PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (544616)

Clipboard (0)
None

Related Articles

1.  Frequency transitions in odor-evoked neural oscillations 
Neuron  2009;64(5):692-706.
Summary
In many species sensory stimuli elicit the oscillatory synchronization of groups of neurons. What determines the properties of these oscillations? In the olfactory system of the moth we found that odors elicited oscillatory synchronization through a neural mechanism like that described in locust and Drosophila. During responses to long odor pulses, oscillations suddenly slowed as net olfactory receptor neuron (ORN) output decreased; thus, stimulus intensity appeared to determine oscillation frequency. However, changing the concentration of the odor had little effect upon oscillatory frequency. Our recordings in vivo and computational models based on these results suggested the main effect of increasing odor concentration was to recruit additional, less well-tuned ORNs whose firing rates were tightly constrained by adaptation and saturation. Thus, in the periphery, concentration is encoded mainly by the size of the responsive ORN population, and oscillation frequency is set by the adaptation and saturation of this response.
doi:10.1016/j.neuron.2009.10.004
PMCID: PMC2799931  PMID: 20005825
2.  Intensity invariant dynamics and odor-specific latencies in olfactory receptor neuron response 
Odors elicit spatio-temporal patterns of activity in the brain. Spatial patterns arise from the specificity of the interaction between odorants and odorant receptors expressed in different olfactory receptor neurons (ORNs). But the origin of temporal patterns of activity and their role in odor coding remain unclear. We investigate how physiological aspects of ORN response and physical aspects of odor stimuli give rise to diverse responses in Drosophila ORNs. We show that odor stimuli have intrinsic dynamics that depend on odor type and strongly affect ORN response. Using linear-nonlinear modeling to remove the contribution of the stimulus dynamics from the ORN dynamics we study the physiological properties of the response to different odorants and concentrations. For several odorants and receptor types the ORN response dynamics normalized by the peak response are independent of stimulus intensity for a large portion of the neuron’s dynamic range. Adaptation to a background odor changes the gain and dynamic range of the response but does not affect normalized response dynamics. Stimulating ORNs with various odorants reveals significant odor-dependent delays in the ORN response functions. These differences however can be dominated by differences in stimulus dynamics. In one case the response of one ORN to two odorants is predicted solely from measurements of the odor signals. Within a large portion of their dynamic range ORNs can capture information about stimulus dynamics independently from intensity while introducing odor-dependent delays. How insects might use odor-specific stimulus dynamics and ORN dynamics in discrimination and navigation tasks remains an open question.
doi:10.1523/JNEUROSCI.0426-12.2013
PMCID: PMC3678969  PMID: 23575828
3.  A new Drosophila POU gene, pdm3, acts in odor receptor expression and axon targeting of olfactory neurons 
Olfaction depends on the differential activation of olfactory receptor neurons (ORNs) and on the proper transmission of their activities to the brain. ORNs select individual receptors to express, and they send axons to particular targets in the brain. Little is known about the molecular mechanisms underlying either process. We have identified a new Drosophila POU gene, pdm3, that is expressed in ORNs. Genetic analysis shows that pdm3 is required for odor response in one class of ORNs. We find that pdm3 acts in odor receptor expression in this class, and that the odor response can be rescued by the receptor. Another POU gene, acj6, is required for receptor expression in the same class, and we find a genetic interaction between the two POU genes. The results support a role for a POU gene code in receptor gene choice. pdm3 is also expressed in other ORN classes in which it is not required for receptor expression. For two of these classes pdm3 is required for normal axon targeting. Thus this mutational analysis, the first for a POU class VI gene, demonstrates a role for pdm3 in both of the processes that define the functional organization of ORNs in the olfactory system.
doi:10.1523/JNEUROSCI.2063-08.2008
PMCID: PMC2572001  PMID: 18614681
POU gene; odor receptor; axon targeting; Drosophila; maxillary palp; antenna
4.  Optogenetically Induced Olfactory Stimulation in Drosophila Larvae Reveals the Neuronal Basis of Odor-Aversion behavior 
Olfactory stimulation induces an odor-guided crawling behavior of Drosophila melanogaster larvae characterized by either an attractive or a repellent reaction. In order to understand the underlying processes leading to these orientations we stimulated single olfactory receptor neurons (ORNs) through photo-activation within an intact neuronal network. Using the Gal4-UAS system two light inducible proteins, the light-sensitive cation channel channelrhodopsin-2 (ChR-2) or the light-sensitive adenylyl cyclase (Pacα) were expressed in all or in individual ORNs of the larval olfactory system. Blue light stimulation caused an activation of these neurons, ultimately producing the illusion of an odor stimulus. Larvae were tested in a phototaxis assay for their orientation toward or away from the light source. Here we show that activation of Pacα expressing ORNs bearing the receptors Or33b or Or45a in blind norpA mutant larvae induces a repellent behavior away from the light. Conversely, photo-activation of the majority of ORNs induces attraction towards the light. Interestingly, in wild type larvae two ligands of Or33b and Or45a, octyl acetate and propionic ethylester, respectively, have been found to cause an escape reaction. Therefore, we combined light and odor stimulation to analyze the function of Or33b and Or45a expressing ORNs. We show that the larval olfactory system contains a designated neuronal pathway for repellent odorants and that activation of a specific class of ORNs already determines olfactory avoidance behavior.
doi:10.3389/fnbeh.2010.00027
PMCID: PMC2889724  PMID: 20577637
Drosophila; olfaction; photo-activation; optogenetics; olfactory behavior; electrophysiology; channelrhodopsin-2; photo-activated adenylyl cyclase
5.  A Model of the Intracellular Response of an Olfactory Neuron in Caenorhabditis elegans to Odor Stimulation 
PLoS ONE  2012;7(8):e42907.
We developed a mathematical model of a hypothetical neuronal signal transduction pathway to better understand olfactory perception in Caenorhabditis elegans. This worm has only three pairs of olfactory receptor neurons. Intracellular Ca2+ decreases in one pair of olfactory neurons in C. elegans, the AWC neurons, following application of an attractive odor and there is a transient increase in intracellular Ca2+ following removal of odor. The magnitude of this increase is positively correlated with the duration of odor stimulation. Additionally, this Ca2+ transient is induced by a cGMP second messenger system. We identified likely candidates for the signal transduction molecules functioning in this system based on available gene expression and physiological data from AWCs. Our model incorporated a G-protein-coupled odor receptor, a G-protein, a guanylate cyclase as the G-protein effector, and a single phosphodiesterase. Additionally, a cyclic-nucleotide-gated ion channel and a voltage-gated ion channel that mediated calcium influx were incorporated into the model. We posited that, upon odor stimulation, guanylate cyclase was suppressed by the G-protein and that, upon cessation of the stimulus, the G-protein–induced suppression ceased and cGMP synthesis was restored. A key element of our model was a Ca2+-dependent negative feedback loop that ensured that the calcium increases were transient. Two guanylate cyclase-activating proteins acted on the effector guanylate cyclase to negatively regulate cGMP signaling and the resulting calcium influx. Our model was able to closely replicate in silico three important features of the calcium dynamics of AWCs. Specifically, in our simulations, [Ca2+] increased rapidly and reached its peak within 10 s after the odor stimulus was removed, peak [Ca2+] increased with longer odor exposure, and [Ca2+] decreased during a second stimulus that closely followed an initial stimulus. However, application of random background signal (‘noise’) showed that certain components of the pathway were particularly sensitive to this noise.
doi:10.1371/journal.pone.0042907
PMCID: PMC3426523  PMID: 22927938
6.  Biophysical mechanisms underlying olfactory receptor neuron dynamics 
Nature neuroscience  2011;14(2):208-216.
Odor responses of olfactory receptor neurons (ORNs) exhibit complex dynamics. Using genetics and pharmacology, we show that these dynamics in Drosophila ORNs can be separated into sequential steps, corresponding to transduction and spike generation. Each of these steps contributes distinct dynamics. Transduction dynamics can be largely explained by a simple kinetic model of ligand-receptor interactions, together with an adaptive feedback mechanism that slows transduction onset. Spiking dynamics are well-described by a differentiating linear filter that is stereotyped across odors and cells. Genetic knock-down of sodium channels reshapes this filter, implying that it arises from the regulated balance of intrinsic conductances in ORNs. Complex responses can be understood as a consequence of how the stereotyped spike filter interacts with odor- and receptor-specific transduction dynamics. However, in the presence of rapidly fluctuating natural stimuli, spiking simply increases the speed and sensitivity of encoding.
doi:10.1038/nn.2725
PMCID: PMC3030680  PMID: 21217763
7.  Neuronal chloride accumulation in olfactory epithelium of mice lacking NKCC1 
Journal of neurophysiology  2005;95(3):2003-2006.
When stimulated with odorants, olfactory receptor neurons (ORNs) produce a depolarizing receptor current. In isolated ORNs, much of this current is due to an efflux of Cl−. This implies that the neurons have one or more mechanisms for accumulating cytoplasmic Cl− at rest. Whether odors activate an efflux of Cl− in intact olfactory epithelium, where the ionic environment is poorly characterized, has not been previously determined. In mouse olfactory epithelium, we find that >80% of the summated electrical response to odors is blocked by niflumic acid or flufenamic acid, each of which inhibits Ca2+-activated Cl− channels in ORNs. This indicates that ORNs accumulate Cl− in situ. Recent evidence has shown that NKCC1, a Na+-K+-2Cl− cotransporter, contributes to Cl− accumulation in mammalian ORNs. However, we find that the epithelial response to odors is only reduced by 39% in mice carrying a null mutation in Nkcc1. As in the wild type, most of the response is blocked by niflumic acid or flufenamic acid, indicating that the underlying current is carried by Cl−. We conclude that ORNs effectively accumulate Cl− in situ even in the absence of NKCC1. The Cl−-transport mechanism underlying this accumulation has not yet been identified.
doi:10.1152/jn.00962.2005
PMCID: PMC1379662  PMID: 16319203
8.  PI3Kγ-Dependent Signaling in Mouse Olfactory Receptor Neurons 
Chemical Senses  2010;35(4):301-308.
Phosphatidylinositol 3-kinase (PI3K)-dependent signaling couples to receptors for many different ligands in diverse cellular systems. Recent findings suggest that PI3K-dependent signaling also mediates inhibition of odorant responses in rat olfactory receptor neurons (ORNs). Here, we present evidence that murine ORNs show PI3K-dependent calcium responses to odorant stimulation, they express 2 G protein-coupled receptor (GPCR)-activated isoforms of PI3K, PI3Kβ and PI3Kγ, and they exhibit odorant-induced PI3K activity. These findings support our use of a transgenic mouse model to begin to investigate the mechanisms underlying PI3K-mediated inhibition of odorant responses in mammalian ORNs. Mice deficient in PI3Kγ, a class IB PI3K that is activated via GPCRs, lack detectable odorant-induced PI3K activity in their olfactory epithelium and their ORNs are less sensitive to PI3K inhibition. We conclude that odorant-dependent PI3K signaling generalizes to the murine olfactory system and that PI3Kγ plays a role in mediating inhibition of odorant responses in mammalian ORNs.
doi:10.1093/chemse/bjq020
PMCID: PMC2854420  PMID: 20190008
calcium imaging; complex odorants; ELISA; inhibitory input; transgenic
9.  Coding of odors by temporal binding within a model network of the locust antennal lobe 
The locust olfactory system interfaces with the external world through antennal receptor neurons (ORNs), which represent odors in a distributed, combinatorial manner. ORN axons bundle together to form the antennal nerve, which relays sensory information centrally to the antennal lobe (AL). Within the AL, an odor generates a dynamically evolving ensemble of active cells, leading to a stimulus-specific temporal progression of neuronal spiking. This experimental observation has led to the hypothesis that an odor is encoded within the AL by a dynamically evolving trajectory of projection neuron (PN) activity that can be decoded piecewise to ascertain odor identity. In order to study information coding within the locust AL, we developed a scaled-down model of the locust AL using Hodgkin–Huxley-type neurons and biologically realistic connectivity parameters and current components. Using our model, we examined correlations in the precise timing of spikes across multiple neurons, and our results suggest an alternative to the dynamic trajectory hypothesis. We propose that the dynamical interplay of fast and slow inhibition within the locust AL induces temporally stable correlations in the spiking activity of an odor-dependent neural subset, giving rise to a temporal binding code that allows rapid stimulus detection by downstream elements.
doi:10.3389/fncom.2013.00050
PMCID: PMC3635028  PMID: 23630495
antennal lobe; temporal binding; computational neuroscience; odor coding; slow temporal patterns; oscillations; synchrony; time scales of inhibition
10.  Plasma Membrane Inositol 1,4,5-Trisphosphate-Activated Channels Mediate Signal Transduction in Lobster Olfactory Receptor Neurons 
Neuron  1992;9(5):907-918.
Summary
Inositol 1,4,5-trisphosphate (IP3) selectively evokes an inward (excitatory) current in cultured lobster olfactory receptor neurons (ORNs) and directly activates two types of channels in cell-free patches of plasma membrane from the ORNs. The IP3-activated channels have kinetic properties of odor-activated channels in the ORNs and pharmacological properties of intracellular IP3-activated channels in other systems. An antibody directed against an intracellular, cerebellar IP3, receptor recognizes a protein with a molecular weight similar to the mammalian receptor in the ORNs. The antibody selectively increases odor-evoked inward currents and IP3-activated unitary currents in the ORNs. The data provide further evidence for IP3 as an olfactory second messenger and implicate at least one and possibly two novel plasma membrane IP3 receptors in olfactory transduction.
PMCID: PMC2843424  PMID: 1384577
11.  The Drosophila melanogaster Phospholipid Flippase dATP8B Is Required for Odorant Receptor Function 
PLoS Genetics  2014;10(3):e1004209.
The olfactory systems of insects are fundamental to all aspects of their behaviour, and insect olfactory receptor neurons (ORNs) exhibit exquisite specificity and sensitivity to a wide range of environmental cues. In Drosophila melanogaster, ORN responses are determined by three different receptor families, the odorant (Or), ionotropic-like (IR) and gustatory (Gr) receptors. However, the precise mechanisms of signalling by these different receptor families are not fully understood. Here we report the unexpected finding that the type 4 P-type ATPase phospholipid transporter dATP8B, the homologue of a protein associated with intrahepatic cholestasis and hearing loss in humans, is crucial for Drosophila olfactory responses. Mutations in dATP8B severely attenuate sensitivity of odorant detection specifically in Or-expressing ORNs, but do not affect responses mediated by IR or Gr receptors. Accordingly, we find dATP8B to be expressed in ORNs and localised to the dendritic membrane of the olfactory neurons where signal transduction occurs. Localisation of Or proteins to the dendrites is unaffected in dATP8B mutants, as is dendrite morphology, suggesting instead that dATP8B is critical for Or signalling. As dATP8B is a member of the phospholipid flippase family of ATPases, which function to determine asymmetry in phospholipid composition between the outer and inner leaflets of plasma membranes, our findings suggest a requirement for phospholipid asymmetry in the signalling of a specific family of chemoreceptor proteins.
Author Summary
The olfactory systems of insects are fundamental to critical behaviours such as finding mates, food and host plants. Insects can detect a wide range of environmental cues using three different families of olfactory receptor proteins. Why insects have three different families of receptor genes, and how they function together, is not fully understood. Here we identified a new gene, dATP8B, which is critically and specifically required for the function of only one of these receptor families in Drosophila. dATP8B is a member of the P4-type ATPases, or phospholipid flippases; these enzymes function in establishing a difference or asymmetry in lipid composition between the outer and inner leaflets of plasma membranes. This is thought to be important for many cellular membrane processes; however, specific functions of individual flippase proteins are not well described. We find that dATP8B is required for the function of the odorant receptor family, but not the ionotropic-like and gustatory receptor families. This further highlights the functional differences between these receptor families and suggests a role for phospholipids in the signalling of a specific family of receptor proteins.
doi:10.1371/journal.pgen.1004209
PMCID: PMC3961175  PMID: 24651716
12.  Uncoupling stimulus specificity and glomerular position in the mouse olfactory system 
Sensory information is often mapped systematically in the brain with neighboring neurons responding to similar stimulus features. The olfactory system represents chemical information as spatial and temporal activity patterns across glomeruli in the olfactory bulb. However, the degree to which chemical features are mapped systematically in the glomerular array has remained controversial. Here, we test the hypothesis that the dual roles of odorant receptors, in axon guidance and odor detection, can serve as a mechanism to map olfactory inputs with respect to their function. We compared the relationship between response specificity and glomerular formation in genetically-defined olfactory sensory neurons expressing variant odorant receptors. We find that sensory neurons with the same odor response profile can be mapped to different regions of the bulb, and that neurons with different response profiles can be mapped to the same glomeruli. Our data demonstrate that the two functions of odorant receptors can be uncoupled, indicating that the mechanisms that map olfactory sensory inputs to glomeruli do so without regard to stimulus specificity.
doi:10.1016/j.mcn.2012.08.006
PMCID: PMC3494770  PMID: 22926192
Olfactory; odorant receptors; mapping; glomeruli; olfactory sensory neuron; electrophysiology
13.  Differentially Expressed Drl and Drl-2 Play Opposing Roles in Wnt5 Signaling during Drosophila Olfactory System Development 
In Drosophila, odor information received by olfactory receptor neurons (ORNs) is processed by glomeruli, which are organized in a stereotypic manner in the antennal lobe (AL). This glomerular organization is regulated by Wnt5 signaling. In the embryonic CNS, Wnt5 signaling is transduced by the Drl receptor, a member of the Ryk family. During development of the olfactory system, however, it is antagonized by Drl. Here, we identify Drl-2 as a receptor mediating Wnt5 signaling. Drl is found in the neurites of brain cells in the AL and specific glia, whereas Drl-2 is predominantly found in subsets of growing ORN axons. A drl-2 mutation produces only mild deficits in glomerular patterning, but when it is combined with a drl mutation, the phenotype is exacerbated and more closely resembles the Wnt5 phenotype. Wnt5 overexpression in ORNs induces aberrant glomeruli positioning. This phenotype is ameliorated in the drl-2 mutant background, indicating that Drl-2 mediates Wnt5 signaling. In contrast, forced expression of Drl-2 in the glia of drl mutants rescues the glomerular phenotype caused by the loss of antagonistic Drl function. Therefore, Drl-2 can also antagonize Wnt5 signaling. Additionally, our genetic data suggest that Drl localized to developing glomeruli mediates Wnt5 signaling. Thus, these two members of the Ryk family are capable of carrying out a similar molecular function, but they can play opposing roles in Wnt5 signaling, depending on the type of cells in which they are expressed. These molecules work cooperatively to establish the olfactory circuitry in Drosophila.
doi:10.1523/JNEUROSCI.2821-08.2009
PMCID: PMC2749065  PMID: 19369566
14.  Asymmetric neurotransmitter release enables rapid odor lateralization in Drosophila 
Nature  2012;493(7432):424-428.
In Drosophila, most individual olfactory receptor neurons (ORNs) project bilaterally to both sides of the brain1,2. Having bilateral rather than unilateral projections may represent a useful redundancy. However, bilateral ORN projections to the brain should also compromise the ability to lateralize odors. Nevertheless, walking or flying Drosophila reportedly turn toward their more strongly stimulated antenna3-5. Here we show that each ORN spike releases ~40% more neurotransmitter from the axon branch ipsilateral to the soma, as compared to the contralateral branch. As a result, when an odor activates the antennae asymmetrically, ipsilateral central neurons begin to spike a few milliseconds before contralateral neurons, and ipsilateral central neurons also fire at a 30-50% higher rate. We show that a walking fly can detect a 5% asymmetry in total ORN input to its left and right antennal lobes, and can turn toward the odor in less time than it requires the fly to complete a stride. These results demonstrate that neurotransmitter release properties can be tuned independently at output synapses formed by a single axon onto two target cells with identical functions and morphologies. Our data also show that small differences in spike timing and spike rate can produce reliable differences in olfactory behavior.
doi:10.1038/nature11747
PMCID: PMC3590906  PMID: 23263180
15.  Olfactory Processing and Behavior Downstream from Highly Selective Receptor Neurons 
Nature neuroscience  2007;10(5):623-630.
In either the vertebrate nose or the insect antenna, most olfactory receptor neurons (ORNs) respond to multiple odors. However, some ORNs respond to just a single odor, or at most to a few highly related odors. It has been hypothesized that narrowly-tuned ORNs project to narrowly-tuned neurons in the brain, and that these dedicated circuits mediate innate behavioral responses to a particular ligand. Here we have investigated neural activity and behavior downstream from two narrowly-tuned ORN types in Drosophila. We found that genetically ablating either of these ORN types impairs innate behavioral attraction to their cognate ligand. Neurons in the antennal lobe postsynaptic to one of these ORN types are, like their presynaptic ORNs, narrowly tuned to a pheromone. However, neurons postsynaptic to the second ORN type are broadly tuned. These results demonstrate that some narrowly-tuned ORNs project to dedicated central circuits, ensuring a tight connection between stimulus and behavior, whereas others project to central neurons which participate in the ensemble representations of many odors.
doi:10.1038/nn1881
PMCID: PMC2838507  PMID: 17417635
16.  Mechanisms of Maximum Information Preservation in the Drosophila Antennal Lobe 
PLoS ONE  2010;5(5):e10644.
We examined the presence of maximum information preservation, which may be a fundamental principle of information transmission in all sensory modalities, in the Drosophila antennal lobe using an experimentally grounded network model and physiological data. Recent studies have shown a nonlinear firing rate transformation between olfactory receptor neurons (ORNs) and second-order projection neurons (PNs). As a result, PNs can use their dynamic range more uniformly than ORNs in response to a diverse set of odors. Although this firing rate transformation is thought to assist the decoder in discriminating between odors, there are no comprehensive, quantitatively supported studies examining this notion. Therefore, we quantitatively investigated the efficiency of this firing rate transformation from the viewpoint of information preservation by computing the mutual information between odor stimuli and PN responses in our network model. In the Drosophila olfactory system, all ORNs and PNs are divided into unique functional processing units called glomeruli. The nonlinear transformation between ORNs and PNs is formed by intraglomerular transformation and interglomerular interaction through local neurons (LNs). By exploring possible nonlinear transformations produced by these two factors in our network model, we found that mutual information is maximized when a weak ORN input is preferentially amplified within a glomerulus and the net LN input to each glomerulus is inhibitory. It is noteworthy that this is the very combination observed experimentally. Furthermore, the shape of the resultant nonlinear transformation is similar to that observed experimentally. These results imply that information related to odor stimuli is almost maximally preserved in the Drosophila olfactory circuit. We also discuss how intraglomerular transformation and interglomerular inhibition combine to maximize mutual information.
doi:10.1371/journal.pone.0010644
PMCID: PMC2873944  PMID: 20502639
17.  Peripheral and Central Olfactory Tuning in a Moth 
Chemical Senses  2012;37(5):455-461.
Animals can be innately attracted to certain odorants. Because these attractants are particularly salient, they might be expected to induce relatively strong responses throughout the olfactory pathway, helping animals detect the most relevant odors but limiting flexibility to respond to other odors. Alternatively, specific neural wiring might link innately preferred odors to appropriate behaviors without a need for intensity biases. How nonpheromonal attractants are processed by the general olfactory system remains largely unknown. In the moth Manduca sexta, we studied this with a set of innately preferred host plant odors and other, neutral odors. Electroantennogram recordings showed that, as a population, olfactory receptor neurons (ORNs) did not respond with greater intensity to host plant odors, and further local field potential recordings showed that no specific amplification of signals induced by host plant odors occurred between the first olfactory center and the second. Moreover, when odorants were mutually diluted to elicit equally intense output from the ORNs, moths were able to learn to associate all tested odorants equally well with food reward. Together, these results suggest that, although nonpheromonal host plant odors activate broadly distributed responses, they may be linked to attractive behaviors mainly through specific wiring in the brain.
doi:10.1093/chemse/bjr127
PMCID: PMC3348173  PMID: 22362866
innate preference; insect; mushroom body; odor; olfactory learning; olfactory receptor neuron
18.  Leucine-Rich Repeat Transmembrane Proteins Instruct Discrete Dendrite Targeting in an Olfactory Map 
Nature neuroscience  2009;12(12):1542-1550.
Olfactory systems utilize discrete neural pathways to process and integrate odorant information. In Drosophila, axons of first-order olfactory receptor neurons (ORNs) and dendrites of second-order projection neurons (PNs) form class-specific synaptic connections at ∼50 glomeruli. The mechanisms underlying PN dendrite targeting to distinct glomeruli in a 3-dimensional discrete neural map are unclear. Here we show that the leucine-rich repeat (LRR) transmembrane protein Capricious (Caps) is differentially expressed in different classes of PNs. Loss- and gain-of-function studies indicate that Caps instructs the segregation of Caps-positive and negative PN dendrites to discrete glomerular targets. Moreover, Caps does not mediate homophilic interactions and regulates PN dendrite targeting independent of pre-synaptic ORNs. The closely related protein Tartan plays a partially redundant function with Capricious. These LRR proteins are likely part of a combinatorial cell-surface code that instructs discrete olfactory map formation.
doi:10.1038/nn.2442
PMCID: PMC2826190  PMID: 19915565
19.  Excitatory Interactions Between Olfactory Processing Channels in the Drosophila Antennal Lobe 
Neuron  2007;54(1):89-103.
Summary
Each odorant receptor gene defines a unique type of olfactory receptor neuron (ORN) and a corresponding type of second-order neuron. Because each odor can activate multiple ORN types, information must ultimately be integrated across these processing channels to form a unified percept. Here we show that, in Drosophila, integration begins at the level of second-order projection neurons (PNs). We genetically silence all the ORNs that normally express a particular odorant receptor, and find that PNs postsynaptic to the silent glomerulus receive substantial lateral excitatory input from other glomeruli. Genetically confining odor-evoked ORN input to just one glomerulus reveals that most PNs postsynaptic to other glomeruli receive indirect excitatory input from the single ORN type that is active. Lateral connections between identified glomeruli vary in strength, and this pattern of connections is stereotyped across flies. Thus, a dense network of lateral connections distributes odor-evoked excitation between channels in the first brain region of the olfactory processing stream.
doi:10.1016/j.neuron.2007.03.010
PMCID: PMC2048819  PMID: 17408580
20.  Positive and negative regulation of odor receptor gene choice in Drosophila by Acj6 
Little is known about how individual olfactory receptor neurons (ORNs) select, from among many odor receptor genes, which genes to express. Acj6 (Abnormal chemosensory jump 6) is a POU-domain transcription factor essential for the specification of ORN identity and Or (odor receptor) gene expression in the Drosophila maxillary palp, one of the two adult olfactory organs. However, the mechanism by which Acj6 functions in this process has not been investigated. Here we systematically examine the role of Acj6 in the maxillary palp and in a major subset of antennal ORNs. We define an Acj6 binding site by a reiterative in vitro selection process. The site is found upstream of Or genes regulated by Acj6, and Acj6 binds to the site in Or promoters. Mutational analysis shows that the site is essential for Or regulation in vivo. Surprisingly, a novel ORN class in acj6 adults is found to arise from ectopic expression of a larval Or gene, which is repressed in wild-type via an Acj6 binding site. Thus Acj6 acts directly in the process of receptor gene choice; it plays a dual role, positive and negative, in the logic of the process, and acts in partitioning the larval and adult receptor repertoires.
doi:10.1523/JNEUROSCI.3525-09.2009
PMCID: PMC2782464  PMID: 19828808
olfaction; Drosophila; Acj6; POU-domain; maxillary palp; antenna
21.  Distinct functions of acj6 splice forms in odor receptor gene choice 
Individual olfactory receptor neurons (ORNs) selectively express one or a small number of odor receptors from among a large receptor repertoire. The expression of an odor receptor dictates the odor response spectrum of the ORN. The process of receptor gene choice relies in part on a combinatorial code of transcription factors. In Drosophila, the POU domain transcription factor Acj6 is one element of the transcription factor code. In acj6 null mutants, many ORNs do not express an appropriate odor receptor gene and thus are not correctly specified. We find that acj6 is alternatively spliced to yield many structurally distinct transcripts in the olfactory organs. We generate flies that express single splice forms of acj6 in an acj6− background. We find that different splice forms are functionally distinct; they differ in their abilities to specify ORN identities. Some individual splice forms can fully rescue the specification of some ORNs. Individual splice forms can function both positively and negatively in receptor gene regulation. ORNs differ in their requirements for splice forms; some are not fully rescued by any single splice form tested, suggesting that some ORNs may require the combinatorial action of multiple splice forms. Late expression of some acj6 splice forms is sufficient to rescue some ORN classes, consistent with a direct role for Acj6 isoforms in receptor gene expression. The results indicate that alternative splicing may add another level of richness to the regulatory code that underlies the process of odor receptor gene choice.
doi:10.1523/JNEUROSCI.6292-09.2010
PMCID: PMC2858447  PMID: 20371823
olfaction; Drosophila; Acj6; POU-domain; odor receptor; splicing
22.  Origin of basal activity in mammalian olfactory receptor neurons 
The Journal of General Physiology  2010;136(5):529-540.
Mammalian odorant receptors form a large, diverse group of G protein–coupled receptors that determine the sensitivity and response profile of olfactory receptor neurons. But little is known if odorant receptors control basal and also stimulus-induced cellular properties of olfactory receptor neurons other than ligand specificity. This study demonstrates that different odorant receptors have varying degrees of basal activity, which drives concomitant receptor current fluctuations and basal action potential firing. This basal activity can be suppressed by odorants functioning as inverse agonists. Furthermore, odorant-stimulated olfactory receptor neurons expressing different odorant receptors can have strikingly different response patterns in the later phases of prolonged stimulation. Thus, the influence of odorant receptor choice on response characteristics is much more complex than previously thought, which has important consequences on odor coding and odor information transfer to the brain.
doi:10.1085/jgp.201010528
PMCID: PMC2964517  PMID: 20974772
23.  Sensory Processing in the Drosophila Antennal Lobe Increases the Reliability and Separability of Ensemble Odor Representations 
Nature neuroscience  2007;10(11):1474-1482.
Here we describe several fundamental principles of olfactory processing in the Drosophila antennal lobe (the analog of the vertebrate olfactory bulb), based on a systematic analysis of input and output spike trains of seven identified glomeruli. Repeated presentations of the same odor elicit more reproducible responses in second-order projection neurons (PNs) than in their presynaptic olfactory receptor neurons (ORNs). PN responses rise and accommodate rapidly, emphasizing odor onset. Furthermore, weak ORN inputs are amplified in the PN layer but strong inputs are not. This nonlinear transformation broadens PN tuning, and produces more uniform distances between odor representations in PN coding space. Additionally, a portion of a PN’s odor response profile is not systematically related to its direct ORN inputs, likely reflecting lateral connections between glomeruli. Finally, we show that a linear discriminator classifies odors more accurately using PN spike trains as compared to an equivalent number of ORN spike trains.
doi:10.1038/nn1976
PMCID: PMC2838615  PMID: 17922008
24.  DSL-Notch signaling in the Drosophila brain in response to olfactory stimulation 
Neuron  2011;69(3):468-481.
Summary
Delta/Serrate/Lag2 (DSL) ligands and their Notch family receptors have profound and pervasive roles in development. They are also expressed in adult tissues, notably in mature neurons and glia in the brain, where their roles are unknown. Here, focusing on the sense of smell in adult Drosophila, we show that Notch is activated in select olfactory receptor neurons (ORNs) in an odorant specific fashion. This response requires olfactory receptor activity and the Notch ligand Delta. We present evidence that Notch activation depends on synaptic transmission by the ORNs in which the receptors are active, and is modulated by the activity of local interneurons in the antennal lobe. It is also subject to regulatory inputs from olfactory receptor activity in other ORNs. These findings identify a new correlate of stimulus-dependent brain activity, and potentially new forms of neural integration and plasticity.
doi:10.1016/j.neuron.2010.12.015
PMCID: PMC3216490  PMID: 21315258
25.  Functional Differences between Global Pre- and Postsynaptic Inhibition in the Drosophila Olfactory Circuit 
The Drosophila antennal lobe is subdivided into multiple glomeruli, each of which represents a unique olfactory information processing channel. In each glomerulus, feedforward input from olfactory receptor neurons (ORNs) is transformed into activity of projection neurons (PNs), which represent the output. Recent investigations have indicated that lateral presynaptic inhibitory input from other glomeruli controls the gain of this transformation. Here, we address why this gain control acts “pre”-synaptically rather than “post”-synaptically. Postsynaptic inhibition could work similarly to presynaptic inhibition with regard to regulating the firing rates of PNs depending on the stimulus intensity. We investigate the differences between pre- and postsynaptic gain control in terms of odor discriminability by simulating a network model of the Drosophila antennal lobe with experimental data. We first demonstrate that only presynaptic inhibition can reproduce the type of gain control observed in experiments. We next show that presynaptic inhibition decorrelates PN responses whereas postsynaptic inhibition does not. Due to this effect, presynaptic gain control enhances the accuracy of odor discrimination by a linear decoder while its postsynaptic counterpart only diminishes it. Our results provide the reason gain control operates “pre”-synaptically but not “post”-synaptically in the Drosophila antennal lobe.
doi:10.3389/fncom.2012.00014
PMCID: PMC3309306  PMID: 22470334
Drosophila; antennal lobe; odor discriminability; presynaptic inhibition; postsynaptic inhibition; gain control; decorrelation; concentration invariance

Results 1-25 (544616)