Search tips
Search criteria

Results 1-25 (1115364)

Clipboard (0)

Related Articles

1.  The fbpA/sapM Double Knock Out Strain of Mycobacterium tuberculosis Is Highly Attenuated and Immunogenic in Macrophages 
PLoS ONE  2012;7(5):e36198.
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), is the leading cause of death due to bacterial infections in mankind, and BCG, an attenuated strain of Mycobacterium bovis, is an approved vaccine. BCG sequesters in immature phagosomes of antigen presenting cells (APCs), which do not fuse with lysosomes, leading to decreased antigen processing and reduced Th1 responses. However, an Mtb derived ΔfbpA attenuated mutant underwent limited phagosome maturation, enhanced immunogenicity and was as effective as BCG in protecting mice against TB. To facilitate phagosome maturation of ΔfbpA, we disrupted an additional gene sapM, which encodes for an acid phosphatase. Compared to the wild type Mtb, the ΔfbpAΔsapM (double knock out; DKO) strain was attenuated for growth in mouse macrophages and PMA activated human THP1 macrophages. Attenuation correlated with increased oxidants in macrophages in response to DKO infection and enhanced labeling of lysosomal markers (CD63 and rab7) on DKO phagosomes. An in vitro Antigen 85B peptide presentation assay was used to determine antigen presentation to T cells by APCs infected with DKO or other mycobacterial strains. This revealed that DKO infected APCs showed the strongest ability to present Ag85B to T cells (>2500 pgs/mL in 4 hrs) as compared to APCs infected with wild type Mtb or ΔfbpA or ΔsapM strain (<1000 pgs/mL in 4 hrs), indicating that DKO strain has enhanced immunogenicity than other strains. The ability of DKO to undergo lysosomal fusion and vacuolar acidification correlated with antigen presentation since bafilomycin, that inhibits acidification in APCs, reduced antigen presentation. Finally, the DKO vaccine elicited a better Th1 response in mice after subcutaneous vaccination than either ΔfbpA or ΔsapM. Since ΔfbpA has been used in mice as a candidate vaccine and the DKO (ΔfbpAΔsapM) mutant is more immunogenic than ΔfbpA, we propose the DKO is a potential anti-tuberculosis vaccine.
PMCID: PMC3344844  PMID: 22574140
2.  Molecular characterization of the evolution of phagosomes 
First large-scale comparative proteomics/phosphoproteomics study characterizing some of the key steps that contributed to the remodeling of phagosomes that occurred during evolution. Comparison of profiling analyses of isolated phagosomes from three distant organisms (Dictyostelium, Drosophila, and mouse) revealed a protein core that defines a potential ‘ancient' phagosome and a set of 50 proteins that emerged while adaptive immunity was already well established.Gene duplication events of mouse phagosome paralogs occurred mostly in Bilateria and Euteleostomi, coinciding with the emergence of innate and adaptive immunity, and thus, provided the functional innovations needed for the establishment of these two crucial evolutionary steps of the immune system.Phosphoproteomics of isolated phagosomes from the same three distant species indicate that the phagosome phosphoproteome has been extensively modified during evolution. Still, some phosphosites have been maintained for >1.2 billion years, and thus, highlight their particular significance in the regulation of key phagosomal functions.
Phagocytosis is the process by which multiple cell types internalize large particulate material from the external milieu. The functional properties of phagosomes are acquired through a complex maturation process, referred to as phagolysosome biogenesis. This pathway involves a series of rapid interactions with organelles of the endocytic apparatus, enabling the gradual transformation of newly formed phagosomes into phagolysosomes in which proteolytic degradation occurs. The degradative environment encountered in the phagosome lumen has enabled the use of phagocytosis as a predation mechanism for feeding (phagotrophy) in amoeba, whereas multicellular organisms utilize this process as a defense mechanism to kill microbes and, in jawed vertebrates (fish), initiate a sustained immune response.
High-throughput proteomics profiling of isolated phagosomes has been tremendously helpful for the molecular comprehension of this organelle. This approach is achieved by feeding low buoyancy latex beads to phagocytic cells, enabling the subsequent isolation of latex bead-containing phagosomes, away from all the other cell organelles, by a single-isopicnic centrifugation in sucrose gradient. In order to characterize some of the key steps that contributed to the remodeling of phagosomes during evolution, we isolated this organelle from three distant organisms: the amoeba Dictyostelium discoideum, the fruit fly Drosophila melanogaster, and mouse (Mus musculus) that use phagocytosis for different purposes, and performed detailed proteomics and phosphoproteomics analyses with unparallel protein coverage for this organelle (two- to four-fold enhancements in identified proteins).
In order to establish the origin of the mouse phagosome proteome, we performed comparative analyses among 39 taxa including plants/algea, unicellular organisms, fungi, and more complex animal multicellular organisms. These genomic comparisons indicated that a large proportion of the mouse phagosome proteome is of ancient origin (73.1% of the proteome is conserved in eukaryotic organisms) (Figure 2A). This stresses the fact that phagocytosis is a very ancient process, as shown by its possible involvement in the emergence of eukaryotic cells (eukaryogenesis). Indeed, we identified close to 300 phagosome mouse proteins also present on Drosophila and Dictyostelium phagosomes, defining a potential ‘ancient' core of proteins from which the immune functions of phagosomes likely evolved. Around 16.7% of the mouse phagosome proteins appeared in organisms that use phagocytosis for innate immunity (Bilateria to Chordata), whereas 10.2% appeared in Euteleostomi or Tetrapoda where phagosomes have an important function in linking the killing of microorganisms with the development of a specific sustained immune response following antigen recognition. The phagosome is made of molecules taken from a variety of sources within the cell, including the cytoplasm, the cytoskeleton and membrane organelles. Despite the evolution and diversification of these various cellular systems, the mammalian phagosome proteome is made preferentially of ancient proteins (Figure 2B). Comparison of functional annotation during evolution highlighted the emergence of specific phagosomal functions at various steps during evolution (Figure 2C). Some of these proteins and their point of origin during evolution are highlighted in Figure 2D. Strikingly, we identified in Tetrapods a set of 50 proteins that arose while adaptive immunity was already well established in teleosts (fish), indicating that the phagocytic system is still evolving.
Our study highlights the fact that the functional properties of phagosomes emerged by the remodeling of ancient molecules, the addition of novel components, and the duplication of existing proteins (paralogs) leading to the formation of molecular machines of mixed origin. Gene duplication is a process that contributed continuously to the complexification of the mouse proteome during evolution. In sharp contrast, paralog analysis indicated that the phagosome proteome was mainly reorganized through two periods of gene duplication, in Bilateria and Euteleostomi, coinciding with the emergence of adaptive immunity (in jawed fish), and innate immunity (at the split between Metazoa and Bilateria). These results strongly suggest that selective constraints may have favored the maintenance of phagosome paralogs to ensure the establishment of novel functions associated with this organelle at these two crucial evolutionary steps of the immune system.
The emergence of genes associated to the MHC locus in mammals that appeared originally in the genome of jawed fishes, contributed to the development of complex molecular mechanisms linking innate (our immune system that defends the host from infection in a non-specific manner) and adaptive immunity (the part of the immune system triggered specifically after antigen recognition). Several of the genes of this locus encode proteins known to have important functions in antigen presentation, such as subunits of the immunoproteasome (LMP2 and LMP7), MHC class I and class II molecules, as well as tapasin and the transporter associated with antigen processing (TAP1 and TAP2), involved in the transport and loading of peptides on MHC class I molecules (Figure 6). In addition to their ability to present peptides on MHC class II molecules, phagosomes of vertebrates have been shown to be competent for the presentation of exogenous peptides on MHC class I molecules, a process referred to as cross-presentation. From a functional point of view, the involvement of phagosomes in antigen cross-presentation is the outcome of the successful integration of a wide range of multimolecular components that emerged throughout evolution (Figure 6). The trimming of exogenous proteins into small peptides that can be loaded on MHC class I molecules is inherited from the phagotrophic properties of unicellular organisms, where internalized bacteria are degraded into basic molecules and used as a source of nutrients. Ancient processes have therefore been co-opted (the use of an existing biological structure or feature for a new function) for new functionalities. A summarizing model of the various steps that enabled phagosome antigen presentation is presented in Figure 6. This model highlights the fact that although antigen presentation is unique to evolutionary recent phagosomes (starting in jawed fishes about 450 million years ago), it uses and integrates molecular machines composed of proteins that emerged throughout evolution.
In summary, we present here the first large-scale comparative proteomics/phosphoproteomics study characterizing some of the key evolutionary steps that contributed to the remodeling of phagosomes during evolution. Functional properties of this organelle emerged by the remodeling of ancient molecules, the addition of novel components, the extensive adaption of protein phosphorylation sites and the duplication of existing proteins leading to the formation of molecular machines of mixed origin.
Amoeba use phagocytosis to internalize bacteria as a source of nutrients, whereas multicellular organisms utilize this process as a defense mechanism to kill microbes and, in vertebrates, initiate a sustained immune response. By using a large-scale approach to identify and compare the proteome and phosphoproteome of phagosomes isolated from distant organisms, and by comparative analysis over 39 taxa, we identified an ‘ancient' core of phagosomal proteins around which the immune functions of this organelle have likely organized. Our data indicate that a larger proportion of the phagosome proteome, compared with the whole cell proteome, has been acquired through gene duplication at a period coinciding with the emergence of innate and adaptive immunity. Our study also characterizes in detail the acquisition of novel proteins and the significant remodeling of the phagosome phosphoproteome that contributed to modify the core constituents of this organelle in evolution. Our work thus provides the first thorough analysis of the changes that enabled the transformation of the phagosome from a phagotrophic compartment into an organelle fully competent for antigen presentation.
PMCID: PMC2990642  PMID: 20959821
evolution; immunity; phosphoproteomics; phylogeny; proteomics
3.  Mycobacterial Nucleoside Diphosphate Kinase Blocks Phagosome Maturation in Murine Raw 264.7 Macrophages 
PLoS ONE  2010;5(1):e8769.
Microorganisms capable of surviving within macrophages are rare, but represent very successful pathogens. One of them is Mycobacterium tuberculosis (Mtb) whose resistance to early mechanisms of macrophage killing and failure of its phagosomes to fuse with lysosomes causes tuberculosis (TB) disease in humans. Thus, defining the mechanisms of phagosome maturation arrest and identifying mycobacterial factors responsible for it are key to rational design of novel drugs for the treatment of TB. Previous studies have shown that Mtb and the related vaccine strain, M. bovis bacille Calmette-Guérin (BCG), disrupt the normal function of host Rab5 and Rab7, two small GTPases that are instrumental in the control of phagosome fusion with early endosomes and late endosomes/lysosomes respectively.
Methodology/Principal Findings
Here we show that recombinant Mtb nucleoside diphosphate kinase (Ndk) exhibits GTPase activating protein (GAP) activity towards Rab5 and Rab7. Then, using a model of latex bead phagosomes, we demonstrated that Ndk inhibits phagosome maturation and fusion with lysosomes in murine RAW 264.7 macrophages. Maturation arrest of phagosomes containing Ndk-beads was associated with the inactivation of both Rab5 and Rab7 as evidenced by the lack of recruitment of their respective effectors EEA1 (early endosome antigen 1) and RILP (Rab7-interacting lysosomal protein). Consistent with these findings, macrophage infection with an Ndk knocked-down BCG strain resulted in increased fusion of its phagosome with lysosomes along with decreased survival of the mutant.
Our findings provide evidence in support of the hypothesis that mycobacterial Ndk is a putative virulence factor that inhibits phagosome maturation and promotes survival of mycobacteria within the macrophage.
PMCID: PMC2808246  PMID: 20098737
4.  Closely Related Mycobacterial Strains Demonstrate Contrasting Levels of Efficacy as Antitumor Vaccines and Are Processed for Major Histocompatibility Complex Class I Presentation by Multiple Routes in Dendritic Cells  
Infection and Immunity  2005;73(2):784-794.
Mycobacteria expressing recombinant antigens are already being developed as vaccines against both infections and tumors. Little is known about how dendritic cells might process such antigens. Two different mycobacterial species, the fast-growing Mycobacterium smegmatis and the slow-growing M. bovis M. bovis BCG, were engineered to express a model tumor antigen, the Kb-restricted dominant cytotoxic T-lymphocyte epitope OVA257-264. Recombinant M. bovis BCG but not recombinant M. smegmatis conferred protection to mice challenged with the B16-OVA tumor cell line. We went on to investigate whether the contrast in antitumor efficacy could be due to differences in how dendritic cells process antigen from the two mycobacterial strains for class I presentation. Both strains of mycobacteria caused phenotypic maturation of dendritic cells, but recombinant M. smegmatis infection led to a greater degree of dendritic cell maturation than recombinant M. bovis BCG infection. Antigen from recombinant M. smegmatis was processed and presented as OVA257-264 on Kb molecules by the dendritic cell line DC2.4 but not by bone marrow-derived dendritic cells (BMDC) or splenic dendritic cells. In contrast, antigen from recombinant M. bovis BCG was presented by all three dendritic cell types as long as the mycobacteria were viable. Such presentation was dependent on proteasome function and nascent major histocompatibility complex (MHC) class I molecules in DC2.4 cells but independent of the proteasome and transporter associated with antigen processings (TAP) in BMDC and splenic dendritic cells. These data demonstrate for the first time that antigen vectored by the slow-growing M. bovis BCG but not that vectored by fast-growing, readily destroyed M. smegmatis is processed and presented on MHC class I by in vitro-generated dendritic cells, which has implications for recombinant microbial vaccine development.
PMCID: PMC546964  PMID: 15664917
5.  Immunization with a ZmpB-Based Protein Vaccine Could Protect against Pneumococcal Diseases in Mice▿  
Infection and Immunity  2010;79(2):867-878.
Zinc metalloprotease B (ZmpB) is present in all isolated pneumococcal strains and contributes to the pathogenesis of pneumococcal infection. In this study, recombinant ZmpB was cloned and expressed in Escherichia coli. The expression of ZmpB by different pneumococcal strains was detectable by Western blotting with antisera raised to recombinant ZmpB. Flow cytometry analysis demonstrated that anti-ZmpB polyclonal antibodies could bind to the cell surface of the pneumococcal strains analyzed. Both recombinant ZmpB protein and anti-ZmpB polyclonal antibodies significantly inhibited the adhesion of Streptococcus pneumoniae D39 to A549 cells. In mouse models, mucosal immunization with recombinant ZmpB could significantly reduce pneumococcal lung colonization caused by S. pneumoniae serotypes 19F and 14 and significantly increase mice survival times following invasive pneumococcal challenge with different pneumococcal strains, including serotypes 2, 3, 6B, and 14. Furthermore, intraperitoneal immunization with recombinant ZmpB in combination with the recombinant pneumolysin mutant (DeltaA146 Ply) and heat shock protein 40 (DnaJ) could enhance the protection against pneumococcal infection compared to protection provided by single-protein antigens. Passive immunization with hyperimmune antisera against these three antigens also demonstrated that the combination of three hyperimmune antisera could provide better protection than single antisera. Taken together, our results suggest that ZmpB is a good candidate pneumococcal vaccine antigen.
PMCID: PMC3028838  PMID: 21098102
6.  IFN-γ Mediates the Rejection of Haematopoietic Stem Cells in IFN-γR1-Deficient Hosts 
PLoS Medicine  2008;5(1):e26.
Interferon-γ receptor 1 (IFN-γR1) deficiency is a life-threatening inherited disorder, conferring predisposition to mycobacterial diseases. Haematopoietic stem cell transplantation (HSCT) is the only curative treatment available, but is hampered by a very high rate of graft rejection, even with intra-familial HLA-identical transplants. This high rejection rate is not seen in any other congenital disorders and remains unexplained. We studied the underlying mechanism in a mouse model of HSCT for IFN-γR1 deficiency.
Methods and Findings
We demonstrated that HSCT with cells from a syngenic C57BL/6 Ifngr1+/+ donor engrafted well and restored anti-mycobacterial immunity in naive, non-infected C57BL/6 Ifngr1−/− recipients. However, Ifngr1−/− mice previously infected with Mycobacterium bovis bacillus Calmette-Guérin (BCG) rejected HSCT. Like infected IFN-γR1-deficient humans, infected Ifngr1−/− mice displayed very high serum IFN-γ levels before HSCT. The administration of a recombinant IFN-γ-expressing AAV vector to Ifngr1−/− naive recipients also resulted in HSCT graft rejection. Transplantation was successful in Ifngr1−/− × Ifng−/− double-mutant mice, even after BCG infection. Finally, efficient antibody-mediated IFN-γ depletion in infected Ifngr1−/− mice in vivo allowed subsequent engraftment.
High serum IFN-γ concentration is both necessary and sufficient for graft rejection in IFN-γR1-deficient mice, inhibiting the development of heterologous, IFN-γR1-expressing, haematopoietic cell lineages. These results confirm that IFN-γ is an anti-haematopoietic cytokine in vivo. They also pave the way for HSCT management in IFN-γR1-deficient patients through IFN-γ depletion from the blood. They further raise the possibility that depleting IFN-γ may improve engraftment in other settings, such as HSCT from a haplo-identical or unrelated donor.
Claire Soudais and colleagues investigated the mechanism of rejection of hematopoietic stem cell transplants in patients with interferon-gamma receptor 1 (IFN-γR1) deficiency and show that IFN-γ is an anti-hematopoietic cytokine in vivo.
Editors' Summary
Normally, the body's immune system efficiently recognizes and kills bacteria and viruses, but in some rare inherited disorders (“primary immunodeficiencies”) part of the immune system works poorly or is missing. This leaves affected individuals susceptible to infections. People with one of these disorders—interferon-gamma receptor 1 (IFN- γR1) deficiency—are very susceptible to infections with mycobacteria. Except for Mycobacterium tuberculosis and M. leprae (which cause tuberculosis and leprosy, respectively), mycobacteria rarely cause human disease. However, most people with IFN-γR1 deficiency die during childhood from multiple, widespread mycobacterial infections, because IFN-γR1 deficiency disables a specific part of their immune system. When most bacteria enter the body, immune system cells called macrophages engulf and kill them, but mycobacteria actually multiply inside macrophages. This infection stimulates lymphocytes and other immune system cells to release IFN-γ, which binds to IFN-γR1 on uninfected macrophages, activates them, and recruits them to the infection site. Here, they form a “granuloma,” a mass of macrophages and activated lymphocytes that “walls off” the infection. Granuloma formation does not occur in patients with IFN-γR1 deficiency, so mycobacteria (including the usually benign tuberculosis vaccination strain M. bovis BCG) spread throughout the body with disastrous consequences.
Why Was This Study Done?
The only effective treatment for patients with IFN-γR1 deficiency is hematopoietic stem cell transplantation (HSCT). HSCs are the source of all the immune system cells, so transplantation of HSCs from a donor with a normal IFNGR1 gene can provide a patient who has IFN-γR1 deficiency with a new immune system that can combat mycobacterial infections. Unfortunately, in this particular immune deficiency, the new HSCs cannot engraft, even when the patient's own immune system is disabled before HSCT by intensive chemotherapy, and when the donor cells come from a close relative and are a good immunological match. In this study, the researchers have investigated why rejection is so common in IFN-γR1 deficiency using a mouse strain called C57BL/6 Ifngr1−/−—C57BL/6 denotes the genetic background of these mice and Ifngr1−/− indicates that, like human patients, these mice make no IFN-γR1.
What Did the Researchers Do and Find?
Ifngr1−/− mice, the researchers report, cannot control M. bovis BCG infections and do not form mature granulomas just like human patients with IFN-γR1 deficiency. Wild-type C57BL/6 (Ifngr1+/+) mice, however, rapidly control M. bovis BCG infections and form mature granulomas. Ifngr1+/+ HSC transplanted into mycobacteria-free Ifngr1−/− mice survived well and protected the mice against later mycobacterial challenge but Ifngr1−/− mice infected with M. bovis BCG before HSCT rejected the transplanted HSCs. Mycobacteria-infected Ifngr1−/− mice and human patients with IFN-γR1 deficiency have blood high levels of IFN-γ. Could this be responsible for HSCT rejection? To find out, the researchers expressed IFN-γ in uninfected Ifngr1−/− mice before HSCT. As in infected mice, these grafts failed. Conversely, transplanted HSCs survived when transplanted into Ifngr1−/− mice that had been genetically altered to express no IFN-γ, even when these mice were infected with M. bovis BCG before transplantation. Finally, when the researchers used antibodies (proteins made by the immune system that recognize specific molecules) to remove circulating IFN-γ from infected Ifngr1−/− mice, HSCT worked well in the animals with the lowest IFN-γ levels.
What Do These Findings Mean?
These findings indicate that in a mouse model of IFN-γR1 deficiency, high circulating IFN-γ concentrations drive the rejection of transplanted HSCs and prevent the development of antimycobacterial immunity, probably by directly killing the transplanted cells and/or stopping them multiplying. They also suggest how HSCT could be improved in patients with IFN-γR1 deficiency although, as with all animal studies, the situation in people might turn out to be very different. Importantly, antibodies that reduce circulating IFN-γ are already being used to treat other human immune diseases, so the clinical use of these antibodies in patients with IFN-γ deficiency before HSCT is feasible. Finally, the researchers speculate that the use of IFN-γ–depleting antibodies might be beneficial in other situations where HSCT often fails such as when a close relative is not available as a donor. However, this possibility will need to be thoroughly tested in mice before human clinical trials can be started.
Additional Information.
Please access these Web sites via the online version of this summary at
General information about primary immunodeficiencies is available from the US National Institute of Child Health and Human Development
Online Mendelian Inheritance in Man (OMIM) provides information about familial predisposition to mycobacterial disease
Wikipedia has pages on hematopoietic stem cell transplantation and on interferon-γ (note that Wikipedia is a free online encyclopedia that anyone can edit; available in several languages)
The Human Genetics of Infectious Diseases Lab focuses on the genetic basis of predicposition or resistance to infectious diseases in humans
PMCID: PMC2214797  PMID: 18232731
7.  Mycobacterial Mutants with Defective Control of Phagosomal Acidification 
PLoS Pathogens  2005;1(3):e33.
The pathogenesis of mycobacterial infection is associated with an ability to interfere with maturation of the phagosomal compartment after ingestion by macrophages. Identification of the mycobacterial components that contribute to this phenomenon will allow rational design of novel approaches to the treatment and prevention of tuberculosis. Microarray-based screening of a transposon library was used to identify mutations that influence the fate of Mycobacterium bovis bacille Calmette-Guérin (BCG) following uptake by macrophages. A screen based on bacterial survival during a 3-d infection highlighted genes previously implicated in growth of Mycobacterium tuberculosis in macrophages and in mice, together with a number of other virulence genes including a locus encoding virulence-associated membrane proteins and a series of transporter molecules. A second screen based on separation of acidified and non-acidified phagosomes by flow cytometry identified genes involved in mycobacterial control of early acidification. This included the KefB potassium/proton antiport. Mutants unable to control early acidification were significantly attenuated for growth during 6-d infections of macrophages. Early acidification of the phagosome is associated with reduced survival of BCG in macrophages. A strong correlation exists between genes required for intracellular survival of BCG and those required for growth of M. tuberculosis in mice. In contrast, very little correlation exists between genes required for intracellular survival of BCG and those that are up-regulated during intracellular adaptation of M. tuberculosis. This study has identified targets for interventions to promote immune clearance of tuberculosis infection. The screening technologies demonstrated in this study will be useful to the study of pathogenesis in many other intracellular microorganisms.
The pathogenesis of Mycobacterium tuberculosis relies on an ability to survive inside host macrophages. Macrophages kill most other bacteria by engulfment into an intracellular compartment called a phagosome, which quickly matures to an acidic, hydrolytic organelle, resulting in bacterial death. M. tuberculosis and the related vaccine strain M. bovis bacille Calmette-Guérin (BCG) possess the ability to stop phagosome maturation and thus avoid its microbicidal properties. In this study, the researchers screened a library of mutant BCG bacteria to identify the bacterial genes responsible for preventing phagosome acidification. The predicted products of these genes span many different functional groups, but tend to be associated with the outside of the cell or secreted to the extracellular milieu. The researchers also demonstrated that mutant mycobacteria whose phagosomes acidify are unable to replicate in macrophages. This study identifies targets for new vaccines against tuberculosis.
PMCID: PMC1291353  PMID: 16322769
8.  Differential Effects of Control and Antigen-Specific T Cells on Intracellular Mycobacterial Growth  
Infection and Immunity  2003;71(4):1763-1773.
We investigated the effects of peripheral blood mononuclear cells expanded with irrelevant control and mycobacterial antigens on the intracellular growth of Mycobacterium bovis bacillus Calmette-Guérin (BCG) in human macrophages. More than 90% of the cells present after 1 week of in vitro expansion were CD3+. T cells were expanded from purified protein derivative-negative controls, persons with latent tuberculosis, and BCG-vaccinated individuals. T cells expanded with nonmycobacterial antigens enhanced the intracellular growth of BCG in suboptimal cultures of macrophages. T cells expanded with live BCG or lysates of Mycobacterium tuberculosis directly inhibited intracellular BCG. Recent intradermal BCG vaccination significantly enhanced the inhibitory activity of T cells expanded with mycobacterial antigens (P < 0.02), consistent with the induction of memory-immune inhibitory T-cell responses. Selected mycobacterial antigens (Mtb41 > lipoarabinomannan > 38kd > Ag85B > Mtb39) expanded inhibitory T cells, demonstrating the involvement of antigen-specific T cells in intracellular BCG inhibition. We studied the T-cell subsets and molecular mechanisms involved in the memory-immune inhibition of intracellular BCG. Mycobacteria-specific γδ T cells were the most potent inhibitors of intracellular BCG growth. Direct contact between T cells and macrophages was necessary for the BCG growth-enhancing and inhibitory activities mediated by control and mycobacteria-specific T cells, respectively. Increases in tumor necrosis factor alpha, interleukin-6, transforming growth factor β, and vascular endothelial growth factor mRNA expression were associated with the enhancement of intracellular BCG growth. Increases in gamma interferon, FAS, FAS ligand, perforin, granzyme, and granulysin mRNA expression were associated with intracellular BCG inhibition. These culture systems provide in vitro models for studying the opposing T-cell mechanisms involved in mycobacterial survival and protective host immunity.
PMCID: PMC152055  PMID: 12654790
9.  Burkholderia cenocepacia ZmpB Is a Broad-Specificity Zinc Metalloprotease Involved in Virulence  
Infection and Immunity  2006;74(7):4083-4093.
In previous studies we characterized the Burkholderia cenocepacia ZmpA zinc metalloprotease. In this study, we determined that B. cenocepacia has an additional metalloprotease, which we designated ZmpB. The zmpB gene is present in the same species as zmpA and was detected in B. cepacia, B. cenocepacia, B. stabilis, B. ambifaria, and B. pyrrocinia but was absent from B. multivorans, B. vietnamiensis, B. dolosa, and B. anthina. The zmpB gene was expressed, and ZmpB was purified from Escherichia coli by using the pPROEXHTa His6 Tag expression system. ZmpB has a predicted preproenzyme structure typical of thermolysin-like proteases and is distantly related to Bacillus cereus bacillolysin. ZmpB was expressed as a 63-kDa preproenzyme precursor that was autocatalytically cleaved into mature ZmpB (35 kDa) and a 27-kDa prepropeptide. EDTA, 1,10-phenanthroline, and Zn2+ cations inhibited ZmpB enzyme activity, indicating that it is a metalloprotease. ZmpB had proteolytic activity against α-1 proteinase inhibitor, α2-macrogobulin, type IV collagen, fibronectin, lactoferrin, transferrin, and immunoglobulins. B. cenocepacia zmpB and zmpA zmpB mutants had no proteolytic activity against casein and were less virulent in a rat agar bead chronic infection model, indicating that zmpB is involved in B. cenocepacia virulence. Expression of zmpB was regulated by both the CepIR and CciIR quorum-sensing systems.
PMCID: PMC1489746  PMID: 16790782
10.  Processing of Mycobacterium tuberculosis Antigen 85B Involves Intraphagosomal Formation of Peptide–Major Histocompatibility Complex II Complexes and Is Inhibited by Live Bacilli that Decrease Phagosome Maturation 
The Journal of Experimental Medicine  2001;194(10):1421-1432.
Mycobacterium tuberculosis (MTB) inhibits phagosomal maturation to promote its survival inside macrophages. Control of MTB infection requires CD4 T cell responses and major histocompatibility complex (MHC) class II (MHC-II) processing of MTB antigens (Ags). To investigate phagosomal processing of MTB Ags, phagosomes containing heat-killed (HK) or live MTB were purified from interferon-γ (IFN-γ)–activated macrophages by differential centrifugation and Percoll density gradient subcellular fractionation. Flow organellometry and Western blot analysis showed that MTB phagosomes acquired lysosome-associated membrane protein-1 (LAMP-1), MHC-II, and H2-DM. T hybridoma cells were used to detect MTB Ag 85B(241–256)–I-Ab complexes in isolated phagosomes and other subcellular fractions. These complexes appeared initially (within 20 min) in phagosomes and subsequently (>20 min) on the plasma membrane, but never within late endocytic compartments. Macrophages processed HK MTB more rapidly and efficiently than live MTB; phagosomes containing live MTB expressed fewer Ag 85B(241–256)–I-Ab complexes than phagosomes containing HK MTB. This is the first study of bacterial Ag processing to directly show that peptide–MHC-II complexes are formed within phagosomes and not after export of bacterial Ags from phagosomes to endocytic Ag processing compartments. Live MTB can alter phagosome maturation and decrease MHC-II Ag processing, providing a mechanism for MTB to evade immune surveillance and enhance its survival within the host.
PMCID: PMC2193679  PMID: 11714749
Mycobacterium tuberculosis; phagosome; MHC; antigen processing; antigen presentation
11.  GILT is a critical host factor for Listeria monocytogenes infection 
Nature  2008;455(7217):1244-1247.
Listeria monocytogenes is a gram positive, intracellular, food-borne pathogen that can cause severe illness in humans and animals. Upon infection, it is actively phagocytosed by macrophages1. It then escapes from the phagosome, replicates in the cytosol, and subsequently spreads from cell to cell by a non-lytic mechanism driven by actin polymerization2. Penetration of the phagosomal membrane is initiated by the secreted hemolysin listeriolysin O (LLO), which is essential for vacuolar escape in vitro and for virulence in animal models of infection3. Reduction is required to activate the lytic activity of LLO in vitro 4–6, and we show here that reduction by the enzyme Gamma-interferon Inducible Lysosomal Thiolreductase (GILT) is responsible for the activation of LLO in vivo. GILT is a soluble thiol reductase expressed constitutively within the lysosomes of antigen presenting cells7, 8, and it accumulates in macrophage phagosomes as they mature into phagolysosomes9. The enzyme is delivered by a mannose-6-phosphate receptor-dependent mechanism to the endocytic pathway, where N- and C-terminal pro-peptides are cleaved to generate a 30 kDa mature enzyme7, 8, 10. The active site of GILT contains two cysteine residues in a CXXC motif that catalyzes the reduction of disulfide bonds7, 8. Mice lacking GILT are deficient in generating MHC class II-restricted CD4+ T cell responses to protein antigens that contain disulfide bonds11, 12. Here we show that these mice are resistant to L. monocytogenes infection. Replication of the organism in GILT-negative macrophages, or macrophages expressing an enzymatically inactive GILT mutant, is impaired because of delayed escape from the phagosome. GILT activates LLO within the phagosome by the classical thiol reductase mechanism shared by members of the thioredoxin family. In addition, purified GILT activates recombinant LLO, facilitating membrane permeabilization and red blood cell lysis. The data show GILT is a critical host factor that facilitates L. monocytogenes infection.
PMCID: PMC2775488  PMID: 18815593
12.  The ΔfbpA mutant derived from Mycobacterium tuberculosis H37Rv has an enhanced susceptibility to intracellular antimicrobial oxidative mechanisms, undergoes limited phagosome maturation and activates macrophages and dendritic cells 
Cellular microbiology  2008;10(6):1286-1303.
Mycobacterium tuberculosis H37Rv (Mtb) excludes phagocyte oxidase (phox) and inducible nitric oxide synthase (iNOS) while preventing lysosomal fusion in macrophages (MΦs). The antigen 85A deficient (ΔfbpA) mutant of Mtb was vaccinogenic in mice and the mechanisms of attenuation were compared with MΦs infected with H37Rv and BCG. ΔfbpA contained reduced amounts of trehalose 6, 6, dimycolate and induced minimal levels of SOCS-1 in MΦs. Blockade of oxidants enhanced the growth of ΔfbpA in MΦs that correlated with increased colocalization with phox and iNOS. Green fluorescent protein-expressing strains within MΦs or purified phagosomes were analysed for endosomal traffick with immunofluorescence and Western blot. ΔfbpA phagosomes were enriched for rab5, rab11, LAMP-1 and Hck suggesting enhanced fusion with early, recycling and late endosomes in MΦs compared with BCG or H37Rv. ΔfbpA phagosomes were thus more mature than H37Rv or BCG although, they failed to acquire rab7 and CD63 preventing lysosomal fusion. Finally, ΔfbpA infected MΦs and dendritic cells (DCs) showed an enhanced MHC-II and CD1d expression and primed immune T cells to release more IFN-γ compared with those infected with BCG and H37Rv. ΔfbpA was thus more immunogenic in MΦs and DCs because of an enhanced susceptibility to oxidants and increased maturation.
PMCID: PMC3668688  PMID: 18248626
13.  Generation of cytolytic T cells in individuals infected by Mycobacterium tuberculosis and vaccinated with BCG. 
Thorax  1992;47(9):695-701.
BACKGROUND: Macrophage activation by cytokines provides only a partial explanation of antimycobacterial immunity in man. Because cytolytic T lymphocytes have been shown to contribute to immunity in animal models of intracellular infection, the generation of mycobacterial antigen specific cytotoxic T cells was examined in the peripheral blood of patients with tuberculosis. METHODS: Subjects comprised 36 patients with active tuberculosis (18 newly diagnosed) and 32 healthy volunteers, of whom 25 had had BCG vaccination and seven were Mantoux negative. The ability of purified protein derivative (PPD) stimulated peripheral blood lymphocytes to lyse autologous, mycobacterial antigen bearing macrophages was examined by using a chromium 51 release assay. RESULTS: PPD stimulated lymphocytes from normal, Mantoux positive, BCG vaccinated subjects produced high levels of PPD specific cytolysis, whereas lymphocytes from unvaccinated, uninfected subjects caused little or no cytolysis. The generation of cytolytic T lymphocytes by patients with tuberculosis was related to their clinical state. Those with cavitating pulmonary disease or lymph node tuberculosis generated PPD specific lymphocytes with cytotoxic ability similar to that of those from Mantoux positive control subjects, whereas lymphocytes from patients with non-cavitating pulmonary infiltrates showed poor antigen specific cytolysis. After seven days of stimulation with PPD in vitro, lymphoblasts contained both CD4+ and CD8+ cells. Mycobacterial antigen specific cytolysis was restricted to the CD4+ cell population and was blocked by monoclonal antibodies directed against major histocompatibility class II (MHC) antigens. CONCLUSION: CD4+ cytolytic T cells can lyse autologous macrophages presenting mycobacterial antigen and were found in patients with cavitating pulmonary tuberculosis or tuberculous lymphadenitis and in normal, Mantoux positive control subjects. The ability to generate these T cell responses seems to be a marker for response to mycobacteria and may contribute to tissue damage in tuberculosis. These responses do not provide protective immunity against Mycobacterium tuberculosis but may help in disease localisation.
PMCID: PMC474801  PMID: 1440463
14.  Role of phosphatidylinositol 3-kinase and Rab5 effectors in phagosomal biogenesis and mycobacterial phagosome maturation arrest 
The Journal of Cell Biology  2001;154(3):631-644.
Phagosomal biogenesis is a fundamental biological process of particular significance for the function of phagocytic and antigen-presenting cells. The precise mechanisms governing maturation of phagosomes into phagolysosomes are not completely understood. Here, we applied the property of pathogenic mycobacteria to cause phagosome maturation arrest in infected macrophages as a tool to dissect critical steps in phagosomal biogenesis. We report the requirement for 3-phosphoinositides and acquisition of Rab5 effector early endosome autoantigen (EEA1) as essential molecular events necessary for phagosomal maturation. Unlike the model phagosomes containing latex beads, which transiently recruited EEA1, mycobacterial phagosomes excluded this regulator of vesicular trafficking that controls membrane tethering and fusion processes within the endosomal pathway and is recruited to endosomal membranes via binding to phosphatidylinositol 3-phosphate (PtdIns[3]P). Inhibitors of phosphatidylinositol 3′(OH)-kinase (PI-3K) activity diminished EEA1 recruitment to newly formed latex bead phagosomes and blocked phagosomal acquisition of late endocytic properties, indicating that generation of PtdIns(3)P plays a role in phagosomal maturation. Microinjection into macrophages of antibodies against EEA1 and the PI-3K hVPS34 reduced acquisition of late endocytic markers by latex bead phagosomes, demonstrating an essential role of these Rab5 effectors in phagosomal biogenesis. The mechanism of EEA1 exclusion from mycobacterial phagosomes was investigated using mycobacterial products. Coating of latex beads with the major mycobacterial cell envelope glycosylated phosphatidylinositol lipoarabinomannan isolated from the virulent Mycobacterium tuberculosis H37Rv, inhibited recruitment of EEA1 to latex bead phagosomes, and diminished their maturation. These findings define the generation of phosphatidylinositol 3-phosphate and EEA1 recruitment as: (a) important regulatory events in phagosomal maturation and (b) critical molecular targets affected by M. tuberculosis. This study also identifies mycobacterial phosphoinositides as products with specialized toxic properties, interfering with discrete trafficking stages in phagosomal maturation.
PMCID: PMC2196432  PMID: 11489920
EEA1; endosome; hVPS34; LBPA; LAM
15.  Label-free proteomics and systems biology analysis of mycobacterial phagosomes in dendritic cells and macrophages 
Journal of proteome research  2011;10(5):2425-2439.
Proteomics has been applied to study intracellular bacteria and phagocytic vacuoles in different host cell lines, especially macrophages (Mφs). For mycobacterial phagosomes, few studies have identified over several hundred proteins for systems assessment of the phagosome maturation and antigen presentation pathways. More importantly, there has been a scarcity in publication on proteomic characterization of mycobacterial phagosomes in dendritic cells (DCs). In this work, we report a global proteomic analysis of Mφ and DC phagosomes infected with a virulent, an attenuated, and a vaccine strain of mycobacteria. We used label-free quantitative proteomics and bioinformatics tools to decipher the regulation of phagosome maturation and antigen presentation pathways in Mφs and DCs. We found that the phagosomal antigen presentation pathways are repressed more in DCs than in Mφs. The results suggest that virulent mycobacteria might co-opt the host immune system to stimulate granuloma formation for persistence while minimizing the antimicrobial immune response to enhance mycobacterial survival. The studies on phagosomal proteomes have also shown promise in discovering new antigen presentation mechanisms that a professional antigen presentation cell might use to overcome the mycobacterial blockade of conventional antigen presentation pathways.
PMCID: PMC3090528  PMID: 21413810
proteomics; phagosome; macrophage; dendritic cell; antigen presentation; systems biology; Mycobacterium tuberculosis
16.  An Increase in Antimycobacterial Th1-Cell Responses by Prime-Boost Protocols of Immunization Does Not Enhance Protection against Tuberculosis  
Infection and Immunity  2006;74(4):2128-2137.
Bordetella pertussis adenylate cyclase (CyaA) toxoid is a powerful nonreplicative immunization vector targeting dendritic cells, which has already been used successfully in prophylactic and therapeutic vaccination in various preclinical animal models. Here, we investigated the potential of CyaA, harboring strong mycobacterial immunogens, i.e., the immunodominant regions of antigen 85A or the complete sequence of the 6-kDa early secreted antigenic target (ESAT-6) protein, to induce antimycobacterial immunity. By generating T-cell hybridomas or by using T cells from mice infected with mycobacteria, we first demonstrated that the in vitro delivery of 85A or ESAT-6 to antigen-presenting cells by CyaA leads to processing and presentation, by major histocompatibility complex class II molecules, of the same epitopes as those displayed upon mycobacterial infection. Importantly, compared to the recombinant protein alone, the presentation of ESAT-6 in vitro was 100 times more efficient upon its delivery to antigen-presenting cells in fusion to CyaA. Immunization with CyaA-85A or CyaA-ESAT-6 in the absence of any adjuvant induced strong antigen-specific lymphoproliferative, interleukin-2 (IL-2) and gamma interferon (IFN-γ) cytokine responses, in the absence of any IL-4 or IL-5 production. When used as boosters after priming with a BCG expressing ESAT-6, the CyaA-85A and CyaA-ESAT-6 proteins were able to strikingly increase the sensitivity and intensity of proliferative and Th1-polarized responses and notably the frequency of antigen-specific IFN-γ-producing CD4+ T cells. However, immunization with these CyaA constructs as subunit vaccines alone or as boosters did not allow induction or improvement of protection against Mycobacterium tuberculosis infection. These results question the broadly admitted correlation between the frequency of IFN-γ-producing CD4+ T cells and the level of protection against tuberculosis.
PMCID: PMC1418924  PMID: 16552042
17.  Mechanism of Inducible Nitric Oxide Synthase Exclusion from Mycobacterial Phagosomes 
PLoS Pathogens  2007;3(12):e186.
Mycobacterium tuberculosis is sensitive to nitric oxide generated by inducible nitric oxide synthase (iNOS). Consequently, to ensure its survival in macrophages, M. tuberculosis inhibits iNOS recruitment to its phagosome by an unknown mechanism. Here we report the mechanism underlying this process, whereby mycobacteria affect the scaffolding protein EBP50, which normally binds to iNOS and links it to the actin cytoskeleton. Phagosomes harboring live mycobacteria showed reduced capacity to retain EBP50, consistent with lower iNOS recruitment. EBP50 was found on purified phagosomes, and its expression increased upon macrophage activation, paralleling expression changes seen with iNOS. Overexpression of EBP50 increased while EBP50 knockdown decreased iNOS recruitment to phagosomes. Knockdown of EBP50 enhanced mycobacterial survival in activated macrophages. We tested another actin organizer, coronin-1, implicated in mycobacterium-macrophage interaction for contribution to iNOS exclusion. A knockdown of coronin-1 resulted in increased iNOS recruitment to model latex bead phagosomes but did not increase iNOS recruitment to phagosomes with live mycobacteria and did not affect mycobacterial survival. Our findings are consistent with a model for the block in iNOS association with mycobacterial phagosomes as a mechanism dependent primarly on reduced EBP50 recruitment.
Author Summary
Mycobacterium tuberculosis infects one third of the world's population, with the majority of infected individuals being asymptomatic while running a lifetime risk of developing active disease. The key to the success of M. tuberculosis as a recalcitrant human pathogen is its ability to parasitize macrophages and persist in these cells or their derivatives for long periods of time. We still do not have complete knowledge of the full repertoire of M. tuberculosis determinants that allow it to evade bactericidal mechanisms of the macrophage. Here we report the mechanism by which M. tuberculosis eludes effective elimination by nitric oxide, a radical with antimycobacterial properties that is generated by the inducible form of nitric oxide synthase. It was generally assumed that nitric oxide synthase, upon induction by the major anti-tuberculosis cytokine interferon gamma, simply homogeneously fills up the macrophage like a sack and generates nitric oxide throughout the cell. The present study shows that nitric oxide synthase is not randomly distributed in macrophages, and that its positioning in the cell is dictated by interactions with the scaffolding protein EBP50, shown here to be induced during macrophage activation. Thus, not only do the phagocytic cells increase the amount of nitric oxide synthase, but they also have a system to deliver and keep this enzyme in the vicinity of phagosomes. This is of significance, as nitric oxide is a highly reactive radical, and its generation somewhere else in the cell would lead to it being spent by the time it diffuses to the site of intended action, such as mycobacterium-laden phagosomes. It turns out, as this study shows, that M. tuberculosis interferes with the process of EBP50-guided positioning of the inducible nitric oxide synthase, thus avoiding delivery and accumulation of this enzyme and its noxious products near the phagosome where nitric oxide would have the best chance of inhibiting intracellular mycobacteria.
PMCID: PMC2134953  PMID: 18069890
18.  Host Resistance to Intracellular Infection: Mutation of Natural Resistance-associated Macrophage Protein 1 (Nramp1) Impairs Phagosomal Acidification  
The mechanisms underlying the survival of intracellular parasites such as mycobacteria in host macrophages remain poorly understood. In mice, mutations at the Nramp1 gene (for natural resistance-associated macrophage protein), cause susceptibility to mycobacterial infections. Nramp1 encodes an integral membrane protein that is recruited to the phagosome membrane in infected macrophages. In this study, we used microfluorescence ratio imaging of macrophages from wild-type and Nramp1 mutant mice to analyze the effect of loss of Nramp1 function on the properties of phagosomes containing inert particles or live mycobacteria. The pH of phagosomes containing live Mycobacterium bovis was significantly more acidic in Nramp1- expressing macrophages than in mutant cells (pH 5.5 ± 0.06 versus pH 6.6 ± 0.05, respectively; P <0.005). The enhanced acidification could not be accounted for by differences in proton consumption during dismutation of superoxide, phagosomal buffering power, counterion conductance, or in the rate of proton “leak”, as these were found to be comparable in wild-type and Nramp1-deficient macrophages. Rather, after ingestion of live mycobacteria, Nramp1-expressing cells exhibited increased concanamycin-sensitive H+ pumping across the phagosomal membrane. This was associated with an enhanced ability of phagosomes to fuse with vacuolar-type ATPase–containing late endosomes and/or lysosomes. This effect was restricted to live M. bovis and was not seen in phagosomes containing dead M. bovis or latex beads. These data support the notion that Nramp1 affects intracellular mycobacterial replication by modulating phagosomal pH, suggesting that Nramp1 plays a central role in this process.
PMCID: PMC2212455  PMID: 9670047
mycobacterium tuberculosis; phagosome; phagocytosis; macrophage; proton pump
19.  The Mycobacterium tuberculosis Phagosome Is a HLA-I Processing Competent Organelle 
PLoS Pathogens  2009;5(4):e1000374.
Mycobacterium tuberculosis (Mtb) resides in a long-lived phagosomal compartment that resists maturation. The manner by which Mtb antigens are processed and presented on MHC Class I molecules is poorly understood. Using human dendritic cells and IFN-γ release by CD8+ T cell clones, we examined the processing and presentation pathway for two Mtb–derived antigens, each presented by a distinct HLA-I allele (HLA-Ia versus HLA-Ib). Presentation of both antigens is blocked by the retrotranslocation inhibitor exotoxin A. Inhibitor studies demonstrate that, after reaching the cytosol, both antigens require proteasomal degradation and TAP transport, but differ in the requirement for ER–golgi egress and new protein synthesis. Specifically, presentation by HLA-B8 but not HLA-E requires newly synthesized HLA-I and transport through the ER–golgi. Phenotypic analysis of the Mtb phagosome by flow organellometry revealed the presence of Class I and loading accessory molecules, including TAP and PDI. Furthermore, loaded HLA-I:peptide complexes are present within the Mtb phagosome, with a pronounced bias towards HLA-E:peptide complexes. In addition, protein analysis also reveals that HLA-E is enriched within the Mtb phagosome compared to HLA-A2. Together, these data suggest that the phagosome, through acquisition of ER–localized machinery and as a site of HLA-I loading, plays a vital role in the presentation of Mtb–derived antigens, similar to that described for presentation of latex bead-associated antigens. This is, to our knowledge, the first description of this presentation pathway for an intracellular pathogen. Moreover, these data suggest that HLA-E may play a unique role in the presentation of phagosomal antigens.
Author Summary
Major Histocompatibility Complex Class I (MHC-I) generally serves to present peptides derived from cytosolic proteins to CD8+ T lymphocytes, thereby alerting the immune system that the cell is infected. The machinery required for MHC-I antigen processing and presentation is localized to the cytosol and endoplasmic reticulum (ER). After phagocytosis of bacteria, it is unclear how bacterial antigens are presented by MHC-I, as they are segregated from this machinery. In this report, we examine processing and presentation of two proteins derived from the intracellular pathogen, Mycobacterium tuberculosis (Mtb). We find that Mtb proteins are able to access the cytosol where they are degraded by the proteasome. Mtb proteins reach the cytosol by retrotranslocation, a process which normally functions to transport misfolded proteins from the ER to the cytosol. Furthermore, the Mtb phagosome contains ER–derived members of the MHC-I peptide loading complex, which aid in loading peptides onto MHC-I molecules. Finally, we detect loaded HLA-I:peptide complexes in the phagosome, demonstrating that loading can occur in the Mtb phagosome. Together, these findings suggest that the Mtb phagosome, through acquisition of ER–derived MHC-I machinery and as a site of MHC-I loading, plays a vital role in presentation of Mtb–derived peptides on MHC-I.
PMCID: PMC2661020  PMID: 19360129
20.  IL-12 and IL-27 regulate the phagolysosomal pathway in mycobacteria-infected human macrophages 
The cytokine environment at the site of infection is important to the control of mycobacteria by host macrophages. During chronic infection immunosuppressive cytokines are likely to favor mycobacterial growth, persistence, and an avoidance of proper antigen processing and presentation. The activity of interleukin (IL)-27 toward macrophages is anti-inflammatory and this compromises control of mycobacteria. Modulation of the cytokine environment may enhance both protective and vaccine-induced responses.
In this study we showed that supplying IL-12 and neutralizing IL-27 enhanced acidification and fusion of mycobacterial-containing phagosomes with lysosomes. This was achieved by phagosomal acquisition of vacuolar ATPase (V-ATPase) and CD63. Both V-ATPase and CD63 protein levels were increased by the addition of IL-12 and neutralization of IL-27. In addition, cathepsin D associated with the bacteria and matured to the active form when IL-12 was supplied and IL-27 was neutralized. Lysosomal acidification and cathepsin D activity were associated with control of mycobacteria. The acidification of lysosomes, association with mycobacteria, and maturation of cathepsin D required macrophage production of IFN-γ and signaling through signal transducer and activator of transcription (STAT)-1. In contrast, STAT-3 signaling opposed these events.
Our results have identified novel influences of IL-12, IL-27, and STAT-3 on lysosomal activity and further demonstrate that modulating the cytokine environment promotes enhanced trafficking of mycobacteria to lysosomes in human macrophages. This has important implications in approaches to control infection and improve vaccination. Overcoming bacterial resistance to lysosomal fusion may expand the repertoire of antigens presented to the adaptive arm of the immune response.
PMCID: PMC4007735  PMID: 24618498
BCG; V-ATPase; CD63; Cathepsin D; Phagolysosome; Human macrophages
21.  Hypoexpression of major histocompatibility complex molecules on Legionella pneumophila phagosomes and phagolysosomes. 
Infection and Immunity  1993;61(7):2803-2812.
Legionella pneumophila is a facultative intracellular pathogen that parasitizes host mononuclear phagocytes. Cell-mediated immunity is pivotal to host defense against L. pneumophila, and the infected host cell may play a central role in processing and presenting parasite antigens to lymphocytes mediating cell-mediated immune response. However, in the case of L. pneumophila and intracellular parasites in general, little is known about the intracellular trafficking of parasite antigens, the influence of parasite infection on major histocompatibility complex (MHC) expression, or the relationship of MHC molecules to sites of parasite replication. To learn more about this, we have used flow cytometry to study the expression of HLA-DR by monocytes infected with L. pneumophila and cryosection immunogold electron microscopy to study the distribution of MHC class I and II molecules on L. pneumophila phagosomes. Flow cytometry analysis demonstrated that L. pneumophila infection has little effect on the overall expression of HLA-DR by monocytes. Cryosection immunogold studies revealed abundant staining for MHC class I and II molecules on the plasma membrane of infected monocytes but little or no staining on the membranes of mature L. pneumophila phagosomes. Cryosection immunogold studies of an avirulent mutant of L. pneumophila that, unlike the wild type, does not inhibit phagosome-lysosome fusion and subsequently survives but does not multiply in a phagolysosome yielded similar results. We have previously found that MHC class I and II molecules are excluded from nascent phagosomes during coiling and conventional phagocytosis. The present work demonstrates that MHC molecules do not accumulate appreciably in the L. pneumophila phagosome as it matures and at a point in the life cycle of the organism in which it is replicating and producing immunoprotective T-cell antigens. This suggests that L. pneumophila does not reside in a typical endosomal compartment in the host cell and that L. pneumophila antigens may encounter MHC molecules at extraphagosomal sites within the host cell.
PMCID: PMC280924  PMID: 8514382
22.  Incorporation of NKT cell activating glycolipids enhances immunogenicity and vaccine efficacy of Mycobacterium bovis BCG 
The attenuated strain of Mycobacterium bovis known as bacille Calmette-Guérin (BCG) has been widely used as a vaccine for prevention of disease by Mycobacterium tuberculosis, but with relatively little evidence of success. Recent studies suggest that the failure of BCG may be due to its retention of immune evasion mechanisms that delay or prevent the priming of robust protective cell-mediated immunity. Here we describe an approach to enhance the immunogenicity of BCG by incorporating glycolipid activators of CD1d–restricted Natural Killer T cells (NKT cells), a conserved T cell subset with the potential to augment many types of immune responses. A method was developed for stably incorporating two forms of the NKT cell activator α-galactosylceramide (αGalCer) into live BCG organisms, and the impact of this on stimulation of T cell responses and protective anti-mycobacterial immunity was evaluated. We found that live BCG containing relatively small amounts of incorporated αGalCer retained the ability to robustly activate NKT cells. Compared to immunization with unmodified BCG, the glycolipid-modified BCG stimulated increased maturation of dendritic cells and markedly augmented the priming of antigen-specific CD8+ T cells responses. These effects were correlated with improved protective effects of vaccination in mice challenged with virulent M. tuberculosis. These results support the view that mycobacteria possess mechanisms to avoid stimulation of CD8+ T cell responses, and that such responses contribute significantly to protective immunity against these pathogens. Our findings raise the possibility of a simple modification of BCG that could yield a more effective vaccine for control of tuberculosis.
PMCID: PMC2719834  PMID: 19620317
23.  Importance of Phagosomal Functionality for Growth Restriction of Mycobacterium tuberculosis in Primary Human Macrophages 
Journal of Innate Immunity  2011;3(5):508-518.
The best characterized survival mechanism of Mycobacterium tuberculosis inside the macrophage is the inhibition of phagosomal maturation. Phagosomal maturation involves several steps including fusion with lysosomes and acidification. However, it has not been elucidated which components of phagosomal maturation correlate with growth restriction of virulent mycobacteria in human macrophages, and we aimed to study this. We infected human monocyte-derived macrophages with M. tuberculosis and assessed bacterial replication, translocation of CD63 to the phagosome, and phagosomal acidification. We found that unstimulated human macrophages were able to control infection with M. tuberculosis upon inoculation at a low multiplicity of infection (MOI) of 1, but not at a high MOI of 10. The low MOI resulted in a macrophage-controlled balance between host cells and bacteria. Both H37Rv and H37Ra infection, at high and low MOI, led to equally ineffective translocation of CD63 to the phagosome. On the other hand, acidification of mycobacterial phagosomes was more efficient at MOI 1 than 10 with both mycobacterial strains, consistent with a direct or indirect role for phagosomal acidification in restricting M. tuberculosis growth. Furthermore, inhibition of the vacuolar H+-ATPase as well as of cathepsin D led to enhanced mycobacterial replication inside the macrophage. This again shows the importance of phagosomal acidification for control of mycobacterial growth, through the activation of lysosomal hydrolases. We conclude that acidification and related functional aspects of the mature phagosome are important factors for restriction of M. tuberculosis replication in human macrophages.
PMCID: PMC3696374  PMID: 21576918
Mycobacterium tuberculosis; Macrophages; Phagosomes; Phagosomal maturation; Phagolysosomal fusion lysosomes; Mycobacteria
24.  Characterization of Human Mycobacterium bovis Bacille Calmette-Guérin-Reactive CD8+ T Cells 
Infection and Immunity  1999;67(10):5223-5230.
Gamma interferon (IFN-γ)-secreting CD4+ T cells have long been established as an essential component of the protective immune response against Mycobacterium tuberculosis. It is now becoming evident from studies with the murine model of tuberculosis that an important role also exists for major histocompatibility complex (MHC) class I-restricted CD8+ T cells. These cells are capable of acting as both IFN-γ secretors and cytotoxic T lymphocyte (CTL) effectors; however, their exact role in immunity against tuberculosis remains unclear. This study demonstrates the presence of Mycobacterium bovis BCG-reactive CD8+ T cells in healthy BCG-vaccinated donors and that these CD8+ T cells are potent cytokine producers as well as cytotoxic effector cells. Using FACScan analysis, we have shown that restimulation with live M. bovis BCG induced more CD8+-T-cell activation than the soluble antigen purified protein derivative and that these cells are actively producing the type 1 cytokines IFN-γ and tumor necrosis factor alpha (TNF-α). These CD8+ T cells also contain the cytolytic granule perforin and are capable of acting as potent CTLs against M. bovis BCG-infected macrophages. The mycobacterial antigens 85A and B (Ag85A and Ag85B, respectively), and to a lesser extent the 19- and 38-kDa proteins, are major antigenic targets for these mycobacterium-specific CD8+ T cells, while whole-M. bovis BCG activated effector cells from these BCG-vaccinated donors, as expected, failed to recognize the 6-kDa ESAT-6 protein. The use of metabolic inhibitors and blocking antibodies revealed that the CD8+ T cells recognize antigen processed and presented via the classical MHC class I pathway. These data suggest that CD8+ T cells may play a critical role in the human immune response to tuberculosis infection.
PMCID: PMC96874  PMID: 10496899
25.  Non-major histocompatibility complex-restricted cytotoxic activity of blood mononuclear cells stimulated with secreted mycobacterial proteins and other mycobacterial antigens. 
Infection and Immunity  1994;62(12):5305-5311.
Several observations indicate that non-major histocompatibility complex (MHC)-restricted cytotoxicity, mediated for example by natural killer cells and lymphokine-activated killer cells, may serve as an important antimicrobial defense mechanism. The purpose of the present study was to investigate the influences of different mycobacterial antigens on non-MHC-restricted cytotoxicity and further to investigate the ways by which various lymphocyte subpopulations contribute to the development of this cytotoxicity. Non-MHC-restricted cytotoxicity was induced following stimulation of mononuclear cells with tuberculin purified protein derivative, Mycobacterium bovis bacillus Calmette-Guérin (BCG), short- and long-term culture filtrates of virulent Mycobacterium tuberculosis H37Rv, and 30-31-kDa secreted mycobacterial protein. These antigens also induced proliferation and production of gamma interferon. The CD4+ cells proliferated and expressed interleukin-2 receptors following stimulation with mycobacterial antigens. Depletion studies after antigen stimulation showed that the cytotoxic effector cells were CD16+ CD56+ and CD4-; the CD4+ cells alone did not mediate non-MHC-restricted cytotoxicity. To evaluate the influence of CD4+ cells on the development of non-MHC-restricted cytotoxicity, blood mononuclear cells were depleted of CD4+ cells before antigen stimulation. When mononuclear cells were incubated with purified protein derivative or short-term culture filtrate in the absence of CD4+ cells, cytotoxic activity was reduced. This reduction was abolished by interleukin-2 but not by gamma interferon. We conclude that several mycobacterial antigens are able to induce non-MHC-restricted cytotoxicity. This study indicates that non-MHC-restricted cytotoxicity following stimulation with mycobacterial antigens is induced by cytokines released by antigen-specific activated CD4+ cells.
PMCID: PMC303269  PMID: 7960109

Results 1-25 (1115364)