PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (410102)

Clipboard (0)
None

Related Articles

1.  Nonlinear optical imaging of defects in cubic silicon carbide epilayers 
Scientific Reports  2014;4:5258.
Silicon carbide is one of the most promising materials for power electronic devices capable of operating at extreme conditions. The widespread application of silicon carbide power devices is however limited by the presence of structural defects in silicon carbide epilayers. Our experiment demonstrates that optical second harmonic generation imaging represents a viable solution for characterizing structural defects such as stacking faults, dislocations and double positioning boundaries in cubic silicon carbide layers. X-ray diffraction and optical second harmonic rotational anisotropy were used to confirm the growth of the cubic polytype, atomic force microscopy was used to support the identification of silicon carbide defects based on their distinct shape, while second harmonic generation microscopy revealed the detailed structure of the defects. Our results show that this fast and noninvasive investigation method can identify defects which appear during the crystal growth and can be used to certify areas within the silicon carbide epilayer that have optimal quality.
doi:10.1038/srep05258
PMCID: PMC4052718  PMID: 24918841
2.  Epitaxial Structure of (001)- and (111)-Oriented Perovskite Ferrate Films Grown by Pulsed-Laser Deposition 
Crystal Growth & Design  2010;10(4):1725-1729.
We report epitaxial growth and structures of SrFeO2.5 (SFO) films on SrTiO3 (STO) (001) and (111) substrates by pulsed-laser deposition. Reflection high-energy electron diffraction intensity oscillations were observed during the initial growth on both substrates, reflecting a layer-by-layer growth mode of the formula unit cell. It was found that the films were stabilized with a monoclinic structure that was derived from the original orthorhombic structure of bulk Brownmillerite. Using an X-ray reciprocal space mapping technique, in-plane domain structures and the orientation relationship were investigated. In addition, the impact of laser spot area on the epitaxial structures was studied. For the films grown on the (001) STO, the orientation relationship was robust against the change of the laser spot area: SFO(001)//STO(001) and SFO(100)//STO(100) for the out-of-plane and the in-plane, respectively, with the [001] axis tilted toward the 4-fold a- and b-axes by ∼1.4°, whereas nearly (111)-oriented films were obtained on the (111) STO, exhibiting a complicated manner of tilting that depended on laser spot area. The observed variation in tilting configurations can be understood in terms of possible atomic arrangements at the SFO/STO interface. These results present a guide to control the heteroepitaxial growth and structure of (111)-oriented noncubic perovskites.
The epitaxial structures of SrFeO2.5 films grown on SrTiO3 (001) and (111) substrates by PLD are reported. A layer-by-layer growth mode was achieved in the initial stage on both substrates. The films were stabilized with a monoclinic structure, where we identified the in-plane domain structures and orientation relationship. Our study presents a guide to control the heteroepitaxy of (111)-oriented noncubic perovskites.
doi:10.1021/cg901355c
PMCID: PMC2851191  PMID: 20383295
3.  A look inside epitaxial cobalt-on-fluorite nanoparticles with three-dimensional reciprocal space mapping using GIXD, RHEED and GISAXS 
Journal of Applied Crystallography  2013;46(Pt 4):874-881.
Three-dimensional reciprocal space mapping by X-ray and electron diffraction [namely grazing-incidence X-ray diffraction (GIXD), reflection high-energy electron diffraction (RHEED) and grazing-incidence small-angle X-ray scattering (GISAXS)] was used to explore the internal structure and shape of differently oriented epitaxial Co/CaF2 facetted nanoparticles.
In this work epitaxial growth of cobalt on CaF2(111), (110) and (001) surfaces has been extensively studied. It has been shown by atomic force microscopy that at selected growth conditions stand-alone faceted Co nanoparticles are formed on a fluorite surface. Grazing-incidence X-ray diffraction (GIXD) and reflection high-energy electron diffraction (RHEED) studies have revealed that the particles crystallize in the face-centered cubic lattice structure otherwise non-achievable in bulk cobalt under normal conditions. The particles were found to inherit lattice orientation from the underlying CaF2 layer. Three-dimensional reciprocal space mapping carried out using X-ray and electron diffraction has revealed that there exist long bright 〈111〉 streaks passing through the cobalt Bragg reflections. These streaks are attributed to stacking faults formed in the crystal lattice of larger islands upon coalescence of independently nucleated smaller islands. Distinguished from the stacking fault streaks, crystal truncation rods perpendicular to the {111} and {001} particle facets have been observed. Finally, grazing-incidence small-angle X-ray scattering (GISAXS) has been applied to decouple the shape-related scattering from that induced by the crystal lattice defects. Particle faceting has been verified by modeling the GISAXS patterns. The work demonstrates the importance of three-dimensional reciprocal space mapping in the study of epitaxial nanoparticles.
doi:10.1107/S0021889813008777
PMCID: PMC3769055  PMID: 24046491
cobalt-on-fluorite nanoparticles; grazing-incidence X-ray diffraction (GIXD); reflection high-energy electron diffraction (RHEED); grazing-incidence small-angle X-ray scattering (GISAXS); epitaxial growth; three-dimensional reciprocal space mapping
4.  Redetermination of Ce[B5O8(OH)(H2O)]NO3·2H2O 
The crystal structure of Ce[B5O8(OH)(H2O)]NO3·2H2O, cerium(III) aqua­hydroxidoocta­oxidopenta­borate nitrate dihydrate, has been redetermined from single-crystal X-ray diffraction data. In contrast to the previous determination [Li et al. (2003 ▶). Chem. Mater. 15, 2253–2260], the present study reveals the location of all H atoms, slightly different fundamental building blocks (FBBs) of the polyborate anions, more reasonable displacement ellipsoids for all non-H atoms, as well as a model without disorder of the nitrate anion. The crystal structure is built from corrugated polyborate layers parallel to (010). These layers, consisting of [B5O8(OH)(H2O)]2− anions as FBBs, stack along [010] and are linked by Ce3+ ions, which exhibit a distorted CeO10 coordination sphere. The layers are additionally stabilized via O—H⋯O hydrogen bonds between water mol­ecules and nitrate anions, located at the inter­layer space. The [BO3(H2O)]-group shows a [3 + 1] coordination and is considerably distorted from a tetra­hedral configuration. Bond-valence-sum calculation shows that the valence sum of boron is only 2.63 valence units (v.u.) when the contribution of the water mol­ecule (0.49 v.u.) is neglected.
doi:10.1107/S1600536812016169
PMCID: PMC3344287  PMID: 22590053
5.  Epitaxial Growth of π-Stacked Perfluoropentacene on Graphene-Coated Quartz 
ACS Nano  2012;6(12):10874-10883.
Chemical-vapor-deposited large-area graphene is employed as the coating of transparent substrates for the growth of the prototypical organic n-type semiconductor perfluoropentacene (PFP). The graphene coating is found to cause face-on growth of PFP in a yet unknown substrate-mediated polymorph, which is solved by combining grazing-incidence X-ray diffraction with theoretical structure modeling. In contrast to the otherwise common herringbone arrangement of PFP in single crystals and “standing” films, we report a π-stacked arrangement of coplanar molecules in “flat-lying” films, which exhibit an exceedingly low π-stacking distance of only 3.07 Å, giving rise to significant electronic band dispersion along the π-stacking direction, as evidenced by ultraviolet photoelectron spectroscopy. Our study underlines the high potential of graphene for use as a transparent electrode in (opto-)electronic applications, where optimized vertical transport through flat-lying conjugated organic molecules is desired.
doi:10.1021/nn3042607
PMCID: PMC3558021  PMID: 23181564
graphene; organic electronics; structure solution; pentacene; perfluoropentacene; band dispersion; grazing-incidence X-ray diffraction
6.  Refined crystal structure of an octanucleotide duplex with I.T. mismatched base pairs. 
Nucleic Acids Research  1989;17(1):55-72.
The structure of the synthetic deoxyoctamer d(GGIGCTCC) has been determined by single crystal X-ray diffraction techniques to a resolution of 1.7A. The sequence crystallises in space group P6(1), with unit cell dimensions a = b = 45.07, c = 45.49A. The refinement converged with a crystallographic residual R = 0.14 and the location of 81 solvent molecules. The octamer forms an A-DNA duplex with 6 Watson-Crick (G.C) base pairs and 2 inosine-thymine (I.T) pairs. Refinement of the structure shows it to be essentially isomorphous with that reported for d(GGGGCTCC) with the mispairs adopting a "wobble" conformation. Conformational parameters and base stacking interactions are compared to those for the native duplex d(GGGGCCCC) and other similar sequences. A rationale for the apparent increased crystal packing efficiency and lattice stability of the I.T octamer is given.
PMCID: PMC331535  PMID: 2911488
7.  Correlated single-crystal electronic absorption spectroscopy and X-ray crystallography at NSLS beamline X26-C 
Journal of Synchrotron Radiation  2011;18(Pt 3):358-366.
The instrumentation and methods available for collecting almost simultaneous single-crystal electronic absorption correlated with X-ray diffraction data at NSLS beamline X26-C are reviewed, as well as a very brief outline of its Raman spectroscopy capability.
The research philosophy and new capabilities installed at NSLS beamline X26-C to support electronic absorption and Raman spectroscopies coupled with X-ray diffraction are reviewed. This beamline is dedicated full time to multidisciplinary studies with goals that include revealing the relationship between the electronic and atomic structures in macromolecules. The beamline instrumentation has been fully integrated such that optical absorption spectra and X-ray diffraction images are interlaced. Therefore, optical changes induced by X-ray exposure can be correlated with X-ray diffraction data collection. The installation of Raman spectroscopy into the beamline is also briefly reviewed. Data are now routinely generated almost simultaneously from three complementary types of experiments from the same sample. The beamline is available now to the NSLS general user population.
doi:10.1107/S0909049511006315
PMCID: PMC3083912  PMID: 21525643
metalloenzymes; cofactors; electronic absorption spectroscopy; Raman spectroscopy
8.  ELECTRON MICROSCOPE AND X-RAY DIFFRACTION STUDIES ON A HOMOLOGOUS SERIES OF SATURATED PHOSPHATIDYLCHOLINES 
The Journal of Cell Biology  1965;25(2):375-385.
Three homologous saturated phosphatidylcholines were studied by electron microscopy after tricomplex fixation. The results are compared with those obtained by x-ray diffraction analysis of the same and some other homologous compounds, in the dry crystalline state and after tricomplex fixation. By electron microscopy alternating dark and light bands are observed which are likely to correspond to phosphatide double layers. X-Ray diffraction reveals the presence of lamellar structures of regular spacing. The layer spacings obtained by both methods are in good agreement. From the electron micrographs the width of the polar parts of the double layers can be derived directly. The width of the carboxylglycerylphosphorylcholine moiety of the layers is found by extrapolating the x-ray diffraction data to zero chain length of the fatty acids. When from this width the contribution of the carboxylglyceryl part of the molecules is subtracted, again we find good agreement with the electron microscope measurements. An attempt has been made to account for the different layer spacings measured in terms of orientation of the molecules within the double layers.
PMCID: PMC2106635  PMID: 14287187
9.  Hafnium germanium telluride 
The title hafnium germanium telluride, HfGeTe4, has been synthesized by the use of a halide flux and structurally characterized by X-ray diffraction. HfGeTe4 is isostructural with stoichiometric ZrGeTe4 and the Hf site in this compound is also fully occupied. The crystal structure of HfGeTe4 adopts a two-dimensional layered structure, each layer being composed of two unique one-dimensional chains of face-sharing Hf-centered bicapped trigonal prisms and corner-sharing Ge-centered tetra­hedra. These layers stack on top of each other to complete the three-dimensional structure with undulating van der Waals gaps.
doi:10.1107/S1600536808011380
PMCID: PMC2961149  PMID: 21202163
10.  Redetermination of Zn2Mo3O8  
The crystal structure of dizinc trimolybdenum(IV) octa­oxide, Zn2Mo3O8, has been redetermined from single-crystal X-ray data. The structure has been reported previously based on neutron powder diffraction data [Hibble et al. (1999 ▶). Acta Cryst. B55, 683-697] and single-crystal data [McCarroll et al. (1957 ▶). J. Am. Chem. Soc. 79, 5410–5414; Ansell & Katz (1966 ▶) Acta Cryst. 21, 482–485]. The results of the current redetermination show an improvement in the precision of the structural and geometric parameters with all atoms refined with anisotropic displacement parameters. The crystal structure consists of distorted hexa­gonal-close-packed oxygen layers with stacking sequence abac along [001] and is held together by alternating zinc and molybdenum layers. The Zn atoms occupy both tetra­hedral and octa­hedral inter­stices with a ratio of 1:1. The Mo atoms occupy octa­hedral sites and form strongly bonded triangular clusters involving three MoO6 octa­hedra that are each shared along two edges, forming a Mo3O13 unit. All atoms lie on special positions. The Zn atoms are in 2b Wyckoff positions with 3m. site symmetry, the Mo atoms are in 6c Wyckoff positions with . m. site symmetry and the O atoms are in 2a, 2b and 6c Wyckoff positions with 3m. and . m. site symmetries, respectively.
doi:10.1107/S1600536809021928
PMCID: PMC2969349  PMID: 21582645
11.  The P43 enanti­omorph of Sr2As2O7  
The crystal structure of strontium diarsenate has been reinvestigated from single-crystal X-ray diffraction data. In contrast to the previous determinations of this structure [Weil et al. (2009 ▶). Solid State Sci. 11, 2111–2117; Edhokkar et al. (2012 ▶). Mater. Sci. Eng., 28, 012017] and to all isotypic A 2 B 2O7 compounds that crystallize in the space group P41, the current redetermination revealed the P43 enanti­omorph of Sr2As2O7 with a purity of 96.3 (8)%. The crystal structure is made up from two eclipsed As2O7 diarsenate groups (symmetry 1) with characteristically longer As—O bridging bonds [1.756 (4)–1.781 (4) Å] than the terminal As—O bonds [1.636 (4)–1.679 (4) Å] and four Sr2+ sites with coordination numbers ranging from seven to nine. The building units are arranged in sheets parallel to (001).
doi:10.1107/S1600536813031619
PMCID: PMC3884974  PMID: 24454149
12.  Synthesis and Characterization of the Ligand Based on Benzimidazole and Its Copper Complex: DNA Binding and Antioxidant Activity 
A new copper(II) complex with formulae of [Cu(buobb)2](pic)2, where buobb stands for the ligand of 1,3-bis(1- butylbenzimidazol-2-yl)-2-oxopropane and pic represents 2,4,6-trinitrophenol, has been synthesized and characterized by elemental analyses, molar conductivity, IR, UV-Vis spectra measurements, and cyclic voltammetry. The crystal structure of the copper(II) complex has been determined by X-ray single-crystal diffraction. The coordination environment around each copper(II) atom can be described as a distorted octahedral geometry. The π-π stacking interactions link the copper(II) complex into a 1D infinite network. The interactions of the ligand and the copper(II) complex with calf thymus DNA (CT-DNA) are investigated by using electronic absorption titration, ethidium bromide-DNA displacement experiments, and viscosity measurements. Additionally, the copper(II) complex's antioxidant properties have been investigated in vitro.
doi:10.1155/2011/105431
PMCID: PMC3226424  PMID: 22162669
13.  Epitaxially Grown Films of Standing and Lying Pentacene Molecules on Cu(110) Surfaces 
Crystal Growth & Design  2011;11(4):1015-1020.
Here, it is shown that pentacene thin films (30 nm) with distinctively different crystallographic structures and molecular orientations can be grown under essentially identical growth conditions in UHV on clean Cu(110) surfaces. By X-ray diffraction, we show that the epitaxially oriented pentacene films crystallize either in the “thin film” phase with standing molecules or in the “single crystal” structure with molecules lying with their long axes parallel to the substrate. The morphology of the samples observed by atomic force microscopy shows an epitaxial alignment of pentacene crystallites, which corroborates the molecular orientation observed by X-ray diffraction pole figures. Low energy electron diffraction measurements reveal that these dissimilar growth behaviors are induced by subtle differences in the monolayer structures formed by slightly different preparation procedures.
This study investigates epitaxially oriented pentacene films grown on Cu(110) surfaces crystallizing either in the “thin film” phase with standing molecules or in the “single crystal” structure with molecules lying with their long axes parallel to the substrate.
doi:10.1021/cg101230j
PMCID: PMC3072112  PMID: 21479111
14.  An X-ray diffraction study on a single rod outer segment from frog retina 
Journal of Synchrotron Radiation  2012;19(Pt 4):574-578.
X-ray diffraction was recorded from retinal rod outer segments of frog using a microbeam.
X-ray diffraction patterns were recorded from isolated single rod outer segments of frog. The outer segments in Ringer’s solution were exposed to a 6 µm microbeam (15 keV) at the BL40XU beamline, SPring-8. The diffraction pattern demonstrated a remarkable regularity in the stacking and flatness of the disk membranes. The electron density profile calculated from the intensity of up to tenth-order reflections showed a pair of bilayers that comprise a disk membrane. The structure of the disk membrane and the changes in the profile on swelling generally agreed with previous reports. Radiation damage was significant with an irradiation of 5 × 105 Gy which is much lower than the known damaging dose on proteins at the liquid-nitrogen temperature.
doi:10.1107/S0909049512018535
PMCID: PMC3380658  PMID: 22713892
retina; microbeam; lamellar diffraction
15.  Structure refinement of the δ1p phase in the Fe–Zn system by single-crystal X-ray diffraction combined with scanning transmission electron microscopy 
The structure of the title compound has been refined by single-crystal synchrotron X-ray diffraction combined with spherical-aberration-corrected scanning transmission electron microscopy. The structure consists of iron-centred normal and disordered Zn12 icosahedra, zinc-centred Zn12 icosahedra, zinc-centred Zn16 icosioctahedra, and dangling Zn atoms that do not constitute any polyhedra.
The structure of the δ1p phase in the iron−zinc system has been refined by single-crystal synchrotron X-ray diffraction combined with scanning transmission electron microscopy. The large hexagonal unit cell of the δ1p phase with the space group of P63/mmc comprises more or less regular (normal) Zn12 icosahedra, disordered Zn12 icosahedra, Zn16 icosioctahedra and dangling Zn atoms that do not constitute any polyhedra. The unit cell contains 52 Fe and 504 Zn atoms so that the compound is expressed with the chemical formula of Fe13Zn126. All Fe atoms exclusively occupy the centre of normal and disordered icosahedra. Iron-centred normal icosahedra are linked to one another by face- and vertex-sharing forming two types of basal slabs, which are bridged with each other by face-sharing with icosioctahedra, whereas disordered icosahedra with positional disorder at their vertex sites are isolated from other polyhedra. The bonding features in the δ1p phase are discussed in comparison with those in the Γ and ζ phases in the iron−zinc system.
doi:10.1107/S2052520613034410
PMCID: PMC3970753  PMID: 24675597
synchrotron radiation; focused ion beam (FIB); intermetallic compound; icosahedron; scanning transmission electron microscopy
16.  Femtosecond X-ray protein nanocrystallography 
Chapman, Henry N. | Fromme, Petra | Barty, Anton | White, Thomas A. | Kirian, Richard A. | Aquila, Andrew | Hunter, Mark S. | Schulz, Joachim | DePonte, Daniel P. | Weierstall, Uwe | Doak, R. Bruce | Maia, Filipe R. N. C. | Martin, Andrew V. | Schlichting, Ilme | Lomb, Lukas | Coppola, Nicola | Shoeman, Robert L. | Epp, Sascha W. | Hartmann, Robert | Rolles, Daniel | Rudenko, Artem | Foucar, Lutz | Kimmel, Nils | Weidenspointner, Georg | Holl, Peter | Liang, Mengning | Barthelmess, Miriam | Caleman, Carl | Boutet, Sébastien | Bogan, Michael J. | Krzywinski, Jacek | Bostedt, Christoph | Bajt, Saša | Gumprecht, Lars | Rudek, Benedikt | Erk, Benjamin | Schmidt, Carlo | Hömke, André | Reich, Christian | Pietschner, Daniel | Strüder, Lothar | Hauser, Günter | Gorke, Hubert | Ullrich, Joachim | Herrmann, Sven | Schaller, Gerhard | Schopper, Florian | Soltau, Heike | Kühnel, Kai-Uwe | Messerschmidt, Marc | Bozek, John D. | Hau-Riege, Stefan P. | Frank, Matthias | Hampton, Christina Y. | Sierra, Raymond G. | Starodub, Dmitri | Williams, Garth J. | Hajdu, Janos | Timneanu, Nicusor | Seibert, M. Marvin | Andreasson, Jakob | Rocker, Andrea | Jönsson, Olof | Svenda, Martin | Stern, Stephan | Nass, Karol | Andritschke, Robert | Schröter, Claus-Dieter | Krasniqi, Faton | Bott, Mario | Schmidt, Kevin E. | Wang, Xiaoyu | Grotjohann, Ingo | Holton, James M. | Barends, Thomas R. M. | Neutze, Richard | Marchesini, Stefano | Fromme, Raimund | Schorb, Sebastian | Rupp, Daniela | Adolph, Marcus | Gorkhover, Tais | Andersson, Inger | Hirsemann, Helmut | Potdevin, Guillaume | Graafsma, Heinz | Nilsson, Björn | Spence, John C. H.
Nature  2011;470(7332):73-77.
X-ray crystallography provides the vast majority of macromolecular structures, but the success of the method relies on growing crystals of sufficient size. In conventional measurements, the necessary increase in X-ray dose to record data from crystals that are too small leads to extensive damage before a diffraction signal can be recorded1-3. It is particularly challenging to obtain large, well-diffracting crystals of membrane proteins, for which fewer than 300 unique structures have been determined despite their importance in all living cells. Here we present a method for structure determination where single-crystal X-ray diffraction ‘snapshots’ are collected from a fully hydrated stream of nanocrystals using femtosecond pulses from a hard-X-ray free-electron laser, the Linac Coherent Light Source4. We prove this concept with nanocrystals of photosystem I, one of the largest membrane protein complexes5. More than 3,000,000 diffraction patterns were collected in this study, and a three-dimensional data set was assembled from individual photosystem I nanocrystals (~200 nm to 2 μm in size). We mitigate the problem of radiation damage in crystallography by using pulses briefer than the timescale of most damage processes6. This offers a new approach to structure determination of macromolecules that do not yield crystals of sufficient size for studies using conventional radiation sources or are particularly sensitive to radiation damage.
doi:10.1038/nature09750
PMCID: PMC3429598  PMID: 21293373
17.  Exploring Protein Superstructures and Dynamics in Live Bacterial Cells Using Single-Molecule and Superresolution Imaging 
Single-molecule imaging enables biophysical measurements devoid of ensemble averaging, gives enhanced spatial resolution beyond the optical diffraction limit, and enables superresolution reconstruction of structures beyond the diffraction limit. This work summarizes how single-molecule and super-resolution imaging can be applied to the study of protein dynamics and superstructures in live Caulobacter crescentus cells to illustrate the power of these methods in bacterial imaging. Based on these techniques, the diffusion coefficient and dynamics of the histidine protein kinase PleC, the localization behavior of the polar protein PopZ, and the treadmilling behavior and protein superstructure of the structural protein MreB are investigated with sub-40-nm spatial resolution, all in live cells.
doi:10.1007/978-1-61779-282-3_8
PMCID: PMC3702733  PMID: 21909887
Single-molecule imaging; Live-cell imaging; Live-cell PALM; Superresolution imaging; Superlocalization; Caulobacter crescentus
18.  Surface Modification and Planar Defects of Calcium Carbonates by Magnetic Water Treatment 
Nanoscale Research Letters  2010;5(12):1982-1991.
Powdery calcium carbonates, predominantly calcite and aragonite, with planar defects and cation–anion mixed surfaces as deposited on low-carbon steel by magnetic water treatment (MWT) were characterized by X-ray diffraction, electron microscopy, and vibration spectroscopy. Calcite were found to form faceted nanoparticles having 3x () commensurate superstructure and with well-developed {} and {} surfaces to exhibit preferred orientations. Aragonite occurred as laths having 3x () commensurate superstructure and with well-developed () surface extending along [100] direction up to micrometers in length. The (hkil)-specific coalescence of calcite and rapid lath growth of aragonite under the combined effects of Lorentz force and a precondensation event account for a beneficial larger particulate/colony size for the removal of the carbonate scale from the steel substrate. The coexisting magnetite particles have well-developed {011} surfaces regardless of MWT.
doi:10.1007/s11671-010-9736-5
PMCID: PMC2991221  PMID: 21170405
Calcium carbonate; Nanoparticle; Magnetic water treatment; Surface modification; Superstructure; TEM
19.  Gap junction structures: Analysis of the x-ray diffraction data 
The Journal of Cell Biology  1977;74(2):629-645.
Models for the spatial distribution of protein, lipid and water in gap junction structures have been constructed from the results of the analysis of X-ray diffraction data described here and the electron microscope and chemical data presented in the preceding paper (Caspar, D. L. D., D. A. Goodenough, L. Makowski, and W.C. Phillips. 1977. 74:605-628). The continuous intensity distribution on the meridian of the X-ray diffraction pattern was measured, and corrected for the effects of the partially ordered stacking and partial orientation of the junctions in the X-ray specimens. The electron density distribution in the direction perpendicular to the plane of the junction was calculated from the meridional intensity data. Determination of the interference function for the stacking of the junctions improved the accuracy of the electron density profile. The pair-correlation function, which provides information about the packing of junctions in the specimen, was calculated from the interference function. The intensities of the hexagonal lattice reflections on the equator of the X-ray pattern were used in coordination with the electron microscope data to calculate to the two-dimensional electron density projection onto the plane of the membrane. Differences in the structure of the connexons as seen in the meridional profile and equatorial projections were shown to be correlated to changes in lattice constant. The parts of the junction structure which are variable have been distinguished from the invariant parts by comparison of the X-ray data from different specimens. The combination of these results with electron microscope and chemical data provides low resolution three- dimensional representations of the structures of gap junctions.
PMCID: PMC2110084  PMID: 889612
20.  Crystallization of the focal adhesion kinase targeting (FAT) domain in a primitive orthorhombic space group 
X-ray diffraction data from the targeting (FAT) domain of focal adhesion kinase (FAK) were collected from a single crystal that diffracted to 1.99 Å resolution.
X-ray diffraction data from the targeting (FAT) domain of focal adhesion kinase (FAK) were collected from a single crystal that diffracted to 1.99 Å resolution and reduced to the primitive orthorhombic lattice. A single molecule was predicted to be present in the asymmetric unit based on the Matthews coefficient. The data were phased using molecular-replacement methods using an existing model of the FAK FAT domain. All structures of human focal adhesion kinase FAT domains solved to date have been solved in a C-centered orthorhombic space group.
doi:10.1107/S1744309108011421
PMCID: PMC2496861  PMID: 18540077
focal adhesion kinase; targeting domain
21.  Converting Layered Zinc Acetate Nanobelts to One-dimensional Structured ZnO Nanoparticle Aggregates and their Photocatalytic Activity 
Nanoscale Research Letters  2008;3(6):201-204.
We were successful in synthesizing periodic layered zinc acetate nanobelts through a hydrothermal solution process. One-dimensional structured ZnO nanoparticle aggregate was obtained by simple thermal annealing of the above-mentioned layered ZnO acetate nanobelts at 300 °C. The morphology, microstructure, and composition of the synthesized ZnO and its precursors were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), and infrared spectroscopy, respectively. Low angle X-ray diffraction spectra reveal that as-synthesized zinc acetate has a layered structure with two interlayer d-spacings (one is 1.32 nm and the other is 1.91 nm). SEM and TEM indicate that nanobelt precursors were 100–200 nm in width and possesses length up to 30 μm. Calcination of precursor in air results in the formation of one-dimensional structured ZnO nanoparticle aggregates. In addition, the as-prepared ZnO nanoparticle aggregates exhibit high photocatalytic activity for the photocatalytic degradation of methyl orange (MO).
doi:10.1007/s11671-008-9136-2
PMCID: PMC3244811
Nanostructures; Hydrothermal crystal growth; Nanomaterials; Semiconducting II–VI materials
22.  Observation of ‘hidden’ planar defects in boron carbide nanowires and identification of their orientations 
The physical properties of nanostructures strongly depend on their structures, and planar defects in particular could significantly affect the behavior of the nanowires. In this work, planar defects (twins or stacking faults) in boron carbide nanowires are extensively studied by transmission electron microscopy (TEM). Results show that these defects can easily be invisible, i.e., no presence of characteristic defect features like modulated contrast in high-resolution TEM images and streaks in diffraction patterns. The simplified reason of this invisibility is that the viewing direction during TEM examination is not parallel to the (001)-type planar defects. Due to the unique rhombohedral structure of boron carbide, planar defects are only distinctive when the viewing direction is along the axial or short diagonal directions ([100], [010], or 1¯10) within the (001) plane (in-zone condition). However, in most cases, these three characteristic directions are not parallel to the viewing direction when boron carbide nanowires are randomly dispersed on TEM grids. To identify fault orientations (transverse faults or axial faults) of those nanowires whose planar defects are not revealed by TEM, a new approach is developed based on the geometrical analysis between the projected preferred growth direction of a nanowire and specific diffraction spots from diffraction patterns recorded along the axial or short diagonal directions out of the (001) plane (off-zone condition). The approach greatly alleviates tedious TEM examination of the nanowire and helps to establish the reliable structure–property relations. Our study calls attention to researchers to be extremely careful when studying nanowires with potential planar defects by TEM. Understanding the true nature of planar defects is essential in tuning the properties of these nanostructures through manipulating their structures.
doi:10.1186/1556-276X-9-30
PMCID: PMC3898527  PMID: 24423258
Boron carbide nanowires; Rhombohedral crystal system; Transmission electron microscopy; Planar defects
23.  Engineering an improved crystal contact across a solvent-mediated interface of human fibroblast growth factor 1 
A solvent-mediated crystal contact in fibroblast growth factor-1 was subjected to mutagenesis to improve crystal growth. The results indicate that improved growth was achieved upon elimination of the solvent-mediated interface and introduction of direct crystal contacts.
Large-volume protein crystals are a prerequisite for neutron diffraction studies and their production represents a bottleneck in obtaining neutron structures. Many protein crystals that permit the collection of high-resolution X-ray diffraction data are inappropriate for neutron diffraction owing to a plate-type morphology that limits the crystal volume. Human fibroblast growth factor 1 crystallizes in a plate morphology that yields atomic resolution X-ray diffraction data but has insufficient volume for neutron diffraction. The thin physical dimension has been identified as corresponding to the b cell edge and the X-ray structure identified a solvent-mediated crystal contact adjacent to position Glu81 that was hypothesized to limit efficient crystal growth in this dimension. In this report, a series of mutations at this crystal contact designed to both reduce side-chain entropy and replace the solvent-mediated interface with direct side-chain contacts are reported. The results suggest that improved crystal growth is achieved upon the introduction of direct crystal contacts, while little improvement is observed with side-chain entropy-reducing mutations alone.
doi:10.1107/S1744309109036987
PMCID: PMC2777043  PMID: 19923735
protein crystallization; side-chain entropy; neutron diffraction; protein engineering; crystal growth
24.  Crystallization, dehydration and experimental phasing of WbdD, a bifunctional kinase and methyltransferase from Escherichia coli O9a 
The optimization of WbdD crystals using a novel dehydration protocol and experimental phasing at 3.5 Å resolution by cross-crystal averaging followed by molecular replacement of electron density into a non-isomorphous 3.0 Å resolution native data set are reported.
WbdD is a bifunctional kinase/methyltransferase that is responsible for regulation of lipopolysaccharide O antigen polysaccharide chain length in Escherichia coli serotype O9a. Solving the crystal structure of this protein proved to be a challenge because the available crystals belonging to space group I23 only diffracted to low resolution (>95% of the crystals diffracted to resolution lower than 4 Å and most only to 8 Å) and were non-isomorphous, with changes in unit-cell dimensions of greater than 10%. Data from a serendipitously found single native crystal that diffracted to 3.0 Å resolution were non-isomorphous with a lower (3.5 Å) resolution selenomethionine data set. Here, a strategy for improving poor (3.5 Å resolution) initial phases by density modification and cross-crystal averaging with an additional 4.2 Å resolution data set to build a crude model of WbdD is desribed. Using this crude model as a mask to cut out the 3.5 Å resolution electron density yielded a successful molecular-replacement solution of the 3.0 Å resolution data set. The resulting map was used to build a complete model of WbdD. The hydration status of individual crystals appears to underpin the variable diffraction quality of WbdD crystals. After the initial structure had been solved, methods to control the hydration status of WbdD were developed and it was thus possible to routinely obtain high-resolution diffraction (to better than 2.5 Å resolution). This novel and facile crystal-dehydration protocol may be useful for similar challenging situations.
doi:10.1107/S0907444912029599
PMCID: PMC3447403  PMID: 22993091
WbdD; crystal dehydration
25.  Uric Acid Spherulites in the Reflector Layer of Firefly Light Organ 
PLoS ONE  2013;8(2):e56406.
Background
In firefly light organs, reflector layer is a specialized tissue which is believed to play a key role for increasing the bioluminescence intensity through reflection. However, the nature of this unique tissue remains elusive. In this report, we investigated the role, fine structure and nature of the reflector layer in the light organ of adult Luciola cerata.
Principal Findings
Our results indicated that the reflector layer is capable of reflecting bioluminescence, and contains abundant uric acid. Electron microscopy (EM) demonstrated that the cytosol of the reflector layer's cells is filled with densely packed spherical granules, which should be the uric acid granules. These granules are highly regular in size (∼700 nm in diameter), and exhibit a radial internal structure. X-ray diffraction (XRD) analyses revealed that an intense single peak pattern with a d-spacing value of 0.320 nm is specifically detected in the light organ, and is highly similar to the diffraction peak pattern and d-spacing value of needle-formed crystals of monosodium urate monohydrate. However, the molar ratio evaluation of uric acid to various cations (K+, Na+, Ca2+ and Mg2+) in the light organ deduced that only a few uric acid molecules were in the form of urate salts. Thus, non-salt uric acid should be the source of the diffraction signal detected in the light organ.
Conclusions
In the light organ, the intense single peak diffraction signal might come from a unique needle-like uric acid form, which is different from other known structures of non-salt uric acid form. The finding of a radial structure in the granules of reflector layer implies that the spherical uric acid granules might be formed by the radial arrangement of needle-formed packing matter.
doi:10.1371/journal.pone.0056406
PMCID: PMC3575340  PMID: 23441187

Results 1-25 (410102)