PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (1643873)

Clipboard (0)
None

Related Articles

1.  DEAR1 Is a Dominant Regulator of Acinar Morphogenesis and an Independent Predictor of Local Recurrence-Free Survival in Early-Onset Breast Cancer 
PLoS Medicine  2009;6(5):e1000068.
Ann Killary and colleagues describe a new gene that is genetically altered in breast tumors, and that may provide a new breast cancer prognostic marker.
Background
Breast cancer in young women tends to have a natural history of aggressive disease for which rates of recurrence are higher than in breast cancers detected later in life. Little is known about the genetic pathways that underlie early-onset breast cancer. Here we report the discovery of DEAR1 (ductal epithelium–associated RING Chromosome 1), a novel gene encoding a member of the TRIM (tripartite motif) subfamily of RING finger proteins, and provide evidence for its role as a dominant regulator of acinar morphogenesis in the mammary gland and as an independent predictor of local recurrence-free survival in early-onset breast cancer.
Methods and Findings
Suppression subtractive hybridization identified DEAR1 as a novel gene mapping to a region of high-frequency loss of heterozygosity (LOH) in a number of histologically diverse human cancers within Chromosome 1p35.1. In the breast epithelium, DEAR1 expression is limited to the ductal and glandular epithelium and is down-regulated in transition to ductal carcinoma in situ (DCIS), an early histologic stage in breast tumorigenesis. DEAR1 missense mutations and homozygous deletion (HD) were discovered in breast cancer cell lines and tumor samples. Introduction of the DEAR1 wild type and not the missense mutant alleles to complement a mutation in a breast cancer cell line, derived from a 36-year-old female with invasive breast cancer, initiated acinar morphogenesis in three-dimensional (3D) basement membrane culture and restored tissue architecture reminiscent of normal acinar structures in the mammary gland in vivo. Stable knockdown of DEAR1 in immortalized human mammary epithelial cells (HMECs) recapitulated the growth in 3D culture of breast cancer cell lines containing mutated DEAR1, in that shDEAR1 clones demonstrated disruption of tissue architecture, loss of apical basal polarity, diffuse apoptosis, and failure of lumen formation. Furthermore, immunohistochemical staining of a tissue microarray from a cohort of 123 young female breast cancer patients with a 20-year follow-up indicated that in early-onset breast cancer, DEAR1 expression serves as an independent predictor of local recurrence-free survival and correlates significantly with strong family history of breast cancer and the triple-negative phenotype (ER−, PR−, HER-2−) of breast cancers with poor prognosis.
Conclusions
Our data provide compelling evidence for the genetic alteration and loss of expression of DEAR1 in breast cancer, for the functional role of DEAR1 in the dominant regulation of acinar morphogenesis in 3D culture, and for the potential utility of an immunohistochemical assay for DEAR1 expression as an independent prognostic marker for stratification of early-onset disease.
Editors' Summary
Background
Each year, more than one million women discover that they have breast cancer. This type of cancer begins when cells in the breast that line the milk-producing glands or the tubes that take the milk to the nipples (glandular and ductal epithelial cells, respectively) acquire genetic changes that allow them to grow uncontrollably and to move around the body (metastasize). The uncontrolled division leads to the formation of a lump that can be detected by mammography (a breast X-ray) or by manual breast examination. Breast cancer is treated by surgical removal of the lump or, if the cancer has started to spread, by removal of the whole breast (mastectomy). Surgery is usually followed by radiotherapy or chemotherapy. These “adjuvant” therapies are designed to kill any remaining cancer cells but can make patients very ill. Generally speaking, the outlook for women with breast cancer is good. In the US, for example, nearly 90% of affected women are still alive five years after their diagnosis.
Why Was This Study Done?
Although breast cancer is usually diagnosed in women in their 50s or 60s, some women develop breast cancer much earlier. In these women, the disease is often very aggressive. Compared to older women, young women with breast cancer have a lower overall survival rate and their cancer is more likely to recur locally or to metastasize. It would be useful to be able to recognize those younger women at the greatest risk of cancer recurrence so that they could be offered intensive surveillance and adjuvant therapy; those women at a lower risk could have gentler treatments. To achieve this type of “stratification,” the genetic changes that underlie breast cancer in young women need to be identified. In this study, the researchers discover a gene that is genetically altered (by mutations or deletion) in early-onset breast cancer and then investigate whether its expression can predict outcomes in women with this disease.
What Did the Researchers Do and Find?
The researchers used “suppression subtractive hybridization” to identify a new gene in a region of human Chromosome 1 where loss of heterozygosity (LOH; a genetic alteration associated with cancer development) frequently occurs. They called the gene DEAR1 (ductal epithelium-associated RING Chromosome 1) to indicate that it is expressed in ductal and glandular epithelial cells and encodes a “RING finger” protein (specifically, a subtype called a TRIM protein; RING finger proteins such as BRCA1 and BRCA2 have been implicated in early cancer development and in a large fraction of inherited breast cancers). DEAR1 expression was reduced or lost in several ductal carcinomas in situ (a local abnormality that can develop into breast cancer) and advanced breast cancers, the researchers report. Furthermore, many breast tumors carried DEAR1 missense mutations (genetic changes that interfere with the normal function of the DEAR1 protein) or had lost both copies of DEAR1 (the human genome contains two copies of most genes). To determine the function of DEAR1, the researchers replaced a normal copy of DEAR1 into a breast cancer cell that had a mutation in DEAR1. They then examined the growth of these genetically manipulated cells in special three-dimensional cultures. The breast cancer cells without DEAR1 grew rapidly without an organized structure while the breast cancer cells containing the introduced copy of DEAR1 formed structures that resembled normal breast acini (sac-like structures that secrete milk). In normal human mammary epithelial cells, the researchers silenced DEAR1 expression and also showed that without DEAR1, the normal mammary cells lost their ability to form proper acini. Finally, the researchers report that DEAR1 expression (detected “immunohistochemically”) was frequently lost in women who had had early-onset breast cancer and that the loss of DEAR1 expression correlated with reduced local recurrence-free survival, a strong family history of breast cancer and with a breast cancer subtype that has a poor outcome.
What Do These Findings Mean?
These findings indicate that genetic alteration and loss of expression of DEAR1 are common in breast cancer. Although laboratory experiments may not necessarily reflect what happens in people, the results from the three-dimensional culture of breast epithelial cells suggest that DEAR1 may regulate the normal acinar structure of the breast. Consequently, loss of DEAR1 expression could be an early event in breast cancer development. Most importantly, the correlation between DEAR1 expression and both local recurrence in early-onset breast cancer and a breast cancer subtype with a poor outcome suggests that it might be possible to use DEAR1 expression to identify women with early-onset breast cancer who have an increased risk of local recurrence so that they get the most appropriate treatment for their cancer.
Additional Information
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1000068.
This study is further discussed in a PLoS Medicine Perspective by Senthil Muthuswamy
The US National Cancer Institute provides detailed information for patients and health professionals on all aspects of breast cancer, including information on genetic alterations in breast cancer (in English and Spanish)
The MedlinePlus Encyclopedia provides information for patients about breast cancer; MedlinePlus also provides links to many other breast cancer resources (in English and Spanish)
The UK charities Cancerbackup (now merged with MacMillan Cancer Support) and Cancer Research UK also provide detailed information about breast cancer
doi:10.1371/journal.pmed.1000068
PMCID: PMC2673042  PMID: 19536326
2.  Subtyping of Breast Cancer by Immunohistochemistry to Investigate a Relationship between Subtype and Short and Long Term Survival: A Collaborative Analysis of Data for 10,159 Cases from 12 Studies 
PLoS Medicine  2010;7(5):e1000279.
Paul Pharoah and colleagues evaluate the prognostic significance of immunohistochemical subtype classification in more than 10,000 breast cancer cases with early disease, and examine the influence of a patient's survival time on the prediction of future survival.
Background
Immunohistochemical markers are often used to classify breast cancer into subtypes that are biologically distinct and behave differently. The aim of this study was to estimate mortality for patients with the major subtypes of breast cancer as classified using five immunohistochemical markers, to investigate patterns of mortality over time, and to test for heterogeneity by subtype.
Methods and Findings
We pooled data from more than 10,000 cases of invasive breast cancer from 12 studies that had collected information on hormone receptor status, human epidermal growth factor receptor-2 (HER2) status, and at least one basal marker (cytokeratin [CK]5/6 or epidermal growth factor receptor [EGFR]) together with survival time data. Tumours were classified as luminal and nonluminal tumours according to hormone receptor expression. These two groups were further subdivided according to expression of HER2, and finally, the luminal and nonluminal HER2-negative tumours were categorised according to expression of basal markers. Changes in mortality rates over time differed by subtype. In women with luminal HER2-negative subtypes, mortality rates were constant over time, whereas mortality rates associated with the luminal HER2-positive and nonluminal subtypes tended to peak within 5 y of diagnosis and then decline over time. In the first 5 y after diagnosis the nonluminal tumours were associated with a poorer prognosis, but over longer follow-up times the prognosis was poorer in the luminal subtypes, with the worst prognosis at 15 y being in the luminal HER2-positive tumours. Basal marker expression distinguished the HER2-negative luminal and nonluminal tumours into different subtypes. These patterns were independent of any systemic adjuvant therapy.
Conclusions
The six subtypes of breast cancer defined by expression of five markers show distinct behaviours with important differences in short term and long term prognosis. Application of these markers in the clinical setting could have the potential to improve the targeting of adjuvant chemotherapy to those most likely to benefit. The different patterns of mortality over time also suggest important biological differences between the subtypes that may result in differences in response to specific therapies, and that stratification of breast cancers by clinically relevant subtypes in clinical trials is urgently required.
Please see later in the article for the Editors' Summary
Editors' Summary
Background
Each year, more than one million women discover they have breast cancer. Breast cancer begins when cells in the breast's milk-producing glands or in the tubes (ducts) that take milk to the nipples acquire genetic changes that allow them to divide uncontrollably and to move around the body (metastasize). The uncontrolled cell division leads to the formation of a lump that can be detected by mammography (a breast X-ray) or by manual breast examination. Breast cancer is treated by surgical removal of the lump or, if the cancer has started to spread, by removal of the whole breast (mastectomy). Surgery is usually followed by radiotherapy or chemotherapy. These “adjuvant” therapies are designed to kill any remaining cancer cells but can make women very ill. Generally speaking, the outlook (prognosis) for women with breast cancer is good. In the United States, for example, nearly 90% of affected women are still alive five years after their diagnosis.
Why Was This Study Done?
Because there are several types of cells in the milk ducts and glands, there are several subtypes of breast cancer. Luminal tumors, for example, begin in the cells that line the ducts and glands and usually grow slowly; basal-type tumors arise in deeper layers of the ducts and glands and tend to grow quickly. Clinicians need to distinguish between different breast cancer subtypes so that they can give women a realistic prognosis and can give adjuvant treatments to those women who are most likely to benefit. One way to distinguish between different subtypes is to stain breast cancer samples using antibodies (immune system proteins) that recognize particular proteins (antigens). This “immunohistochemical” approach can identify several breast cancer subtypes but its prognostic value and the best way to classify breast tumors remains unclear. In this study, the researchers investigate the survival over time of women with six major subtypes of breast cancer classified using five immunohistochemical markers: the estrogen receptor and the progesterone receptor (two hormone receptors expressed by luminal cells), the human epidermal growth factors receptor-2 (HER2, a protein marker used to select specific adjuvant therapies), and CK5/6 and EGFR (proteins expressed by basal cells).
What Did the Researchers Do and Find?
The researchers pooled data on survival time and on the expression of the five immunohistochemical markers from more than 10,000 cases of breast cancer from 12 studies. They then divided the tumors into six subtypes on the basis of their marker expression: luminal (hormone receptor-positive), HER2-positive tumors; luminal, HER2-negative, basal marker-positive tumors; luminal, HER2-negative, basal marker-negative tumors; nonluminal (hormone receptor-negative), HER2-positive tumors; nonluminal, HER2-negative, basal marker-positive tumors; and nonluminal, HER2-negative, basal marker-negative tumors. In the first five years after diagnosis, women with nonluminal tumor subtypes had the worst prognosis but at 15 years after diagnosis, women with luminal HER2-positive tumors had the worst prognosis. Furthermore, death rates (the percentage of affected women dying each year) differed by subtype over time. Thus, women with the two luminal HER2-negative subtypes were as likely to die soon after diagnosis as at later times whereas the death rates associated with nonluminal subtypes peaked within five years of diagnosis and then declined.
What Do These Findings Mean?
These and other findings indicate that the six subtypes of breast cancer defined by the expression of five immunohistochemical markers have distinct biological characteristics that are associated with important differences in short-term and long-term outcomes. Because different laboratories measured the immunohistochemical markers using different methods, it is possible that some of the tumors included in this study were misclassified. However, the finding of clear differences in the behavior of the immunochemically classified subtypes suggests that the use of the five markers for tumor classification might be robust enough for routine clinical practice. The application of these markers in the clinical setting, suggest the researchers, could improve the targeting of adjuvant therapies to those women most likely to benefit. Furthermore, note the researchers, these findings strongly suggest that subtype-specific responses should be evaluated in future clinical trials of treatments for breast cancer.
Additional Information
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1000279.
This study is further discussed in a PLoS Medicine Perspective by Stefan Ambs
The US National Cancer Institute provides detailed information for patients and health professionals on all aspects of breast cancer (in English and Spanish)
The American Cancer Society has a detailed guide to breast cancer, which includes information on the immunochemical classification of breast cancer subtypes
The UK charities MacMillan Cancer Support and Cancer Research UK also provide detailed information about breast cancer
The MedlinePlus Encyclopedia provides information for patients about breast cancer; Medline Plus provides links to many other breast cancer resources (in English and Spanish)
doi:10.1371/journal.pmed.1000279
PMCID: PMC2876119  PMID: 20520800
3.  Association between Melanocytic Nevi and Risk of Breast Diseases: The French E3N Prospective Cohort 
PLoS Medicine  2014;11(6):e1001660.
Using data from the French E3N prospective cohort, Marina Kvaskoff and colleagues examine the association between number of cutaneous nevi and the risk for breast cancer.
Please see later in the article for the Editors' Summary
Background
While melanocytic nevi have been associated with genetic factors and childhood sun exposure, several observations also suggest a potential hormonal influence on nevi. To test the hypothesis that nevi are associated with breast tumor risk, we explored the relationships between number of nevi and benign and malignant breast disease risk.
Methods and Findings
We prospectively analyzed data from E3N, a cohort of French women aged 40–65 y at inclusion in 1990. Number of nevi was collected at inclusion. Hazard ratios (HRs) for breast cancer and 95% confidence intervals (CIs) were calculated using Cox proportional hazards regression models. Associations of number of nevi with personal history of benign breast disease (BBD) and family history of breast cancer were estimated using logistic regression. Over the period 15 June 1990–15 June 2008, 5,956 incident breast cancer cases (including 5,245 invasive tumors) were ascertained among 89,902 women. In models adjusted for age, education, and known breast cancer risk factors, women with “very many” nevi had a significantly higher breast cancer risk (HR = 1.13, 95% CI = 1.01–1.27 versus “none”; ptrend = 0.04), although significance was lost after adjustment for personal history of BBD or family history of breast cancer. The 10-y absolute risk of invasive breast cancer increased from 3,749 per 100,000 women without nevi to 4,124 (95% CI = 3,674–4,649) per 100,000 women with “very many” nevi. The association was restricted to premenopausal women (HR = 1.40, ptrend = 0.01), even after full adjustment (HR = 1.34, ptrend = 0.03; phomogeneity = 0.04), but did not differ according to breast cancer type or hormone receptor status. In addition, we observed significantly positive dose–response relationships between number of nevi and history of biopsy-confirmed BBD (n = 5,169; ptrend<0.0001) and family history of breast cancer in first-degree relatives (n = 7,472; ptrend = 0.0003). The main limitations of our study include self-report of number of nevi using a qualitative scale, and self-reported history of biopsied BBD.
Conclusions
Our findings suggest associations between number of nevi and the risk of premenopausal breast cancer, BBD, and family history of breast cancer. More research is warranted to elucidate these relationships and to understand their underlying mechanisms.
Please see later in the article for the Editors' Summary
Editors' Summary
Background
In 2012, nearly 1.7 million women worldwide discovered they had breast cancer, and about half a million women died from the disease. Breast cancer begins when cells in the breast acquire genetic changes that allow them to divide uncontrollably and to move around the body (metastasize). Uncontrolled cell division leads to the formation of a lump that can be detected by mammography (a breast X-ray) or by manual breast examination. Breast cancer is treated by surgical removal of the lump, or, if the cancer has started to spread, by removal of the whole breast (mastectomy). Surgery is usually followed by radiotherapy or chemotherapy to kill any remaining cancer cells. Because the female sex hormones estrogen and progesterone stimulate the growth of some tumors, drugs that block hormone receptors are also used to treat receptor-positive breast cancer. Nowadays, the prognosis (outlook) for women with breast cancer is good, and in developed countries, nearly 90% of affected women are still alive five years after diagnosis.
Why Was This Study Done?
Several hormone-related factors affect a woman's chances of developing breast cancer. For example, women who have no children or who have them late in life have a higher breast cancer risk than women who have several children when they are young because pregnancy alters sex hormone levels. Interestingly, the development of moles (nevi)—dark skin blemishes that are risk factors for the development of melanoma, a type of skin cancer—may also be affected by estrogen and progesterone. Thus, the number of nevi might be a marker of blood hormone levels and might predict breast cancer risk. In this prospective cohort study, the researchers test this hypothesis by investigating the association between how many moles a woman has and her breast cancer risk. A prospective cohort study enrolls a group (cohort) of people, determines their baseline characteristics, and follows them over time to see which characteristics are associated with the development of specific diseases.
What Did the Researchers Do and Find?
In 1990, the E3N prospective cohort study enrolled nearly 100,000 French women (mainly school teachers) aged 40–65 years to investigate cancer risk factors. The women completed a baseline questionnaire about their lifestyle and medical history, and regular follow-up questionnaires that asked about cancer occurrence. In the initial questionnaire, the women indicated whether they had no, a few, many, or very many moles. Between 1990 and 2008, nearly 6,000 women in the cohort developed breast cancer. Using statistical methods to calculate hazard ratios (an “HR” compares how often a particular event happens in two groups with different characteristics; an HR greater than one indicates that a specific characteristic is associated with an increased risk of the event), the researchers report that women with “very many” nevi had a significantly higher breast cancer risk (a higher risk that was unlikely to have occurred by chance) than women with no nevi. Specifically, the age-adjusted HR for breast cancer among women with “very many” nevi compared to women with no nevi was 1.17. After adjustment for a personal history of benign (noncancerous) breast disease and a family history of breast cancer (two established risk factors for breast cancer), the association between nevi and breast cancer risk among the whole cohort became nonsignificant. Notably, however, the association among only premenopausal women remained significant after full adjustment (HR = 1.34), which corresponded to an increase in ten-year absolute risk of invasive breast cancer from 2,515 per 100,000 women with no nevi to 3,370 per 100,000 women with “very many” nevi.
What Do These Findings Mean?
These findings suggest that among premenopausal women there is a modest association between nevi number and breast cancer risk. This noncausal relationship may indicate that nevi and breast diseases are affected in similar ways by hormones or share common genetic factors, but the accuracy of these findings may be limited by aspects of the study design. For example, self-report of nevi numbers using a qualitative scale may have introduced some inaccuracies into the estimates of the association between nevi number and breast cancer risk. Most importantly, these findings are insufficient to support the use of nevi counts in breast cancer screening or diagnosis. Rather, together with the findings reported by Zhang et al. in an independent PLOS Medicine Research Article, they suggest that further studies into the biological mechanisms underlying the relationship between nevi and breast cancer and the association itself should be undertaken.
Additional Information
Please access these websites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1001660.
This study is further discussed in a PLOS Medicine Perspective by Fuhrman and Cardenas
An independent PLOS Medicine Research Article by Zhang et al. also investigates the relationship between nevi number and breast cancer risk
The US National Cancer Institute provides comprehensive information about cancer (in English and Spanish), including detailed information for patients and professionals about breast cancer; it also has a fact sheet on moles
Cancer Research UK, a not-for profit organization, provides information about cancer, including detailed information on breast cancer
The UK National Health Service Choices website has information and personal stories about breast cancer; the not-for profit organization Healthtalkonline also provides personal stories about dealing with breast cancer
More information about the E3N prospective cohort study is available; detailed information is available in French
doi:10.1371/journal.pmed.1001660
PMCID: PMC4051602  PMID: 24915306
4.  Association between Cutaneous Nevi and Breast Cancer in the Nurses' Health Study: A Prospective Cohort Study 
PLoS Medicine  2014;11(6):e1001659.
Using data from the Nurses' Health Study, Jiali Han and colleagues examine the association between number of cutaneous nevi and the risk for breast cancer.
Please see later in the article for the Editors' Summary
Background
Cutaneous nevi are suggested to be hormone-related. We hypothesized that the number of cutaneous nevi might be a phenotypic marker of plasma hormone levels and predict subsequent breast cancer risk.
Methods and Findings
We followed 74,523 female nurses for 24 y (1986–2010) in the Nurses' Health Study and estimate the relative risk of breast cancer according to the number of cutaneous nevi. We adjusted for the known breast cancer risk factors in the models. During follow-up, a total of 5,483 invasive breast cancer cases were diagnosed. Compared to women with no nevi, women with more cutaneous nevi had higher risks of breast cancer (multivariable-adjusted hazard ratio, 1.04, 95% confidence interval [CI], 0.98–1.10 for 1–5 nevi; 1.15, 95% CI, 1.00–1.31 for 6–14 nevi, and 1.35, 95% CI, 1.04–1.74 for 15 or more nevi; p for continuous trend = 0.003). Over 24 y of follow-up, the absolute risk of developing breast cancer increased from 8.48% for women without cutaneous nevi to 8.82% (95% CI, 8.31%–9.33%) for women with 1–5 nevi, 9.75% (95% CI, 8.48%–11.11%) for women with 6–14 nevi, and 11.4% (95% CI, 8.82%–14.76%) for women with 15 or more nevi. The number of cutaneous nevi was associated with increased risk of breast cancer only among estrogen receptor (ER)–positive tumors (multivariable-adjusted hazard ratio per five nevi, 1.09, 95% CI, 1.02–1.16 for ER+/progesterone receptor [PR]–positive tumors; 1.08, 95% CI, 0.94–1.24 for ER+/PR− tumors; and 0.99, 95% CI, 0.86–1.15 for ER−/PR− tumors). Additionally, we tested plasma hormone levels according to the number of cutaneous nevi among a subgroup of postmenopausal women without postmenopausal hormone use (n = 611). Postmenopausal women with six or more nevi had a 45.5% higher level of free estradiol and a 47.4% higher level of free testosterone compared to those with no nevi (p for trend = 0.001 for both). Among a subgroup of 362 breast cancer cases and 611 matched controls with plasma hormone measurements, the multivariable-adjusted odds ratio for every five nevi attenuated from 1.25 (95% CI, 0.89–1.74) to 1.16 (95% CI, 0.83–1.64) after adjusting for plasma hormone levels. Key limitations in this study are that cutaneous nevi were self-counted in our cohort and that the study was conducted in white individuals, and thus the findings do not necessarily apply to other populations.
Conclusions
Our results suggest that the number of cutaneous nevi may reflect plasma hormone levels and predict breast cancer risk independently of previously known factors.
Please see later in the article for the Editors' Summary
Editors' Summary
Background
One woman in eight will develop breast cancer during her lifetime. Breast cancer begins when cells in the breast acquire genetic changes that allow them to divide uncontrollably (which leads to the formation of a lump in the breast) and to move around the body (metastasize). The treatment of breast cancer, which is diagnosed using mammography (a breast X-ray) or manual breast examination and biopsy, usually involves surgery to remove the lump, or the whole breast (mastectomy) if the cancer has started to metastasize. After surgery, women often receive chemotherapy or radiotherapy to kill any remaining cancer cells and may also be given drugs that block the action of estrogen and progesterone, female sex hormones that stimulate the growth of some breast cancer cells. Globally, half a million women die from breast cancer each year. However, in developed countries, nearly 90% of women affected by breast cancer are still alive five years after diagnosis.
Why Was This Study Done?
Several sex hormone–related factors affect breast cancer risk, including at what age a woman has her first child (pregnancy alters sex hormone levels) and her age at menopause, when estrogen levels normally drop. Moreover, postmenopausal women with high circulating levels of estrogen and testosterone (a male sex hormone) have an increased breast cancer risk. Interestingly, moles (nevi)—dark skin blemishes that are a risk factor for the development of melanoma, a type of skin cancer—often darken or enlarge during pregnancy. Might the number of nevi be a marker of hormone levels, and could nevi counts therefore be used to predict an individual's risk of breast cancer? In this prospective cohort study, the researchers look for an association between number of nevi and breast cancer risk among participants in the US Nurses' Health Study (NHS). A prospective cohort study enrolls a group of people, determines their baseline characteristics, and follows them over time to see which characteristics are associated with the development of certain diseases. The NHS, which enrolled 121,700 female nurses aged 30–55 years in 1976, is studying risk factors for cancer and other chronic diseases in women.
What Did the Researchers Do and Find?
In 1986, nearly 75,000 NHS participants (all of whom were white) reported how many nevi they had on their left arm. Over the next 24 years, 5,483 invasive breast cancers were diagnosed in these women. Compared to women with no nevi, women with increasing numbers of nevi had a higher risk of breast cancer after adjustment for known breast cancer risk factors. Specifically, among women with 1–5 nevi, the hazard ratio (HR) for breast cancer was 1.04, whereas among women with 15 or more nevi the HR was 1.35. An HR compares how often a particular event occurs in two groups with different characteristics; an HR greater than one indicates that a specific characteristic is associated with an increased risk of the event. Over 24 years of follow-up, the absolute risk of developing breast cancer was 8.48% in women with no nevi but 11.4% for women with 15 or more nevi. Notably, postmenopausal women with six or more nevi had higher blood levels of estrogen and testosterone than women with no nevi. Finally, in a subgroup analysis, the association between number of nevi and breast cancer risk disappeared after adjustment for hormone levels.
What Do These Findings Mean?
These findings support the hypothesis that the number of nevi reflects sex hormone levels in women and may predict breast cancer risk. Notably, they show that the association between breast cancer risk and nevus number was independent of known risk factors for breast cancer, and that the risk of breast cancer increased with the number of nevi in a dose-dependent manner. These findings also suggest that a hormonal mechanism underlies the association between nevus number and breast cancer risk. Because this study involved only white participants, these findings may not apply to non-white women. Moreover, the use of self-reported data on nevus numbers may affect the accuracy of these findings. Finally, because this study is observational, these findings are insufficient to support any changes in clinical recommendations for breast cancer screening or diagnosis. Nevertheless, these data and those in an independent PLOS Medicine Research Article by Kvaskoff et al. support the need for further investigation of the association between nevi and breast cancer risk and of the mechanisms underlying this relationship.
Additional Information
Please access these websites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1001659.
An independent PLOS Medicine Research Article by Kvaskoff et al. also investigates the relationship between nevi and breast cancer risk
The US National Cancer Institute provides comprehensive information about cancer (in English and Spanish), including detailed information for patients and professionals about breast cancer; it also has a fact sheet on moles
Cancer Research UK, a not-for profit organization, provides information about cancer, including detailed information on breast cancer
The UK National Health Service Choices website has information and personal stories about breast cancer; the not-for profit organization Healthtalkonline also provides personal stories about dealing with breast cancer
More information about the Nurses' Health Study is available
doi:10.1371/journal.pmed.1001659
PMCID: PMC4051600  PMID: 24915186
5.  Risk Prediction for Breast, Endometrial, and Ovarian Cancer in White Women Aged 50 y or Older: Derivation and Validation from Population-Based Cohort Studies 
PLoS Medicine  2013;10(7):e1001492.
Ruth Pfeiffer and colleagues describe models to calculate absolute risks for breast, endometrial, and ovarian cancers for white, non-Hispanic women over 50 years old using easily obtainable risk factors.
Please see later in the article for the Editors' Summary
Background
Breast, endometrial, and ovarian cancers share some hormonal and epidemiologic risk factors. While several models predict absolute risk of breast cancer, there are few models for ovarian cancer in the general population, and none for endometrial cancer.
Methods and Findings
Using data on white, non-Hispanic women aged 50+ y from two large population-based cohorts (the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial [PLCO] and the National Institutes of Health–AARP Diet and Health Study [NIH-AARP]), we estimated relative and attributable risks and combined them with age-specific US-population incidence and competing mortality rates. All models included parity. The breast cancer model additionally included estrogen and progestin menopausal hormone therapy (MHT) use, other MHT use, age at first live birth, menopausal status, age at menopause, family history of breast or ovarian cancer, benign breast disease/biopsies, alcohol consumption, and body mass index (BMI); the endometrial model included menopausal status, age at menopause, BMI, smoking, oral contraceptive use, MHT use, and an interaction term between BMI and MHT use; the ovarian model included oral contraceptive use, MHT use, and family history or breast or ovarian cancer. In independent validation data (Nurses' Health Study cohort) the breast and ovarian cancer models were well calibrated; expected to observed cancer ratios were 1.00 (95% confidence interval [CI]: 0.96–1.04) for breast cancer and 1.08 (95% CI: 0.97–1.19) for ovarian cancer. The number of endometrial cancers was significantly overestimated, expected/observed = 1.20 (95% CI: 1.11–1.29). The areas under the receiver operating characteristic curves (AUCs; discriminatory power) were 0.58 (95% CI: 0.57–0.59), 0.59 (95% CI: 0.56–0.63), and 0.68 (95% CI: 0.66–0.70) for the breast, ovarian, and endometrial models, respectively.
Conclusions
These models predict absolute risks for breast, endometrial, and ovarian cancers from easily obtainable risk factors and may assist in clinical decision-making. Limitations are the modest discriminatory ability of the breast and ovarian models and that these models may not generalize to women of other races.
Please see later in the article for the Editors' Summary
Editors' Summary
Background
In 2008, just three types of cancer accounted for 10% of global cancer-related deaths. That year, about 460,000 women died from breast cancer (the most frequently diagnosed cancer among women and the fifth most common cause of cancer-related death). Another 140,000 women died from ovarian cancer, and 74,000 died from endometrial (womb) cancer (the 14th and 20th most common causes of cancer-related death, respectively). Although these three cancers originate in different tissues, they nevertheless share many risk factors. For example, current age, age at menarche (first period), and parity (the number of children a woman has had) are all strongly associated with breast, ovarian, and endometrial cancer risk. Because these cancers share many hormonal and epidemiological risk factors, a woman with a high breast cancer risk is also likely to have an above-average risk of developing ovarian or endometrial cancer.
Why Was This Study Done?
Several statistical models (for example, the Breast Cancer Risk Assessment Tool) have been developed that estimate a woman's absolute risk (probability) of developing breast cancer over the next few years or over her lifetime. Absolute risk prediction models are useful in the design of cancer prevention trials and can also help women make informed decisions about cancer prevention and treatment options. For example, a woman at high risk of breast cancer might decide to take tamoxifen for breast cancer prevention, but ideally she needs to know her absolute endometrial cancer risk before doing so because tamoxifen increases the risk of this cancer. Similarly, knowledge of her ovarian cancer risk might influence a woman's decision regarding prophylactic removal of her ovaries to reduce her breast cancer risk. There are few absolute risk prediction models for ovarian cancer, and none for endometrial cancer, so here the researchers develop models to predict the risk of these cancers and of breast cancer.
What Did the Researchers Do and Find?
Absolute risk prediction models are constructed by combining estimates for risk factors from cohorts with population-based incidence rates from cancer registries. Models are validated in an independent cohort by testing their ability to identify people with the disease in an independent cohort and their ability to predict the observed numbers of incident cases. The researchers used data on white, non-Hispanic women aged 50 years or older that were collected during two large prospective US cohort studies of cancer screening and of diet and health, and US cancer incidence and mortality rates provided by the Surveillance, Epidemiology, and End Results Program to build their models. The models all included parity as a risk factor, as well as other factors. The model for endometrial cancer, for example, also included menopausal status, age at menopause, body mass index (an indicator of the amount of body fat), oral contraceptive use, menopausal hormone therapy use, and an interaction term between menopausal hormone therapy use and body mass index. Individual women's risk for endometrial cancer calculated using this model ranged from 1.22% to 17.8% over the next 20 years depending on their exposure to various risk factors. Validation of the models using data from the US Nurses' Health Study indicated that the endometrial cancer model overestimated the risk of endometrial cancer but that the breast and ovarian cancer models were well calibrated—the predicted and observed risks for these cancers in the validation cohort agreed closely. Finally, the discriminatory power of the models (a measure of how well a model separates people who have a disease from people who do not have the disease) was modest for the breast and ovarian cancer models but somewhat better for the endometrial cancer model.
What Do These Findings Mean?
These findings show that breast, ovarian, and endometrial cancer can all be predicted using information on known risk factors for these cancers that is easily obtainable. Because these models were constructed and validated using data from white, non-Hispanic women aged 50 years or older, they may not accurately predict absolute risk for these cancers for women of other races or ethnicities. Moreover, the modest discriminatory power of the breast and ovarian cancer models means they cannot be used to decide which women should be routinely screened for these cancers. Importantly, however, these well-calibrated models should provide realistic information about an individual's risk of developing breast, ovarian, or endometrial cancer that can be used in clinical decision-making and that may assist in the identification of potential participants for research studies.
Additional Information
Please access these websites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1001492.
This study is further discussed in a PLOS Medicine Perspective by Lars Holmberg and Andrew Vickers
The US National Cancer Institute provides comprehensive information about cancer (in English and Spanish), including detailed information about breast cancer, ovarian cancer, and endometrial cancer;
Information on the Breast Cancer Risk Assessment Tool, the Surveillance, Epidemiology, and End Results Program, and on the prospective cohort study of screening and the diet and health study that provided the data used to build the models is also available on the NCI site
Cancer Research UK, a not-for-profit organization, provides information about cancer, including detailed information on breast cancer, ovarian cancer, and endometrial cancer
The UK National Health Service Choices website has information and personal stories about breast cancer, ovarian cancer, and endometrial cancer; the not-for-profit organization Healthtalkonline also provides personal stories about dealing with breast cancer and ovarian cancer
doi:10.1371/journal.pmed.1001492
PMCID: PMC3728034  PMID: 23935463
6.  The BARD1 Cys557Ser Variant and Breast Cancer Risk in Iceland 
PLoS Medicine  2006;3(7):e217.
Background
Most, if not all, of the cellular functions of the BRCA1 protein are mediated through heterodimeric complexes composed of BRCA1 and a related protein, BARD1. Some breast-cancer-associated BRCA1 missense mutations disrupt the function of the BRCA1/BARD1 complex. It is therefore pertinent to determine whether variants of BARD1 confer susceptibility to breast cancer. Recently, a missense BARD1 variant, Cys557Ser, was reported to be at increased frequencies in breast cancer families. We investigated the role of the BARD1 Cys557Ser variant in a population-based cohort of 1,090 Icelandic patients with invasive breast cancer and 703 controls. We then used a computerized genealogy of the Icelandic population to study the relationships between the Cys557Ser variant and familial clustering of breast cancer.
Methods and Findings
The Cys557Ser allele was present at a frequency of 0.028 in patients with invasive breast cancer and 0.016 in controls (odds ratio [OR] = 1.82, 95% confidence interval [CI] 1.11–3.01, p = 0.014). The alleleic frequency was 0.037 in a high-predisposition group of cases defined by having a family history of breast cancer, early onset of breast cancer, or multiple primary breast cancers (OR = 2.41, 95% CI 1.22–4.75, p = 0.015). Carriers of the common Icelandic BRCA2 999del5 mutation were found to have their risk of breast cancer further increased if they also carried the BARD1 variant: the frequency of the BARD1 variant allele was 0.047 (OR = 3.11, 95% CI 1.16–8.40, p = 0.046) in 999del5 carriers with breast cancer. This suggests that the lifetime probability of a BARD1 Cys557Ser/BRCA2 999del5 double carrier developing breast cancer could approach certainty. Cys557Ser carriers, with or without the BRCA2 mutation, had an increased risk of subsequent primary breast tumors after the first breast cancer diagnosis compared to non-carriers. Lobular and medullary breast carcinomas were overrepresented amongst Cys557Ser carriers. We found that an excess of ancestors of contemporary carriers lived in a single county in the southeast of Iceland and that all carriers shared a SNP haplotype, which is suggestive of a founder event. Cys557Ser was found on the same SNP haplotype background in the HapMap Project CEPH sample of Utah residents.
Conclusions
Our findings suggest that BARD1 Cys557Ser is an ancient variant that confers risk of single and multiple primary breast cancers, and this risk extends to carriers of the BRCA2 999del5 mutation.
Editors' Summary
Background.
About 13% of women (one in eight women) will develop breast cancer during their lifetime, but many factors affect the likelihood of any individual woman developing this disease, for example, whether she has had children and at what age, when she started and stopped her periods, and her exposure to certain chemicals or radiation. She may also have inherited a defective gene that affects her risk of developing breast cancer. Some 5%–10% of all breast cancers are familial, or inherited. In 20% of these cases, the gene that is defective is BRCA1 or BRCA2. Inheriting a defective copy of one of these genes greatly increases a woman's risk of developing breast cancer, while researchers think that the other inherited genes that predispose to breast cancer—most of which have not been identified yet—have a much weaker effect. These are described as low-penetrance genes. Inheriting one such gene only slightly increases breast cancer risk; a woman has to inherit several to increase her lifetime risk of cancer significantly.
Why Was This Study Done?
It is important to identify these additional predisposing gene variants because they might provide insights into why breast cancer develops, how to prevent it, and how to treat it. To find low-penetrance genes, researchers do case–control association studies. They find a large group of women with breast cancer (cases) and a similar group of women without cancer (controls), and examine how often a specific gene variant occurs in the two groups. If the variant is found more often in the cases than in the controls, it might be a variant that increases a woman's risk of developing breast cancer.
What Did the Researchers Do and Find?
The researchers involved in this study recruited Icelandic women who had had breast cancer and unaffected women, and looked for a specific variant—the Cys557Ser allele—of a gene called BARD1. They chose BARD1 because the protein it encodes interacts with the protein encoded by BRCA1. Because defects in BRCA1 increase the risk of breast cancer, defects in an interacting protein might have a similar effect. In addition, the Cys557Ser allele has been implicated in breast cancer in other studies. The researchers found that the Cys557Ser allele was nearly twice as common in women with breast cancer as in control women. It was also more common (but not by much) in women who had a family history of breast cancer or who had developed breast cancer more than once. And having the Cys557Ser allele seemed to increase the already high risk of breast cancer in women who had a BRCA2 variant (known as BRCA2 999del5) that accounts for 40% of inherited breast cancer risk in Iceland.
What Do These Findings Mean?
These results indicate that inheriting the BARD1 Cys557Ser allele increases a woman's breast cancer risk but that she is unlikely to have a family history of the disease. Because carrying the Cys557Ser allele only slightly increases a woman's risk of breast cancer, for most women there is no clinical reason to test for this variant. Eventually, when all the low-penetrance genes that contribute to breast cancer risk have been identified, it might be helpful to screen women for the full set to determine whether they are at high risk of developing breast cancer. This will not happen for many years, however, since there might be tens or hundreds of these genes. For women who carry BRCA2 999del5, the situation might be different. It might be worth testing these women for the BARD1 Cys557Ser allele, the researchers explain, because the lifetime probability of developing breast cancer in women carrying both variants might approach 100%. This finding has clinical implications in terms of counseling and monitoring, as does the observation that Cys557Ser carriers have an increased risk of a second, independent breast cancer compared to non-carriers. However, all these findings need to be confirmed in other groups of patients before anyone is routinely tested for the BARD1 Cys557Ser allele.
Additional Information.
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.0030217.
• MedlinePlus pages about breast cancer
• Information on breast cancer from the United States National Cancer Institute
• Information on inherited breast cancer from the United States National Human Genome Research Institute
• United States National Cancer Institute information on genetic testing for BRCA1 and BRCA2 variants
• GeneTests pages on the involvement of BRCA1 and BRCA2 in hereditary breast and ovarian cancer
• Cancer Research UK's page on breast cancer statistics
In a population-based cohort of 1090 Icelandic patients, a Cys557Ser missense variant of the BARD1 gene, which interacts with BRCA1, increased the risk of single and multiple primary breast cancers.
doi:10.1371/journal.pmed.0030217
PMCID: PMC1479388  PMID: 16768547
7.  Birth Size and Breast Cancer Risk: Re-analysis of Individual Participant Data from 32 Studies 
PLoS Medicine  2008;5(9):e193.
Background
Birth size, perhaps a proxy for prenatal environment, might be a correlate of subsequent breast cancer risk, but findings from epidemiological studies have been inconsistent. We re-analysed individual participant data from published and unpublished studies to obtain more precise estimates of the magnitude and shape of the birth size–breast cancer association.
Methods and Findings
Studies were identified through computer-assisted and manual searches, and personal communication with investigators. Individual participant data from 32 studies, comprising 22,058 breast cancer cases, were obtained. Random effect models were used, if appropriate, to combine study-specific estimates of effect. Birth weight was positively associated with breast cancer risk in studies based on birth records (pooled relative risk [RR] per one standard deviation [SD] [= 0.5 kg] increment in birth weight: 1.06; 95% confidence interval [CI] 1.02–1.09) and parental recall when the participants were children (1.02; 95% CI 0.99–1.05), but not in those based on adult self-reports, or maternal recall during the woman's adulthood (0.98; 95% CI 0.95–1.01) (p for heterogeneity between data sources = 0.003). Relative to women who weighed 3.000–3.499 kg, the risk was 0.96 (CI 0.80–1.16) in those who weighed < 2.500 kg, and 1.12 (95% CI 1.00–1.25) in those who weighed ≥ 4.000 kg (p for linear trend = 0.001) in birth record data. Birth length and head circumference from birth records were also positively associated with breast cancer risk (pooled RR per one SD increment: 1.06 [95% CI 1.03–1.10] and 1.09 [95% CI 1.03–1.15], respectively). Simultaneous adjustment for these three birth size variables showed that length was the strongest independent predictor of risk. The birth size effects did not appear to be confounded or mediated by established breast cancer risk factors and were not modified by age or menopausal status. The cumulative incidence of breast cancer per 100 women by age 80 y in the study populations was estimated to be 10.0, 10.0, 10.4, and 11.5 in those who were, respectively, in the bottom, second, third, and top fourths of the birth length distribution.
Conclusions
This pooled analysis of individual participant data is consistent with birth size, and in particular birth length, being an independent correlate of breast cancer risk in adulthood.
Editors' Summary
Background.
Last year, more than one million women discovered that they had breast cancer. In the US, nearly 200,000 women will face the same diagnosis this year and 40,000 will die because of breast cancer. Put another way, about one in eight US women will have breast cancer during her lifetime. Like all cancers, breast cancer begins when cells acquire genetic changes that allow them to divide uncontrollably and to move around the body (metastasize). This uncontrolled division leads to the formation of a lump that can be detected by mammography (a breast X-ray) or by manual examination of the breasts. Breast cancer is treated by surgical removal of the lump or, if the cancer has started to spread, by removal of the whole breast (mastectomy). Surgery is usually followed by radiotherapy, chemotherapy, and other treatments designed to kill any remaining cancer cells. Unlike some cancers, the outlook for women with breast cancer is good. In the US, for example, nearly 90% of affected women are still alive five years after their diagnosis.
Why Was This Study Done?
Scientists have identified several factors that increase a woman's risk of developing breast cancer by comparing the characteristics of populations of women with and without breast cancer. Well-established risk factors include increasing age, not having children, and having a late menopause, but another potential risk factor for breast cancer is birth size. A baby's weight, length, and head circumference at birth (three related measures of birth size) depend on the levels of hormones (including estrogen, a hormone that often affects breast cancer growth) and other biological factors to which the baby is exposed during pregnancy—its prenatal environment. The idea that prenatal environment might also affect breast cancer risk in later life was first proposed in 1990, but the findings of studies that have tried to investigate this possibility have been inconsistent. Here, the researchers re-analyze individual participant data from a large number of studies into women's health conducted in Europe, Northern America, and China to get more precise information about the association between birth size and breast cancer risk.
What Did the Researchers Do and Find?
The researchers identified 32 published and unpublished studies that had collected information on birth size and on the occurrence of breast cancer. They then obtained the individual participant data from these studies, which involved more than 22,000 women who had developed breast cancer and more than 600,000 women who had not. Their analyses of these data show that birth weight was positively associated with breast cancer risk in those studies where this measurement was recorded at birth or based on parental recall during the study participant's childhood (but not in those studies in which birth weight was self-reported or maternally recalled during the participant's adulthood). For example, women with recorded birth weights of more than 4 kg or more had a 12% higher chance of developing breast cancer than women who weighed 3–3.5 kg at birth. Birth length and head circumference were also positively associated with breast cancer risk, but birth length was the strongest single predictor of risk. Finally, the amount by which birth size affected breast cancer risk was not affected by allowing for other established risk factors.
What Do These Findings Mean?
These findings provide strong evidence that birth size—in particular, birth length—is a marker of a woman's breast cancer risk in adulthood although the mechanisms underlying this association are unclear. The researchers note that the observed effect of birth size on breast cancer risk is of a similar magnitude to that of other more established risk factors and estimate that 5% of all breast cancers in developed countries could be caused by a high birth size. Because practically all the studies included in this pooled analysis were done in developed countries, these findings may not hold for developing countries. Further investigations into how the prenatal environment may affect breast cancer risk might identify new ways to prevent this increasingly common cancer.
Additional Information.
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.0050193.
This study is further discussed in a PLoS Medicine Perspective by Trichopoulos and Lagiou
The US National Cancer Institute provides detailed information for patients and health professionals on all aspects of breast cancer, including information on risk factors for breast cancer (in English and Spanish)
The MedlinePlus Encyclopedia provides information for patients about breast cancer; Medline Plus also provides links to many other breast cancer resources (in English and Spanish)
The UK charity Cancerbackup also provides detailed information about breast cancer
Cancer Research UK is the UK's leading charity dedicated to cancer research
doi:10.1371/journal.pmed.0050193
PMCID: PMC2553821  PMID: 18828667
8.  Factors Associated With Decisions to Undergo Surgery Among Patients With Newly Diagnosed Early-Stage Lung Cancer 
Context
Lung cancer is the leading cause of cancer death in the United States. Surgical resection for stage I or II non–small cell cancer remains the only reliable treatment for cure. Patients who do not undergo surgery have a median survival of less than 1 year. Despite the survival disadvantage, many patients with early-stage disease do not receive surgical care and rates are even lower for black patients.
Objectives
To identify potentially modifiable factors regarding surgery in patients newly diagnosed with early-stage lung cancer and to explore why blacks undergo surgery less often than whites.
Design, Setting, and Patients
Prospective cohort study with patients identified by pulmonary, oncology, thoracic surgery, and generalist practices in 5 communities through study referral or computerized tomography review protocol. A total of 437 patients with biopsy-proven or probable early-stage lung cancer were enrolled between December 2005 and December 2008. Before establishment of treatment plans, patients were administered a survey including questions about trust, patient-physician communication, attitudes toward cancer, and functional status. Information about comorbid illnesses was obtained through chart audits.
Main Outcome Measure
Lung cancer surgery within 4 months of diagnosis.
Results
A total of 386 patients met full eligibility criteria for lung resection surgery. The median age was 66 years (range, 26–90 years) and 29% of patients were black. The surgical rate was 66% for white patients (n=179/273) compared with 55% for black patients (n=62/113; P=.05). Negative perceptions of patient-physician communication manifested by a 5-point decrement on a 25-point communication scale (odds ratio [OR], 0.42; 95% confidence interval [CI], 0.32–0.74) and negative perception of 1-year prognosis postsurgery (OR, 0.27; 95% CI, 0.14–0.50; absolute risk, 34%) were associated with decisions against surgery. Surgical rates for blacks were particularly low when they had 2 or more comorbid illnesses (13% vs 62% for <2 comorbidities; OR, 0.04 [95% CI, 0.01–0.25]; absolute risk, 49%) and when blacks lacked a regular source of care (42% with no regular care vs 57% with regular care; OR, 0.20 [95% CI, 0.10–0.43]; absolute risk, 15%).
Conclusions
A decision not to undergo surgery by patients with newly diagnosed lung cancer was independently associated with perceptions of communication and prognosis, older age, multiple comorbidities, and black race. Interventions to optimize surgery should consider these factors.
doi:10.1001/jama.2010.793
PMCID: PMC4152904  PMID: 20551407
9.  Receptor-Defined Subtypes of Breast Cancer in Indigenous Populations in Africa: A Systematic Review and Meta-Analysis 
PLoS Medicine  2014;11(9):e1001720.
In a systematic review and meta-analysis, Isabel dos Santos Silva and colleagues estimate the prevalence of receptor-defined subtypes of breast cancer in North Africa and sub-Saharan Africa.
Please see later in the article for the Editors' Summary
Background
Breast cancer is the most common female cancer in Africa. Receptor-defined subtypes are a major determinant of treatment options and disease outcomes but there is considerable uncertainty regarding the frequency of poor prognosis estrogen receptor (ER) negative subtypes in Africa. We systematically reviewed publications reporting on the frequency of breast cancer receptor-defined subtypes in indigenous populations in Africa.
Methods and Findings
Medline, Embase, and Global Health were searched for studies published between 1st January 1980 and 15th April 2014. Reported proportions of ER positive (ER+), progesterone receptor positive (PR+), and human epidermal growth factor receptor-2 positive (HER2+) disease were extracted and 95% CI calculated. Random effects meta-analyses were used to pool estimates. Fifty-four studies from North Africa (n = 12,284 women with breast cancer) and 26 from sub-Saharan Africa (n = 4,737) were eligible. There was marked between-study heterogeneity in the ER+ estimates in both regions (I2>90%), with the majority reporting proportions between 0.40 and 0.80 in North Africa and between 0.20 and 0.70 in sub-Saharan Africa. Similarly, large between-study heterogeneity was observed for PR+ and HER2+ estimates (I2>80%, in all instances). Meta-regression analyses showed that the proportion of ER+ disease was 10% (4%–17%) lower for studies based on archived tumor blocks rather than prospectively collected specimens, and 9% (2%–17%) lower for those with ≥40% versus those with <40% grade 3 tumors. For prospectively collected samples, the pooled proportions for ER+ and triple negative tumors were 0.59 (0.56–0.62) and 0.21 (0.17–0.25), respectively, regardless of region. Limitations of the study include the lack of standardized procedures across the various studies; the low methodological quality of many studies in terms of the representativeness of their case series and the quality of the procedures for collection, fixation, and receptor testing; and the possibility that women with breast cancer may have contributed to more than one study.
Conclusions
The published data from the more appropriate prospectively measured specimens are consistent with the majority of breast cancers in Africa being ER+. As no single subtype dominates in the continent availability of receptor testing should be a priority, especially for young women with early stage disease where appropriate receptor-specific treatment modalities offer the greatest potential for reducing years of life lost.
Please see later in the article for the Editors' Summary
Editors' Summary
Background
Breast cancer is the commonest female tumor in Africa and death rates from the disease in some African countries are among the highest in the world. Breast cancer begins when cells in the breast acquire genetic changes that allow them to grow uncontrollably and to move around the body. When a breast lump is found (by mammography or manual examination), a few cells are collected from the lump (a biopsy) to look for abnormal cells and to test for the presence of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor-2 (HER2) on the cells. The hormones estrogen and progesterone promote the growth of normal breast cells and of ER+ and PR+ breast cancer cells. HER2 also controls the growth of breast cells. The receptor status of breast cancer is a major determinant of treatment options and prognosis (likely outcome). ER+ tumors, for example, are more receptive to hormonal therapy and have a better prognosis than ER− tumors, whereas HER2+ tumors, which make large amounts of HER2, are more aggressive than HER2− tumors. Breast cancer is treated by surgically removing the lump or the whole breast (mastectomy) if the tumor has already spread, before killing any remaining cancer cells with chemotherapy or radiotherapy. In addition, ER+, PR+, and HER2+ tumors are treated with drugs that block these receptors (including tamoxifen and trastuzumab), thereby slowing breast cancer growth.
Why Was This Study Done?
ER+ tumors predominate in white women but the proportion of ER+ tumors among US-born black women is slightly lower. The frequency of different receptor-defined subtypes of breast cancer in indigenous populations in Africa is currently unclear but policy makers need this information to help them decide whether routine receptor status testing should be introduced across Africa. Because receptor status is a major determination of treatment options and outcomes, it would be more important to introduce receptor testing if all subtypes are present in breast cancers in indigenous African women and if no one subtype dominates than if most breast cancers in these women are ER+. In this systematic review (a study that uses pre-defined criteria to identify all the research on a given topic) and meta-analysis (a statistical approach that combines the results of several studies), the researchers examine the distribution of receptor-defined breast cancer subtypes in indigenous populations in Africa.
What Did the Researchers Do and Find?
The researchers identified 54 relevant studies from North Africa involving 12,284 women with breast cancer (mainly living in Egypt or Tunisia) and 26 studies from sub-Saharan Africa involving 4,737 women with breast cancer (mainly living in Nigeria or South Africa) and used the data from these studies to calculate the proportions of ER+, PR+, and HER2+ tumors (the number of receptor-positive tumors divided by the number of tumors with known receptor status) across Africa. The proportion of ER+ tumors varied markedly between studies, ranging between 0.40 and 0.80 in North Africa and between 0.20 and 0.70 in sub-Saharan Africa. Among prospectively collected samples (samples collected specifically for receptor-status testing; studies that determined the receptor status of breast cancers using stored samples reported a lower proportion of ER+ disease than studies that used prospectively collected samples), the overall pooled proportions of ER+ and triple negative tumors were 0.59 and 0.21, respectively.
What Do These Findings Mean?
Although these findings highlight the scarcity of data on hormone receptor and HER2 status in breast cancers in indigenous African populations, they provide new information about the distribution of breast cancer subtypes in Africa. Specifically, these findings suggest that although slightly more than half of breast cancers in Africa are ER+, no single subtype dominates. They also suggest that the distribution of receptor-defined breast cancer subtypes in Africa is similar to that found in Western populations. The accuracy of these findings is likely to be affected by the low methodological quality of many of the studies and the lack of standardized procedures. Thus, large well-designed studies are still needed to accurately quantify the distribution of various breast cancer subtypes across Africa. In the meantime, the current findings support the introduction of routine receptor testing across Africa, especially for young women with early stage breast cancer in whom the potential to improve survival and reduce the years of life lost by knowing the receptor status of an individual's tumor is greatest.
Additional Information
Please access these websites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1001720.
This study is further discussed in a PLOS Medicine Perspective by Sulma i Mohammed
The US National Cancer Institute (NCI) provides comprehensive information about cancer (in English and Spanish), including detailed information for patients and professionals about breast cancer including an online booklet for patients
Cancer Research UK, a not-for profit organization, provides information about cancer; its detailed information about breast cancer includes sections on tests for hormone receptors and HER2 and on treatments that target hormone receptors and treatments that target HER2
Breastcancer.org is a not-for-profit organization that provides up-to-date information about breast cancer (in English and Spanish), including information on hormone receptor status and HER2 status
The UK National Health Service Choices website has information and personal stories about breast cancer; the not-for profit organization Healthtalkonline also provides personal stories about dealing with breast cancer
doi:10.1371/journal.pmed.1001720
PMCID: PMC4159229  PMID: 25202974
10.  Bariatric Surgery 
Executive Summary
Objective
To conduct an evidence-based analysis of the effectiveness and cost-effectiveness of bariatric surgery.
Background
Obesity is defined as a body mass index (BMI) of at last 30 kg/m2.1 Morbid obesity is defined as a BMI of at least 40 kg/m2 or at least 35 kg/m2 with comorbid conditions. Comorbid conditions associated with obesity include diabetes, hypertension, dyslipidemias, obstructive sleep apnea, weight-related arthropathies, and stress urinary incontinence. It is also associated with depression, and cancers of the breast, uterus, prostate, and colon, and is an independent risk factor for cardiovascular disease.
Obesity is also associated with higher all-cause mortality at any age, even after adjusting for potential confounding factors like smoking. A person with a BMI of 30 kg/m2 has about a 50% higher risk of dying than does someone with a healthy BMI. The risk more than doubles at a BMI of 35 kg/m2. An expert estimated that about 160,000 people are morbidly obese in Ontario. In the United States, the prevalence of morbid obesity is 4.7% (1999–2000).
In Ontario, the 2004 Chief Medical Officer of Health Report said that in 2003, almost one-half of Ontario adults were overweight (BMI 25–29.9 kg/m2) or obese (BMI ≥ 30 kg/m2). About 57% of Ontario men and 42% of Ontario women were overweight or obese. The proportion of the population that was overweight or obese increased gradually from 44% in 1990 to 49% in 2000, and it appears to have stabilized at 49% in 2003. The report also noted that the tendency to be overweight and obese increases with age up to 64 years. BMI should be used cautiously for people aged 65 years and older, because the “normal” range may begin at slightly above 18.5 kg/m2 and extend into the “overweight” range.
The Chief Medical Officer of Health cautioned that these data may underestimate the true extent of the problem, because they were based on self reports, and people tend to over-report their height and under-report their weight. The actual number of Ontario adults who are overweight or obese may be higher.
Diet, exercise, and behavioural therapy are used to help people lose weight. The goals of behavioural therapy are to identify, monitor, and alter behaviour that does not help weight loss. Techniques include self-monitoring of eating habits and physical activity, stress management, stimulus control, problem solving, cognitive restructuring, contingency management, and identifying and using social support. Relapse, when people resume old, unhealthy behaviour and then regain the weight, can be problematic.
Drugs (including gastrointestinal lipase inhibitors, serotonin norepinephrine reuptake inhibitors, and appetite suppressants) may be used if behavioural interventions fail. However, estimates of efficacy may be confounded by high rates of noncompliance, in part owing to the side effects of the drugs. In addition, the drugs have not been approved for indefinite use, despite the chronic nature of obesity.
The Technology
Morbidly obese people may be eligible for bariatric surgery. Bariatric surgery for morbid obesity is considered an intervention of last resort for patients who have attempted first-line forms of medical management, such as diet, increased physical activity, behavioural modification, and drugs.
There are various bariatric surgical procedures and several different variations for each of these procedures. The surgical interventions can be divided into 2 general types: malabsorptive (bypassing parts of the gastrointestinal tract to limit the absorption of food), and restrictive (decreasing the size of the stomach so that the patient is satiated with less food). All of these may be performed as either open surgery or laparoscopically. An example of a malabsorptive technique is Roux-en-Y gastric bypass (RYGB). Examples of restrictive techniques are vertical banded gastroplasty (VBG) and adjustable gastric banding (AGB).
The Ontario Health Insurance Plan (OHIP) Schedule of Benefits for Physician Services includes fee code “S120 gastric bypass or partition, for morbid obesity” as an insured service. The term gastric bypass is a general term that encompasses a variety of surgical methods, all of which involve reconfiguring the digestive system. The term gastric bypass does not include AGB. The number of gastric bypass procedures funded and done in Ontario, and funded as actual out-of-country approvals,2 is shown below.
Number of Gastric Bypass Procedures by Fiscal Year: Ontario and Actual Out-of-Country (OOC) Approvals
Data from Provider Services, MOHLTC
Courtesy of Provider Services, Ministry of Health and Long Term Care
Review Strategy
The Medical Advisory Secretariat reviewed the literature to assess the effectiveness, safety, and cost-effectiveness of bariatric surgery to treat morbid obesity. It used its standard search strategy to retrieve international health technology assessments and English-language journal articles from selected databases. The interventions of interest were bariatric surgery and, for the controls, either optimal conventional management or another type of bariatric procedure. The outcomes of interest were improvement in comorbid conditions (e.g., diabetes, hypertension); short- and long-term weight loss; quality of life; adverse effects; and economic analysis data. The databases yielded 15 international health technology assessments or systematic reviews on bariatric surgery.
Subsequently, the Medical Advisory Secretariat searched MEDLINE and EMBASE from April 2004 to December 2004, after the search cut-off date of April, 2004, for the most recent systematic reviews on bariatric surgery. Ten studies met the inclusion criteria. One of those 10 was the Swedish Obese Subjects study, which started as a registry and intervention study, and then published findings on people who had been enrolled for at least 2 years or at least 10 years. In addition to the literature review of economic analysis data, the Medical Advisory Secretariat also did an Ontario-based economic analysis.
Summary of Findings
Bariatric surgery generally is effective for sustained weight loss of about 16% for people with BMIs of at least 40 kg/m2 or at least 35 kg/m2 with comorbid conditions (including diabetes, high lipid levels, and hypertension). It also is effective at resolving the associated comorbid conditions. This conclusion is largely based on level 3a evidence from the prospectively designed Swedish Obese Subjects study, which recently published 10-year outcomes for patients who had bariatric surgery compared with patients who received nonsurgical treatment. (1)
Regarding specific procedures, there is evidence that malabsorptive techniques are better than other banding techniques for weight loss and resolution of comorbid illnesses. However, there are no published prospective, long-term, direct comparisons of these techniques available.
Surgery for morbid obesity is considered an intervention of last resort for patients who have attempted first-line forms of medical management, such as diet, increased physical activity, behavioural modification, and drugs. In the absence of direct comparisons of active nonsurgical intervention via caloric restriction with bariatric techniques, the following observations are made:
A recent systematic review examining the efficacy of major commercial and organized self-help weight loss programs in the United States concluded that the evidence to support the use of such programs was suboptimal, except for one trial on Weight Watchers. Furthermore, the programs were associated with high costs, attrition rates, and probability of regaining at least 50% of the lost weight in 1 to 2 years. (2)
A recent randomized controlled trial reported 1-year outcomes comparing weight loss and metabolic changes in severely obese patients assigned to either a low-carbohydrate diet or a conventional weight loss diet. At 1 year, weight loss was similar for patients in each group (mean, 2–5 kg). There was a favourable effect on triglyceride levels and glycemic control in the low-carbohydrate diet group. (3)
A decision-analysis model showed bariatric surgery results in increased life expectancy in morbidly obese patients when compared to diet and exercise. (4)
A cost-effectiveness model showed bariatric surgery is cost-effective relative to nonsurgical management. (5)
Extrapolating from 2003 data from the United States, Ontario would likely need to do 3,500 bariatric surgeries per year. It currently does 508 per year, including out-of-country surgeries.
PMCID: PMC3382415  PMID: 23074460
11.  Severity of comorbid conditions and early-stage breast cancer therapy: linked SEER-medicare data from 1993 to 2005 
Cancer Medicine  2013;2(4):526-536.
Abstract
Comorbidity burden has been suggested as influencing early-stage breast cancer therapy but previous studies have not considered the severity of these comorbidities. Therefore, we examined the influence of comorbidity severity by age and race/ethnicity on early-stage breast cancer treatment over time. We used linked Surveillance, Epidemiology, and End Results (SEER)-Medicare data to determine whether comorbidity severity influences receipt of definitive and preferred early-stage breast cancer treatment and explains racial/ethnic and age disparities in receiving such therapy. Definitive surgical therapy was defined as any primary surgery other than breast conserving surgery (BCS) without radiation therapy (RT). Preferred surgical therapy was defined as BCS plus RT. Comorbidities were defined as either “unstable” (life threatening or difficult to control) or “stable” (less serious but with potential to influence daily activity). Surgical treatment trends from 1993 to 2005 were analyzed in regression models adjusting for comorbidity burden, age, and race/ethnicity in 93,596 elderly female Medicare beneficiaries with stage 1–2 invasive breast cancer. Receipt of BCS alone (compared with any definitive surgical therapy) was independently associated with neighborhood socioeconomic status, unmarried status (OR [odds ratio] 1.18, 95% CI: 1.12–1.23), tumor size (OR 0.78, 95% CI: 0.69–0.87 for tumors ≥4 cm vs. <2 cm), tumor grade (OR = 0.89, 0.88, and 0.81 for grades 2–4 vs. 1, respectively), stable comorbidities (OR = 0.76, 0.71, and 0.72 for 1, 2, and 3 vs. 0 stable comorbidities, respectively), and unstable comorbidities (OR 1.20, 95% CI: 1.14–1.28). Black women were 4–5% more likely to receive suboptimal therapy (BCS alone), even after adjusting for all available patient, tumor, and regional characteristics. Black race/ethnicity was associated with higher probability of receiving suboptimal treatment, independent of comorbidities, although we do not know whether this effect was due to clinicians' failure to offer RT or patients' failure to accept it.
Comorbidities, especially unstable comorbidities, adversely influence receipt of definitive and preferred early stage breast cancer therapy.
doi:10.1002/cam4.66
PMCID: PMC3799287  PMID: 24156025
Comorbidities; early stage breast cancer; racial disparities; treatment
12.  Breast Cancer Among the Oldest Old: Tumor Characteristics, Treatment Choices, and Survival 
Journal of Clinical Oncology  2010;28(12):2038-2045.
Purpose
Few data are available on breast cancer characteristics, treatment, and survival for women age 80 years or older.
Patients and Methods
We used the linked Surveillance, Epidemiology and End Results-Medicare data set from 1992 to 2003 to examine tumor characteristics, treatments (mastectomy, breast-conserving surgery [BCS] with radiation therapy or alone, or no surgery), and outcomes of women age 80 years or older (80 to 84, 85 to 89, ≥ 90 years) with stage I/II breast cancer compared with younger women (age 67 to 79 years). We used Cox proportional hazard models to examine the impact of age on breast cancer–related and other causes of death. Analyses were performed within stage, adjusted for tumor and sociodemographic characteristics, treatments received, and comorbidities.
Results
In total, 49,616 women age 67 years or older with stage I/II disease were included. Tumor characteristics (grade, hormone receptivity) were similar across age groups. Treatment with BCS alone increased with age, especially after age 80. The risk of dying from breast cancer increased with age, significantly after age 80. For stage I disease, the adjusted hazard ratio of dying from breast cancer for women age ≥ 90 years compared with women age 67 to 69 years was 2.6 (range, 2.0 to 3.4). Types of treatments received were significantly associated with age and comorbidity, with age as the stronger predictor (26% of women age ≥ 80 years without comorbidity received BCS alone or no surgery compared with 6% of women age 67 to 79 years).
Conclusion
Women age ≥ 80 years have breast cancer characteristics similar to those of younger women yet receive less aggressive treatment and experience higher mortality from early-stage breast cancer. Future studies should focus on identifying tumor and patient characteristics to help target treatments to the oldest women most likely to benefit.
doi:10.1200/JCO.2009.25.9796
PMCID: PMC2860406  PMID: 20308658
13.  Birth Outcome in Women with Previously Treated Breast Cancer—A Population-Based Cohort Study from Sweden 
PLoS Medicine  2006;3(9):e336.
Background
Data on birth outcome and offspring health after the appearance of breast cancer are limited. The aim of this study was to assess the risk of adverse birth outcomes in women previously treated for invasive breast cancer compared with the general population of mothers.
Methods and Findings
Of all 2,870,932 singleton births registered in the Swedish Medical Birth Registry during 1973–2002, 331 first births following breast cancer surgery—with a mean time to pregnancy of 37 mo (range 7–163)—were identified using linkage with the Swedish Cancer Registry.
Logistic regression analysis was used. The estimates were adjusted for maternal age, parity, and year of delivery. Odds ratios (ORs) and 95% confidence intervals (CIs) were used to estimate infant health and mortality, delivery complications, the risk of preterm birth, and the rates of instrumental delivery and cesarean section.
The large majority of births from women previously treated for breast cancer had no adverse events. However, births by women exposed to breast cancer were associated with an increased risk of delivery complications (OR 1.5, 95% CI 1.2–1.9), cesarean section (OR 1.3, 95% CI 1.0–1.7), very preterm birth (<32 wk) (OR 3.2, 95% CI 1.7–6.0), and low birth weight (<1500 g) (OR 2.9, 95% CI 1.4–5.8). A tendency towards an increased risk of malformations among the infants was seen especially in the later time period (1988–2002) (OR 2.1, 95% CI 1.2–3.7).
Conclusions
It is reassuring that births overall were without adverse events, but our findings indicate that pregnancies in previously treated breast cancer patients should possibly be regarded as higher risk pregnancies, with consequences for their surveillance and management.
The large majority of births from women previously treated for breast cancer had no adverse events, but such pregnancies might benefit from increased surveillance and management.
Editors' Summary
Background.
More women of all ages are developing breast cancer than ever before. In the US, one woman in eight will now develop this disease during her lifetime. For most of these women, their breast cancer diagnosis will come late in life, but a fifth of breast cancers are diagnosed before the age of 50. These days, the long-term outlook for women with breast cancer is quite good; 80% of women who receive a diagnosis of breast cancer survive more than five years. These figures, together with a trend towards starting families later in life—since the late 1970s birth rates for women in their late 30s and 40s have more than doubled in the US, and in Sweden the average age for having a first baby is now 29 years—mean that many women who have had breast cancer want to have children. One estimate is that up to 7% of women who are fertile after treatment for breast cancer will later have children.
Why Was This Study Done?
Pregnancy seems to have no adverse affects on women who have had breast cancer—there is no evidence that pregnancy can trigger a relapse. However, little is known about whether the chemotherapy and radiotherapy used to treat breast cancer have any long-lasting effects that might result in a poor birth outcome such as stillbirth, low birth weight, premature delivery, or abnormalities in the baby (congenital abnormalities). In this study, the researchers assessed the risk of adverse birth outcomes in women previously treated for breast cancer in Sweden.
What Did the Researchers Do and Find?
Nearly three million singleton births that occurred between 1973 and 2002 are recorded in the Swedish Medical Birth Registry. The researchers linked this information with that in the Swedish Cancer Registry to identify 331 first births after treatment for invasive breast cancer (cancer that has spread from where it started to grow in the breast). The birth registry includes details on maternal age and health, child's birth weight, whether the delivery was preterm, and whether the child had any congenital abnormalities, so the researchers were able to compare birth outcomes in these 331 births with those in the general population. They discovered that most births after breast cancer treatment went smoothly. There was no increase in stillbirths, but there were slightly more delivery complications in the women who had had breast cancer than in the general population, and a slight increase in babies born prematurely or with low birth weight. Finally, a few more babies with congenital abnormalities were born to women after breast cancer treatment than to women in the general population.
What Do These Findings Mean?
Overall, these results should reassure women who are thinking about having children after breast cancer about the health of their future offspring. However, they do suggest that these women may need careful monitoring during late pregnancy and delivery. This result was not predicted by the researchers who performed the study. Before starting the study, they thought that there would be no difference in birth outcomes between patients previously treated for breast cancer and the general population. Furthermore, a recently published similar study in Denmark found no increased risk of preterm birth, low birth weight, or congenital abnormalities after breast cancer. Differences between the two countries in the accuracy of their registries or in the use of chemotherapy and radiotherapy treatments may account for this difference in results. Additional studies are now needed in other populations to resolve this discrepancy and to provide more information about how breast cancer treatment might affect birth outcomes. For example, the current study did not provide any information about whether specific chemotherapy regimens or different types of breast cancer might put women at a higher risk of adverse birth outcomes, or whether the time between the cancer diagnosis and treatment and the pregnancy made a difference.
Additional Information.
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.0030336.
MedlinePlus encyclopedia entry on breast cancer
National Cancer Institute information for patients and physicians on breast cancer, including links to pages on breast cancer and pregnancy
Cancer Research UK's information on breast cancer for patients, and statistics on breast cancer in the UK
• Wikipedia page on breast cancer (note: Wikipedia is a free online encyclopedia that anyone can edit)
Royal College of Obstetricians and Gynaecologists guidelines for physicians on pregnancy and breast cancer
doi:10.1371/journal.pmed.0030336
PMCID: PMC1564170  PMID: 16968117
14.  Smoking and high-risk mammographic parenchymal patterns: a case-control study 
Breast Cancer Research  1999;2(1):59-63.
Current smoking was strongly and inversely associated with high-risk patterns, after adjustment for concomitant risk factors. Relative to never smokers, current smokers were significantly less likely to have a high-risk pattern. Similar results were obtained when the analysis was confined to postmenopausal women. Past smoking was not related to the mammographic parenchymal patterns. The overall effect in postmenopausal women lost its significance when adjusted for other risk factors for P2/DY patterns that were found to be significant in the present study, although the results are still strongly suggestive. The present data indicate that adjustment for current smoking status is important when evaluating the relationship between mammographic parenchymal pattern and breast cancer risk. They also indicate that smoking is a prominent potential confounder when analyzing effects of other risk factors such as obesity-related variables. It appears that parenchymal patterns may act as an informative biomarker of the effect of cigarette smoking on breast cancer risk.
Introduction:
Overall, epidemiological studies [1,2,3,4] have reported no substantial association between cigarette smoking and the risk of breast cancer. Some studies [5,6,7] reported a significant increase of breast cancer risk among smokers. In recent studies that addressed the association between breast cancer and cigarette smoking, however, there was some suggestion of a decreased risk [8,9,10], especially among current smokers, ranging from approximately 10 to 30% [9,10]. Brunet et al [11] reported that smoking might reduce the risk of breast cancer by 44% in carriers of BRCA1 or BRCA2 gene mutations. Wolfe [12] described four different mammographic patterns created by variations in the relative amounts of fat, epithelial and connective tissue in the breast, designated N1, P1, P2 and DY. Women with either P2 or DY pattern are considered at greater risk for breast cancer than those with N1 or P1 pattern [12,13,14,15]. There are no published studies that assessed the relationship between smoking and mammographic parenchymal patterns.
Aims:
To evaluate whether mammographic parenchymal patterns as classified by Wolfe, which have been positively associated with breast cancer risk, are affected by smoking. In this case-control study, nested within the European Prospective Investigation on Cancer in Norfolk (EPIC-Norfolk) cohort [16], the association between smoking habits and mammographic parenchymal patterns are examined. The full results will be published elsewhere.
Methods:
Study subjects were members of the EPIC cohort in Norwich who also attended the prevalence screening round at the Norwich Breast Screening Centre between November 1989 and December 1997, and were free of breast cancer at that screening. Cases were defined as women with a P2/DY Wolfe's mammographic parenchymal pattern on the prevalence screen mammograms. A total of 203 women with P2/DY patterns were identified as cases and were individually matched by date of birth (within 1 year) and date of prevalence screening (within 3 months) with 203 women with N1/P1 patterns who served as control individuals.
Two views, the mediolateral and craniocaudal mammograms, of both breasts were independently reviewed by two of the authors (ES and RW) to determine the Wolfe mammographic parenchymal pattern.
Considerable information on health and lifestyle factors was available from the EPIC Health and Lifestyle Questionnaire [16]. In the present study we examined the subjects' personal history of benign breast diseases, menstrual and reproductive factors, oral contraception and hormone replacement therapy, smoking, and anthropometric information such as body mass index and waist:hip ratio.
Odds ratios (ORs) and their 95% confidence intervals (CIs) were calculated by conditional logistic regression [17], and were adjusted for possible confounding factors.
Results:
The characteristics of the cases and controls are presented in Table 1. Cases were leaner than controls. A larger percentage of cases were nulliparous, premenopausal, current hormone replacement therapy users, had a personal history of benign breast diseases, and had had a hysterectomy. A larger proportion of controls had more than three births and were current smokers.
Table 2 shows the unadjusted and adjusted OR estimates for Wolfe's high-risk mammographic parenchymal patterns and smoking in the total study population and in postmenopausal women separately. Current smoking was strongly and inversely associated with high-risk patterns, after adjustment for concomitant risk factors. Relative to never smokers, current smokers were significantly less likely to have a high-risk pattern (OR 0.37, 95% CI 0.14-0.94). Similar results were obtained when the analysis was confined to postmenopausal women. Past smoking was not related to mammographic parenchymal patterns. The overall effect in postmenopausal women lost its significance when adjusted for other risk factors for P2/DY patterns that were found to be significant in the present study, although the results were still strongly suggestive. There was no interaction between cigarette smoking and body mass index.
Discussion:
In the present study we found a strong inverse relationship between current smoking and high-risk mammographic parenchymal patterns of breast tissue as classified by Wolfe [12]. These findings are not completely unprecedented; Greendale et al [18] found a reduced risk of breast density in association with smoking, although the magnitude of the reduction was unclear. The present findings suggest that this reduction is large.
Recent studies [9,10] have suggested that breast cancer risk may be reduced among current smokers. In a multicentre Italian case-control study, Braga et al [10] found that, relative to nonsmokers, current smokers had a reduced risk of breast cancer (OR 0.84, 95% CI 0.7-1.0). These findings were recently supported by Gammon et al [9], who reported that breast cancer risk in younger women (younger than 45 years) may be reduced among current smokers who began smoking at an early age (OR 0.59, 95% CI 0.41-0.85 for age 15 years or younger) and among long-term smokers (OR 0.70, 95% CI 0.52-0.94 for those who had smoked for 21 years or more).
The possible protective effect of smoking might be due to its anti-oestrogenic effect [1,2,19]. Recently there has been renewed interest in the potential effect of smoking on breast cancer risk, and whether individuals may respond differently on the basis of differences in metabolism of bioproducts of smoking [20,21]. Different relationships between smoking and breast cancer risk have been suggested that are dependent on the rapid or slow status of acetylators of aromatic amines [20,21]. More recent studies [22,23], however, do not support these findings.
The present study design minimized the opportunity for bias to influence the findings. Because subjects were unaware of their own case-control status, the possibility of recall bias in reporting smoking status was minimized. Systematic error in the assessment of mammograms was avoided because reading was done without knowledge of the risk factor data. Furthermore, the associations observed are unlikely to be explained by the confounding effect of other known breast cancer risk factors, because we adjusted for these in the analysis. We did not have information on passive smoking status, however, which has recently been reported to be a possible confounder [5,6,21,24].
The present data indicate that adjustment for current smoking status is important when evaluating the relationship between mammographic parenchymal pattern and breast cancer risk. They also indicate smoking as a prominent potential confounder when analyzing effects of other risk factors such as obesity-related variables. It seems that parenchymal patterns may act as an informative biomarker of the effect of cigarette smoking on breast cancer risk.
PMCID: PMC13911  PMID: 11056684
mammography; screening; smoking; Wolfe's parenchymal patterns
15.  Polymorphic repeat in AIB1 does not alter breast cancer risk 
Breast Cancer Research : BCR  2000;2(5):378-385.
We assessed the association between a glutamine repeat polymorphism in AIB1 and breast cancer risk in a case-control study (464 cases, 624 controls) nested within the Nurses' Health Study cohort. We observed no association between AIB1 genotype and breast cancer incidence, or specific tumor characteristics. These findings suggest that AIB1 repeat genotype does not influence postmenopausal breast cancer risk among Caucasian women in the general population.
Introduction:
A causal association between endogenous and exogenous estrogens and breast cancer has been established. Steroid hormones regulate the expression of proteins that are involved in breast cell proliferation and development after binding to their respective steroid hormone receptors. Coactivator and corepressor proteins have recently been identified that interact with steroid hormone receptors and modulate transcriptional activation [1]. AIB1 (amplified in breast 1) is a member of the steroid receptor coactivator (SRC) family that interacts with estrogen receptor (ER)α in a ligand-dependent manner, and increases estrogen-dependent transcription [2]. Amplification and overexpression of AIB1 has been observed in breast and ovarian cancer cell lines and in breast tumors [2,3]. A polymorphic stretch of glutamine amino acids, with unknown biologic function, has recently been described in the carboxyl-terminal region of AIB1 [4]. Among women with germline BRCA1 mutations, significant positive associations were observed between AIB1 alleles with 26 or fewer glutamine repeats and breast cancer risk [5]
Aim:
To establish whether AIB1 repeat alleles are associated with breast cancer risk and specific tumor characteristics among Caucasian women.
Patients and methods:
We evaluated associations prospectively between AIB1 alleles and breast cancer risk in the Nurses' Health Study using a nested case-control design. The Nurses' Health Study was initiated in 1976, when 121 700 US-registered nurses between the ages of 30 and 55 years returned an initial questionnaire reporting medical histories and baseline health-related exposures. Between 1989 and 1990 blood samples were collected from 32 826 women. Eligible cases in this study consisted of women with pathologically confirmed incident breast cancer from the subcohort who gave a blood specimen. Cases with a diagnosis anytime after blood collection up to June 1, 1994, with no previously diagnosed cancer except for nonmelanoma skin cancer were included. Controls were randomly selected participants who gave a blood sample and were free of diagnosed cancer (except nonmelanoma skin cancer) up to and including the interval in which the cases were diagnosed, and were matched to cases on year of birth, menopausal status, postmenopausal hormone use, and time of day, month and fasting status at blood sampling. The nested case-control study consisted of 464 incident breast cancer cases and 624 matched controls. The protocol was approved by the Committee on Human Subjects, Brigham and Womens' Hospital, Boston, Massachusetts USA. Information regarding breast cancer risk factors was obtained from the 1976 baseline questionnaire, subsequent biennial questionnaires, and a questionnaire that was completed at the time of blood sampling. Histopathologic characteristics, such as stage, tumor size and ER and progesterone receptor (PR) status, were ascertained from medical records when available and used in case subgroup analyses.
AIB1 repeat alleles were determined by automated fluorescence-based fragment detection from polymerase chain reaction (PCR)-amplified DNA extracted from peripheral blood lymphocytes. Fluorescent 5' -labeled primers were utilized for PCR amplification, and glutamine repeat number discrimination was performed using the ABI Prism 377 DNA Sequencer (Perkin-Elmer, Foster City, CA, USA). Genotyping was performed by laboratory personnel who were blinded to case-control status, and blinded quality control samples were inserted to validate genotyping identification procedures (n = 110); concordance for the blinded samples was 100%. Methods regarding plasma hormone assays have previously been reported [6]. Conditional and unconditional logistic regression models, including terms for the matching variables and other potential confounders, were used to assess the association of AIB1 alleles and breast cancer characterized by histologic subtype, stage of disease, and ER and PR status. We also evaluated whether breast cancer risk associated with AIB1 genotype differed within strata of established breast cancer risk factors, and whether repeat length in AIB1 indirectly influenced plasma hormone levels.
Results:
The case-control comparisons of established breast cancer risk factors among these women have previously been reported [7], and are generally consistent with expectation. The mean age of the women was 58.3 (standard deviation [SD] 7.1) years, ranging from 43 to 69 years at blood sampling. There were 188 premenopausal and 810 postmenopausal women, with mean ages of 48.1 (SD 2.8) years and 61.4 (SD 5.0) years, respectively, at blood sampling. Women in this study were primarily white; Asians, African-Americans and Hispanics comprised less than 1% of cases or controls.
The distribution of AIB1 glutamine repeat alleles and AIB1 genotypes for cases and controls are presented in Table 1. Women with AIB1 alleles of 26 glutamine repeats or fewer were not at increased risk for breast cancer (odds ratio [OR] 1.01, 95% confidence interval [CI] 0.75-1.36; Table 2). Results were also similar by menopausal status and in analyses additionally adjusting for established breast cancer risk factors. Among premenopausal women, the OR for women with at least one allele with 26 glutamine repeats or fewer was 0.82 (95% Cl 0.37-1.81), and among postmenopausal women the OR was 1.09 (95% Cl 0.78-1.52; Table 2). We did not observe evidence of a positive association between shorter repeat length and advanced breast cancer, defined as women with breast cancer having one or more involved nodes (OR 1.07, 95% Cl 0.64-1.78), or with cancers with a hormone-dependent phenotype (ER-positive: OR 1.16, 95% Cl 0.81-1.65; Table 3). No associations were observed among women who had one or more alleles with 26 glutamine repeats or fewer, with or without a family history of breast cancer (family history: OR 1.09; 95% Cl 0.46-2.58; no family history: OR 0.94; 95% Cl 0.68-1.31; test for interaction P = 0.65). We also did not observe associations with breast cancer risk to be modified by other established breast cancer risk factors. Among postmenopausal controls not using postmenopausal hormones, geometric least-squared mean plasma levels of estrone sulfate and estrone were similar among carriers and noncarriers of AIB1 alleles with 26 glutamine repeats or fewer (both differences: ≤ +3.5%; P >0.50). Mean levels of estradiol were slightly, but nonsignificantly elevated among carriers of alleles with 26 glutamine repeats or fewer (+11.6%; P = 0.08).
Discussion:
In this population-based nested case-control study, women with at most 26 repeating glutamine codons (CAG/CAA) within the carboxyl terminus of AIB1 were not at increased risk for breast cancer. We did not observe shorter repeat alleles to be positively associated with breast cancer grouped by histologic subtype, stage of disease, or by ER and PR status. These data suggest that AIB1 repeat length is not a strong independent risk factor for postmenopausal breast cancer, and does not modify the clinical presentation of the tumor among Caucasian women in the general population.
PMCID: PMC13920  PMID: 11056690
AIB1 polymorphism; breast cancer; genetic susceptibility; molecular epidemiology
16.  Long-term surveillance mammography and mortality in older women with a history of early stage invasive breast cancer 
Breast cancer research and treatment  2013;142(1):10.1007/s10549-013-2720-x.
Purpose
Annual surveillance mammograms in older long-term breast cancer survivors are recommended, but this recommendation is based on little evidence and with no guidelines on when to stop. Surveillance mammograms should decrease breast cancer mortality by detecting second breast cancer events at an earlier stage. We examined the association between surveillance mammography beyond 5 years after diagnosis on breast cancer specific-mortality in a cohort of women aged ≥65 years diagnosed 1990-1994 with early stage breast cancer.
Methods
Our cohort included women who survived disease-free for ≥5 years (N=1,235) and were followed from year six through death, disenrollment, or 15 years after diagnosis. Asymptomatic surveillance mammograms were ascertained through medical record review. We used Cox proportional hazards regression stratified by follow-up year to calculate the association between time-varying surveillance mammography and breast cancer-specific and other-than-breast mortality adjusting for site, stage, primary surgery type, age and time-varying Charlson Comorbidity Index.
Results
The majority (85%) of the 1235 five-year breast cancer survivors received ≥1 surveillance mammogram in years 5–9 (yearly proportions ranged from 48–58%); 82% of women received ≥1 surveillance mammogram in years 10-14. A total of 120 women died of breast cancer and 393 women died from other causes (average follow-up 7.3 years). Multivariable models and lasagna plots suggested a modest reduction in breast cancer-specific mortality with surveillance mammogram receipt in the preceding year (IRR 0.82, 95%CI 0.56-1.19, p=0.29); the association with other-cause mortality was 0.95 (95%CI 0.78-1.17, p=0.64).
Conclusions
Among older breast cancer survivors, surveillance mammography may reduce breast-cancer specific mortality even after five years of disease free survival. Continuing surveillance mammography in older breast cancer survivors likely requires physician-patient discussions similar to those recommended for screening, taking into account comorbid conditions and life-expectancy.
doi:10.1007/s10549-013-2720-x
PMCID: PMC3857395  PMID: 24113745
Surveillance mammography; breast carcinoma; survivorship
17.  Immediate Risk for Cardiovascular Events and Suicide Following a Prostate Cancer Diagnosis: Prospective Cohort Study 
PLoS Medicine  2009;6(12):e1000197.
Katja Fall and Fang Fang and colleagues find that men newly diagnosed with prostate cancer are at increased risk of cardiovascular events and suicide.
Background
Stressful life events have been shown to be associated with altered risk of various health consequences. The aim of the present study was to investigate whether the emotional stress evoked by a prostate cancer diagnosis increases the immediate risks of cardiovascular events and suicide.
Methods and Findings
We conducted a prospective cohort study by following all men in Sweden who were 30 y or older (n = 4,305,358) for a diagnosis of prostate cancer (n = 168,584) and their subsequent occurrence of cardiovascular events and suicide between January 1, 1961 and December 31, 2004. We used Poisson regression models to calculate relative risks (RRs) and 95% confidence intervals (CIs) of cardiovascular events and suicide among men who had prostate cancer diagnosed within 1 y to men without any cancer diagnosis. The risks of cardiovascular events and suicide were elevated during the first year after prostate cancer diagnosis, particularly during the first week. Before 1987, the RR of fatal cardiovascular events was 11.2 (95% CI 10.4–12.1) during the first week and 1.9 (95% CI 1.9–2.0) during the first year after diagnosis. From 1987, the RR for cardiovascular events, nonfatal and fatal combined, was 2.8 (95% CI 2.5–3.2) during the first week and 1.3 (95% CI 1.3–1.3) during the first year after diagnosis. While the RR of cardiovascular events declined, the RR of suicide was stable over the entire study period: 8.4 (95% CI 1.9–22.7) during the first week and 2.6 (95% CI 2.1–3.0) during the first year after diagnosis. Men 54 y or younger at cancer diagnosis demonstrated the highest RRs of both cardiovascular events and suicide. A limitation of the present study is the lack of tumor stage data, which precluded possibilities of investigating the potential impact of the disease severity on the relationship between a recent diagnosis of prostate cancer and the risks of cardiovascular events and suicide. In addition, we cannot exclude residual confounding as a possible explanation.
Conclusions
Men newly diagnosed with prostate cancer are at increased risks for cardiovascular events and suicide. Future studies with detailed disease characteristic data are warranted.
Please see later in the article for the Editors' Summary
Editors' Summary
Background
Prostate cancer—a type of tumor that develops in a walnut-sized structure in the male reproductive system—is the commonest cancer (excluding skin cancer) among men in developed countries. In the USA and the UK, for example, one in six men will develop prostate cancer during their lifetime. Most prostate cancers develop in elderly men and, because these tumors usually grow relatively slowly, many men die with prostate cancer rather than as a result of it. Nevertheless, some prostate cancers are fast-growing and aggressive and prostate cancer is the second leading cause of cancer-related death among men. The symptoms of prostate cancer include problems urinating and excessive urination during the night. Nowadays, however, most prostate cancers are detected before they produce any symptoms by measuring the amount of a protein called the prostate-specific antigen (PSA) in the blood.
Why Was This Study Done?
Widespread PSA screening was introduced 20 years ago in the hope that early detection of prostate cancer would save lives. But, although many more prostate cancers are detected nowadays, the number of prostate cancer deaths has not changed significantly. Experts are divided, therefore, about whether the potential benefits of PSA screening outweigh its risks. Treatments for prostate cancer (for example, surgical removal of the prostate) may be more effective if they are started early but they can cause impotence and urinary incontinence, so should men be treated whose cancer might otherwise never affect their health? In addition, receiving a diagnosis of prostate cancer is stressful and there is growing evidence that stressful life events can increase an individual's risk of becoming ill or dying from a heart attack, stroke, or other “cardiovascular” events and of becoming mentally ill. In this study, therefore, the researchers investigate whether men diagnosed with prostate cancer in Sweden have increased risks of cardiovascular events and suicide during the first week and first year after their diagnosis.
What Did the Researchers Do and Find?
The researchers identified nearly 170, 000 men diagnosed with prostate cancer between 1961 and 2004 among Swedish men aged 30 years or older by searching the Swedish Cancer Register. They obtained information on subsequent fatal and nonfatal cardiovascular events and suicides from the Causes of Death Register and the Inpatient Register (in Sweden, everyone has a unique national registration number that facilitates searches of different health-related Registers). Before 1987, men with prostate cancer were about 11 times as likely to have a fatal cardiovascular event during the first week after their diagnosis as men without prostate cancer; during the first year after their diagnosis, men with prostate cancer were nearly twice as likely to have a cardiovascular event as men without prostate cancer (a relative risk of 1.9). From 1987, the relative risk of combined fatal and nonfatal cardiovascular events associated with a diagnosis of prostate cancer was 2.8 during the first week and 1.3 during the first year after diagnosis. The relative risk of suicide associated with a diagnosis of prostate cancer was 8.4 during the first week and 2.6 during the first year after diagnosis throughout the study period. Finally, men younger than 54 years at diagnosis had higher relative risks of both cardiovascular events and suicide.
What Do These Findings Mean?
These findings suggest that men newly diagnosed with prostate cancer have an increased risk of cardiovascular events and suicide. Because there is no information on tumor size or aggressiveness in the Cancer Register, the researchers could not look at the relationship between disease severity and the likelihood of a cardiovascular event or suicide. Furthermore, because of the study design, men who received a diagnosis of prostate cancer may have had additional characteristics in common that contributed to their increased risk of cardiovascular events and suicide. Nevertheless, these findings strongly suggest that the stress of the diagnosis itself rather than any subsequent treatment has deleterious effects on the health of men receiving a diagnosis of prostate cancer. Thus, strategies should be developed to reduce the risks of cardiovascular events and suicide—increased clinical and psychological monitoring—after a diagnosis of prostate cancer, particularly among young men, and this new information should be considered in the ongoing debate about the risks and benefits of PSA screening.
Additional Information
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1000197.
The US National Cancer Institute provides information on all aspects of prostate cancer, (in English and Spanish)
The US Centers for Disease Control and Prevention provides information on prostate cancer, including Prostate Cancer Screening, A Decision Guide (some information in multiple languages)
The UK National Health Service Choices Web site provides detailed information on prostate cancer
The UK-based Samaritans charity provides confidential nonjudgmental emotional support, 24 hours a day, for people who are experiencing feelings of distress or despair, including those which could lead to suicide
Outside the UK, Befrienders provides information on help lines for those experiencing distress
doi:10.1371/journal.pmed.1000197
PMCID: PMC2784954  PMID: 20016838
18.  Gene Expression Profiling for Guiding Adjuvant Chemotherapy Decisions in Women with Early Breast Cancer 
Executive Summary
In February 2010, the Medical Advisory Secretariat (MAS) began work on evidence-based reviews of published literature surrounding three pharmacogenomic tests. This project came about when Cancer Care Ontario (CCO) asked MAS to provide evidence-based analyses on the effectiveness and cost-effectiveness of three oncology pharmacogenomic tests currently in use in Ontario.
Evidence-based analyses have been prepared for each of these technologies. These have been completed in conjunction with internal and external stakeholders, including a Provincial Expert Panel on Pharmacogenomics (PEPP). Within the PEPP, subgroup committees were developed for each disease area. For each technology, an economic analysis was also completed by the Toronto Health Economics and Technology Assessment Collaborative (THETA) and is summarized within the reports.
The following reports can be publicly accessed at the MAS website at: www.health.gov.on.ca/mas or at www.health.gov.on.ca/english/providers/program/mas/mas_about.html
Gene Expression Profiling for Guiding Adjuvant Chemotherapy Decisions in Women with Early Breast Cancer: An Evidence-Based and Economic Analysis
Epidermal Growth Factor Receptor Mutation (EGFR) Testing for Prediction of Response to EGFR-Targeting Tyrosine Kinase Inhibitor (TKI) Drugs in Patients with Advanced Non-Small-Cell Lung Cancer: An Evidence-Based and Ecopnomic Analysis
K-RAS testing in Treatment Decisions for Advanced Colorectal Cancer: an Evidence-Based and Economic Analysis
Objective
To review and synthesize the available evidence regarding the laboratory performance, prognostic value, and predictive value of Oncotype-DX for the target population.
Clinical Need: Condition and Target Population
The target population of this review is women with newly diagnosed early stage (stage I–IIIa) invasive breast cancer that is estrogen-receptor (ER) positive and/or progesterone-receptor (PR) positive. Much of this review, however, is relevant for women with early stage (I and II) invasive breast cancer that is specifically ER positive, lymph node (LN) negative and human epidermal growth factor receptor 2 (HER-2/neu) negative. This refined population represents an estimated incident population of 3,315 new breast cancers in Ontario (according to 2007 data). Currently it is estimated that only 15% of these women will develop a distant metastasis at 10 years; however, a far great proportion currently receive adjuvant chemotherapy, suggesting that more women are being treated with chemotherapy than can benefit. There is therefore a need to develop better prognostic and predictive tools to improve the selection of women that may benefit from adjuvant chemotherapy.
Technology of Concern
The Oncotype-DX Breast Cancer Assay (Genomic Health, Redwood City, CA) quantifies gene expression for 21 genes in breast cancer tissue by performing reverse transcription polymerase chain reaction (RT-PCR) on formalin-fixed paraffin-embedded (FFPE) tumour blocks that are obtained during initial surgery (lumpectomy, mastectomy, or core biopsy) of women with early breast cancer that is newly diagnosed. The panel of 21 genes include genes associated with tumour proliferation and invasion, as well as other genes related to HER-2/neu expression, ER expression, and progesterone receptor (PR) expression.
Research Questions
What is the laboratory performance of Oncotype-DX?
How reliable is Oncotype-DX (i.e., how repeatable and reproducible is Oncotype-DX)?
How often does Oncotype-DX fail to give a useable result?
What is the prognostic value of Oncotype-DX?*
Is Oncotype-DX recurrence score associated with the risk of distant recurrence or death due to any cause in women with early breast cancer receiving tamoxifen?
What is the predictive value of Oncotype-DX?*
Does Oncoytpe-DX recurrence score predict significant benefit in terms of improvements in 10-year distant recurrence or death due to any cause for women receiving tamoxifen plus chemotherapy in comparison to women receiving tamoxifen alone?
How does Oncotype-DX compare to other known predictors of risk such as Adjuvant! Online?
How does Oncotype-DX impact patient quality of life and clinical/patient decision-making?
Research Methods
Literature Search
Search Strategy
A literature search was performed on March 19th, 2010 using OVID MEDLINE, MEDLINE In-Process and Other Non-Indexed Citations, EMBASE, the Cumulative Index to Nursing & Allied Health Literature (CINAHL), the Cochrane Library, and the International Agency for Health Technology Assessment (INAHTA) for studies published from January 1st, 2006 to March 19th, 2010. A starting search date of January 1st, 2006 was because a comprehensive systematic review of Oncotype-DX was identified in preliminary literature searching. This systematic review, by Marchionni et al. (2008), included literature up to January 1st, 2007. All studies identified in the review by Marchionni et al. as well as those identified in updated literature searching were used to form the evidentiary base of this review. The quality of the overall body of evidence was identified as high, moderate, low or very low according to GRADE methodology.
Inclusion Criteria
Any observational trial, controlled clinical trial, randomized controlled trial (RCT), meta-analysis or systematic review that reported on the laboratory performance, prognostic value and/or predictive value of Oncotype-DX testing, or other outcome relevant to the Key Questions, specific to the target population was included.
Exclusion Criteria
Studies that did not report original data or original data analysis,
Studies published in a language other than English,
Studies reported only in abstract or as poster presentations (such publications were not sought nor included in this review since the MAS does not generally consider evidence that is not subject to peer review nor does the MAS consider evidence that lacks detailed description of methodology).
Outcomes of Interest
Outcomes of interest varied depending on the Key Question. For the Key Questions of prognostic and predictive value (Key Questions #2 and #3), the prospectively defined primary outcome was risk of 10-year distant recurrence. The prospectively defined secondary outcome was 10-year death due to any cause (i.e., overall survival). All additional outcomes such as risk of locoregional recurrence or disease-free survival (DFS) were not prospectively determined for this review but were reported as presented in included trials; these outcomes are referenced as tertiary outcomes in this review. Outcomes for other Key Questions (i.e., Key Questions #1, #4 and #5) were not prospectively defined due to the variability in endpoints relevant for these questions.
Summary of Findings
A total of 26 studies were included. Of these 26 studies, only five studies were relevant to the primary questions of this review (Key Questions #2 and #3). The following conclusions were drawn from the entire body of evidence:
There is a lack of external validation to support the reliability of Oncotype-DX; however, the current available evidence derived from internal industry validation studies suggests that Oncotype-DX is reliable (i.e., Oncotype-DX is repeatable and reproducible).
Current available evidence suggests a moderate failure rate of Oncotype-DX testing; however, the failure rate observed across clinical trials included in this review is likely inflated; the current Ontario experience suggests an acceptably lower rate of test failure.
In women with newly diagnosed early breast cancer (stage I–II) that is estrogen-receptor positive and/or progesterone-receptor positive and lymph-node negative:
There is low quality evidence that Oncotype-DX has prognostic value in women who are being treated with adjuvant tamoxifen or anastrozole (the latter for postmenopausal women only),
There is very low quality evidence that Oncotype-DX can predict which women will benefit from adjuvant CMF/MF chemotherapy in women being treated with adjuvant tamoxifen.
In postmenopausal women with newly diagnosed early breast cancer that is estrogen-receptor positive and/or progesterone-receptor positive and lymph-node positive:
There is low quality evidence that Oncotype-DX has limited prognostic value in women who are being treated with adjuvant tamoxifen or anastrozole,
There is very low quality evidence that Oncotype-DX has limited predictive value for predicting which women will benefit from adjuvant CAF chemotherapy in women who are being treated with adjuvant tamoxifen.
There are methodological and statistical limitations that affect both the generalizability of the current available evidence, as well as the magnitude and statistical strength of the observed effect sizes; in particular:
Of the major predictive trials, Oncotype-DX scores were only produced for a small subset of women (<40% of the original randomized population) potentially disabling the effects of treatment randomization and opening the possibility of selection bias;
Data is not specific to HER-2/neu-negative women;
There were limitations with multivariate statistical analyses.
Additional trials of observational design may provide further validation of the prognostic and predictive value of Oncotype-DX; however, it is unlikely that prospective or randomized data will become available in the near future due to ethical, time and resource considerations.
There is currently insufficient evidence investigating how Oncoytpe-DX compares to other known prognostic estimators of risk, such as Adjuvant! Online, and there is insufficient evidence investigating how Oncotype-DX would impact clinician/patient decision-making in a setting generalizable to Ontario.
PMCID: PMC3382301  PMID: 23074401
19.  Risk of a Second Primary Cancer after Non-melanoma Skin Cancer in White Men and Women: A Prospective Cohort Study 
PLoS Medicine  2013;10(4):e1001433.
Studies have suggested a positive association between history of non-melanoma skin cancer (NMSC) and risk of subsequent cancer at other sites. This prospective study found a modestly increased risk of subsequent malignancies among individuals with a history of NMSC, specifically breast and lung cancer in women and melanoma in both men and women.
Background
Previous studies suggest a positive association between history of non-melanoma skin cancer (NMSC) and risk of subsequent cancer at other sites. The purpose of this study is to prospectively examine the risk of primary cancer according to personal history of NMSC.
Methods and Findings
In two large US cohorts, the Health Professionals Follow-up Study (HPFS) and the Nurses' Health Study (NHS), we prospectively investigated this association in self-identified white men and women. In the HPFS, we followed 46,237 men from June 1986 to June 2008 (833,496 person-years). In the NHS, we followed 107,339 women from June 1984 to June 2008 (2,116,178 person-years). We documented 29,447 incident cancer cases other than NMSC. Cox proportional hazard models were used to calculate relative risks (RRs) and 95% confidence intervals (CIs). A personal history of NMSC was significantly associated with a higher risk of other primary cancers excluding melanoma in men (RR = 1.11; 95% CI 1.05–1.18), and in women (RR = 1.20; 95% CI 1.15–1.25). Age-standardized absolute risk (AR) was 176 in men and 182 in women per 100,000 person-years. For individual cancer sites, after the Bonferroni correction for multiple comparisons (n = 28), in men, a personal history of NMSC was significantly associated with an increased risk of melanoma (RR = 1.99, AR = 116 per 100,000 person-years). In women, a personal history of NMSC was significantly associated with an increased risk of breast (RR = 1.19, AR = 87 per 100,000 person-years), lung (RR = 1.32, AR = 22 per 100,000 person-years), and melanoma (RR = 2.58, AR = 79 per 100,000 person-years).
Conclusion
This prospective study found a modestly increased risk of subsequent malignancies among individuals with a history of NMSC, specifically breast and lung cancer in women and melanoma in both men and women.
Please see later in the article for the Editors' Summary
Editors' Summary
Background
In the United Kingdom and the United States, about one in three people develop cancer during their lifetime and, worldwide, cancer is responsible for 13% of all deaths. Primary cancer, which can develop anywhere in the body, occurs when a cell begins to divide uncontrollably because of alterations (mutations) in its genes. Additional mutations allow the malignancy to spread around the body (metastasize) and form secondary cancers. The mutations that initiate cancer can be triggered by exposure to carcinogens such as cigarette smoke (lung cancer) or the ultraviolet (UV) radiation in sunlight (skin cancers). Other risk factors for the development of cancer include an unhealthy diet, physical inactivity, and alcohol use. In the United States, the most common cancer is non-melanoma skin cancer (NMSC). Although more than 2 million new cases of NMSC occur each year, fewer than 1,000 people die annually in the United States from the condition because the two types of NMSC—basal cell carcinoma and squamous cell carcinoma—rarely metastasize and can usually be treated by surgically removing the tumor.
Why Was This Study Done?
Some studies have suggested that people who have had NMSC have a higher risk of developing primary cancer at other sites than people who have not had NMSC. Such a situation could arise if exposure to certain carcinogens initiates both NMSC and other cancers or if NMSC shares a molecular mechanism with other cancers such as a deficiency in the DNA repair mechanisms that normally remove mutations. If people with a history of NMSC are at a greater risk of developing further cancers, a specific surveillance program for such people might help to catch subsequent cancers early when they can be successfully treated. In this prospective cohort study, the researchers examine the risk of primary cancer according to personal history of NMSC in two large US cohorts (groups)—the Health Professionals Follow-up Study (HPFS) and the Nurses' Health Study (NHS). The HPFS, which enrolled 51,529 male health professionals in 1986, and the NHS, which enrolled 121,700 female nurses in 1976, were both designed to investigate associations between nutritional factors and the incidence of serious illnesses. Study participants completed a baseline questionnaire about their lifestyle, diet and medical history. This information is updated biennially through follow-up questionnaires.
What Did the Researchers Do and Find?
The researchers identified 36,102 new cases of NMSC and 29,447 new cases of other primary cancers from 1984 in white NHS participants and from 1986 in white HPFS participants through 2008. They then used statistical models to investigate whether a personal history of NMSC was associated with a higher risk of subsequent primary cancers after accounting for other factors (confounders) that might affect cancer risk. A history of NMSC was significantly associated with an 11% higher risk of other primary cancers excluding melanoma (another type of skin cancer that, like NMSC, is linked to overexposure to UV light) in men and a 20% higher risk of other primary cancers excluding melanoma in women; a significant association is one that is unlikely to have happened by chance. The absolute risk of a primary cancer among men and women with a history of NMSC was 176 and 182 per 100,000 person-years, respectively. For individual cancer sites, after correction for multiple comparisons (when several conditions are compared in groups of people, statistically significant differences between the groups can occur by chance), a history of NMSC was significantly associated with an increased risk of breast and lung cancer in women and of melanoma in men and women.
What Do These Findings Mean?
These findings suggest that there is a modestly increased risk of subsequent malignancies among white individuals with a history of NMSC. Although the researchers adjusted for many confounding lifestyle factors, the observed association between NMSC and subsequent primary cancers may nevertheless be the result of residual confounding, so it is still difficult to be sure that there is a real biological association (due to, for example, a deficiency in DNA repair) between NMSC and subsequent primary cancers. Because of this and other study limitations, the findings reported here should be interpreted cautiously and do not suggest that individuals who have had NMSC should undergo increased cancer surveillance. These findings do, however, support the need for continued investigation of the apparent relationship between NMSC and subsequent cancers.
Additional Information
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1001433.
The US National Cancer Institute provides information on all aspects of cancer and has detailed information about non-melanoma skin cancer for patients and professionals (in English and Spanish)
The non-profit organization American Cancer Society provides information on cancer and how it develops and specific information on skin cancer (in several languages); its website includes personal stories about cancer
The UK National Health Service Choices website includes an introduction to cancer and a page on non-melanoma skin cancer
The non-profit organization Cancer Research UK provides basic information about cancer and detailed information on non-melanoma skin cancer
doi:10.1371/journal.pmed.1001433
PMCID: PMC3635863  PMID: 23630459
20.  Optimal Management of High-Risk T1G3 Bladder Cancer: A Decision Analysis 
PLoS Medicine  2007;4(9):e284.
Background
Controversy exists about the most appropriate treatment for high-risk superficial (stage T1; grade G3) bladder cancer. Immediate cystectomy offers the best chance for survival but may be associated with an impaired quality of life compared with conservative therapy. We estimated life expectancy (LE) and quality-adjusted life expectancy (QALE) for both of these treatments for men and women of different ages and comorbidity levels.
Methods and Findings
We evaluated two treatment strategies for high-risk, T1G3 bladder cancer using a decision-analytic Markov model: (1) Immediate cystectomy with neobladder creation versus (2) conservative management with intravesical bacillus Calmette-Guérin (BCG) and delayed cystectomy in individuals with resistant or progressive disease. Probabilities and utilities were derived from published literature where available, and otherwise from expert opinion. Extensive sensitivity analyses were conducted to identify variables most likely to influence the decision. Structural sensitivity analyses modifying the base case definition and the triggers for cystectomy in the conservative therapy arm were also explored. Probabilistic sensitivity analysis was used to assess the joint uncertainty of all variables simultaneously and the uncertainty in the base case results. External validation of model outputs was performed by comparing model-predicted survival rates with independent published literature. The mean LE of a 60-y-old male was 14.3 y for immediate cystectomy and 13.6 y with conservative management. With the addition of utilities, the immediate cystectomy strategy yielded a mean QALE of 12.32 y and remained preferred over conservative therapy by 0.35 y. Worsening patient comorbidity diminished the benefit of early cystectomy but altered the LE-based preferred treatment only for patients over age 70 y and the QALE-based preferred treatment for patients over age 65 y. Sensitivity analyses revealed that patients over the age of 70 y or those strongly averse to loss of sexual function, gastrointestinal dysfunction, or life without a bladder have a higher QALE with conservative therapy. The results of structural or probabilistic sensitivity analyses did not change the preferred treatment option. Model-predicted overall and disease-specific survival rates were similar to those reported in published studies, suggesting external validity.
Conclusions
Our model is, to our knowledge, the first of its kind in bladder cancer, and demonstrated that younger patients with high-risk T1G3 bladder had a higher LE and QALE with immediate cystectomy. The decision to pursue immediate cystectomy versus conservative therapy should be based on discussions that consider patient age, comorbid status, and an individual's preference for particular postcystectomy health states. Patients over the age of 70 y or those who place high value on sexual function, gastrointestinal function, or bladder preservation may benefit from a more conservative initial therapeutic approach.
Using a Markov model, Shabbir Alibhai and colleagues develop a decision analysis comparing cystectomy with conservative treatment for high-risk superficial bladder cancer depending on patient age, comorbid conditions, and preferences.
Editors' Summary
Background.
Every year, about 67,000 people in the US develop bladder cancer. Like all cancers, bladder cancer arises when a single cell begins to grow faster than normal, loses its characteristic shape, and moves into surrounding tissues. Most bladder cancers develop from cells that line the bladder (“transitional” cells) and most are detected before they spread out of this lining. These superficial or T1 stage cancers can be removed by transurethral resection of bladder tumor (TURBT). The urologist (a specialist who treats urinary tract problems) passes a small telescope into the bladder through the urethra (the tube through which urine leaves the body) and removes the tumor. If the tumor cells look normal under a microscope (so-called normal histology), the cancer is unlikely to return; if they have lost their normal appearance, the tumor is given a “G3” histological grade, which indicates a high risk of recurrence.
Why Was This Study Done?
The best treatment for T1G3 bladder cancer remains controversial. Some urologists recommend immediate radical cystectomy— surgical removal of the bladder, the urethra, and other nearby organs. This treatment often provides a complete cure but can cause serious short-term health problems and affects long-term quality of life. Patients often develop sexual dysfunction or intestinal (gut) problems and sometimes find it hard to live with a reconstructed bladder. The other recommended treatment is immunotherapy with bacillus Calmette-Guérin (BCG, bacteria that are also used to vaccinate against tuberculosis). Long-term survival is not always as good with this conservative treatment but it is less likely than surgery to cause short-term illness or to reduce quality of life. In this study, the researchers have used decision analysis (a systematic evaluation of the important factors affecting a decision) to determine whether immediate cystectomy or conservative therapy is the optimal treatment for patients with T1G3 bladder cancer. Decision analysis allowed the researchers to account for quality-of-life factors while comparing the health benefits of each treatment for T1G3 bladder cancer.
What Did the Researchers Do and Find?
Using a decision analysis model called a Markov model, the researchers calculated the months of life gained, and the quality of life expected to result, from each of the two treatments. To estimate the life expectancy (LE) associated with each treatment, the researchers incorporated the published probabilities of various outcomes of each treatment into their model. To estimate quality-adjusted life expectancy (QALE, the number of years of good quality life), they incorporated “utilities,” measures of relative satisfaction with outcomes. (A utility of 1 represents perfect health; death is assigned a value of 0, and outcomes considered less than ideal, but better than death, fall in between). For a sexually potent 60-year-old man with bladder cancer but no other illnesses, the average LE predicted by the model was nearly eight months longer with immediate cystectomy than with conservative treatment (both LEs predicted by this model matched those seen in clinical trials); the average QALE with cystectomy was 4.2 months longer than with conservative treatment. Having additional diseases decreased the benefit of immediate cystectomy but the treatment still gave a longer LE until the patient reached 70 years old, when conservative treatment became better. For QALE, this change in optimal treatment appeared at age 65. Finally, conservative treatment gave a higher QALE than immediate cystectomy for patients concerned about preserving sexual function or averse to living with intestinal problems or a reconstructed bladder.
What Do These Findings Mean?
As with all mathematical models, these results depend on the assumptions included in the model. In particular, because published probability and utility values are not available for some of the possible outcomes of the two treatments, the LE and QALE calculations could be inaccurate. Also, assigning numerical ratings to life experiences is generally something of a simplification, which could affect the reliability of the QALE (but not the LE) results. Nevertheless, these findings provide useful guidance for urologists trying to balance the benefits of immediate cystectomy or conservative treatment against the potential short-term and long-term effects of these treatments on patients' quality of life. Specifically, the results indicate that decisions on treatment for T1G3 bladder cancer should be based on a consideration of the patient's age and any coexisting disease coupled with detailed discussions with the patient about their attitudes regarding the possible health-related effects of cystectomy.
Additional Information.
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.0040284.
MedlinePlus encyclopedia page on bladder cancer (in English and Spanish)
Information for patients and professionals from the US National Cancer Institute on bladder cancer (in English and Spanish)
Information for patients on bladder cancer from the UK charity Cancerbackup
Online course on Decision Analysis in Health Care from George Mason University
doi:10.1371/journal.pmed.0040284
PMCID: PMC1989749  PMID: 17896857
21.  Influence of comorbidity on the effect of adjuvant treatment and age in patients with early-stage breast cancer 
British Journal of Cancer  2012;107(11):1901-1907.
Background:
Prevalence of comorbidity at breast cancer diagnosis increases with age and is likely to influence the likelihood of receiving treatment according to guidelines. The aim of this study was to examine the effect of breast cancer treatment on mortality, taking age at diagnosis and comorbidity into account.
Methods:
Four nationwide population registries in Denmark: the Danish Civil Registration System, the Danish Breast Cancer Cooperative Group, the Danish National Patient Register, and the Danish Register of Causes of Death provided information on 62 591 women diagnosed with early-stage breast cancer, 1990–2008, of whom data on treatment were available for 39 943. Comorbidity was measured using the Charlson Comorbidity Index. Adjuvant treatment were categorised as none, chemotherapy, endocrine therapy, and unknown. Multivariable Cox modelling assessed the effect of comorbidity on breast cancer-specific mortality and other cause mortality according to treatment, adjusting for age at diagnosis and other clinical prognostic factors.
Results:
The impact of comorbidity on mortality was most pronounced in patients aged 50–79 years. Patients receiving chemotherapy with mild to moderate comorbidity had HR 0.99 (95% confidence interval (CI); 0.82–1.19) and 1.06 (95% CI; 0.77–1.46) for breast cancer-specific mortality, respectively, compared with patients without comorbidity.
Conclusion:
Comorbidity at breast cancer diagnosis is an independent adverse prognostic factor for death after breast cancer. We identified a subgroup of patients with mild to moderate comorbidity receiving chemotherapy who had similar breast cancer mortality as patients with no comorbidity.
doi:10.1038/bjc.2012.472
PMCID: PMC3504938  PMID: 23079577
breast cancer; comorbidity; treatment; age; mortality; epidemiology
22.  The impact of comorbidity on cancer survival: a review 
Clinical Epidemiology  2013;5(Suppl 1):3-29.
Background
A number of studies have shown poorer survival among cancer patients with comorbidity. Several mechanisms may underlie this finding. In this review we summarize the current literature on the association between patient comorbidity and cancer prognosis. Prognostic factors examined include tumor biology, diagnosis, treatment, clinical quality, and adherence.
Methods
All English-language articles published during 2002–2012 on the association between comorbidity and survival among patients with colon cancer, breast cancer, and lung cancer were identified from PubMed, MEDLINE and Embase. Titles and abstracts were reviewed to identify eligible studies and their main results were then extracted.
Results
Our search yielded more than 2,500 articles related to comorbidity and cancer, but few investigated the prognostic impact of comorbidity as a primary aim. Most studies found that cancer patients with comorbidity had poorer survival than those without comorbidity, with 5-year mortality hazard ratios ranging from 1.1 to 5.8. Few studies examined the influence of specific chronic conditions. In general, comorbidity does not appear to be associated with more aggressive types of cancer or other differences in tumor biology. Presence of specific severe comorbidities or psychiatric disorders were found to be associated with delayed cancer diagnosis in some studies, while chronic diseases requiring regular medical visits were associated with earlier cancer detection in others. Another finding was that patients with comorbidity do not receive standard cancer treatments such as surgery, chemotherapy, and radiation therapy as often as patients without comorbidity, and their chance of completing a course of cancer treatment is lower. Postoperative complications and mortality are higher in patients with comorbidity. It is unclear from the literature whether the apparent undertreatment reflects appropriate consideration of greater toxicity risk, poorer clinical quality, patient preferences, or poor adherence among patients with comorbidity.
Conclusion
Despite increasing recognition of the importance of comorbid illnesses among cancer patients, major challenges remain. Both treatment effectiveness and compliance appear compromised among cancer patients with comorbidity. Data on clinical quality is limited.
doi:10.2147/CLEP.S47150
PMCID: PMC3820483  PMID: 24227920
comorbidity; cancer; diagnosis; treatment; survival
23.  Screening Mammography for Women Aged 40 to 49 Years at Average Risk for Breast Cancer 
Executive Summary
Objective
The aim of this review was to determine the effectiveness of screening mammography in women aged 40 to 49 years at average risk for breast cancer.
Clinical Need
The effectiveness of screening mammography in women aged over 50 years has been established, yet the issue of screening in women aged 40 to 49 years is still unsettled. The Canadian Task Force of Preventive Services, which sets guidelines for screening mammography for all provinces, supports neither the inclusion nor the exclusion of this screening procedure for 40- to 49-year-old women from the periodic health examination. In addition to this, 2 separate reviews, one conducted in Quebec in 2005 and the other in Alberta in 2000, each concluded that there is an absence of convincing evidence on the effectiveness of screening mammography for women in this age group who are at average risk for breast cancer.
In the United States, there is disagreement among organizations on whether population-based mammography should begin at the age of 40 or 50 years. The National Institutes of Health, the American Association for Cancer Research, and the American Academy of Family Physicians recommend against screening women in their 40s, whereas the United States Preventive Services Task Force, the National Cancer Institute, the American Cancer Society, the American College of Radiology, and the American College of Obstetricians and Gynecologists recommend screening mammograms for women aged 40 to 49 years. Furthermore, in comparing screening guidelines between Canada and the United States, it is also important to recognize that “standard care” within a socialized medical system such as Canada’s differs from that of the United States. The National Breast Screening Study (NBSS-1), a randomized screening trial conducted in multiple centres across Canada, has shown there is no benefit in mortality from breast cancer from annual mammograms in women randomized between the ages of 40 and 49, relative to standard care (i.e. physical exam and teaching of breast-self examination on entry to the study, with usual community care thereafter).
At present, organized screening programs in Canada systematically screen women starting at 50 years of age, although with a physician’s referral, a screening mammogram is an insured service in Ontario for women under 50 years of age.
International estimates of the epidemiology of breast cancer show that the incidence of breast cancer is increasing for all ages combined, whereas mortality is decreasing, though at a slower rate. These decreasing mortality rates may be attributed to screening and advances in breast cancer therapy over time. Decreases in mortality attributable to screening may be a result of the earlier detection and treatment of invasive cancers, in addition to the increased detection of ductal carcinoma in situ (DCIS), of which certain subpathologies are less lethal. Evidence from the SEER cancer registry in the United States indicates that the age-adjusted incidence of DCIS has increased almost 10-fold over a 20-year period (from 2.7 to 25 per 100,000).
The incidence of breast cancer is lower in women aged 40 to 49 years than in women aged 50 to 69 years (about 140 per 100,000 versus 500 per 100,000 women, respectively), as is the sensitivity (about 75% versus 85% for women aged under and over 50, respectively) and specificity of mammography (about 80% versus 90% for women aged under and over 50, respectively). The increased density of breast tissue in younger women is mainly responsible for the lower accuracy of this procedure in this age group. In addition, as the proportion of breast cancers that occur before the age of 50 are more likely to be associated with genetic predisposition as compared with those diagnosed in women after the age of 50, mammography may not be an optimal screening method for younger women.
Treatment options vary with the stage of disease (based on tumor size, involvement of surrounding tissue, and number of affected axillary lymph nodes) and its pathology, and may include a combination of surgery, chemotherapy, and/or radiotherapy.
Surgery is the first-line intervention for biopsy confirmed tumours. The subsequent use of radiation, chemotherapy, or hormonal treatments is dependent on the histopathologic characteristics of the tumor and the type of surgery. There is controversy regarding the optimal treatment of DCIS, which is noninvasive.
With such controversy as to the effectiveness of mammography and the potential risk associated with women being overtreated or actual cancers being missed, and the increased risk of breast cancer associated with exposure to annual mammograms over a 10-year period, the Ontario Health Technology Advisory Committee requested this review of screening mammography in women aged 40 to 49 years at average risk for breast cancer. This review is the first of 2 parts and concentrates on the effectiveness of screening mammography (i.e., film mammography, FM) for women at average risk aged 40 to 49 years. The second part will be an evaluation of screening by either magnetic resonance imaging or digital mammography, with the objective of determining the optimal screening modality in these younger women.
Review Strategy
The following questions were asked:
Does screening mammography for women aged 40 to 49 years who are at average risk for breast cancer reduce breast cancer mortality?
What is the sensitivity and specificity of mammography for this age group?
What are the risks associated with annual screening from ages 40 to 49?
What are the risks associated with false positive and false negative mammography results?
What are the economic considerations if evidence for effectiveness is established?
The Medical Advisory Secretariat followed its standard procedures and searched these electronic databases: Ovid MEDLINE, EMBASE, Ovid MEDLINE In-Process and Other Non-Indexed Citations, Cochrane Central Register of Controlled Trials, Cochrane Database of Systematic Reviews and the International Network of Agencies for Health Technology Assessment.
Keywords used in the search were breast cancer, breast neoplasms, mass screening, and mammography.
In total, the search yielded 6,359 articles specific to breast cancer screening and mammography. This did not include reports on diagnostic mammograms. The search was further restricted to English-language randomized controlled trials (RCTs), systematic reviews, and meta-analyses published between 1995 and 2005. Excluded were case reports, comments, editorials, and letters, which narrowed the results to 516 articles and previous health technology policy assessments.
These were examined against the criteria outlined below. This resulted in the inclusion of 5 health technology assessments, the Canadian Preventive Services Task Force report, the United States Preventive Services Task Force report, 1 Cochrane review, and 8 RCTs.
Inclusion Criteria
English-language articles, and English and French-language health technology policy assessments, conducted by other organizations, from 1995 to 2005
Articles specific to RCTs of screening mammography of women at average risk for breast cancer that included results for women randomized to studies between the ages of 40 and 49 years
Studies in which women were randomized to screening with or without mammography, although women may have had clinical breast examinations and/or may have been conducting breast self-examination.
UK Age Trial results published in December 2006.
Exclusion Criteria
Observational studies, including those nested within RCTs
RCTs that do not include results on women between the ages of 40 and 49 at randomization
Studies in which mammography was compared with other radiologic screening modalities, for example, digital mammography, magnetic resonance imaging or ultrasound.
Studies in which women randomized had a personal history of breast cancer.
Intervention
Film mammography
Comparators
Within RCTs, the comparison group would have been women randomized to not undergo screening mammography, although they may have had clinical breast examinations and/or have been conducting breast self-examination.
Outcomes of Interest
Breast cancer mortality
Summary of Findings
There is Level 1 Canadian evidence that screening women between the ages of 40 and 49 years who are at average risk for breast cancer is not effective, and that the absence of a benefit is sustained over a maximum follow-up period of 16 years.
All remaining studies that reported on women aged under 50 years were based on subset analyses. They provide additional evidence that, when all these RCTs are taken into account, there is no significant reduction in breast cancer mortality associated with screening mammography in women aged 40 to 49 years.
Conclusions
There is Level 1 evidence that screening mammography in women aged 40 to 49 years at average risk for breast cancer is not effective in reducing mortality.
Moreover, risks associated with exposure to mammographic radiation, the increased risk of missed cancers due to lower mammographic sensitivity, and the psychological impact of false positives, are not inconsequential.
The UK Age Trial results published in December 2006 did not change these conclusions.
PMCID: PMC3377515  PMID: 23074501
24.  Hip Fracture Incidence in Relation to Age, Menopausal Status, and Age at Menopause: Prospective Analysis 
PLoS Medicine  2009;6(11):e1000181.
Using data from the UK Million Women Study, Emily Banks and colleagues investigate the relationships between the incidence of hip fracture and a woman's age, menopausal status, and age at menopause.
Background
Bone mineral density is known to decrease rapidly after the menopause. There is limited evidence about the separate contributions of a woman's age, menopausal status and age at menopause to the incidence of hip fracture.
Methods and Findings
Over one million middle-aged women joined the UK Million Women Study in 1996–2001 providing information on their menopausal status, age at menopause, and other factors, which was updated, where possible, 3 y later. All women were registered with the UK National Health Service (NHS) and were routinely linked to information on cause-specific admissions to NHS hospitals. 561,609 women who had never used hormone replacement therapy and who provided complete information on menopausal variables (at baseline 25% were pre/perimenopausal and 75% postmenopausal) were followed up for a total of 3.4 million woman-years (an average 6.2 y per woman). During follow-up 1,676 (0.3%) were admitted to hospital with a first incident hip fracture. Among women aged 50–54 y the relative risk (RR) of hip fracture risk was significantly higher in postmenopausal than premenopausal women (adjusted RR 2.22, 95% confidence interval [CI] 1.22–4.04; p = 0.009); there were too few premenopausal women aged 55 y and over for valid comparisons. Among postmenopausal women, hip fracture incidence increased steeply with age (p<0.001), with rates being about seven times higher at age 70–74 y than at 50–54 y (incidence rates of 0.82 versus 0.11 per 100 women over 5 y). Among postmenopausal women of a given age there was no significant difference in hip fracture incidence between women whose menopause was due to bilateral oophorectomy compared to a natural menopause (adjusted RR 1.20, 95% CI 0.94–1.55; p = 0.15), and age at menopause had little, if any, effect on hip fracture incidence.
Conclusions
At around the time of the menopause, hip fracture incidence is about twice as high in postmenopausal than in premenopausal women, but this effect is short lived. Among postmenopausal women, age is by far the main determinant of hip fracture incidence and, for women of a given age, their age at menopause has, at most, a weak additional effect.
Please see later in the article for the Editors' Summary
Editors' Summary
Background
Anyone can break a hip but most hip fractures occur in elderly people. As people age, their bones gradually lose minerals and become less dense, which weakens the bones and makes them more susceptible to fracture. Because women lose bone density faster than men as they age and because women constitute the majority of the elderly, three-quarters of hip fractures occur in women. Hip fractures can cause long-term health problems and premature death. Thus, although surgical repair of a broken hip usually only requires a hospital stay of about a week, a quarter of elderly people who were living independently before their fracture have to stay in a nursing home for at least a year after their injury and a fifth of elderly people who break a hip die within the year. Most hip fractures are caused by falls. Regular exercise to improve strength and balance combined with review of medicines (to reduce side effects and interactions), regular eye examinations, and the removal of fall hazards from the home can help to prevent hip fractures in elderly people.
Why Was This Study Done?
Bone density decreases very rapidly in women immediately after menopause—the time when menstruation permanently stops—and then continues to decrease more slowly with age. Most women have their menopause in their early 50s but menopause can occur in younger women. Early menopause is thought to be a risk factor for osteoporosis (thinning of the bones) and fractures later in life but little is known about how menopause influences hip fracture risk as women age. In this prospective study (a type of study in which a group of people is followed for several years to see whether they develop a particular condition), the researchers investigate the incidence of hip fractures in relation to age, menopausal status, and age at menopause among the participants of the Million Women Study. This study, which recruited 1.3 million women aged 50–64 years who attended UK breast cancer screening clinics between 1996 and 2001, has been investigating how reproductive and lifestyle factors affect women's health.
What Did the Researchers Do and Find?
At enrollment and three years later, the study participants provided information about their menopausal status and other health and lifestyle factors likely to affect their fracture risk. From these data, the researchers identified more than half a million women who had never used hormone replacement therapy (which reduces fracture risk) and who had given complete information about their menopausal status. They then looked for statistical associations between the occurrence of a first hip fracture in these women over the next few years and their age, menopausal status, and age at menopause. Among women aged 50–54 years, postmenopausal women were twice as likely to have a hip fracture as premenopausal women. Among postmenopausal women, the incidence of hip fractures increased steeply with age and was seven times higher in 70–74-year olds than in 50–54-year olds. Women who had their menopause before age 45 had a slightly increased risk of hip fracture but any effect of age at menopause on the risk of hip fracture was small compared to the effect of age itself, and the slightly increased risk may have been due to other factors that could not be fully accounted for in the analysis.
What Do These Findings Mean?
These findings indicate that around the time of menopause, although hip fractures are rare, the risk of a fracture in postmenopausal women is twice that in premenopausal women. The findings also show that among postmenopausal women, age is the major determinant of hip fracture risk and that for women of a given age, their age at menopause has little effect on hip fracture risk. Women attending breast cancer screening clinics and completing questionnaires about their health may not be representative of the general population. Furthermore, these findings rely on women self-reporting their menopausal status accurately. Nevertheless, the results of this study suggest that clinicians advising women about hip fracture prevention should probably base their advice on the woman's age and on age-related factors such as frailty rather than on factors related to menopause. Clinicians can also now reassure elderly women who had an early menopause that their risk of hip fracture is unlikely to be higher than that of similar women who had a later menopause.
Additional Information
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1000181.
The American Academy of Orthopaedic Surgeons has detailed information about hip fractures
The US National Institute of Arthritis and Muscoloskeletal and Skin Diseases has an interactive feature called “Check up on your bones and provides detailed information about osteoporosis, including advice on fall prevention
The US Centers for Disease Control and Prevention has a fact sheet about hip fractures among older adults
MedlinePlus has links to resources about hip fracture, osteoporosis, and menopause (in English and Spanish)
More information on the Million Women Study is available
doi:10.1371/journal.pmed.1000181
PMCID: PMC2766835  PMID: 19901981
25.  Vascular Endothelial Growth Factor Mediates Intracrine Survival in Human Breast Carcinoma Cells through Internally Expressed VEGFR1/FLT1 
PLoS Medicine  2007;4(6):e186.
Background
While vascular endothelial growth factor (VEGF) expression in breast tumors has been correlated with a poor outcome in the pathogenesis of breast cancer, the expression, localization, and function of VEGF receptors VEGFR1 (also known as FLT1) and VEGFR2 (also known as KDR or FLK1), as well as neuropilin 1 (NRP1), in breast cancer are controversial.
Methods and Findings
We investigated the expression and function of VEGF and VEGF receptors in breast cancer cells. We observed that VEGFR1 expression was abundant, VEGFR2 expression was low, and NRP1 expression was variable. MDA-MB-231 and MCF-7 breast cancer cells, transfected with antisense VEGF cDNA or with siVEGF (VEGF-targeted small interfering RNA), showed a significant reduction in VEGF expression and increased apoptosis as compared to the control cells. Additionally, specifically targeted knockdown of VEGFR1 expression by siRNA (siVEGFR1) significantly decreased the survival of breast cancer cells through down-regulation of protein kinase B (AKT) phosphorylation, while targeted knockdown of VEGFR2 or NRP1 expression had no effect on the survival of these cancer cells. Since a VEGFR1-specific ligand, placenta growth factor (PGF), did not, as expected, inhibit the breast cancer cell apoptosis induced by siVEGF, and since VEGFR1 antibody also had no effects on the survival of these cells, we examined VEGFR1 localization. VEGFR1 was predominantly expressed internally in MDA-MB-231 and MCF-7 breast cancer cells. Specifically, VEGFR1 was found to be colocalized with lamin A/C and was expressed mainly in the nuclear envelope in breast cancer cell lines and primary breast cancer tumors. Breast cancer cells treated with siVEGFR1 showed significantly decreased VEGFR1 expression levels and a lack of VEGFR1 expression in the nuclear envelope.
Conclusions
This study provides, to our knowledge for the first time, evidence of a unique survival system in breast cancer cells by which VEGF can act as an internal autocrine (intracrine) survival factor through its binding to VEGFR1. These results may lead to an improved strategy for tumor therapy based on the inhibition of angiogenesis.
Shalom Avraham and colleagues' study provides evidence of a survival system in breast cancer cells by which VEGF acts as an internal autocrine survival factor through its binding to VEGFR1.
Editors' Summary
Background.
One woman in eight will develop breast cancer during her lifetime. Most of these women live for many years after their diagnosis and many are cured of their cancer. However, sometimes the cancer grows inexorably and spreads (metastasizes) around the body despite the efforts of oncologists. Characteristics of the tumor known as prognostic factors can indicate whether this spreading is likely to happen. Large tumors that have metastasized have a poorer prognosis than small tumors that are confined to the breast. The expression of specific proteins within the tumor also provides prognostic information. One protein whose expression is associated with a poor prognosis is vascular endothelial growth factor (VEGF). VEGF stimulates angiogenesis—the growth of new blood vessels. Small tumors get the nutrients needed for their growth from existing blood vessels but large tumors need to organize their own blood supply. They do this, in part, by secreting VEGF. This compound binds to proteins (receptors) on the surface of endothelial cells (the cells lining blood vessels), which then send a signal into the cell instructing it to make new blood vessels. Angiogenesis inhibitors, including molecules that block the activity of VEGF receptors, are being developed for the treatment of cancer.
Why Was This Study Done?
Some breast cancer cell lines (cells isolated from breast cancers and grown in the laboratory) make VEGF and VEGF receptors (VEGFR1, VEGFR2, and neuropilin 1 [NRP1]). But, although some studies have reported an association between VEGFR1 expression in breast tumors and a poor prognosis, other studies have found no expression of VEGFR1 in breast tumors. Consequently, the role of VEGF receptors in breast cancer is unclear. In this study, the researchers analyzed the expression and function of VEGF and its receptors in breast cancer cells to investigate whether and how VEGF helps these cells to survive.
What Did the Researchers Do and Find?
The researchers first examined the expression of VEGF receptors in several human breast cancer cell lines. All of them expressed VEGFR1, some expressed NRP1, but VEGFR2 expression was universally low. They then investigated the function of VEGF and its receptors in two human breast cancer cell lines (MDA-MB-231 and MCF-7). In both cell lines, blocking the expression of VEGF or of VEGFR1 (but not of the other two receptors) reduced cell survival by stimulating a specific process of cell death called apoptosis. Unexpectedly, adding VEGF to the cultures did not reverse the effect of blocking VEGF expression, a result that suggests that VEGF and VEGFR1 do not affect breast cancer cell survival by acting at the cell surface. Accordingly, when the researchers examined where VEGFR1 occurs in the cell, they found it on the membranes around the nucleus of the breast cancer cell lines and not on the cell surface; several primary breast tumors and normal breast tissue had the same localization pattern. Finally, the researchers showed that inhibitors of VEGF action that act at the cell surface did not affect the survival of the breast cancer cell lines.
What Do These Findings Mean?
These findings suggest that VEGF helps breast cancer cells to survive in a unique way: by binding to VEGFR1 inside the cell. In other words, whereas VEGF normally acts as a paracrine growth factor (it is released by one cell and affects another cell), in breast cancer cells it might act as an internal autocrine (intracrine) survival factor, a factor that affects the cells in which it is produced. These findings need confirming in more cell lines and in primary breast cancers but could have important implications for the treatment of breast cancer. Inhibitors of VEGF and VEGFR1 that act inside the cell (small molecule drugs) might block breast cancer growth more effectively than inhibitors that act at the cell surface (for example, proteins that bind to the receptor), because internally acting inhibitors might both kill the tumor directly and have antiangiogenic effects, whereas externally acting inhibitors could only have the second effect.
Additional Information.
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.0040186.
US National Cancer Institute information for patients and professionals on breast cancer (in English and Spanish) and on angiogenesis (in English and Spanish)
MedlinePlus Encyclopedia information for patients on breast cancer (in English and Spanish)
CancerQuest, information from Emory University on cancer biology and on angiogenesis and angiogenesis inhibitors (in several languages)
Wikipedia pages on VEGF (note: Wikipedia is a free online encyclopedia that anyone can edit; available in several languages)
doi:10.1371/journal.pmed.0040186
PMCID: PMC1885450  PMID: 17550303

Results 1-25 (1643873)