PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (497738)

Clipboard (0)
None

Related Articles

1.  Islet1-expressing cardiac progenitor cells: a comparison across species 
Development Genes and Evolution  2012;223(1-2):117-129.
Adult mammalian cardiac stem cells express the LIM-homeodomain transcription factor Islet1 (Isl1). They are considered remnants of Isl1-positive embryonic cardiac progenitor cells. During amniote heart development, Isl1-positive progenitor cells give rise mainly to the outflow tract, the right ventricle, and parts of the atria. This led to the hypothesis that the development of the right ventricle of the amniote heart depends on the recruitment of additional cells to the primary heart tube. The region from which these additional, Isl1-positive cells originate is called second heart field, as opposed to the first heart field whose cells form the primary heart tube. Here, we review the available data about Isl1 in different species, demonstrating that Isl1 is an important component of the core transcription factor network driving early cardiogenesis in animals of the two clades, deuterostomes, and protostomes. The data support the view of a single cardiac progenitor cell population that includes Isl1-expressing cells and which differentiates into the various cardiac lineages during embryonic development in vertebrates but not in other phyla of the animal kingdom.
Electronic supplementary material
The online version of this article (doi:10.1007/s00427-012-0400-1) contains supplementary material, which is available to authorized users.
doi:10.1007/s00427-012-0400-1
PMCID: PMC3552366  PMID: 22526874
Islet1; Heart development; Cardiac progenitor cell; Cardiac stem cell
2.  Islet-1 is Required for the Maturation, Proliferation, and Survival of the Endocrine Pancreas 
Diabetes  2009;58(9):2059-2069.
OBJECTIVE
The generation of mature cell types during pancreatic development depends on the expression of many regulatory and signaling proteins. In this study, we tested the hypothesis that the transcriptional regulator Islet-1 (Isl-1), whose expression is first detected in the mesenchyme and epithelium of the developing pancreas and is later restricted to mature islet cells, is involved in the terminal differentiation of islet cells and maintenance of islet mass.
RESEARCH DESIGN AND METHODS
To investigate the role of Isl-1 in the pancreatic epithelium during the secondary transition, Isl-1 was conditionally and specifically deleted from embryonic day 13.5 onward using Cre/LoxP technology.
RESULTS
Isl-1–deficient endocrine precursors failed to mature into functional islet cells. The postnatal expansion of endocrine cell mass was impaired, and consequently Isl-1 deficient mice were diabetic. In addition, MafA, a potent regulator of the Insulin gene and β-cell function, was identified as a direct transcriptional target of Isl-1.
CONCLUSIONS
These results demonstrate the requirement for Isl-1 in the maturation, proliferation, and survival of the second wave of hormone-producing islet cells.
doi:10.2337/db08-0987
PMCID: PMC2731519  PMID: 19502415
3.  Wnt/β-catenin signaling promotes expansion of Isl-1–positive cardiac progenitor cells through regulation of FGF signaling 
Journal of Clinical Investigation  2007;117(7):1794-1804.
The anterior heart field (AHF), which contributes to the outflow tract and right ventricle of the heart, is defined in part by expression of the LIM homeobox transcription factor Isl-1. The importance of Isl-1–positive cells in cardiac development and homeostasis is underscored by the finding that these cells are required for cardiac development and act as cardiac stem/progenitor cells within the postnatal heart. However, the molecular pathways regulating these cells’ expansion and differentiation are poorly understood. We show that Isl-1–positive AHF progenitor cells in mice were responsive to Wnt/β-catenin signaling, and these responsive cells contributed to the outflow tract and right ventricle of the heart. Loss of Wnt/β-catenin signaling in the AHF caused defective outflow tract and right ventricular development with a decrease in Isl-1–positive progenitors and loss of FGF signaling. Conversely, Wnt gain of function in these cells led to expansion of Isl-1–positive progenitors with a concomitant increase in FGF signaling through activation of a specific set of FGF ligands including FGF3, FGF10, FGF16, and FGF20. These data reveal what we believe to be a novel Wnt-FGF signaling axis required for expansion of Isl-1–positive AHF progenitors and suggest future therapies to increase the number and function of these cells for cardiac regeneration.
doi:10.1172/JCI31731
PMCID: PMC1891000  PMID: 17607356
4.  Synergistic binding of transcription factors to cell-specific enhancers programs motor neuron identity 
Nature neuroscience  2013;16(9):10.1038/nn.3467.
Efficient transcriptional programming promises to open new frontiers in regenerative medicine. However, mechanisms by which programming factors transform cell fate are unknown, preventing more rational selection of factors to generate desirable cell types. Three transcription factors, Ngn2, Isl1 and Lhx3, were sufficient to program rapidly and efficiently spinal motor neuron identity when expressed in differentiating mouse embryonic stem cells. Replacement of Lhx3 by Phox2a led to specification of cranial, rather than spinal, motor neurons. Chromatin immunoprecipitation–sequencing analysis of Isl1, Lhx3 and Phox2a binding sites revealed that the two cell fates were programmed by the recruitment of Isl1-Lhx3 and Isl1-Phox2a complexes to distinct genomic locations characterized by a unique grammar of homeodomain binding motifs. Our findings suggest that synergistic interactions among transcription factors determine the specificity of their recruitment to cell type–specific binding sites and illustrate how a single transcription factor can be repurposed to program different cell types.
doi:10.1038/nn.3467
PMCID: PMC3820498  PMID: 23872598
5.  Islet 1 is Expressed in Distinct Cardiovascular Lineages, Including Pacemaker and Coronary Vascular Cells 
Developmental biology  2006;304(1):286-296.
Islet1 (Isl1) is a LIM homedomain protein that plays a pivotal role in cardiac progenitors of the second heart field. Here, lineage studies with an inducible isl1-cre demonstrated that most Isl1 progenitors have migrated into the heart by E9. Although Isl1 expression is downregulated in most cardiac progenitors as they differentiate, analysis of an isl1-nlacZ mouse and coimmunostaining for Isl1 and lineage markers demonstrated that Isl1 is expressed in distinct subdomains of the heart, and in diverse cardiovascular lineages. Isl1 expression was observed in myocardial lineages of the distal outflow tract, atrial septum, and in sinoatrial and atrioventricular node. The myocardialized septum of the outflow tract was found to derive from Isl1 expressing cells. Isl1 expressing cells also contribute to endothelial and vascular smooth muscle lineages including smooth muscle of the coronary vessels. Our data indicate that Isl1 is a specific marker for a subset of pacemaker cells at developmental stages examined, and suggest genetic heterogeneity within the central conduction system and coronary smooth muscle. Our studies suggest a role for Isl1 in these distinct domains of expression within the heart.
doi:10.1016/j.ydbio.2006.12.048
PMCID: PMC2582044  PMID: 17258700
Cardiac progenitor; Lineage; Isl1; pacemaker; Coronary smooth muscle; Tamoxifen; Inducible Cre
6.  Characterization and Therapeutic Potential of Induced Pluripotent Stem Cell-Derived Cardiovascular Progenitor Cells 
PLoS ONE  2012;7(10):e45603.
Background
Cardiovascular progenitor cells (CPCs) have been identified within the developing mouse heart and differentiating pluripotent stem cells by intracellular transcription factors Nkx2.5 and Islet 1 (Isl1). Study of endogenous and induced pluripotent stem cell (iPSC)-derived CPCs has been limited due to the lack of specific cell surface markers to isolate them and conditions for their in vitro expansion that maintain their multipotency.
Methodology/Principal Findings
We sought to identify specific cell surface markers that label endogenous embryonic CPCs and validated these markers in iPSC-derived Isl1+/Nkx2.5+ CPCs. We developed conditions that allow propagation and characterization of endogenous and iPSC-derived Isl1+/Nkx2.5+ CPCs and protocols for their clonal expansion in vitro and transplantation in vivo. Transcriptome analysis of CPCs from differentiating mouse embryonic stem cells identified a panel of surface markers. Comparison of these markers as well as previously described surface markers revealed the combination of Flt1+/Flt4+ best identified and facilitated enrichment for Isl1+/Nkx2.5+ CPCs from embryonic hearts and differentiating iPSCs. Endogenous mouse and iPSC-derived Flt1+/Flt4+ CPCs differentiated into all three cardiovascular lineages in vitro. Flt1+/Flt4+ CPCs transplanted into left ventricles demonstrated robust engraftment and differentiation into mature cardiomyocytes (CMs).
Conclusion/Significance
The cell surface marker combination of Flt1 and Flt4 specifically identify and enrich for an endogenous and iPSC-derived Isl1+/Nkx2.5+ CPC with trilineage cardiovascular potential in vitro and robust ability for engraftment and differentiation into morphologically and electrophysiologically mature adult CMs in vivo post transplantation into adult hearts.
doi:10.1371/journal.pone.0045603
PMCID: PMC3467279  PMID: 23056209
7.  Marking Embryonic Stem Cells with a 2A Self-Cleaving Peptide: A NKX2-5 Emerald GFP BAC Reporter 
PLoS ONE  2008;3(7):e2532.
Background
Fluorescent reporters are useful for assaying gene expression in living cells and for identifying and isolating pure cell populations from heterogeneous cultures, including embryonic stem (ES) cells. Multiple fluorophores and genetic selection markers exist; however, a system for creating reporter constructs that preserve the regulatory sequences near a gene's native ATG start site has not been widely available.
Methodology
Here, we describe a series of modular marker plasmids containing independent reporter, bacterial selection, and eukaryotic selection components, compatible with both Gateway recombination and lambda prophage bacterial artificial chromosome (BAC) recombineering techniques. A 2A self-cleaving peptide links the reporter to the native open reading frame. We use an emerald GFP marker cassette to create a human BAC reporter and ES cell reporter line for the early cardiac marker NKX2-5. NKX2-5 expression was detected in differentiating mouse ES cells and ES cell-derived mice.
Conclusions
Our results describe a NKX2-5 ES cell reporter line for studying early events in cardiomyocyte formation. The results also demonstrate that our modular marker plasmids could be used for generating reporters from unmodified BACs, potentially as part of an ES cell reporter library.
doi:10.1371/journal.pone.0002532
PMCID: PMC2430532  PMID: 18596956
8.  Distinct origins and genetic programs of head muscle satellite cells 
Developmental cell  2009;16(6):822-832.
Summary
Adult skeletal muscle possesses a remarkable regenerative capacity, due to the presence of satellite cells, adult muscle stem cells. We used fate-mapping techniques in avian and mouse models to show that trunk (Pax3+) and cranial (MesP1+) skeletal muscle and satellite cells derive from separate genetic lineages. Similar lineage heterogeneity is seen within the head musculature and satellite cells, due to their shared, heterogenic embryonic origins. Lineage tracing experiments with Isl1Cre mice demonstrated the robust contribution of Isl1+ cells to distinct jaw muscle-derived satellite cells. Transplantation of myofiber-associated Isl1-derived satellite cells into damaged limb muscle contributed to muscle regeneration. In vitro experiments demonstrated the cardiogenic nature of cranial- but not trunk-derived satellite cells. Finally, overexpression of Isl1 in the branchiomeric muscles of chick embryos inhibited skeletal muscle differentiation in vitro and in vivo, suggesting that this gene plays a role in the specification of cardiovascular and skeletal muscle stem cell progenitors.
doi:10.1016/j.devcel.2009.05.007
PMCID: PMC3684422  PMID: 19531353
Satellite cells; splanchnic mesoderm; cardiogenesis; myogenesis
9.  A Regulatory Pathway Involving Notch1/β-Catenin/Isl1 Determines Cardiac Progenitor Cell Fate 
Nature cell biology  2009;11(8):951-957.
The regulation of multipotent cardiac progenitor cell (CPC) expansion and subsequent differentiation into cardiomyocytes, smooth muscle, or endothelial cells is a fundamental aspect of basic cardiovascular biology and cardiac regenerative medicine. However, the mechanisms governing these decisions remain unclear. Here, we show that Wnt/β-Catenin signaling, which promotes expansion of CPCs1–3, is negatively regulated by Notch1-mediated control of phosphorylated β-Catenin accumulation within CPCs, and that Notch1 activity in CPCs is required for their differentiation. Notch1 positively, and β-Catenin negatively, regulated expression of the cardiac transcription factors, Isl1, Myocd and Smyd1. Surprisingly, disruption of Isl1, normally expressed transiently in CPCs prior to their differentiation4, resulted in expansion of CPCs in vivo and in an embryonic stem (ES) cell system. Furthermore, Isl1 was required for CPC differentiation into cardiomyocyte and smooth muscle cells, but not endothelial cells. These findings reveal a regulatory network controlling CPC expansion and cell fate that involve unanticipated functions of β-Catenin, Notch1 and Isl1 that may be leveraged for regenerative approaches involving CPCs.
doi:10.1038/ncb1906
PMCID: PMC2748816  PMID: 19620969
β-Catenin; Notch1; Isl1; cardiac progenitors; Myocd
10.  Cell type and tissue specific function of islet genes in zebrafish pancreas development 
Developmental Biology  2013;378(1):25-37.
Isl1 is a LIM homeobox transcription factor showing conserved expression in the developing and mature vertebrate pancreas. So far, functions of pancreatic Isl1 have mainly been studied in the mouse, where Isl1 has independent functions during formation of exocrine and endocrine tissues. Here, we take advantage of a recently described isl1 mutation in zebrafish to address pancreatic isl1 functions in a non-mammalian system. Isl1 in zebrafish, as in mouse, shows transient expression in mesenchyme flanking the pancreatic endoderm, and continuous expression in all endocrine cells. In isl1 mutants, endocrine cells are specified in normal numbers but more than half of these cells fail to establish expression of endocrine hormones. By using a lineage tracking approach that highlights cells leaving cell cycle early in development, we show that isl1 functions are different in first and second wave endocrine cells. In isl1 mutants, early forming first wave cells show virtually no glucagon expression and a reduced number of cells expressing insulin and somatostatin, while in the later born second wave cells somatostatin expressing cells are strongly reduced and insulin and glucagon positive cells form in normal numbers. Isl1 mutant zebrafish also display a smaller exocrine pancreas. We find that isl1 expression in the pancreatic mesenchyme overlaps with that of the related genes isl2a and isl2b and that pancreatic expression of isl-genes is independent of each other. As a combined block of two or three isl1/2 genes results in a dose-dependent reduction of exocrine tissue, our data suggest that all three genes cooperatively contribute to non-cell autonomous exocrine pancreas extension. The normal expression of the pancreas mesenchyme markers meis3, fgf10 and fgf24 in isl1/2 depleted embryos suggests that this activity is independent of isl-gene function in pancreatic mesenchyme formation as was found in mouse. This indicates species-specific differences in the requirement for isl-genes in pancreatic mesenchyme formation. Overall, our data reveal a novel interaction of isl1 and isl2 genes in exocrine pancreas expansion and cell type specific requirements during endocrine cell maturation.
Highlights
• Overlapping functions of islet1, islet2a and islet2b in exocrine pancreas formation.•  Islet1/2a/2b are not required for pancreatic mesenchyme formation.• Islet1 but not islet2a/b is required for endocrine cell maturation.• Endocrine cell types are differently affected by the loss of islet1.
doi:10.1016/j.ydbio.2013.03.009
PMCID: PMC3657195  PMID: 23518338
Islet1; Islet2; Lim homeodomain; Pancreas; Exocrine; Endocrine; Insulin; Glucagon; Zebrafish
11.  Isl1 is a direct transcriptional target of Forkhead transcription factors in second heart field-derived mesoderm 
Developmental biology  2009;334(2):513-522.
The cells of the second heart field (SHF) contribute to the outflow tract and right ventricle, as well as to parts of the left ventricle and atria. Isl1, a member of the LIM-homeodomain transcription factor family, is expressed early in this cardiac progenitor population and functions near the top of a transcriptional pathway essential for heart development. Isl1 is required for the survival and migration of SHF-derived cells into the early developing heart at the inflow and outflow poles. Despite this important role for Isl1 in early heart formation, the transcriptional regulation of Isl1 has remained largely undefined. Therefore, to identify transcription factors that regulate Isl1 expression in vivo, we screened the conserved noncoding sequences from the mouse Isl1 locus for enhancer activity in transgenic mouse embryos. Here, we report the identification of an enhancer from the mouse Isl1 gene that is sufficient to direct expression to the SHF and its derivatives. The Isl1 SHF enhancer contains three consensus Forkhead transcription factor binding sites that are efficiently and specifically bound by Forkhead transcription factors. Importantly, the activity of the enhancer is dependent on these three Forkhead binding sites in transgenic mouse embryos. Thus, these studies demonstrate that Isl1 is a direct transcriptional target of Forkhead transcription factors in the SHF and establish a transcriptional pathway upstream of Isl1 in the SHF.
doi:10.1016/j.ydbio.2009.06.041
PMCID: PMC2928383  PMID: 19580802
12.  Isl1 Is required for multiple aspects of motor neuron development 
The LIM homeodomain transcription factor Islet1 (Isl1) is expressed in multiple organs and plays essential roles during embryogenesis. Isl1 is required for the survival and specification of spinal cord motor neurons. Due to early embryonic lethality and loss of motor neurons, the role of Isl1 in other aspects of motor neuron development remains unclear. In this study, we generated Isl1 mutant mouse lines expressing graded doses of Isl1. Our study has revealed essential roles of Isl1 in multiple aspects of motor neuron development, including motor neuron cell body localization, motor column formation and axon growth. In addition, Isl1 is required for survival of cranial ganglia neurons.
doi:10.1016/j.mcn.2011.04.007
PMCID: PMC3200226  PMID: 21569850
Motor neuron; V2 interneuron; Cranial ganglia; Cell death; Isl1; Axon growth
13.  Pulsatile and Sustained Gonadotropin-releasing Hormone (GnRH) Receptor Signaling 
The Journal of Biological Chemistry  2009;284(51):35746-35757.
Gonadotropin-releasing hormone (GnRH) acts via 7 transmembrane region receptors on gonadotrophs to stimulate synthesis and secretion of the luteinizing hormone and follicle-stimulating hormone. It is secreted in pulses, and its effects depend on pulse frequency, but decoding mechanisms are unknown. Here we have used (nuclear factor of activated T-cells 2 (NFAT2)-emerald fluorescent protein) to monitor GnRH signaling. Increasing [Ca2+]i causes calmodulin/calcineurin-dependent nuclear NFAT translocation, a response involving proteins (calmodulins and NFATs) that decode frequency in other systems. Using live cell imaging, pulsatile GnRH caused dose- and frequency-dependent increases in nuclear NFAT2-emerald fluorescent protein, and at low frequency, translocation simply tracked GnRH exposure (albeit with slower kinetics). At high frequency (30-min intervals), failure to return to basal conditions before repeat stimulation caused integrative tracking, illustrating how the relative dynamics of up- and downstream signals can increase efficiency of GnRH action. Mathematical modeling predicted desensitization of GnRH effects on [Ca2+]i and that desensitization would increase with dose, frequency, and receptor number, but no such desensitization was seen in HeLa and/or LβT2 cells possibly because pulsatile GnRH did not reduce receptor expression (measured by immunofluorescence). GnRH also caused dose- and frequency-dependent activation of αGSU, luteinizing hormone β, and follicle-stimulating hormone β luciferase reporters, effects that were blocked by calcineurin inhibition. Pulsatile GnRH also activated an NFAT-responsive luciferase reporter, but this response was directly related to cumulative pulse duration. This together with the lack of desensitization of translocation responses suggests that NFAT may mediate GnRH action but is not a genuine decoder of GnRH pulse frequency.
doi:10.1074/jbc.M109.063917
PMCID: PMC2791005  PMID: 19858197
14.  ISL1 Promotes Pancreatic Islet Cell Proliferation 
PLoS ONE  2011;6(8):e22387.
Background
Islet 1 (ISL1), a LIM-homeodomain transcription factor is essential for promoting pancreatic islets proliferation and maintaining endocrine cells survival in embryonic and postnatal pancreatic islets. However, how ISL1 exerts the role in adult islets is, to date, not clear.
Methodology/Principal Findings
Our results show that ISL1 expression was up-regulated at the mRNA level both in cultured pancreatic cells undergoing glucose oxidase stimulation as well in type 1 and type 2 diabetes mouse models. The knockdown of ISL1 expression increased the apoptosis level of HIT-T15 pancreatic islet cells. Using HIT-T15 and primary adult islet cells as cell models, we show that ISL1 promoted adult pancreatic islet cell proliferation with increased c-Myc and CyclinD1 transcription, while knockdown of ISL1 increased the proportion of cells in G1 phase and decreased the proportion of cells in G2/M and S phases. Further investigation shows that ISL1 activated both c-Myc and CyclinD1 transcription through direct binding on their promoters.
Conclusions/Significance
ISL1 promoted adult pancreatic islet cell proliferation and probably by activating c-Myc and CyclinD1 transcription through direct binding on their promoters. Our findings extend the knowledge about the crucial role of ISL1 in maintaining mature islet cells homeostasis. Our results also provide insights into the new regulation relationships between ISL1 and other growth factors.
doi:10.1371/journal.pone.0022387
PMCID: PMC3150357  PMID: 21829621
15.  Dendritic and axonal targeting patterns of a genetically-specified class of retinal ganglion cells that participate in image-forming circuits 
Neural Development  2014;9:2.
Background
There are numerous functional types of retinal ganglion cells (RGCs), each participating in circuits that encode a specific aspect of the visual scene. This functional specificity is derived from distinct RGC morphologies and selective synapse formation with other retinal cell types; yet, how these properties are established during development remains unclear. Islet2 (Isl2) is a LIM-homeodomain transcription factor expressed in the developing retina, including approximately 40% of all RGCs, and has previously been implicated in the subtype specification of spinal motor neurons. Based on this, we hypothesized that Isl2+ RGCs represent a related subset that share a common function.
Results
We morphologically and molecularly characterized Isl2+ RGCs using a transgenic mouse line that expresses GFP in the cell bodies, dendrites and axons of Isl2+ cells (Isl2-GFP). Isl2-GFP RGCs have distinct morphologies and dendritic stratification patterns within the inner plexiform layer and project to selective visual nuclei. Targeted filling of individual cells reveals that the majority of Isl2-GFP RGCs have dendrites that are monostratified in layer S3 of the IPL, suggesting they are not ON-OFF direction-selective ganglion cells. Molecular analysis shows that most alpha-RGCs, indicated by expression of SMI-32, are also Isl2-GFP RGCs. Isl2-GFP RGCs project to most retino-recipient nuclei during early development, but specifically innervate the dorsal lateral geniculate nucleus and superior colliculus (SC) at eye opening. Finally, we show that the segregation of Isl2+ and Isl2- RGC axons in the SC leads to the segregation of functional RGC types.
Conclusions
Taken together, these data suggest that Isl2+ RGCs comprise a distinct class and support a role for Isl2 as an important component of a transcription factor code specifying functional visual circuits. Furthermore, this study describes a novel genetically-labeled mouse line that will be a valuable resource in future investigations of the molecular mechanisms of visual circuit formation.
doi:10.1186/1749-8104-9-2
PMCID: PMC3937143  PMID: 24495295
16.  Identification of regulatory elements in the Isl1 gene locus 
Isl1 is a LIM/homeodomain transcription factor with critical roles for the development of the heart, the nervous system and the pancreas. Both deficiency and mis-expression of Isl1 cause profound developmental defects, demonstrating the importance of proper regulation of Isl1 gene expression during development. In order to understand the mechanisms that control Isl1 expression during embryogenesis and in tissue differentiation, we initiated a screen for gene regulatory elements in the Isl1 locus using a novel dual reporter gene vector that allows screens of large genomic regions through reporter gene assays in vitro and in vivo. We identified regions from the Isl1 gene locus that confer transcriptional activity in pancreatic cell lines in vitro. Using transgenic mice, we furthermore discovered an enhancer with in vivo specificity for the developing heart, as well as visceral and posterior mesoderm. Our findings further suggest that Foxo1 as well as Gata4 contribute to the activity of this enhancer in the developing embryo. We conclude that Isl1 gene expression is controlled in modular fashion by several elements with distinct functionality. Embryonic Isl1 expression in several tissues of mesodermal origin is driven by a specific enhancer that is located 3-6kb downstream of the gene.
doi:10.1387/ijdb.082819ck
PMCID: PMC3482124  PMID: 19598113
transgenic reporter; enhancer; heart mesoderm; cardiac crescent; lateral mesoderm
17.  Islet1 derivatives in the heart are of both neural crest and second heart field origin 
Circulation Research  2012;110(7):922-926.
Rationale
Islet1 (Isl1) has been proposed as a marker of cardiac progenitor cells derived from the second heart field and is utilized to identify and purify cardiac progenitors from murine and human specimens for ex vivo expansion. The use of Isl1 as a specific second heart field marker is dependent on its exclusion from other cardiac lineages such as neural crest.
Objective
Determine if Isl1 is expressed by cardiac neural crest.
Methods and Results
We used an intersectional fate-mapping system employing the RC::FrePe allele which reports dual Flpe and Cre recombination. Combining Isl11Cre/+, a SHF driver, and Wnt1::Flpe, a neural crest driver, with Rc::FrePe reveals that some Isl1 derivatives in the cardiac outflow tract derive from Wnt1-expressing neural crest progenitors. In contrast, no overlap was observed between Wnt1-derived neural crest and an alternative second heart field driver, Mef2c-AHF-Cre.
Conclusions
Isl1 is not restricted to second heart field progenitors in the developing heart but also labels cardiac neural crest. The intersection of Isl1 and Wnt1 lineages within the heart provides a caveat to using Isl1 as an exclusive second heart field cardiac progenitor marker and suggests that some Isl1-expressing progenitor cells derived from embryos, ES or iPS cultures may be of neural crest lineage.
doi:10.1161/CIRCRESAHA.112.266510
PMCID: PMC3355870  PMID: 22394517
myocardial lineages; second heart field; neural crest; heart development
18.  Hair Cell Overexpression of Islet1 Reduces Age-Related and Noise-Induced Hearing Loss 
The Journal of Neuroscience  2013;33(38):15086-15094.
Isl1 is a LIM-homeodomain transcription factor that is critical in the development and differentiation of multiple tissues. In the mouse inner ear, Isl1 is expressed in the prosensory region of otocyst, in young hair cells and supporting cells, and is no longer expressed in postnatal auditory hair cells. To evaluate how continuous Isl1 expression in postnatal hair cells affects hair cell development and cochlear function, we created a transgenic mouse model in which the Pou4f3 promoter drives Isl1 overexpression specifically in hair cells. Isl1 overexpressing hair cells develop normally, as seen by morphology and cochlear functions (auditory brainstem response and otoacoustic emissions). As the mice aged to 17 months, wild-type (WT) controls showed the progressive threshold elevation and outer hair cell loss characteristic of the age-related hearing loss (ARHL) in the background strain (C57BL/6J). In contrast, the Isl1 transgenic mice showed significantly less threshold elevation with survival of hair cells. Further, the Isl1 overexpression protected the ear from noise-induced hearing loss (NIHL): both ABR threshold shifts and hair cell death were significantly reduced when compared with WT littermates. Our model suggests a common mechanism underlying ARHL and NIHL, and provides evidence that hair cell-specific Isl1 expression can promote hair cell survival and therefore minimize the hearing impairment that normally occurs with aging and/or acoustic overexposure.
doi:10.1523/JNEUROSCI.1489-13.2013
PMCID: PMC3776061  PMID: 24048839
19.  Islet-1 Immunoreactivity in the Developing Retina of Xenopus laevis 
The Scientific World Journal  2013;2013:740420.
The LIM-homeodomain transcription factor Islet1 (Isl1) has been widely used as a marker of neuronal differentiation in the developing visual system of different classes of vertebrates, including mammals, birds, reptiles, and fish. In the present study, we analyzed the spatial and temporal distribution of Isl1-immunoreactive cells during Xenopus laevis retinal development and its relation to the formation of the retinal layers, and in combination with different markers of cell differentiation. The earliest Isl1 expression appeared at St29-30 in the cell nuclei of sparse differentiating neuroblasts located in the vitreal surface of the undifferentiated retina. At St35-36, abundant Isl1-positive cells accumulated at the vitreal surface of the neuroepithelium. As development proceeded and through the postmetamorphic juveniles, Isl1 expression was identified in subpopulations of ganglion cells and in subsets of amacrine, bipolar, and horizontal cells. These data together suggest a possible role for Isl1 in the early differentiation and maintenance of different retinal cell types, and Isl1 can serve as a specific molecular marker for the study of retinal cell specification in X. laevis.
doi:10.1155/2013/740420
PMCID: PMC3844241  PMID: 24348185
20.  Islet-1 Controls the Differentiation of Retinal Bipolar and Cholinergic Amacrine Cells 
Whereas the mammalian retina possesses a repertoire of factors known to establish general retinal cell types, these factors alone cannot explain the vast diversity of neuronal subtypes. In other CNS regions, the differentiation of diverse neuronal pools is governed by coordinately acting LIM-homeodomain proteins including the Islet-class factor Islet-1 (Isl1). We report that deletion of Isl1 profoundly disrupts retinal function as assessed by electroretinograms and vision as assessed by optomotor behavior. These deficits are coupled with marked reductions in mature ON- and OFF-bipolar (>76%), cholinergic amacrine (93%), and ganglion (71%) cells. Mosaic deletion of Isl1 permitted a chimeric analysis of “wild-type” cells in a predominantly Isl1-null environment, demonstrating a cell-autonomous role for Isl1 in rod bipolar and cholinergic amacrine development. Furthermore, the effects on bipolar cell development appear to be dissociable from the preceding retinal ganglion cell loss, because Pou4f2-null mice are devoid of similar defects in bipolar cell marker expression. Expression of the ON- and OFF-bipolar cell differentiation factors Bhlhb4 and Vsx1, respectively, requires the presence of Isl1, whereas the early bipolar cell marker Prox1 initially did not. Thus, Isl1 is required for engaging bipolar differentiation pathways but not for general bipolar cell specification. Spatiotemporal expression analysis of additional LIM-homeobox genes identifies a LIM-homeobox gene network during bipolar cell development that includes Lhx3 and Lhx4. We conclude that Isl1 has an indispensable role in retinal neuron differentiation within restricted cell populations and this function may reflect a broader role for other LIM-homeobox genes in retinal development, and perhaps in establishing neuronal subtypes.
doi:10.1523/JNEUROSCI.3951-07.2007
PMCID: PMC2972590  PMID: 18003851
retina; retinal bipolar cell; transcription factor; differentiation; ERG (electroretinogram); optomotor behavior; amacrine; retinal ganglion cell
21.  Common Variation in ISL1 Confers Genetic Susceptibility for Human Congenital Heart Disease 
PLoS ONE  2010;5(5):e10855.
Congenital heart disease (CHD) is the most common birth abnormality and the etiology is unknown in the overwhelming majority of cases. ISLET1 (ISL1) is a transcription factor that marks cardiac progenitor cells and generates diverse multipotent cardiovascular cell lineages. The fundamental role of ISL1 in cardiac morphogenesis makes this an exceptional candidate gene to consider as a cause of complex congenital heart disease. We evaluated whether genetic variation in ISL1 fits the common variant–common disease hypothesis. A 2-stage case-control study examined 27 polymorphisms mapping to the ISL1 locus in 300 patients with complex congenital heart disease and 2,201 healthy pediatric controls. Eight genic and flanking ISL1 SNPs were significantly associated with complex congenital heart disease. A replication study analyzed these candidate SNPs in 1,044 new cases and 3,934 independent controls and confirmed that genetic variation in ISL1 is associated with risk of non-syndromic congenital heart disease. Our results demonstrate that two different ISL1 haplotypes contribute to risk of CHD in white and black/African American populations.
doi:10.1371/journal.pone.0010855
PMCID: PMC2877111  PMID: 20520780
22.  Dietary Compound Isoliquiritigenin Inhibits Breast Cancer Neoangiogenesis via VEGF/VEGFR-2 Signaling Pathway 
PLoS ONE  2013;8(7):e68566.
Angiogenesis is crucial for cancer initiation, development and metastasis. Identifying natural botanicals targeting angiogenesis has been paid much attention for drug discovery in recent years, with the advantage of increased safety. Isoliquiritigenin (ISL) is a dietary chalcone-type flavonoid with various anti-cancer activities. However, little is known about the anti-angiogenic activity of isoliquiritigenin and its underlying mechanisms. Herein, we found that ISL significantly inhibited the VEGF-induced proliferation of human umbilical vein endothelial cells (HUVECs) at non-toxic concentration. A series of angiogenesis processes including tube formation, invasion and migration abilities of HUVECs were also interrupted by ISL in vitro. Furthermore, ISL suppressed sprout formation from VEGF-treated aortic rings in an ex-vivo model. Molecular mechanisms study demonstrated that ISL could significantly inhibit VEGF expression in breast cancer cells via promoting HIF-1α (Hypoxia inducible factor-1α) proteasome degradation and directly interacted with VEGFR-2 to block its kinase activity. In vivo studies further showed that ISL administration could inhibit breast cancer growth and neoangiogenesis accompanying with suppressed VEGF/VEGFR-2 signaling, elevated apoptosis ratio and little toxicity effects. Molecular docking simulation indicated that ISL could stably form hydrogen bonds and aromatic interactions within the ATP-binding region of VEGFR-2. Taken together, our study shed light on the potential application of ISL as a novel natural inhibitor for cancer angiogenesis via the VEGF/VEGFR-2 pathway. Future studies of ISL for chemoprevention or chemosensitization against breast cancer are thus warranted.
doi:10.1371/journal.pone.0068566
PMCID: PMC3702614  PMID: 23861918
23.  Expression of the LIM-Homeodomain Protein Isl1 in the Developing and Mature Mouse Retina 
The mammalian retina is comprised of six major neuronal cell types and is subdivided into more morphological and physiological subtypes. The transcriptional machinery underlying these subtype fate choices is largely unknown. The LIM-homeodomain protein, Isl1, plays an essential role in central nervous system (CNS) differentiation but its relationship to retinal neurogenesis remains unknown. We report here its dynamic spatiotemporal expression in the mouse retina. Among bipolar interneurons, Isl1 expression commences at postnatal day (P)5 and is later restricted to ON-bipolar cells. The intensity of Isl1 expression is found to segregate the pool of ON-bipolar cells into rod and ON-cone bipolar cells with higher expression in rod bipolar cells. As bipolar cell development proceeds from P5–10 the colocalization of Isl1 and the pan-bipolar cell marker Chx10 reveals the organization of ON-center bipolar cell nuclei to the upper portion of the inner nuclear layer. Further, whereas Isl1 is predominantly a ganglion cell marker prior to embryonic day (E)15.5, at E15.5 and later its expression in nonganglion cells expands. We demonstrate that these Isl1-positive, nonganglion cells acquire the expression of amacrine cell markers embryonically, likely representing nascent cholinergic amacrine cells. Taken together, Isl1 is expressed during the maturation of and is later maintained in retinal ganglion cells and subtypes of amacrine and bipolar cells where it may function in the maintenance of these cells into adulthood. J. Comp. Neurol. 503: 182–197, 2007.
doi:10.1002/cne.21390
PMCID: PMC2950632  PMID: 17480014
ON-bipolar cells; Chx10; amacrine cell; retina; neurogenesis; transcription factors; subtype markers
24.  Cardiac origin of smooth muscle cells in the inflow tract 
Multipotent Isl1+ heart progenitors give rise to three major cardiovascular cell types; cardiac, smooth muscle, and endothelial cells, and play a pivotal role in lineage diversification during cardiogenesis. A critical question is pinpointing when this cardiac-vascular lineage decision is made, and how this plasticity serves to coordinate cardiac chamber and vessel growth. The posterior domain of the Isl1-positive second heart field contributes to the SLN-positive atrial myocardium and myocardial sleeves in the cardiac inflow tract, where myocardial and vascular smooth muscle layers form anatomical and functional continuity. Herein, using a new atrial specific SLN-Cre knockin mouse line, we report that an Isl1+/SLN+ transient cell population contributes to cardiac as well as smooth muscle cells at the heart-vessel junction in cardiac inflow tract. The Isl1+/SLN+ cells are capable of giving rise to cardiac and smooth muscle cells until late gestational stages. These data suggest that the cardiac and smooth muscle cells in the cardiac inflow tract share a common developmental origin.
doi:10.1016/j.yjmcc.2010.10.009
PMCID: PMC3031779  PMID: 20974149
cardiogenesis; myogenic progenitor; smooth muscle; great vessel; plasticity
25.  Elevation of transcription factor Islet-1 levels in vivo increases β-cell function but not β-cell mass 
Islets  2012;4(3):199-206.
A decrease in the expression of Islet-1 (Isl-1), an islet transcription factor, has been reported in several physiological settings of reduced β-cell function. Here, we investigate whether an increased level of Isl-1 in islet cells can enhance β-cell function and/or mass. We demonstrate that transgenic mice with Isl-1 overexpression display improved glucose tolerance and enhanced insulin secretion without significant changes in β cell mass. From our microarray study, we identify approximately 135 differentially expressed genes in the islets of Isl-1 overexpressing mice that have been implicated to function in numerous biological processes including protein trafficking, metabolism and differentiation. Using real-time PCR we have confirmed upregulation of Caps2, Sec14l4, Slc2a10, P2rx7, Afamin, and Neurogenin 3 that may in part mediate the observed improved insulin secretion in Isl-1 overexpressing mice. These findings show for the first time that Isl-1 is a key factor in regulating adult β cell function in vivo, and suggest that Isl-1 elevation could be beneficial to improve glucose homeostasis.
doi:10.4161/isl.19982
PMCID: PMC3442817  PMID: 22595886
Islet-1; glucose tolerance; insulin; transcription factor; β-cells

Results 1-25 (497738)