS, was also involved in keeping these genes switched off until the stem cells started changing into specific types of cells.
Since they are a crucial part of the pathway linking a cancer-causing mutation to increased tumor growth, the proteins identified by Serra, Fang et al. could represent promising targets for the development of new anti-cancer drugs.
DOI: http://dx.doi.org/10.7554/eLife.02313.002
doi:10.7554/eLife.02313
PMCID: PMC3949416  PMID: 24623306
CpG island methylator phenotype; INK4-ARF; colorectal cancer; ZNF304; KRAS; DNMT1; human; mouse
16.  p16INK4a Gene Promoter Hypermethylation in Mucosa as a Prognostic Factor for Patients with Colorectal Cancer 
Molecular Medicine  2008;14(7-8):412-421.
Low gene expression of folylpolyglutamate synthase (FPGS) in colorectal mucosa correlates with low folate levels and poor survival of colorectal cancer (CRC) patients. Because gene-specific hypermethylation is affected by the folate level, the hypermethylation status in mucosa may also be linked to clinical outcome of CRC patients. The tumor suppressor gene p16INK4a (p16) regulates the cell cycle and angiogenic switch. In human neoplastic tissues, the main mechanism of p16 inactivation is promoter methylation. The aim of the study was to determine whether hypermethylation of the p16 promoter could be detected in mucosa of CRC patients (n = 181) and to analyze if hypermethylation was related to survival. The relation between p16 hypermethylation and expression of FPGS and two other folate-associated genes, reduced folate carrier 1 (RFC-1), and thymidylate synthase (TS), was analyzed (n = 63). The results showed that p16 was hypermethylated in 65 (36%) of the mucosa samples and that hypermethylation was age-related (P = 0.029). After adjustment for known risk factors, Cox regression analysis showed that Dukes’ A-C patients with p16 hypermethylation in mucosa had an increased risk of cancer-related death (hazard ratio = 2.9, P = 0.007) and shorter disease-free survival (hazard ratio = 2.5, P = 0.015) compared with patients with no p16 hypermethylation. RFC-1 and FPGS gene expression levels were significantly correlated in patients lacking p16 hypermethylation in mucosa (P = 0.0003), but not at all correlated in patients having hypermethylation in mucosa (P = 1.0). In conclusion, p16 hypermethylation in mucosa of CRC patients was identified as an independent prognostic parameter for cancer-specific survival as well as an independent predictor of DFS. The results suggest that there might be a connection between folate-associated gene expression and p16 methylation status.
doi:10.2119/2007-00096.Wettergren
PMCID: PMC2309648  PMID: 18418463
17.  AN UPWARD TREND IN DNA P16INK4A METHYLATION PATTERN AND HIGH RISK HPV INFECTION ACCORDING TO THE SEVERITY OF THE CERVICAL LESION 
SUMMARY
High-risk human papillomavirus (hr-HPV) infection is necessary but not sufficient for cervical cancer development. Recently, P16INK4A gene silencing through hypermethylation has been proposed as an important cofactor in cervical carcinogenesis due to its tumor suppressor function. We aimed to investigate P16INK4A methylation status in normal and neoplastic epithelia and evaluate an association with HPV infection and genotype. This cross-sectional study was performed with 141 cervical samples from patients attending Hospital Moncorvo Filho, Rio de Janeiro. HPV detection and genotyping were performed through PCR and P16INK4A methylation by nested-methylation specific PCR (MSP). HPV frequency was 62.4% (88/141). The most common HPV were HPV16 (37%), HPV18 (16.3%) and HPV33/45(15.2%). An upward trend was observed concerning P16INK4A methylation and lesion degree: normal epithelia (10.7%), low grade lesions (22.9%), high grade (57.1%) and carcinoma (93.1%) (p < 0.0001). A multivariate analysis was performed to evaluate an association between methylation, age, tobacco exposure, HPV infection and genotyping. A correlation was found concerning methylation with HPV infection (p < 0.0001), hr-HPV (p = 0.01), HSIL (p < 0.0007) and malignant lesions (p < 0.0001). Since viral infection and epigenetic alterations are related to cervical carcinoma, we suggest that P16INK4A methylation profile maybe thoroughly investigated as a biomarker to identify patients at risk of cancer.
doi:10.1590/S0036-46652013000500006
PMCID: PMC4105070  PMID: 24037287
HPV; Cervical cancer; Methylation, P16INK4A
18.  Nuclear Receptor Expression Defines a Set of Prognostic Biomarkers for Lung Cancer 
PLoS Medicine  2010;7(12):e1000378.
David Mangelsdorf and colleagues show that nuclear receptor expression is strongly associated with clinical outcomes of lung cancer patients, and this expression profile is a potential prognostic signature for lung cancer patient survival time, particularly for individuals with early stage disease.
Background
The identification of prognostic tumor biomarkers that also would have potential as therapeutic targets, particularly in patients with early stage disease, has been a long sought-after goal in the management and treatment of lung cancer. The nuclear receptor (NR) superfamily, which is composed of 48 transcription factors that govern complex physiologic and pathophysiologic processes, could represent a unique subset of these biomarkers. In fact, many members of this family are the targets of already identified selective receptor modulators, providing a direct link between individual tumor NR quantitation and selection of therapy. The goal of this study, which begins this overall strategy, was to investigate the association between mRNA expression of the NR superfamily and the clinical outcome for patients with lung cancer, and to test whether a tumor NR gene signature provided useful information (over available clinical data) for patients with lung cancer.
Methods and Findings
Using quantitative real-time PCR to study NR expression in 30 microdissected non-small-cell lung cancers (NSCLCs) and their pair-matched normal lung epithelium, we found great variability in NR expression among patients' tumor and non-involved lung epithelium, found a strong association between NR expression and clinical outcome, and identified an NR gene signature from both normal and tumor tissues that predicted patient survival time and disease recurrence. The NR signature derived from the initial 30 NSCLC samples was validated in two independent microarray datasets derived from 442 and 117 resected lung adenocarcinomas. The NR gene signature was also validated in 130 squamous cell carcinomas. The prognostic signature in tumors could be distilled to expression of two NRs, short heterodimer partner and progesterone receptor, as single gene predictors of NSCLC patient survival time, including for patients with stage I disease. Of equal interest, the studies of microdissected histologically normal epithelium and matched tumors identified expression in normal (but not tumor) epithelium of NGFIB3 and mineralocorticoid receptor as single gene predictors of good prognosis.
Conclusions
NR expression is strongly associated with clinical outcomes for patients with lung cancer, and this expression profile provides a unique prognostic signature for lung cancer patient survival time, particularly for those with early stage disease. This study highlights the potential use of NRs as a rational set of therapeutically tractable genes as theragnostic biomarkers, and specifically identifies short heterodimer partner and progesterone receptor in tumors, and NGFIB3 and MR in non-neoplastic lung epithelium, for future detailed translational study in lung cancer.
Please see later in the article for the Editors' Summary
Editors' Summary
Background
Lung cancer, the most common cause of cancer-related death, kills 1.3 million people annually. Most lung cancers are “non-small-cell lung cancers” (NSCLCs), and most are caused by smoking. Exposure to chemicals in smoke causes changes in the genes of the cells lining the lungs that allow the cells to grow uncontrollably and to move around the body. How NSCLC is treated and responds to treatment depends on its “stage.” Stage I tumors, which are small and confined to the lung, are removed surgically, although chemotherapy is also sometimes given. Stage II tumors have spread to nearby lymph nodes and are treated with surgery and chemotherapy, as are some stage III tumors. However, because cancer cells in stage III tumors can be present throughout the chest, surgery is not always possible. For such cases, and for stage IV NSCLC, where the tumor has spread around the body, patients are treated with chemotherapy alone. About 70% of patients with stage I and II NSCLC but only 2% of patients with stage IV NSCLC survive for five years after diagnosis; more than 50% of patients have stage IV NSCLC at diagnosis.
Why Was This Study Done?
Patient responses to treatment vary considerably. Oncologists (doctors who treat cancer) would like to know which patients have a good prognosis (are likely to do well) to help them individualize their treatment. Consequently, the search is on for “prognostic tumor biomarkers,” molecules made by cancer cells that can be used to predict likely clinical outcomes. Such biomarkers, which may also be potential therapeutic targets, can be identified by analyzing the overall pattern of gene expression in a panel of tumors using a technique called microarray analysis and looking for associations between the expression of sets of genes and clinical outcomes. In this study, the researchers take a more directed approach to identifying prognostic biomarkers by investigating the association between the expression of the genes encoding nuclear receptors (NRs) and clinical outcome in patients with lung cancer. The NR superfamily contains 48 transcription factors (proteins that control the expression of other genes) that respond to several hormones and to diet-derived fats. NRs control many biological processes and are targets for several successful drugs, including some used to treat cancer.
What Did the Researchers Do and Find?
The researchers analyzed the expression of NR mRNAs using “quantitative real-time PCR” in 30 microdissected NSCLCs and in matched normal lung tissue samples (mRNA is the blueprint for protein production). They then used an approach called standard classification and regression tree analysis to build a prognostic model for NSCLC based on the expression data. This model predicted both survival time and disease recurrence among the patients from whom the tumors had been taken. The researchers validated their prognostic model in two large independent lung adenocarcinoma microarray datasets and in a squamous cell carcinoma dataset (adenocarcinomas and squamous cell carcinomas are two major NSCLC subtypes). Finally, they explored the roles of specific NRs in the prediction model. This analysis revealed that the ability of the NR signature in tumors to predict outcomes was mainly due to the expression of two NRs—the short heterodimer partner (SHP) and the progesterone receptor (PR). Expression of either gene could be used as a single gene predictor of the survival time of patients, including those with stage I disease. Similarly, the expression of either nerve growth factor induced gene B3 (NGFIB3) or mineralocorticoid receptor (MR) in normal tissue was a single gene predictor of a good prognosis.
What Do These Findings Mean?
These findings indicate that the expression of NR mRNA is strongly associated with clinical outcomes in patients with NSCLC. Furthermore, they identify a prognostic NR expression signature that provides information on the survival time of patients, including those with early stage disease. The signature needs to be confirmed in more patients before it can be used clinically, and researchers would like to establish whether changes in mRNA expression are reflected in changes in protein expression if NRs are to be targeted therapeutically. Nevertheless, these findings highlight the potential use of NRs as prognostic tumor biomarkers. Furthermore, they identify SHP and PR in tumors and two NRs in normal lung tissue as molecules that might provide new targets for the treatment of lung cancer and new insights into the early diagnosis, pathogenesis, and chemoprevention of lung cancer.
Additional Information
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1000378.
The Nuclear Receptor Signaling Atlas (NURSA) is consortium of scientists sponsored by the US National Institutes of Health that provides scientific reagents, datasets, and educational material on nuclear receptors and their co-regulators to the scientific community through a Web-based portal
The Cancer Prevention and Research Institute of Texas (CPRIT) provides information and resources to anyone interested in the prevention and treatment of lung and other cancers
The US National Cancer Institute provides detailed information for patients and professionals about all aspects of lung cancer, including information on non-small-cell carcinoma and on tumor markers (in English and Spanish)
Cancer Research UK also provides information about lung cancer and information on how cancer starts
MedlinePlus has links to other resources about lung cancer (in English and Spanish)
Wikipedia has a page on nuclear receptors (note that Wikipedia is a free online encyclopedia that anyone can edit; available in several languages)
doi:10.1371/journal.pmed.1000378
PMCID: PMC3001894  PMID: 21179495
19.  Methylation of p15INK4b and Expression of ANRIL on Chromosome 9p21 Are Associated with Coronary Artery Disease 
PLoS ONE  2012;7(10):e47193.
Background
Genome-wide association studies have identified that multiple single nucleiotide polymorphisms on chromosome 9p21 are tightly associated with coronary artery disease (CAD). However, the mechanism linking this risk locus to CAD remains unclear.
Methodology/Principal Findings
The methylation status of six candidate genes (BAX, BCL-2, TIMP3, p14ARF, p15INK4b and p16INK4a) in 205 patients and controls who underwent coronary angiography were analyzed by quantitative MethyLight assay. Rs10757274 was genotyped and expression of INK4/ARF and antisense non-coding RNA in the INK4 locus (ANRIL) was determined by real-time RT-PCR. Compared with controls, DNA methylation levels at p15INK4b significantly increased in CAD patients (p = 0.006). To validate and dissect the methylation percentage of each target CpG site at p15INK4b, pyrosequencing was performed, finding CpG +314 and +332 remarkably hypermethylated in CAD patients. Further investigation determined that p15INK4b hypermethylation prevalently emerged in lymphocytes of CAD patients (p = 0.013). The rs10757274 genotype was significantly associated with CAD (p = 0.003) and GG genotype carriers had a higher level of ANRIL exon 1–5 expression compared among three genotypes (p = 0.009). There was a stepwise increase in p15INK4b and p16INK4a methylation as ANRIL exon 1–5 expression elevated (r = 0.23, p = 0.001 and r = 0.24, p = 0.001, respectively), although neither of two loci methylation was directly linked to rs10757274 genotype.
Conclusions/Significance
p15INK4b methylation is associated with CAD and ANRIL expression. The epigenetic changes in p15INK4b methylation and ANRIL expression may involve in the mechanisms of chromosome 9p21 on CAD development.
doi:10.1371/journal.pone.0047193
PMCID: PMC3473029  PMID: 23091611
20.  Aberrant DNA Methylation of OLIG1, a Novel Prognostic Factor in Non-Small Cell Lung Cancer 
PLoS Medicine  2007;4(3):e108.
Background
Lung cancer is the leading cause of cancer-related death worldwide. Currently, tumor, node, metastasis (TNM) staging provides the most accurate prognostic parameter for patients with non-small cell lung cancer (NSCLC). However, the overall survival of patients with resectable tumors varies significantly, indicating the need for additional prognostic factors to better predict the outcome of the disease, particularly within a given TNM subset.
Methods and Findings
In this study, we investigated whether adenocarcinomas and squamous cell carcinomas could be differentiated based on their global aberrant DNA methylation patterns. We performed restriction landmark genomic scanning on 40 patient samples and identified 47 DNA methylation targets that together could distinguish the two lung cancer subgroups. The protein expression of one of those targets, oligodendrocyte transcription factor 1 (OLIG1), significantly correlated with survival in NSCLC patients, as shown by univariate and multivariate analyses. Furthermore, the hazard ratio for patients negative for OLIG1 protein was significantly higher than the one for those patients expressing the protein, even at low levels.
Conclusions
Multivariate analyses of our data confirmed that OLIG1 protein expression significantly correlates with overall survival in NSCLC patients, with a relative risk of 0.84 (95% confidence interval 0.77–0.91, p < 0.001) along with T and N stages, as indicated by a Cox proportional hazard model. Taken together, our results suggests that OLIG1 protein expression could be utilized as a novel prognostic factor, which could aid in deciding which NSCLC patients might benefit from more aggressive therapy. This is potentially of great significance, as the addition of postoperative adjuvant chemotherapy in T2N0 NSCLC patients is still controversial.
Christopher Plass and colleagues find thatOLIG1 expression correlates with survival in lung cancer patients and suggest that it could be used in deciding which patients are likely to benefit from more aggressive therapy.
Editors' Summary
Background.
Lung cancer is the commonest cause of cancer-related death worldwide. Most cases are of a type called non-small cell lung cancer (NSCLC). Like other cancers, treatment of NCSLC depends on the “TNM stage” at which the cancer is detected. Staging takes into account the size and local spread of the tumor (its T classification), whether nearby lymph nodes contain tumor cells (its N classification), and whether tumor cells have spread (metastasized) throughout the body (its M classification). Stage I tumors are confined to the lung and are removed surgically. Stage II tumors have spread to nearby lymph nodes and are treated with a combination of surgery and chemotherapy. Stage III tumors have spread throughout the chest, and stage IV tumors have metastasized around the body; patients with both of these stages are treated with chemotherapy alone. About 70% of patients with stage I or II lung cancer, but only 2% of patients with stage IV lung cancer, survive for five years after diagnosis.
Why Was This Study Done?
TNM staging is the best way to predict the likely outcome (prognosis) for patients with NSCLC, but survival times for patients with stage I and II tumors vary widely. Another prognostic marker—maybe a “molecular signature”—that could distinguish patients who are likely to respond to treatment from those whose cancer will inevitably progress would be very useful. Unlike normal cells, cancer cells divide uncontrollably and can move around the body. These behavioral changes are caused by alterations in the pattern of proteins expressed by the cells. But what causes these alterations? The answer in some cases is “epigenetic changes” or chemical modifications of genes. In cancer cells, methyl groups are aberrantly added to GC-rich gene regions. These so-called “CpG islands” lie near gene promoters (sequences that control the transcription of DNA into mRNA, the template for protein production), and their methylation stops the promoters working and silences the gene. In this study, the researchers have investigated whether aberrant methylation patterns vary between NSCLC subtypes and whether specific aberrant methylations are associated with survival and can, therefore, be used prognostically.
What Did the Researchers Do and Find?
The researchers used “restriction landmark genomic scanning” (RLGS) to catalog global aberrant DNA methylation patterns in human lung tumor samples. In RLGS, DNA is cut into fragments with a restriction enzyme (a protein that cuts at specific DNA sequences), end-labeled, and separated using two-dimensional gel electrophoresis to give a pattern of spots. Because methylation stops some restriction enzymes cutting their target sequence, normal lung tissue and lung tumor samples yield different patterns of spots. The researchers used these patterns to identify 47 DNA methylation targets (many in CpG islands) that together distinguished between adenocarcinomas and squamous cell carcinomas, two major types of NSCLCs. Next, they measured mRNA production from the genes with the greatest difference in methylation between adenocarcinomas and squamous cell carcinomas. OLIG1 (the gene that encodes a protein involved in nerve cell development) had one of the highest differences in mRNA production between these tumor types. Furthermore, three-quarters of NSCLCs had reduced or no expression of OLIG1 protein and, when the researchers analyzed the association between OLIG1 protein expression and overall survival in patients with NSCLC, reduced OLIG1 protein expression was associated with reduced survival.
What Do These Findings Mean?
These findings indicate that different types of NSCLC can be distinguished by examining their aberrant methylation patterns. This suggests that the establishment of different DNA methylation patterns might be related to the cell type from which the tumors developed. Alternatively, the different aberrant methylation patterns might reflect the different routes that these cells take to becoming tumor cells. This research identifies a potential new prognostic marker for NSCLC by showing that OLIG1 protein expression correlates with overall survival in patients with NSCLC. This correlation needs to be tested in a clinical setting to see if adding OLIG1 expression to the current prognostic parameters can lead to better treatment choices for early-stage lung cancer patients and ultimately improve these patients' overall survival.
Additional Information.
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.0040108.
Patient and professional information on lung cancer, including staging (in English and Spanish), is available from the US National Cancer Institute
The MedlinePlus encyclopedia has pages on non-small cell lung cancer (in English and Spanish)
Cancerbackup provides patient information on lung cancer
CancerQuest, provided by Emory University, has information about how cancer develops (in English, Spanish, Chinese and Russian)
Wikipedia pages on epigenetics (note that Wikipedia is a free online encyclopedia that anyone can edit)
The Epigenome Network of Excellence gives background information and the latest news about epigenetics (in several European languages)
doi:10.1371/journal.pmed.0040108
PMCID: PMC1831740  PMID: 17388669
21.  Combined effects of cigarette smoking, gene polymorphisms and methylations of tumor suppressor genes on non small cell lung cancer: a hospital-based case-control study in China 
BMC Cancer  2010;10:422.
Background
Cigarette smoking is the most established risk factor, and genetic variants and/or gene promoter methylations are also considered to play an essential role in development of lung cancer, but the pathogenesis of lung cancer is still unclear.
Methods
We collected the data of 150 cases and 150 age-matched and sex-matched controls on a Hospital-Based Case-Control Study in China. Face to face interviews were conducted using a standardized questionnaire. Gene polymorphism and methylation status were measured by RFLP-PCR and MSP, respectively. Logistic regressive model was used to estimate the odds ratios (OR) for different levels of exposure.
Results
After adjusted age and other potential confounding factors, smoking was still main risk factor and significantly increased 3.70-fold greater risk of NSCLC as compared with nonsmokers, and the ORs across increasing levels of pack years were 1, 3.54, 3.65 and 7.76, which the general dose-response trend was confirmed. Our striking findings were that the risk increased 5.16, 8.28 and 4.10-fold, respectively, for NSCLC with promoter hypermethylation of the p16, DAPK or RARβ gene in smokers with CYP1A1 variants, and the higher risk significantly increased in smokers with null GSTM1 and the OR was 17.84 for NSCLC with p16 promoter hypermethylation, 17.41 for DAPK, and 8.18 for RARβ in smokers with null GSTM1 compared with controls (all p < 0.01).
Conclusion
Our study suggests the strong combined effects of cigarette smoke, CYP1A1 and GSTM1 Polymorphisms, hypermethylations of p16, DAPK and RARβ promoters in NSCLC, implying complex pathogenesis of NSCLC should be given top priority in future research.
doi:10.1186/1471-2407-10-422
PMCID: PMC3087325  PMID: 20704749
22.  Promoter hypermethylation in Indian primary oral squamous cell carcinoma 
We evaluated promoter hypermethylation of a panel of tumor suppressor genes as a means to detect epigenetic alterations in oral squamous cell carcinomas (OSCC) of Indian-origin and compare with North-American head and neck squamous cell carcinomas (HNSCC). Quantitative-methylation-specific PCR was used to investigate the promoter methylation status of DCC, EDNRB, p16INK4a and KIF1A in 92 OSCC, and compared to 48 paired normal tissues and 30 saliva and sera samples from healthy control subjects. Aberrant methylation of at-least one of these genes was detected in 74/92 (80.4%) OSCC; 72.8% at EDNRB, 71.7% at KIF1A, 47.8% at p16INK4a and 58.7% at DCC; and in 5 of 48 (10.4%) normal oral tissues. None of the saliva and sera samples from controls exhibited DNA methylation in these four target genes. Thirty-two of 72 node positive cases harbored p16INK4a and DCC hypermethylation (p = 0.005). Thus, promoter hypermethylation in genes analyzed herein is a common event in Indian OSCC and may represent promising markers for the molecular staging of OSCC patients. We found higher frequency of p16INK4a methylation (47.8%) in this Indian cohort in comparison with a North-American cohort (37.5%). In conclusion, aberrant methylation of EDNRB, KIF1A, DCC and p16INK4a genes is a common event in Indian OSCC, suggesting that epigenetic alterations of these genes warrant validation in larger studies for their potential use as biomarkers.
doi:10.1002/ijc.25377
PMCID: PMC2946507  PMID: 20473870
hypermethylation; EDNRB; KIF1A; OSCC; p16INK4a; DCC; nodal metastasis
23.  Promoter and histone methylation and p16INK4A gene expression in colon cancer 
The inactivation of the cyclin-dependent kinase inhibitor p16INK4A gene by hypermethylation is observed in numerous types of cancer. New findings indicate that DNA and histone methylation act in concert in gene silencing. In this study, we investigated the methylation status of the p16INK4A gene promoter and the histone 3 lysine 9 residue in the tumors and matched normal tissue samples from patients with colorectal cancer and analyzed their association with gene expression. The methylation and expression of the p16INK4A gene were analyzed by real-time PCR, and histone methylation was analyzed by chromatin immunoprecipitation followed by real-time PCR. p16INK4A expression was significantly higher in the tumors compared to normal tissue. Mono-, di- and trimethylation levels of the H3K9 residue were similar in the tumor and normal tissue samples. We did not observe any significant correlation between p16INK4A methylation or expression and clinical parameters. Our results suggest that epigenetic modifications of the p16INK4A gene and histone lysine methylation do not play a major role in colon carcinogenesis.
doi:10.3892/etm.2012.683
PMCID: PMC3493785  PMID: 23226740
colon cancer; epigenetics; gene expression
24.  HOXA11 hypermethylation is associated with progression of non-small cell lung cancer 
Oncotarget  2013;4(12):2317-2325.
This study was aimed at understanding the functional significance of HOXA11 hypermethylation in non-small cell lung cancer (NSCLC). HOXA11 hypermethylation was characterized in six lung cancer cell lines, and its clinical significance was analyzed using formalin-fixed paraffin-embedded tissues from 317 NSCLC patients, and Ki-67 expression was analyzed using immunohistochemistry. The promoter region of HOXA11 was highly methylated in six lung cancer cell lines, but not in normal bronchial epithelial cells. The loss of expression was restored by treatment of the cells with a demethylating agent, 5-aza-2'-deoxycytidine (5-Aza-dC). Transient transfection of HOXA11 into H23 lung cancer cells resulted in the inhibition of cell migration and proliferation. HOXA11 hypermethylation was found in 218 (69%) of 317 primary NSCLCs. HOXA11 hypermethylation was found at a higher prevalence in squamous cell carcinoma than in adenocarcinoma (74% vs. 63%, respectively). HOXA11 hypermethylation was associated with Ki-67 proliferation index (P = 0.03) and pT stage (P = 0.002), but not with patient survival. Patients with pT2 and pT3 stages were 1.85 times (95% confidence interval [CI] = 1.04-3.29; P = 0.04) and 5.47 times (95% CI = 1.18-25.50; P = 0.01), respectively, more likely to show HOXA11 hypermethylation than those with pT1 stage, after adjusting for age, sex, and histology. In conclusion, the present study suggests that HOXA11 hypermethylation may contribute to the progression of NSCLC by promoting cell proliferation or migration.
PMCID: PMC3926829  PMID: 24259349
HOXA11; Hypermethylation; Non-small cell lung cancer; Progression; Migration
25.  A Genome-Wide Screen for Promoter Methylation in Lung Cancer Identifies Novel Methylation Markers for Multiple Malignancies  
PLoS Medicine  2006;3(12):e486.
Background
Promoter hypermethylation coupled with loss of heterozygosity at the same locus results in loss of gene function in many tumor cells. The “rules” governing which genes are methylated during the pathogenesis of individual cancers, how specific methylation profiles are initially established, or what determines tumor type-specific methylation are unknown. However, DNA methylation markers that are highly specific and sensitive for common tumors would be useful for the early detection of cancer, and those required for the malignant phenotype would identify pathways important as therapeutic targets.
Methods and Findings
In an effort to identify new cancer-specific methylation markers, we employed a high-throughput global expression profiling approach in lung cancer cells. We identified 132 genes that have 5′ CpG islands, are induced from undetectable levels by 5-aza-2′-deoxycytidine in multiple non-small cell lung cancer cell lines, and are expressed in immortalized human bronchial epithelial cells. As expected, these genes were also expressed in normal lung, but often not in companion primary lung cancers. Methylation analysis of a subset (45/132) of these promoter regions in primary lung cancer (n = 20) and adjacent nonmalignant tissue (n = 20) showed that 31 genes had acquired methylation in the tumors, but did not show methylation in normal lung or peripheral blood cells. We studied the eight most frequently and specifically methylated genes from our lung cancer dataset in breast cancer (n = 37), colon cancer (n = 24), and prostate cancer (n = 24) along with counterpart nonmalignant tissues. We found that seven loci were frequently methylated in both breast and lung cancers, with four showing extensive methylation in all four epithelial tumors.
Conclusions
By using a systematic biological screen we identified multiple genes that are methylated with high penetrance in primary lung, breast, colon, and prostate cancers. The cross-tumor methylation pattern we observed for these novel markers suggests that we have identified a partial promoter hypermethylation signature for these common malignancies. These data suggest that while tumors in different tissues vary substantially with respect to gene expression, there may be commonalities in their promoter methylation profiles that represent targets for early detection screening or therapeutic intervention.
John Minna and colleagues report that a group of genes are commonly methylated in primary lung, breast, colon, and prostate cancer.
Editors' Summary
Background.
Tumors or cancers contain cells that have lost many of the control mechanisms that normally regulate their behavior. Unlike normal cells, which only divide to repair damaged tissues, cancer cells divide uncontrollably. They also gain the ability to move round the body and start metastases in secondary locations. These changes in behavior result from alterations in their genetic material. For example, mutations (permanent changes in the sequence of nucleotides in the cell's DNA) in genes known as oncogenes stimulate cells to divide constantly. Mutations in another group of genes—tumor suppressor genes—disable their ability to restrain cell growth. Key tumor suppressor genes are often completely lost in cancer cells. But not all the genetic changes in cancer cells are mutations. Some are “epigenetic” changes—chemical modifications of genes that affect the amount of protein made from them. In cancer cells, methyl groups are often added to CG-rich regions—this is called hypermethylation. These “CpG islands” lie near gene promoters—sequences that control the transcription of DNA into RNA, the template for protein production—and their methylation switches off the promoter. Methylation of the promoter of one copy of a tumor suppressor gene, which often coincides with the loss of the other copy of the gene, is thought to be involved in cancer development.
Why Was This Study Done?
The rules that govern which genes are hypermethylated during the development of different cancer types are not known, but it would be useful to identify any DNA methylation events that occur regularly in common cancers for two reasons. First, specific DNA methylation markers might be useful for the early detection of cancer. Second, identifying these epigenetic changes might reveal cellular pathways that are changed during cancer development and so identify new therapeutic targets. In this study, the researchers have used a systematic biological screen to identify genes that are methylated in many lung, breast, colon, and prostate cancers—all cancers that form in “epithelial” tissues.
What Did the Researchers Do and Find?
The researchers used microarray expression profiling to examine gene expression patterns in several lung cancer and normal lung cell lines. In this technique, labeled RNA molecules isolated from cells are applied to a “chip” carrying an array of gene fragments. Here, they stick to the fragment that represents the gene from which they were made, which allows the genes that the cells express to be catalogued. By comparing the expression profiles of lung cancer cells and normal lung cells before and after treatment with a chemical that inhibits DNA methylation, the researchers identified genes that were methylated in the cancer cells—that is, genes that were expressed in normal cells but not in cancer cells unless methylation was inhibited. 132 of these genes contained CpG islands. The researchers examined the promoters of 45 of these genes in lung cancer cells taken straight from patients and found that 31 of the promoters were methylated in tumor tissues but not in adjacent normal tissues. Finally, the researchers looked at promoter methylation of the eight genes most frequently and specifically methylated in the lung cancer samples in breast, colon, and prostate cancers. Seven of the genes were frequently methylated in both lung and breast cancers; four were extensively methylated in all the tumor types.
What Do These Findings Mean?
These results identify several new genes that are often methylated in four types of epithelial tumor. The observation that these genes are methylated in multiple independent tumors strongly suggests, but does not prove, that loss of expression of the proteins that they encode helps to convert normal cells into cancer cells. The frequency and diverse patterning of promoter methylation in different tumor types also indicates that methylation is not a random event, although what controls the patterns of methylation is not yet known. The identification of these genes is a step toward building a promoter hypermethylation profile for the early detection of human cancer. Furthermore, although tumors in different tissues vary greatly with respect to gene expression patterns, the similarities seen in this study in promoter methylation profiles might help to identify new therapeutic targets common to several cancer types.
Additional Information.
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.0030486.
US National Cancer Institute, information for patients on understanding cancer
CancerQuest, information provided by Emory University about how cancer develops
Cancer Research UK, information for patients on cancer biology
Wikipedia pages on epigenetics (note that Wikipedia is a free online encyclopedia that anyone can edit)
The Epigenome Network of Excellence, background information and latest news about epigenetics
doi:10.1371/journal.pmed.0030486
PMCID: PMC1716188  PMID: 17194187

Results 1-25 (1552560)