PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (538610)

Clipboard (0)
None

Related Articles

1.  Diversity, Activity, and Evolution of CRISPR Loci in Streptococcus thermophilus▿ † 
Journal of Bacteriology  2007;190(4):1401-1412.
Clustered regularly interspaced short palindromic repeats (CRISPR) are hypervariable loci widely distributed in prokaryotes that provide acquired immunity against foreign genetic elements. Here, we characterize a novel Streptococcus thermophilus locus, CRISPR3, and experimentally demonstrate its ability to integrate novel spacers in response to bacteriophage. Also, we analyze CRISPR diversity and activity across three distinct CRISPR loci in several S. thermophilus strains. We show that both CRISPR repeats and cas genes are locus specific and functionally coupled. A total of 124 strains were studied, and 109 unique spacer arrangements were observed across the three CRISPR loci. Overall, 3,626 spacers were analyzed, including 2,829 for CRISPR1 (782 unique), 173 for CRISPR2 (16 unique), and 624 for CRISPR3 (154 unique). Sequence analysis of the spacers revealed homology and identity to phage sequences (77%), plasmid sequences (16%), and S. thermophilus chromosomal sequences (7%). Polymorphisms were observed for the CRISPR repeats, CRISPR spacers, cas genes, CRISPR motif, locus architecture, and specific sequence content. Interestingly, CRISPR loci evolved both via polarized addition of novel spacers after exposure to foreign genetic elements and via internal deletion of spacers. We hypothesize that the level of diversity is correlated with relative CRISPR activity and propose that the activity is highest for CRISPR1, followed by CRISPR3, while CRISPR2 may be degenerate. Globally, the dynamic nature of CRISPR loci might prove valuable for typing and comparative analyses of strains and microbial populations. Also, CRISPRs provide critical insights into the relationships between prokaryotes and their environments, notably the coevolution of host and viral genomes.
doi:10.1128/JB.01415-07
PMCID: PMC2238196  PMID: 18065539
2.  Erwinia amylovora CRISPR Elements Provide New Tools for Evaluating Strain Diversity and for Microbial Source Tracking 
PLoS ONE  2012;7(7):e41706.
Clustered regularly interspaced short palindromic repeats (CRISPRs) comprise a family of short DNA repeat sequences that are separated by non repetitive spacer sequences and, in combination with a suite of Cas proteins, are thought to function as an adaptive immune system against invading DNA. The number of CRISPR arrays in a bacterial chromosome is variable, and the content of each array can differ in both repeat number and in the presence or absence of specific spacers. We utilized a comparative sequence analysis of CRISPR arrays of the plant pathogen Erwinia amylovora to uncover previously unknown genetic diversity in this species. A total of 85 E. amylovora strains varying in geographic isolation (North America, Europe, New Zealand, and the Middle East), host range, plasmid content, and streptomycin sensitivity/resistance were evaluated for CRISPR array number and spacer variability. From these strains, 588 unique spacers were identified in the three CRISPR arrays present in E. amylovora, and these arrays could be categorized into 20, 17, and 2 patterns types, respectively. Analysis of the relatedness of spacer content differentiated most apple and pear strains isolated in the eastern U.S. from western U.S. strains. In addition, we identified North American strains that shared CRISPR genotypes with strains isolated on other continents. E. amylovora strains from Rubus and Indian hawthorn contained mostly unique spacers compared to apple and pear strains, while strains from loquat shared 79% of spacers with apple and pear strains. Approximately 23% of the spacers matched known sequences, with 16% targeting plasmids and 5% targeting bacteriophage. The plasmid pEU30, isolated in E. amylovora strains from the western U.S., was targeted by 55 spacers. Lastly, we used spacer patterns and content to determine that streptomycin-resistant strains of E. amylovora from Michigan were low in diversity and matched corresponding streptomycin-sensitive strains from the background population.
doi:10.1371/journal.pone.0041706
PMCID: PMC3409226  PMID: 22860008
3.  Diverse CRISPRs Evolving in Human Microbiomes 
PLoS Genetics  2012;8(6):e1002441.
CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) loci, together with cas (CRISPR–associated) genes, form the CRISPR/Cas adaptive immune system, a primary defense strategy that eubacteria and archaea mobilize against foreign nucleic acids, including phages and conjugative plasmids. Short spacer sequences separated by the repeats are derived from foreign DNA and direct interference to future infections. The availability of hundreds of shotgun metagenomic datasets from the Human Microbiome Project (HMP) enables us to explore the distribution and diversity of known CRISPRs in human-associated microbial communities and to discover new CRISPRs. We propose a targeted assembly strategy to reconstruct CRISPR arrays, which whole-metagenome assemblies fail to identify. For each known CRISPR type (identified from reference genomes), we use its direct repeat consensus sequence to recruit reads from each HMP dataset and then assemble the recruited reads into CRISPR loci; the unique spacer sequences can then be extracted for analysis. We also identified novel CRISPRs or new CRISPR variants in contigs from whole-metagenome assemblies and used targeted assembly to more comprehensively identify these CRISPRs across samples. We observed that the distributions of CRISPRs (including 64 known and 86 novel ones) are largely body-site specific. We provide detailed analysis of several CRISPR loci, including novel CRISPRs. For example, known streptococcal CRISPRs were identified in most oral microbiomes, totaling ∼8,000 unique spacers: samples resampled from the same individual and oral site shared the most spacers; different oral sites from the same individual shared significantly fewer, while different individuals had almost no common spacers, indicating the impact of subtle niche differences on the evolution of CRISPR defenses. We further demonstrate potential applications of CRISPRs to the tracing of rare species and the virus exposure of individuals. This work indicates the importance of effective identification and characterization of CRISPR loci to the study of the dynamic ecology of microbiomes.
Author Summary
Human bodies are complex ecological systems in which various microbial organisms and viruses interact with each other and with the human host. The Human Microbiome Project (HMP) has resulted in >700 datasets of shotgun metagenomic sequences, from which we can learn about the compositions and functions of human-associated microbial communities. CRISPR/Cas systems are a widespread class of adaptive immune systems in bacteria and archaea, providing acquired immunity against foreign nucleic acids: CRISPR/Cas defense pathways involve integration of viral- or plasmid-derived DNA segments into CRISPR arrays (forming spacers between repeated structural sequences), and expression of short crRNAs from these single repeat-spacer units, to generate interference to future invading foreign genomes. Powered by an effective computational approach (the targeted assembly approach for CRISPR), our analysis of CRISPR arrays in the HMP datasets provides the very first global view of bacterial immunity systems in human-associated microbial communities. The great diversity of CRISPR spacers we observed among different body sites, in different individuals, and in single individuals over time, indicates the impact of subtle niche differences on the evolution of CRISPR defenses and indicates the key role of bacteriophage (and plasmids) in shaping human microbial communities.
doi:10.1371/journal.pgen.1002441
PMCID: PMC3374615  PMID: 22719260
4.  A PNPase Dependent CRISPR System in Listeria 
PLoS Genetics  2014;10(1):e1004065.
The human bacterial pathogen Listeria monocytogenes is emerging as a model organism to study RNA-mediated regulation in pathogenic bacteria. A class of non-coding RNAs called CRISPRs (clustered regularly interspaced short palindromic repeats) has been described to confer bacterial resistance against invading bacteriophages and conjugative plasmids. CRISPR function relies on the activity of CRISPR associated (cas) genes that encode a large family of proteins with nuclease or helicase activities and DNA and RNA binding domains. Here, we characterized a CRISPR element (RliB) that is expressed and processed in the L. monocytogenes strain EGD-e, which is completely devoid of cas genes. Structural probing revealed that RliB has an unexpected secondary structure comprising basepair interactions between the repeats and the adjacent spacers in place of canonical hairpins formed by the palindromic repeats. Moreover, in contrast to other CRISPR-Cas systems identified in Listeria, RliB-CRISPR is ubiquitously present among Listeria genomes at the same genomic locus and is never associated with the cas genes. We showed that RliB-CRISPR is a substrate for the endogenously encoded polynucleotide phosphorylase (PNPase) enzyme. The spacers of the different Listeria RliB-CRISPRs share many sequences with temperate and virulent phages. Furthermore, we show that a cas-less RliB-CRISPR lowers the acquisition frequency of a plasmid carrying the matching protospacer, provided that trans encoded cas genes of a second CRISPR-Cas system are present in the genome. Importantly, we show that PNPase is required for RliB-CRISPR mediated DNA interference. Altogether, our data reveal a yet undescribed CRISPR system whose both processing and activity depend on PNPase, highlighting a new and unexpected function for PNPase in “CRISPRology”.
Author Summary
CRISPR-Cas systems confer to bacteria and archaea an adaptive immunity that protects them against invading bacteriophages and plasmids. In this study, we characterize a CRISPR (RliB-CRISPR) that is present in all L. monocytogenes strains at the same genomic locus but is never associated with a cas operon. It is an unusual CRISPR that, as we demonstrate, has a secondary structure consisting of basepair interactions between the repeat sequence and the adjacent spacer. We show that the RliB-CRISPR is processed by the endogenously encoded polynucleotide phosphorylase enzyme (PNPase). In addition, we show that the RliB-CRISPR system requires PNPase and presence of trans encoded cas genes of a second CRISPR-Cas system, to mediate DNA interference directed against a plasmid carrying a matching protospacer. Altogether, our data reveal a novel type of CRISPR system in bacteria that requires endogenously encoded PNPase enzyme for its processing and interference activity.
doi:10.1371/journal.pgen.1004065
PMCID: PMC3886909  PMID: 24415952
5.  Multidrug-Resistant Enterococci Lack CRISPR-cas 
mBio  2010;1(4):e00227-10.
Clustered, regularly interspaced short palindromic repeats (CRISPR) provide bacteria and archaea with sequence-specific, acquired defense against plasmids and phage. Because mobile elements constitute up to 25% of the genome of multidrug-resistant (MDR) enterococci, it was of interest to examine the codistribution of CRISPR and acquired antibiotic resistance in enterococcal lineages. A database was built from 16 Enterococcus faecalis draft genome sequences to identify commonalities and polymorphisms in the location and content of CRISPR loci. With this data set, we were able to detect identities between CRISPR spacers and sequences from mobile elements, including pheromone-responsive plasmids and phage, suggesting that CRISPR regulates the flux of these elements through the E. faecalis species. Based on conserved locations of CRISPR and CRISPR-cas loci and the discovery of a new CRISPR locus with associated functional genes, CRISPR3-cas, we screened additional E. faecalis strains for CRISPR content, including isolates predating the use of antibiotics. We found a highly significant inverse correlation between the presence of a CRISPR-cas locus and acquired antibiotic resistance in E. faecalis, and examination of an additional eight E. faecium genomes yielded similar results for that species. A mechanism for CRISPR-cas loss in E. faecalis was identified. The inverse relationship between CRISPR-cas and antibiotic resistance suggests that antibiotic use inadvertently selects for enterococcal strains with compromised genome defense.
IMPORTANCE
For many bacteria, including the opportunistically pathogenic enterococci, antibiotic resistance is mediated by acquisition of new DNA and is frequently encoded on mobile DNA elements such as plasmids and transposons. Certain enterococcal lineages have recently emerged that are characterized by abundant mobile DNA, including numerous viruses (phage), and plasmids and transposons encoding multiple antibiotic resistances. These lineages cause hospital infection outbreaks around the world. The striking influx of mobile DNA into these lineages is in contrast to what would be expected if a self (genome)-defense system was present. Clustered, regularly interspaced short palindromic repeat (CRISPR) defense is a recently discovered mechanism of prokaryotic self-defense that provides a type of acquired immunity. Here, we find that antibiotic resistance and possession of complete CRISPR loci are inversely related and that members of recently emerged high-risk enterococcal lineages lack complete CRISPR loci. Our results suggest that antibiotic therapy inadvertently selects for enterococci with compromised genome defense.
doi:10.1128/mBio.00227-10
PMCID: PMC2975353  PMID: 21060735
6.  The Small, Slow and Specialized CRISPR and Anti-CRISPR of Escherichia and Salmonella 
PLoS ONE  2010;5(6):e11126.
Prokaryotes thrive in spite of the vast number and diversity of their viruses. This partly results from the evolution of mechanisms to inactivate or silence the action of exogenous DNA. Among these, Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) are unique in providing adaptive immunity against elements with high local resemblance to genomes of previously infecting agents. Here, we analyze the CRISPR loci of 51 complete genomes of Escherichia and Salmonella. CRISPR are in two pairs of loci in Escherichia, one single pair in Salmonella, each pair showing a similar turnover rate, repeat sequence and putative linkage to a common set of cas genes. Yet, phylogeny shows that CRISPR and associated cas genes have different evolutionary histories, the latter being frequently exchanged or lost. In our set, one CRISPR pair seems specialized in plasmids often matching genes coding for the replication, conjugation and antirestriction machinery. Strikingly, this pair also matches the cognate cas genes in which case these genes are absent. The unexpectedly high conservation of this anti-CRISPR suggests selection to counteract the invasion of mobile elements containing functional CRISPR/cas systems. There are few spacers in most CRISPR, which rarely match genomes of known phages. Furthermore, we found that strains divergent less than 250 thousand years ago show virtually identical CRISPR. The lack of congruence between cas, CRISPR and the species phylogeny and the slow pace of CRISPR change make CRISPR poor epidemiological markers in enterobacteria. All these observations are at odds with the expectedly abundant and dynamic repertoire of spacers in an immune system aiming at protecting bacteria from phages. Since we observe purifying selection for the maintenance of CRISPR these results suggest that alternative evolutionary roles for CRISPR remain to be uncovered.
doi:10.1371/journal.pone.0011126
PMCID: PMC2886076  PMID: 20559554
7.  Intricate Interactions between the Bloom-Forming Cyanobacterium Microcystis aeruginosa and Foreign Genetic Elements, Revealed by Diversified Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR) Signatures 
Applied and Environmental Microbiology  2012;78(15):5353-5360.
Clustered regularly interspaced short palindromic repeats (CRISPR) confer sequence-dependent, adaptive resistance in prokaryotes against viruses and plasmids via incorporation of short sequences, called spacers, derived from foreign genetic elements. CRISPR loci are thus considered to provide records of past infections. To describe the host-parasite (i.e., cyanophages and plasmids) interactions involving the bloom-forming freshwater cyanobacterium Microcystis aeruginosa, we investigated CRISPR in four M. aeruginosa strains and in two previously sequenced genomes. The number of spacers in each locus was larger than the average among prokaryotes. All spacers were strain specific, except for a string of 11 spacers shared in two closely related strains, suggesting diversification of the loci. Using CRISPR repeat-based PCR, 24 CRISPR genotypes were identified in a natural cyanobacterial community. Among 995 unique spacers obtained, only 10 sequences showed similarity to M. aeruginosa phage Ma-LMM01. Of these, six spacers showed only silent or conservative nucleotide mutations compared to Ma-LMM01 sequences, suggesting a strategy by the cyanophage to avert CRISPR immunity dependent on nucleotide identity. These results imply that host-phage interactions can be divided into M. aeruginosa-cyanophage combinations rather than pandemics of population-wide infectious cyanophages. Spacer similarity also showed frequent exposure of M. aeruginosa to small cryptic plasmids that were observed only in a few strains. Thus, the diversification of CRISPR implies that M. aeruginosa has been challenged by diverse communities (almost entirely uncharacterized) of cyanophages and plasmids.
doi:10.1128/AEM.00626-12
PMCID: PMC3416447  PMID: 22636003
8.  A Guild of 45 CRISPR-Associated (Cas) Protein Families and Multiple CRISPR/Cas Subtypes Exist in Prokaryotic Genomes 
PLoS Computational Biology  2005;1(6):e60.
Clustered regularly interspaced short palindromic repeats (CRISPRs) are a family of DNA direct repeats found in many prokaryotic genomes. Repeats of 21–37 bp typically show weak dyad symmetry and are separated by regularly sized, nonrepetitive spacer sequences. Four CRISPR-associated (Cas) protein families, designated Cas1 to Cas4, are strictly associated with CRISPR elements and always occur near a repeat cluster. Some spacers originate from mobile genetic elements and are thought to confer “immunity” against the elements that harbor these sequences. In the present study, we have systematically investigated uncharacterized proteins encoded in the vicinity of these CRISPRs and found many additional protein families that are strictly associated with CRISPR loci across multiple prokaryotic species. Multiple sequence alignments and hidden Markov models have been built for 45 Cas protein families. These models identify family members with high sensitivity and selectivity and classify key regulators of development, DevR and DevS, in Myxococcus xanthus as Cas proteins. These identifications show that CRISPR/cas gene regions can be quite large, with up to 20 different, tandem-arranged cas genes next to a repeat cluster or filling the region between two repeat clusters. Distinctive subsets of the collection of Cas proteins recur in phylogenetically distant species and correlate with characteristic repeat periodicity. The analyses presented here support initial proposals of mobility of these units, along with the likelihood that loci of different subtypes interact with one another as well as with host cell defensive, replicative, and regulatory systems. It is evident from this analysis that CRISPR/cas loci are larger, more complex, and more heterogeneous than previously appreciated.
Synopsis
The family of clustered regularly interspaced short palindromic repeats (CRISPRs) describes a class of DNA repeats found in nearly half of all bacterial and archaeal genomes. These DNA repeat regions have a remarkably regular structure: unique sequences of constant size, called spacers, sit between each pair of repeats. The DNA repeats do not encode proteins, but appear to be transcribed and processed into small RNAs that may have any number of functions, including resistance to any phage (i.e., virus of bacteria) whose sequence matches a spacer; spacers change rapidly as microbial strains evolve. This work describes 41 new CRISPR-associated (cas) gene families, which are always found near these repeats, in addition to the four previously known. It shows that CRISPR systems belong to different classes, with different repeat patterns, sets of genes, and species ranges. Most of these seem to come and go rather rapidly from their host genomes. These possibly beneficial mobile genetic elements may play an important role in driving prokaryotic evolution.
doi:10.1371/journal.pcbi.0010060
PMCID: PMC1282333  PMID: 16292354
9.  Viral Diversity Threshold for Adaptive Immunity in Prokaryotes 
mBio  2012;3(6):e00456-12.
ABSTRACT
Bacteria and archaea face continual onslaughts of rapidly diversifying viruses and plasmids. Many prokaryotes maintain adaptive immune systems known as clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated genes (Cas). CRISPR-Cas systems are genomic sensors that serially acquire viral and plasmid DNA fragments (spacers) that are utilized to target and cleave matching viral and plasmid DNA in subsequent genomic invasions, offering critical immunological memory. Only 50% of sequenced bacteria possess CRISPR-Cas immunity, in contrast to over 90% of sequenced archaea. To probe why half of bacteria lack CRISPR-Cas immunity, we combined comparative genomics and mathematical modeling. Analysis of hundreds of diverse prokaryotic genomes shows that CRISPR-Cas systems are substantially more prevalent in thermophiles than in mesophiles. With sequenced bacteria disproportionately mesophilic and sequenced archaea mostly thermophilic, the presence of CRISPR-Cas appears to depend more on environmental temperature than on bacterial-archaeal taxonomy. Mutation rates are typically severalfold higher in mesophilic prokaryotes than in thermophilic prokaryotes. To quantitatively test whether accelerated viral mutation leads microbes to lose CRISPR-Cas systems, we developed a stochastic model of virus-CRISPR coevolution. The model competes CRISPR-Cas-positive (CRISPR-Cas+) prokaryotes against CRISPR-Cas-negative (CRISPR-Cas−) prokaryotes, continually weighing the antiviral benefits conferred by CRISPR-Cas immunity against its fitness costs. Tracking this cost-benefit analysis across parameter space reveals viral mutation rate thresholds beyond which CRISPR-Cas cannot provide sufficient immunity and is purged from host populations. These results offer a simple, testable viral diversity hypothesis to explain why mesophilic bacteria disproportionately lack CRISPR-Cas immunity. More generally, fundamental limits on the adaptability of biological sensors (Lamarckian evolution) are predicted.
IMPORTANCE
A remarkable recent discovery in microbiology is that bacteria and archaea possess systems conferring immunological memory and adaptive immunity. Clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated genes (CRISPR-Cas) are genomic sensors that allow prokaryotes to acquire DNA fragments from invading viruses and plasmids. Providing immunological memory, these stored fragments destroy matching DNA in future viral and plasmid invasions. CRISPR-Cas systems also provide adaptive immunity, keeping up with mutating viruses and plasmids by continually acquiring new DNA fragments. Surprisingly, less than 50% of mesophilic bacteria, in contrast to almost 90% of thermophilic bacteria and Archaea, maintain CRISPR-Cas immunity. Using mathematical modeling, we probe this dichotomy, showing how increased viral mutation rates can explain the reduced prevalence of CRISPR-Cas systems in mesophiles. Rapidly mutating viruses outrun CRISPR-Cas immune systems, likely decreasing their prevalence in bacterial populations. Thus, viral adaptability may select against, rather than for, immune adaptability in prokaryotes.
doi:10.1128/mBio.00456-12
PMCID: PMC3517865  PMID: 23221803
10.  Cytotoxic Chromosomal Targeting by CRISPR/Cas Systems Can Reshape Bacterial Genomes and Expel or Remodel Pathogenicity Islands 
PLoS Genetics  2013;9(4):e1003454.
In prokaryotes, clustered regularly interspaced short palindromic repeats (CRISPRs) and their associated (Cas) proteins constitute a defence system against bacteriophages and plasmids. CRISPR/Cas systems acquire short spacer sequences from foreign genetic elements and incorporate these into their CRISPR arrays, generating a memory of past invaders. Defence is provided by short non-coding RNAs that guide Cas proteins to cleave complementary nucleic acids. While most spacers are acquired from phages and plasmids, there are examples of spacers that match genes elsewhere in the host bacterial chromosome. In Pectobacterium atrosepticum the type I-F CRISPR/Cas system has acquired a self-complementary spacer that perfectly matches a protospacer target in a horizontally acquired island (HAI2) involved in plant pathogenicity. Given the paucity of experimental data about CRISPR/Cas–mediated chromosomal targeting, we examined this process by developing a tightly controlled system. Chromosomal targeting was highly toxic via targeting of DNA and resulted in growth inhibition and cellular filamentation. The toxic phenotype was avoided by mutations in the cas operon, the CRISPR repeats, the protospacer target, and protospacer-adjacent motif (PAM) beside the target. Indeed, the natural self-targeting spacer was non-toxic due to a single nucleotide mutation adjacent to the target in the PAM sequence. Furthermore, we show that chromosomal targeting can result in large-scale genomic alterations, including the remodelling or deletion of entire pre-existing pathogenicity islands. These features can be engineered for the targeted deletion of large regions of bacterial chromosomes. In conclusion, in DNA–targeting CRISPR/Cas systems, chromosomal interference is deleterious by causing DNA damage and providing a strong selective pressure for genome alterations, which may have consequences for bacterial evolution and pathogenicity.
Author Summary
Bacteria have evolved mechanisms that provide protection from continual invasion by viruses and other foreign elements. Resistance systems, known as CRISPR/Cas, were recently discovered and equip bacteria and archaea with an “adaptive immune system.” This adaptive immunity provides a highly evolvable sequence-specific small RNA–based memory of past invasions by viruses and foreign genetic elements. There are many cases where these systems appear to target regions within the bacterial host's own genome (a possible autoimmunity), but the evolutionary rationale for this is unclear. Here, we demonstrate that CRISPR/Cas targeting of the host chromosome is highly toxic but that cells survive through mutations that alleviate the immune mechanism. We have used this phenotype to gain insight into how these systems function and show that large changes in the bacterial genome can occur. For example, targeting of a chromosomal pathogenicity island, important for virulence of the potato pathogen Pectobacterium atrosepticum, resulted in deletion of the island, which constituted ∼2% of the bacterial genome. These results have broad significance for the role of CRISPR/Cas systems and their impact on the evolution of bacterial genomes and virulence. In addition, this study demonstrates their potential as a tool for the targeted deletion of specific regions of bacterial chromosomes.
doi:10.1371/journal.pgen.1003454
PMCID: PMC3630108  PMID: 23637624
11.  Persisting Viral Sequences Shape Microbial CRISPR-based Immunity 
PLoS Computational Biology  2012;8(4):e1002475.
Well-studied innate immune systems exist throughout bacteria and archaea, but a more recently discovered genomic locus may offer prokaryotes surprising immunological adaptability. Mediated by a cassette-like genomic locus termed Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR), the microbial adaptive immune system differs from its eukaryotic immune analogues by incorporating new immunities unidirectionally. CRISPR thus stores genomically recoverable timelines of virus-host coevolution in natural organisms refractory to laboratory cultivation. Here we combined a population genetic mathematical model of CRISPR-virus coevolution with six years of metagenomic sequencing to link the recoverable genomic dynamics of CRISPR loci to the unknown population dynamics of virus and host in natural communities. Metagenomic reconstructions in an acid-mine drainage system document CRISPR loci conserving ancestral immune elements to the base-pair across thousands of microbial generations. This ‘trailer-end conservation’ occurs despite rapid viral mutation and despite rapid prokaryotic genomic deletion. The trailer-ends of many reconstructed CRISPR loci are also largely identical across a population. ‘Trailer-end clonality’ occurs despite predictions of host immunological diversity due to negative frequency dependent selection (kill the winner dynamics). Statistical clustering and model simulations explain this lack of diversity by capturing rapid selective sweeps by highly immune CRISPR lineages. Potentially explaining ‘trailer-end conservation,’ we record the first example of a viral bloom overwhelming a CRISPR system. The polyclonal viruses bloom even though they share sequences previously targeted by host CRISPR loci. Simulations show how increasing random genomic deletions in CRISPR loci purges immunological controls on long-lived viral sequences, allowing polyclonal viruses to bloom and depressing host fitness. Our results thus link documented patterns of genomic conservation in CRISPR loci to an evolutionary advantage against persistent viruses. By maintaining old immunities, selection may be tuning CRISPR-mediated immunity against viruses reemerging from lysogeny or migration.
Author Summary
Most microbes appear unculturable in the laboratory, limiting our knowledge of how virus and prokaryotic host evolve in natural systems. However, a genomic locus found in many prokaryotes, CRISPR, may offer cultivation-independent probes of virus-microbe coevolution. Utilizing nearby genes, CRISPR can serially incorporate short viral and plasmid sequences. These sequences bind and cleave cognate regions in subsequent viral and plasmid insertions, conferring adaptive anti-viral and anti-plasmid immunity. By incorporating sequences undirectionally, CRISPR also provides timelines of virus-prokaryote coevolution. Yet, CRISPR only incorporates 30–80 base-pair viral sequences, leaving incomplete coevolutionary recordings. To reconstruct the missing coevolutionary dynamics shaping natural CRISPRs, we combined metagenomic reconstructions with population-scale mathematical modeling. Capturing rare and rapid sweeps of CRISPR diversity by highly immune lines, mathematical modeling explains why naturally reconstructed CRISPR loci are often largely identical across a population. Both model and experiment further document surprising proliferations of old viral sequences against which hosts had preexisting CRISPR immunity. Due to these deadly blooms of ancestral viral elements, CRISPR's conservation of old immune sequences appears to confer a selective advantage. This may explain the striking immunological memory documented in CRISPR loci, which occurs despite rapid viral mutation and despite rapid deletions in prokaryotic genomes.
doi:10.1371/journal.pcbi.1002475
PMCID: PMC3330103  PMID: 22532794
12.  Cleavage of Phage DNA by the Streptococcus thermophilus CRISPR3-Cas System 
PLoS ONE  2012;7(7):e40913.
Streptococcus thermophilus, similar to other Bacteria and Archaea, has developed defense mechanisms to protect cells against invasion by foreign nucleic acids, such as virus infections and plasmid transformations. One defense system recently described in these organisms is the CRISPR-Cas system (Clustered Regularly Interspaced Short Palindromic Repeats loci coupled to CRISPR-associated genes). Two S. thermophilus CRISPR-Cas systems, CRISPR1-Cas and CRISPR3-Cas, have been shown to actively block phage infection. The CRISPR1-Cas system interferes by cleaving foreign dsDNA entering the cell in a length-specific and orientation-dependant manner. Here, we show that the S. thermophilus CRISPR3-Cas system acts by cleaving phage dsDNA genomes at the same specific position inside the targeted protospacer as observed with the CRISPR1-Cas system. Only one cleavage site was observed in all tested strains. Moreover, we observed that the CRISPR1-Cas and CRISPR3-Cas systems are compatible and, when both systems are present within the same cell, provide increased resistance against phage infection by both cleaving the invading dsDNA. We also determined that overall phage resistance efficiency is correlated to the total number of newly acquired spacers in both CRISPR loci.
doi:10.1371/journal.pone.0040913
PMCID: PMC3401199  PMID: 22911717
13.  CRISPR-Cas Functional Module Exchange in Escherichia coli 
mBio  2014;5(1):e00767-13.
ABSTRACT
Clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated (cas) genes constitute the CRISPR-Cas systems found in the Bacteria and Archaea domains. At least in some strains they provide an efficient barrier against transmissible genetic elements such as plasmids and viruses. Two CRISPR-Cas systems have been identified in Escherichia coli, pertaining to subtypes I-E (cas-E genes) and I-F (cas-F genes), respectively. In order to unveil the evolutionary dynamics of such systems, we analyzed the sequence variations in the CRISPR-Cas loci of a collection of 131 E. coli strains. Our results show that the strain grouping inferred from these CRISPR data slightly differs from the phylogeny of the species, suggesting the occurrence of recombinational events between CRISPR arrays. Moreover, we determined that the primary cas-E genes of E. coli were altogether replaced with a substantially different variant in a minor group of strains that include K-12. Insertion elements play an important role in this variability. This result underlines the interchange capacity of CRISPR-Cas constituents and hints that at least some functional aspects documented for the K-12 system may not apply to the vast majority of E. coli strains.
IMPORTANCE
Escherichia coli is a model microorganism for the study of diverse aspects such as microbial evolution and is a component of the human gut flora that may have a direct impact in everyday life. This work was undertaken with the purpose of elucidating the evolutionary pathways that have led to the present situation of its significantly different CRISPR-Cas subtypes (I-E and I-F) in several strains of E. coli. In doing so, this information offers a novel and wider understanding of the variety and relevance of these regions within the species. Therefore, this knowledge may provide clues helping researchers better understand these systems for typing purposes and make predictions of their behavior in strains that, depending on their particular genetic dotation, would result in different levels of immunity to foreign genetic elements.
doi:10.1128/mBio.00767-13
PMCID: PMC3903273  PMID: 24473126
14.  CRISPR Distribution within the Escherichia coli Species Is Not Suggestive of Immunity-Associated Diversifying Selection ▿ †  
Journal of Bacteriology  2011;193(10):2460-2467.
In order to get further insights into the role of the clustered, regularly interspaced, short palindromic repeats (CRISPRs) in Escherichia coli, we analyzed the CRISPR diversity in a collection of 290 strains, in the phylogenetic framework of the strains represented by multilocus sequence typing (MLST). The set included 263 natural E. coli isolates exposed to various environments and isolated over a 20-year period from humans and animals, as well as 27 fully sequenced strains. Our analyses confirm that there are two largely independent pairs of CRISPR loci (CRISPR1 and -2 and CRISPR3 and -4), each associated with a different type of cas genes (Ecoli and Ypest, respectively), but that each pair of CRISPRs has similar dynamics. Strikingly, the major phylogenetic group B2 is almost devoid of CRISPRs. The majority of genomes analyzed lack Ypest cas genes and contain CRISPR3 with spacers matching Ypest cas genes. The analysis of relatedness between strains in terms of spacer repertoire and the MLST tree shows a pattern where closely related strains (MLST phylogenetic distance of <0.005 corresponding to at least hundreds of thousands of years) often exhibit identical CRISPRs while more distantly related strains (MLST distance of >0.01) exhibit completely different CRISPRs. This suggests rare but radical turnover of spacers in CRISPRs rather than CRISPR gradual change. We found no link between the presence, size, or content of CRISPRs and the lifestyle of the strains. Our data suggest that, within the E. coli species, CRISPRs do not have the expected characteristics of a classical immune system.
doi:10.1128/JB.01307-10
PMCID: PMC3133152  PMID: 21421763
15.  CRISPR-Cas systems target a diverse collection of invasive mobile genetic elements in human microbiomes 
Genome Biology  2013;14(4):R40.
Background
Bacteria and archaea develop immunity against invading genomes by incorporating pieces of the invaders' sequences, called spacers, into a clustered regularly interspaced short palindromic repeats (CRISPR) locus between repeats, forming arrays of repeat-spacer units. When spacers are expressed, they direct CRISPR-associated (Cas) proteins to silence complementary invading DNA. In order to characterize the invaders of human microbiomes, we use spacers from CRISPR arrays that we had previously assembled from shotgun metagenomic datasets, and identify contigs that contain these spacers' targets.
Results
We discover 95,000 contigs that are putative invasive mobile genetic elements, some targeted by hundreds of CRISPR spacers. We find that oral sites in healthy human populations have a much greater variety of mobile genetic elements than stool samples. Mobile genetic elements carry genes encoding diverse functions: only 7% of the mobile genetic elements are similar to known phages or plasmids, although a much greater proportion contain phage- or plasmid-related genes. A small number of contigs share similarity with known integrative and conjugative elements, providing the first examples of CRISPR defenses against this class of element. We provide detailed analyses of a few large mobile genetic elements of various types, and a relative abundance analysis of mobile genetic elements and putative hosts, exploring the dynamic activities of mobile genetic elements in human microbiomes. A joint analysis of mobile genetic elements and CRISPRs shows that protospacer-adjacent motifs drive their interaction network; however, some CRISPR-Cas systems target mobile genetic elements lacking motifs.
Conclusions
We identify a large collection of invasive mobile genetic elements in human microbiomes, an important resource for further study of the interaction between the CRISPR-Cas immune system and invaders.
doi:10.1186/gb-2013-14-4-r40
PMCID: PMC4053933  PMID: 23628424
CRISPR-Cas system; human microbiome; mobile genetic element (MGE)
16.  An Archaeal Immune System Can Detect Multiple Protospacer Adjacent Motifs (PAMs) to Target Invader DNA* 
The Journal of Biological Chemistry  2012;287(40):33351-33363.
Background: CRISPR/Cas systems allow archaea and bacteria to resist invasion by foreign nucleic acids.
Results: The CRISPR/Cas system in Haloferax recognized six different PAM sequences that could trigger a defense response.
Conclusion: The PAM sequence specificity of the defense response in type I CRISPR systems is more relaxed than previously thought.
Significance: The PAM sequence requirements for interference and adaptation appear to differ markedly.
The clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated (Cas) system provides adaptive and heritable immunity against foreign genetic elements in most archaea and many bacteria. Although this system is widespread and diverse with many subtypes, only a few species have been investigated to elucidate the precise mechanisms for the defense of viruses or plasmids. Approximately 90% of all sequenced archaea encode CRISPR/Cas systems, but their molecular details have so far only been examined in three archaeal species: Sulfolobus solfataricus, Sulfolobus islandicus, and Pyrococcus furiosus. Here, we analyzed the CRISPR/Cas system of Haloferax volcanii using a plasmid-based invader assay. Haloferax encodes a type I-B CRISPR/Cas system with eight Cas proteins and three CRISPR loci for which the identity of protospacer adjacent motifs (PAMs) was unknown until now. We identified six different PAM sequences that are required upstream of the protospacer to permit target DNA recognition. This is only the second archaeon for which PAM sequences have been determined, and the first CRISPR group with such a high number of PAM sequences. Cells could survive the plasmid challenge if their CRISPR/Cas system was altered or defective, e.g. by deletion of the cas gene cassette. Experimental PAM data were supplemented with bioinformatics data on Haloferax and Haloquadratum.
doi:10.1074/jbc.M112.377002
PMCID: PMC3460438  PMID: 22767603
Archaea; Microbiology; RNA; RNA Metabolism; RNA Processing; CRISPR/Cas; Haloferax volcanii; PAM
17.  Self vs. non-self discrimination during CRISPR RNA-directed immunity 
Nature  2010;463(7280):568-571.
All immune systems must distinguish self from non-self to repel invaders without inducing autoimmunity. Clustered, regularly interspaced, short palindromic repeat (CRISPR) loci protect bacteria and archaea from invasion by phage and plasmid DNA through a genetic interference pathway1–9. CRISPR loci are present in ~ 40% and ~90% of sequenced bacterial and archaeal genomes respectively10 and evolve rapidly, acquiring new spacer sequences to adapt to highly dynamic viral populations1, 11–13. Immunity requires a sequence match between the invasive DNA and the spacers that lie between CRISPR repeats1–9. Each cluster is genetically linked to a subset of the cas (CRISPR-associated) genes14–16 that collectively encode >40 families of proteins involved in adaptation and interference. CRISPR loci encode small CRISPR RNAs (crRNAs) that contain a full spacer flanked by partial repeat sequences2, 17–19. CrRNA spacers are thought to identify targets by direct Watson-Crick pairing with invasive “protospacer” DNA2, 3, but how they avoid targeting the spacer DNA within the encoding CRISPR locus itself is unknown. Here we have defined the mechanism of CRISPR self/non-self discrimination. In Staphylococcus epidermidis, target/crRNA mismatches at specific positions outside of the spacer sequence license foreign DNA for interference, whereas extended pairing between crRNA and CRISPR DNA repeats prevents autoimmunity. Hence, this CRISPR system uses the base-pairing potential of crRNAs not only to specify a target but also to spare the bacterial chromosome from interference. Differential complementarity outside of the spacer sequence is a built-in feature of all CRISPR systems, suggesting that this mechanism is a broadly applicable solution to the self/non-self dilemma that confronts all immune pathways.
doi:10.1038/nature08703
PMCID: PMC2813891  PMID: 20072129
18.  Transcription, Processing, and Function of CRISPR Cassettes in Escherichia coli 
Molecular microbiology  2010;77(6):1367-1379.
CRISPR/Cas, bacterial and archaeal systems of interference with foreign genetic elements such as viruses or plasmids, consist of DNA loci called CRISPR cassettes (a set of variable spacers regularly separated by palindromic repeats) and associated cas genes. When a CRISPR spacer sequence exactly matches a sequence in a viral genome, the cell can become resistant to the virus. The CRISPR/Cas systems function through small RNAs originating from longer CRISPR cassette transcripts. While laboratory strains of Escherichia coli contain a functional CRISPR/Cas system (as judged by appearance of phage resistance at conditions of artificial co-overexpression of Cas genes and a CRISPR cassette engineered to target a λ phage), no natural phage resistance due to CRISPR system function was observed in this best-studied organism and no E. coli CRISPR spacer matches sequences of well-studied E. coli phages. To better understand the apparently “silent” E. coli CRISPR/Cas system, we systematically characterized processed transcripts from CRISPR cassettes. Using an engineered strain with genomically located spacer matching phage λ we show that endogenous levels of CRISPR cassette and cas genes expression allow only weak protection against infection with the phage. However, derepression of the CRISPR/Cas system by disruption of the hns gene leads to high level of protection.
doi:10.1111/j.1365-2958.2010.07265.x
PMCID: PMC2939963  PMID: 20624226
19.  Structure and Genetic Content of the Megaplasmids of Neurotoxigenic Clostridium butyricum Type E Strains from Italy 
PLoS ONE  2013;8(8):e71324.
We determined the genetic maps of the megaplasmids of six neutoroxigenic Clostridium butyricum type E strains from Italy using molecular and bioinformatics techniques. The megaplasmids are circular, not linear as we had previously proposed. The differently-sized megaplasmids share a genetic region that includes structural, metabolic and regulatory genes. In addition, we found that a 168 kb genetic region is present only in the larger megaplasmids of two tested strains, whereas it is absent from the smaller megaplasmids of the four remaining strains. The genetic region unique to the larger megaplasmids contains, among other features, a locus for clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR associated (cas) genes, i.e. a bacterial adaptive immune system providing sequence-specific protection from invading genetic elements. Some CRISPR spacer sequences of the neurotoxigenic C. butyricum type E strains showed homology to prophage, phage and plasmid sequences from closely related clostridia species or from distant species, all sharing the intestinal habitat, suggesting that the CRISPR locus might be involved in the microorganism adaptation to the human or animal intestinal environment. Besides, we report here that each of four distinct CRISPR spacers partially matched DNA sequences of different prophages and phages, at identical nucleotide locations. This suggests that, at least in neurotoxigenic C. butyricum type E, the CRISPR locus is potentially able to recognize the same conserved DNA sequence of different invading genetic elements, besides targeting sequences unique to previously encountered invading DNA, as currently predicted for a CRISPR locus. Thus, the results of this study introduce the possibility that CRISPR loci can provide resistance to a wider range of invading DNA elements than previously appreciated. Whether it is more advantageous for the peculiar neurotoxigenic C. butyricum type E strains to maintain or to lose the CRISPR-cas system remains an open question.
doi:10.1371/journal.pone.0071324
PMCID: PMC3744543  PMID: 23967192
20.  CRISPR Inhibition of Prophage Acquisition in Streptococcus pyogenes 
PLoS ONE  2011;6(5):e19543.
Streptococcus pyogenes, one of the major human pathogens, is a unique species since it has acquired diverse strain-specific virulence properties mainly through the acquisition of streptococcal prophages. In addition, S. pyogenes possesses clustered regularly interspaced short palindromic repeats (CRISPR)/Cas systems that can restrict horizontal gene transfer (HGT) including phage insertion. Therefore, it was of interest to examine the relationship between CRISPR and acquisition of prophages in S. pyogenes. Although two distinct CRISPR loci were found in S. pyogenes, some strains lacked CRISPR and these strains possess significantly more prophages than CRISPR harboring strains. We also found that the number of spacers of S. pyogenes CRISPR was less than for other streptococci. The demonstrated spacer contents, however, suggested that the CRISPR appear to limit phage insertions. In addition, we found a significant inverse correlation between the number of spacers and prophages in S. pyogenes. It was therefore suggested that S. pyogenes CRISPR have permitted phage insertion by lacking its own spacers. Interestingly, in two closely related S. pyogenes strains (SSI-1 and MGAS315), CRISPR activity appeared to be impaired following the insertion of phage genomes into the repeat sequences. Detailed analysis of this prophage insertion site suggested that MGAS315 is the ancestral strain of SSI-1. As a result of analysis of 35 additional streptococcal genomes, it was suggested that the influences of the CRISPR on the phage insertion vary among species even within the same genus. Our results suggested that limitations in CRISPR content could explain the characteristic acquisition of prophages and might contribute to strain-specific pathogenesis in S. pyogenes.
doi:10.1371/journal.pone.0019543
PMCID: PMC3089615  PMID: 21573110
21.  Non-Identity-Mediated CRISPR-Bacteriophage Interaction Mediated via the Csy and Cas3 Proteins ▿# 
Journal of Bacteriology  2011;193(14):3433-3445.
Studies of the Escherichia, Neisseria, Thermotoga, and Mycobacteria clustered regularly interspaced short palindromic repeat (CRISPR) subtypes have resulted in a model whereby CRISPRs function as a defense system against bacteriophage infection and conjugative plasmid transfer. In contrast, we previously showed that the Yersinia-subtype CRISPR region of Pseudomonas aeruginosa strain UCBPP-PA14 plays no detectable role in viral immunity but instead is required for bacteriophage DMS3-dependent inhibition of biofilm formation by P. aeruginosa. The goal of this study is to define the components of the Yersinia-subtype CRISPR region required to mediate this bacteriophage-host interaction. We show that the Yersinia-subtype-specific CRISPR-associated (Cas) proteins Csy4 and Csy2 are essential for small CRISPR RNA (crRNA) production in vivo, while the Csy1 and Csy3 proteins are not absolutely required for production of these small RNAs. Further, we present evidence that the core Cas protein Cas3 functions downstream of small crRNA production and that this protein requires functional HD (predicted phosphohydrolase) and DEXD/H (predicted helicase) domains to suppress biofilm formation in DMS3 lysogens. We also determined that only spacer 1, which is not identical to any region of the DMS3 genome, mediates the CRISPR-dependent loss of biofilm formation. Our evidence suggests that gene 42 of phage DMS3 (DMS3-42) is targeted by CRISPR2 spacer 1 and that this targeting tolerates multiple point mutations between the spacer and DMS3-42 target sequence. This work demonstrates how the interaction between P. aeruginosa strain UCBPP-PA14 and bacteriophage DMS3 can be used to further our understanding of the diverse roles of CRISPR system function in bacteria.
doi:10.1128/JB.01411-10
PMCID: PMC3133329  PMID: 21398535
22.  Comparative analysis of CRISPR cassettes from the human gut metagenomic contigs 
BMC Genomics  2014;15:202.
Background
CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) is a prokaryotic adaptive defence system that provides resistance against alien replicons such as viruses and plasmids. Spacers in a CRISPR cassette confer immunity against viruses and plasmids containing regions complementary to the spacers and hence they retain a footprint of interactions between prokaryotes and their viruses in individual strains and ecosystems. The human gut is a rich habitat populated by numerous microorganisms, but a large fraction of these are unculturable and little is known about them in general and their CRISPR systems in particular.
Results
We used human gut metagenomic data from three open projects in order to characterize the composition and dynamics of CRISPR cassettes in the human-associated microbiota. Applying available CRISPR-identification algorithms and a previously designed filtering procedure to the assembled human gut metagenomic contigs, we found 388 CRISPR cassettes, 373 of which had repeats not observed previously in complete genomes or other datasets. Only 171 of 3,545 identified spacers were coupled with protospacers from the human gut metagenomic contigs. The number of matches to GenBank sequences was negligible, providing protospacers for 26 spacers.
Reconstruction of CRISPR cassettes allowed us to track the dynamics of spacer content. In agreement with other published observations we show that spacers shared by different cassettes (and hence likely older ones) tend to the trailer ends, whereas spacers with matches in the metagenomes are distributed unevenly across cassettes, demonstrating a preference to form clusters closer to the active end of a CRISPR cassette, adjacent to the leader, and hence suggesting dynamical interactions between prokaryotes and viruses in the human gut. Remarkably, spacers match protospacers in the metagenome of the same individual with frequency comparable to a random control, but may match protospacers from metagenomes of other individuals.
Conclusions
The analysis of assembled contigs is complementary to the approach based on the analysis of original reads and hence provides additional data about composition and evolution of CRISPR cassettes, revealing the dynamics of CRISPR-phage interactions in metagenomes.
doi:10.1186/1471-2164-15-202
PMCID: PMC4004331  PMID: 24628983
CRISPR; Human gut; Microbiome
23.  Nasty Viruses, Costly Plasmids, Population Dynamics, and the Conditions for Establishing and Maintaining CRISPR-Mediated Adaptive Immunity in Bacteria 
PLoS Genetics  2010;6(10):e1001171.
Clustered, Regularly Interspaced Short Palindromic Repeats (CRISPR) abound in the genomes of almost all archaebacteria and nearly half the eubacteria sequenced. Through a genetic interference mechanism, bacteria with CRISPR regions carrying copies of the DNA of previously encountered phage and plasmids abort the replication of phage and plasmids with these sequences. Thus it would seem that protection against infecting phage and plasmids is the selection pressure responsible for establishing and maintaining CRISPR in bacterial populations. But is it? To address this question and provide a framework and hypotheses for the experimental study of the ecology and evolution of CRISPR, I use mathematical models of the population dynamics of CRISPR-encoding bacteria with lytic phage and conjugative plasmids. The results of the numerical (computer simulation) analysis of the properties of these models with parameters in the ranges estimated for Escherichia coli and its phage and conjugative plasmids indicate: (1) In the presence of lytic phage there are broad conditions where bacteria with CRISPR-mediated immunity will have an advantage in competition with non-CRISPR bacteria with otherwise higher Malthusian fitness. (2) These conditions for the existence of CRISPR are narrower when there is envelope resistance to the phage. (3) While there are situations where CRISPR-mediated immunity can provide bacteria an advantage in competition with higher Malthusian fitness bacteria bearing deleterious conjugative plasmids, the conditions for this to obtain are relatively narrow and the intensity of selection favoring CRISPR weak. The parameters of these models can be independently estimated, the assumption behind their construction validated, and the hypotheses generated from the analysis of their properties tested in experimental populations of bacteria with lytic phage and conjugative plasmids. I suggest protocols for estimating these parameters and outline the design of experiments to evaluate the validity of these models and test these hypotheses.
Author Summary
CRISPR is the acronym for the adaptive immune system that has been found in almost all archaebacteria and nearly half the eubacteria examined. Unlike the other defenses bacteria have for protection from phage and other deleterious DNAs, CRISPR has the virtues of specificity, memory, and the capacity to abort infections with a virtually indefinite diversity of deleterious DNAs. In this report, mathematical models of the population dynamics of bacteria, phage, and plasmids are used to determine the conditions under which CRISPR can become established and will be maintained in bacterial populations and the contribution of this adaptive immune system to the ecology and (co)evolution of bacteria and bacteriophage. The models predict realistic and broad conditions under which bacteria bearing CRISPR regions can invade and be maintained in populations of higher fitness bacteria confronted with bacteriophage and narrower conditions when the confrontation is with competitors carrying conjugative plasmids. The models predict that CRISPR can facilitate long-term co-evolutionary arms races between phage and bacteria and between phage- rather than resource-limited bacterial communities. The parameters of these models can be independently estimated, the assumptions behind their construction validated, and the hypotheses generated from the analysis of their properties tested with experimental populations of bacteria.
doi:10.1371/journal.pgen.1001171
PMCID: PMC2965746  PMID: 21060859
24.  CRISPRs: Molecular Signatures Used for Pathogen Subtyping 
Rapid and accurate strain identification is paramount in the battle against microbial outbreaks, and several subtyping approaches have been developed. One such method uses clustered regular interspaced short palindromic repeats (CRISPRs), DNA repeat elements that are present in approximately half of all bacteria. Though their signature function is as an adaptive immune system against invading DNA such as bacteriophages and plasmids, CRISPRs also provide an excellent framework for pathogen tracking and evolutionary studies. Analysis of the spacer DNA sequences that reside between the repeats has been tremendously useful for bacterial subtyping during molecular epidemiological investigations. Subtyping, or strain identification, using CRISPRs has been employed in diverse Gram-positive and Gram-negative bacteria, including Mycobacterium tuberculosis, Salmonella enterica, and the plant pathogen Erwinia amylovora. This review discusses the several ways in which CRISPR sequences are exploited for subtyping. This includes the well-established spoligotyping methodologies that have been used for 2 decades to type Mycobacterium species, as well as in-depth consideration of newer, higher-throughput CRISPR-based protocols.
doi:10.1128/AEM.02790-13
PMCID: PMC3911090  PMID: 24162568
25.  The Population and Evolutionary Dynamics of Phage and Bacteria with CRISPR–Mediated Immunity 
PLoS Genetics  2013;9(3):e1003312.
Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR), together with associated genes (cas), form the CRISPR–cas adaptive immune system, which can provide resistance to viruses and plasmids in bacteria and archaea. Here, we use mathematical models, population dynamic experiments, and DNA sequence analyses to investigate the host–phage interactions in a model CRISPR–cas system, Streptococcus thermophilus DGCC7710 and its virulent phage 2972. At the molecular level, the bacteriophage-immune mutant bacteria (BIMs) and CRISPR–escape mutant phage (CEMs) obtained in this study are consistent with those anticipated from an iterative model of this adaptive immune system: resistance by the addition of novel spacers and phage evasion of resistance by mutation in matching sequences or flanking motifs. While CRISPR BIMs were readily isolated and CEMs generated at high rates (frequencies in excess of 10−6), our population studies indicate that there is more to the dynamics of phage–host interactions and the establishment of a BIM–CEM arms race than predicted from existing assumptions about phage infection and CRISPR–cas immunity. Among the unanticipated observations are: (i) the invasion of phage into populations of BIMs resistant by the acquisition of one (but not two) spacers, (ii) the survival of sensitive bacteria despite the presence of high densities of phage, and (iii) the maintenance of phage-limited communities due to the failure of even two-spacer BIMs to become established in populations with wild-type bacteria and phage. We attribute (i) to incomplete resistance of single-spacer BIMs. Based on the results of additional modeling and experiments, we postulate that (ii) and (iii) can be attributed to the phage infection-associated production of enzymes or other compounds that induce phenotypic phage resistance in sensitive bacteria and kill resistant BIMs. We present evidence in support of these hypotheses and discuss the implications of these results for the ecology and (co)evolution of bacteria and phage.
Author Summary
The evidence that the CRISPR regions of the genomes of archaea and bacteria play a role in the ecology and (co)evolution of these microbes and their viruses is overwhelming: (i) the spacers (variable sequences of 26–72 bp of DNA between the repeats of this region) of these prokaryotes are homologous to the DNA of viruses in their communities; (ii) experimentally, the acquisition and incorporation of spacers of viral DNA can protect these organisms from subsequent infection by these viruses; (iii) experimentally, viruses evade this immunity by mutation in homologous protospacers or protospacer-adjacent motifs (PAMs). Not so clear are the nature and magnitude of the role CRISPR plays in this ecology and evolution. Here, we use mathematical models, experiments with Streptococcus thermophilus and the phage 2972, and DNA sequence analyses to explore the contribution of CRISPR–cas immunity to the ecology and (co)evolution of bacteria and their viruses. The results of this study suggest that the contribution of CRISPR to the ecology of bacteria and phage is more modest and limited, and the conditions for a CRISPR–mediated coevolutionary arms race between these organisms more restrictive, than anticipated from models based on the canonical view of phage infection and CRISPR–cas immunity.
doi:10.1371/journal.pgen.1003312
PMCID: PMC3597502  PMID: 23516369

Results 1-25 (538610)