PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (790967)

Clipboard (0)
None

Related Articles

1.  H2A.Z Demarcates Intergenic Regions of the Plasmodium falciparum Epigenome That Are Dynamically Marked by H3K9ac and H3K4me3 
PLoS Pathogens  2010;6(12):e1001223.
Epigenetic regulatory mechanisms and their enzymes are promising targets for malaria therapeutic intervention; however, the epigenetic component of gene expression in P. falciparum is poorly understood. Dynamic or stable association of epigenetic marks with genomic features provides important clues about their function and helps to understand how histone variants/modifications are used for indexing the Plasmodium epigenome. We describe a novel, linear amplification method for next-generation sequencing (NGS) that allows unbiased analysis of the extremely AT-rich Plasmodium genome. We used this method for high resolution, genome-wide analysis of a histone H2A variant, H2A.Z and two histone H3 marks throughout parasite intraerythrocytic development. Unlike in other organisms, H2A.Z is a constant, ubiquitous feature of euchromatic intergenic regions throughout the intraerythrocytic cycle. The almost perfect colocalisation of H2A.Z with H3K9ac and H3K4me3 suggests that these marks are preferentially deposited on H2A.Z-containing nucleosomes. By performing RNA-seq on 8 time-points, we show that acetylation of H3K9 at promoter regions correlates very well with the transcriptional status whereas H3K4me3 appears to have stage-specific regulation, being low at early stages, peaking at trophozoite stage, but does not closely follow changes in gene expression. Our improved NGS library preparation procedure provides a foundation to exploit the malaria epigenome in detail. Furthermore, our findings place H2A.Z at the cradle of P. falciparum epigenetic regulation by stably defining intergenic regions and providing a platform for dynamic assembly of epigenetic and other transcription related complexes.
Author Summary
Plasmodium falciparum is a unicellular pathogen that is responsible for the most severe form of malaria. Similar to other eukaryotic organisms, its genome is organized into chromosomes by proteins called histones. Modification or replacement of these histones has marked effects on the packaging grade of DNA and instructs the recruitment of protein complexes, thereby regulating essential cellular processes such as gene expression and replication. Here we unveil the genome-wide localization of two histone H3 modifications (K9ac/K4me3) and a histone variant, H2A.Z, during development of the parasite in the human red blood cells. We find that all three epigenetic features are predominantly present in intergenic regions of the P. falciparum genome, suggesting an interconnecting role in regulation of gene expression. H2A.Z levels appear to be largely invariable throughout intraerythrocytic development while placement/removal of the histone marks is dynamic with H3K9ac and H3K4me3 being transcription-coupled and stage-specific, respectively. These observations support a model in which H2A.Z-containing nucleosomes serve to demarcate regulatory regions in the parasite's genome and promote transcription initiation by guiding chromatin modifying and transcription initiating complexes. The findings and methodological developments presented in this paper provide a cornerstone for future epigenome research in eukaryotic pathogens and vital information to understand and to interfere with parasite development and survival.
doi:10.1371/journal.ppat.1001223
PMCID: PMC3002978  PMID: 21187892
2.  DNA Methylation: A Timeline of Methods and Applications 
DNA methylation is a biochemical process where a DNA base, usually cytosine, is enzymatically methylated at the 5-carbon position. An epigenetic modification associated with gene regulation, DNA methylation is of paramount importance to biological health and disease. Recently, the quest to unravel the Human Epigenome commenced, calling for a modernization of previous DNA methylation profiling techniques. Here, we describe the major developments in the methodologies used over the past three decades to examine the elusive epigenome (or methylome). The earliest techniques were based on the separation of methylated and unmethylated cytosines via chromatography. The following years would see molecular techniques being employed to indirectly examine DNA methylation levels at both a genome-wide and locus-specific context, notably immunoprecipitation via anti-5′methylcytosine and selective digestion with methylation-sensitive restriction endonucleases. With the advent of sodium bisulfite treatment of DNA, a deamination reaction that converts cytosine to uracil only when unmethylated, the epigenetic modification can now be identified in the same manner as a DNA base-pair change. More recently, these three techniques have been applied to more technically advanced systems such as DNA microarrays and next-generation sequencing platforms, bringing us closer to unveiling a complete human epigenetic profile.
doi:10.3389/fgene.2011.00074
PMCID: PMC3268627  PMID: 22303369
DNA; methylation; bisulfite; sequencing; methods
3.  An emerging place for lung cancer genomics in 2013 
Journal of Thoracic Disease  2013;5(Suppl 5):S491-S497.
Lung cancer is a disease with a dismal prognosis and is the biggest cause of cancer deaths in many countries. Nonetheless, rapid technological developments in genome science promise more effective prevention and treatment strategies. Since the Human Genome Project, scientific advances have revolutionized the diagnosis and treatment of human cancers, including thoracic cancers. The latest, massively parallel, next generation sequencing (NGS) technologies offer much greater sequencing capacity than traditional, capillary-based Sanger sequencing. These modern but costly technologies have been applied to whole genome-, and whole exome sequencing (WGS and WES) for the discovery of mutations and polymorphisms, transcriptome sequencing for quantification of gene expression, small ribonucleic acid (RNA) sequencing for microRNA profiling, large scale analysis of deoxyribonucleic acid (DNA) methylation and chromatin immunoprecipitation mapping of DNA-protein interaction.
With the rise of personalized cancer care, based on the premise of precision medicine, sequencing technologies are constantly changing. To date, the genomic landscape of lung cancer has been captured in several WGS projects. Such work has not only contributed to our understanding of cancer biology, but has also provided impetus for technical advances that may improve our ability to accurately capture the cancer genome. Issues such as short read lengths contribute to sequenced libraries that contain challenging gaps in the aligned genome. Emerging platforms promise longer reads as well as the ability to capture a range of epigenomic signals. In addition, ongoing optimization of bioinformatics strategies for data analysis and interpretation are critical, especially for the differentiation between driver and passenger mutations.
Moreover, broader deployment of these and future generations of platforms, coupled with an increasing bioinformatics workforce with access to highly sophisticated technologies, could see many of these discoveries translated to the clinic at a rapid pace. We look forward to these advances making a difference for the many patients we treat in the Asia-Pacific region and around the world.
doi:10.3978/j.issn.2072-1439.2013.10.06
PMCID: PMC3804884  PMID: 24163742
High-throughput nucleotide sequencing; genomics; lung neoplasms; non-small cell lung carcinoma (NSCLC); small cell lung carcinoma (SCLC)
4.  Epigenome remodelling in breast cancer: insights from an early in vitro model of carcinogenesis 
Epigenetic gene regulation has influence over a diverse range of cellular functions, including the maintenance of pluripotency, differentiation, and cellular identity, and is deregulated in many diseases, including cancer. Whereas the involvement of epigenetic dysregulation in cancer is well documented, much of the mechanistic detail involved in triggering these changes remains unclear. In the current age of genomics, the development of new sequencing technologies has seen an influx of genomic and epigenomic data and drastic improvements in both resolution and coverage. Studies in cancer cell lines and clinical samples using next-generation sequencing are rapidly delivering spectacular insights into the nature of the cancer genome and epigenome. Despite these improvements in technology, the timing and relationship between genetic and epigenetic changes that occur during the process of carcinogenesis are still unclear. In particular, what changes to the epigenome are playing a driving role during carcinogenesis and what influence the temporal nature of these changes has on cancer progression are not known. Understanding the early epigenetic changes driving breast cancer has the exciting potential to provide a novel set of therapeutic targets or early-disease biomarkers or both. Therefore, it is important to find novel systems that permit the study of initial epigenetic events that potentially occur during the first stages of breast cancer. Non-malignant human mammary epithelial cells (HMECs) provide an exciting in vitro model of very early breast carcinogenesis. When grown in culture, HMECs are able to temporarily escape senescence and acquire a pre-malignant breast cancer-like phenotype (variant HMECs, or vHMECs). Cultured HMECs are composed mainly of cells from the basal breast epithelial layer. Therefore, vHMECs are considered to represent the basal-like subtype of breast cancer. The transition from HMECs to vHMECs in culture recapitulates the epigenomic phenomena that occur during the progression from normal breast to pre-malignancy. Therefore, the HMEC model system provides the unique opportunity to study the very earliest epigenomic aberrations occurring during breast carcinogenesis and can give insight into the sequence of epigenomic events that lead to breast malignancy. This review provides an overview of epigenomic research in breast cancer and discusses in detail the utility of the HMEC model system to discover early epigenomic changes involved in breast carcinogenesis.
doi:10.1186/bcr3237
PMCID: PMC4053120  PMID: 23168266
5.  PD_NGSAtlas: a reference database combining next-generation sequencing epigenomic and transcriptomic data for psychiatric disorders 
BMC Medical Genomics  2014;7(1):71.
Background
Psychiatric disorders such as schizophrenia (SZ) and bipolar disorder (BP) are projected to lead the global disease burden within the next decade. Several lines of evidence suggest that epigenetic- or genetic-mediated dysfunction is frequently present in these disorders. To date, the inheritance patterns have been complicated by the problem of integrating epigenomic and transcriptomic factors that have yet to be elucidated. Therefore, there is a need to build a comprehensive database for storing epigenomic and transcriptomic data relating to psychiatric disorders.
Description
We have developed the PD_NGSAtlas, which focuses on the efficient storage of epigenomic and transcriptomic data based on next-generation sequencing and on the quantitative analyses of epigenetic and transcriptional alterations involved in psychiatric disorders. The current release of the PD_NGSAtlas contains 43 DNA methylation profiles and 37 transcription profiles detected by MeDIP-Seq and RNA-Seq, respectively, in two distinct brain regions and peripheral blood of SZ, BP and non-psychiatric controls. In addition to these data that were generated in-house, we have included, and will continue to include, published DNA methylation and gene expression data from other research groups, with a focus on psychiatric disorders. A flexible query engine has been developed for the acquisition of methylation profiles and transcription profiles for special genes or genomic regions of interest of the selected samples. Furthermore, the PD_NGSAtlas offers online tools for identifying aberrantly methylated and expressed events involved in psychiatric disorders. A genome browser has been developed to provide integrative and detailed views of multidimensional data in a given genomic context, which can help researchers understand molecular mechanisms from epigenetic and transcriptional perspectives. Moreover, users can download the methylation and transcription data for further analyses.
Conclusions
The PD_NGSAtlas aims to provide storage of epigenomic and transcriptomic data as well as quantitative analyses of epigenetic and transcriptional alterations involved in psychiatric disorders. The PD_NGSAtlas will be a valuable data resource and will enable researchers to investigate the pathophysiology and aetiology of disease in detail. The database is available at http://bioinfo.hrbmu.edu.cn/pd_ngsatlas/.
Electronic supplementary material
The online version of this article (doi:10.1186/s12920-014-0071-z) contains supplementary material, which is available to authorized users.
doi:10.1186/s12920-014-0071-z
PMCID: PMC4308070  PMID: 25551368
Schizophrenia; Bipolar disorder; Next-generation sequencing; Epigenomic and transcriptomic data; Brain; Blood
6.  Next-Generation Sequencing and Epigenomics Research: A Hammer in Search of Nails 
Genomics & Informatics  2014;12(1):2-11.
After the initial enthusiasm of the human genome project, it became clear that without additional data pertaining to the epigenome, i.e., how the genome is marked at specific developmental periods, in different tissues, as well as across individuals and species-the promise of the genome sequencing project in understanding biology cannot be fulfilled. This realization prompted several large-scale efforts to map the epigenome, most notably the Encyclopedia of DNA Elements (ENCODE) project. While there is essentially a single genome in an individual, there are hundreds of epigenomes, corresponding to various types of epigenomic marks at different developmental times and in multiple tissue types. Unprecedented advances in next-generation sequencing (NGS) technologies, by virtue of low cost and high speeds that continue to improve at a rate beyond what is anticipated by Moore's law for computer hardware technologies, have revolutionized molecular biology and genetics research, and have in turn prompted innovative ways to reduce the problem of measuring cellular events involving DNA or RNA into a sequencing problem. In this article, we provide a brief overview of the epigenome, the various types of epigenomic data afforded by NGS, and some of the novel discoveries yielded by the epigenomics projects. We also provide ample references for the reader to get in-depth information on these topics.
doi:10.5808/GI.2014.12.1.2
PMCID: PMC3990762  PMID: 24748856
chromatin accessibility; epigenomics; methylation; next-generation sequencing; regulation
7.  Next-generation sequencing in aging research: emerging applications, problems, pitfalls and possible solutions 
Ageing research reviews  2009;9(3):315-323.
Recent technological advances that allow faster and cheaper DNA sequencing are now driving biological and medical research. In this review, we provide an overview of state-of-the-art next-generation sequencing (NGS) platforms and their applications, including in genome sequencing and resequencing, transcriptional profiling (RNA-Seq) and high-throughput survey of DNA-protein interactions (ChIP-Seq) and of the epigenome. Particularly, we focus on how new methods made possible by NGS can help unravel the biological and genetic mechanisms of aging, longevity and age-related diseases. In the same way, however, NGS platforms open discovery not available before, they also give rise to new challenges, in particular in processing, analyzing and interpreting the data. Bioinformatics and software issues plus statistical difficulties in genome-wide studies are discussed, as well as the use of targeted sequencing to decrease costs and facilitate statistical analyses. Lastly, we discuss a number of methods to gather biological insights from massive amounts of data, such as functional enrichment, transcriptional regulation and network analyses. Although in the fast-moving field of NGS new platforms will soon take center stage, the approaches made possible by NGS will be at the basis of molecular biology, genetics and systems biology for years to come, making them instrumental for research on aging.
doi:10.1016/j.arr.2009.10.006
PMCID: PMC2878865  PMID: 19900591
bioinformatics; epigenetics; functional genomics; senescence; systems biology
8.  Diabetic embryopathy: A role for the epigenome? 
Embryonic development under adverse conditions, such as maternal diabetes or obesity during pregnancy, constitutes a major risk factor for birth defects, as well as for long-term health consequences and disease susceptibility in the offspring. While contributions from epigenetic changes have been invoked previously to explain the long-term changes in terms of developmental programming, we here review how maternal metabolism may directly affect the embryonic epigenome in relationship to teratogenic processes. We consider four epigenetic modalities – DNA methylation, non-coding RNA, transcription factors, and histone modifications – and their contribution to epigenetic memory, and discuss how epigenomic changes may mediate the altered control of embryonic gene expression brought about by maternal diabetes. In combination, the epigenomic modalities serve to define transcription-permissive domains of the genome, resulting in distinct epigenomic landscapes in different developmental cell types. We evaluate experimental approaches to characterize the epigenome in adverse pregnancy conditions, highlighting the role of next-generation sequencing on the technological side, while emphasizing the necessity to study defined cell populations in terms of biologic impact. Finally, we outline the challenges in moving from findings that correlate epigenomics to developmental phenotypes to scenarios that establish teratogenic causality.
doi:10.1002/bdra.20807
PMCID: PMC3152694  PMID: 21538816
9.  Next Generation Sequencing: Advances in Characterizing the Methylome  
Genes  2010;1(2):143-165.
Epigenetic modifications play an important role in lymphoid malignancies. This has been evidenced by the large body of work published using microarray technologies to generate methylation profiles for numerous types and subtypes of lymphoma and leukemia. These studies have shown the importance of defining the epigenome so that we can better understand the biology of lymphoma. Recent advances in DNA sequencing technology have transformed the landscape of epigenomic analysis as we now have the ability to characterize the genome-wide distribution of chromatin modifications and DNA methylation using next-generation sequencing. To take full advantage of the throughput of next-generation sequencing, there are many methodologies that have been developed and many more that are currently being developed. Choosing the appropriate methodology is fundamental to the outcome of next-generation sequencing studies. In this review, published technologies and methodologies applicable to studying the methylome are presented. In addition, progress towards defining the methylome in lymphoma is discussed and prospective directions that have been made possible as a result of next-generation sequencing technology. Finally, methodologies are introduced that have not yet been published but that are being explored in the pursuit of defining the lymphoma methylome.
doi:10.3390/genes1010143
PMCID: PMC3954092  PMID: 24710039
lymphoma; leukemia; next-generation sequencing; methylation; epigenome
10.  Whole genome sequencing for lung cancer 
Journal of Thoracic Disease  2012;4(2):155-163.
Lung cancer is a leading cause of cancer related morbidity and mortality globally, and carries a dismal prognosis. Improved understanding of the biology of cancer is required to improve patient outcomes. Next-generation sequencing (NGS) is a powerful tool for whole genome characterisation, enabling comprehensive examination of somatic mutations that drive oncogenesis. Most NGS methods are based on polymerase chain reaction (PCR) amplification of platform-specific DNA fragment libraries, which are then sequenced. These techniques are well suited to high-throughput sequencing and are able to detect the full spectrum of genomic changes present in cancer. However, they require considerable investments in time, laboratory infrastructure, computational analysis and bioinformatic support. Next-generation sequencing has been applied to studies of the whole genome, exome, transcriptome and epigenome, and is changing the paradigm of lung cancer research and patient care. The results of this new technology will transform current knowledge of oncogenic pathways and provide molecular targets of use in the diagnosis and treatment of cancer. Somatic mutations in lung cancer have already been identified by NGS, and large scale genomic studies are underway. Personalised treatment strategies will improve care for those likely to benefit from available therapies, while sparing others the expense and morbidity of futile intervention. Organisational, computational and bioinformatic challenges of NGS are driving technological advances as well as raising ethical issues relating to informed consent and data release. Differentiation between driver and passenger mutations requires careful interpretation of sequencing data. Challenges in the interpretation of results arise from the types of specimens used for DNA extraction, sample processing techniques and tumour content. Tumour heterogeneity can reduce power to detect mutations implicated in oncogenesis. Next-generation sequencing will facilitate investigation of the biological and clinical implications of such variation. These techniques can now be applied to single cells and free circulating DNA, and possibly in the future to DNA obtained from body fluids and from subpopulations of tumour. As costs reduce, and speed and processing accuracy increase, NGS technology will become increasingly accessible to researchers and clinicians, with the ultimate goal of improving the care of patients with lung cancer.
doi:10.3978/j.issn.2072-1439.2012.02.01
PMCID: PMC3378223  PMID: 22833821
High-throughput nucleotide sequencing; DNA sequence analysis; lung neoplasms; non-small cell lung carcinoma; small cell lung carcinoma
11.  Integrated Core Facility Support and Optimization of Next Generation Sequencing Technologies 
New DNA sequencing technologies present an exceptional opportunity for novel and creative applications with the potential for breakthrough discoveries. To support such research efforts, the Cornell University Life Sciences Core Laboratories Center has implemented the Illumina HiSeq 2000 and the Roche 454 GS FLX platforms as academic core facility shared research resources. We have established sample handling methods, LIMS tools and BioHPC informatics analysis pipelines in support of these new technologies. Our genomics core laboratory, in collaboration with our epigenomics core and bioinformatics core, provides sample preparation and data generation services and both project consultation and analysis support for a wide range of possible applications, including de novo or reference based genome assembly, detection of genetic variation, transcriptome sequencing, small RNA profiling, and genome-wide epigenomic measurements of methylation and protein-nucleic acid interactions. Implementation of next generation sequencing platforms as shared resources with multidisciplinary core facility support enables cost effective access and broad based use of these technologies.
PMCID: PMC3186497
12.  Using ChIP-Seq Technology to Generate High-Resolution Profiles of Histone Modifications 
The dynamic modification of DNA and histones plays a key role in transcriptional regulation through altering the packaging of DNA and modifying the nucleosome surface. These chromatin states, also referred to as the epigenome, are distinctive for different tissues, developmental stages, and disease states and can also be altered by environmental influences. New technologies allow the genome-wide visualization of the information encoded in the epigenome. For example, the chromatin immunoprecipitation (ChIP) assay allows investigators to characterize DNA–protein interactions in vivo. ChIP followed by hybridization to microarrays (ChIP-chip) or by high-throughput sequencing (ChIP-seq) are both powerful tools to identify genome-wide profiles of transcription factors, histone modifications, DNA methylation, and nucleosome positioning. ChIP-seq technology, which can now interrogate the entire human genome at high resolution with only one lane of sequencing, has recently surpassed ChIP-chip technology for epigenomic analyses. Importantly, for the study of primary cells and tissues, epigenetic profiles can be generated using as little as 1 μg of chromatin. In this chapter, we describe in detail the steps involved in performing ChIP assays (with a focus on characterizing histone modifications in primary cells) either manually or using the IP-Star ChIP robot, followed by a detailed protocol to prepare successful libraries for Illumina sequencing. Critical quality control checkpoints are discussed. Although not a focus of this chapter, we also point the reader to several methods by which massive ChIP-seq data sets can be analyzed to extract the tremendous information contained within.
doi:10.1007/978-1-61779-316-5_20
PMCID: PMC4151291  PMID: 21913086
Chromatin immunoprecipitation; ChIP-seq; Next generation sequencing; Epigenomics; Histone modifications; IP-Star; ChIP robot
13.  Next-Generation Sequencing: Application in Liver Cancer—Past, Present and Future? 
Biology  2012;1(2):383-394.
Hepatocellular Carcinoma (HCC) is the third most deadly malignancy worldwide characterized by phenotypic and molecular heterogeneity. In the past two decades, advances in genomic analyses have formed a comprehensive understanding of different underlying pathobiological layers resulting in hepatocarcinogenesis. More recently, improvements of sophisticated next-generation sequencing (NGS) technologies have enabled complete and cost-efficient analyses of cancer genomes at a single nucleotide resolution and advanced into valuable tools in translational medicine. Although the use of NGS in human liver cancer is still in its infancy, great promise rests in the systematic integration of different molecular analyses obtained by these methodologies, i.e., genomics, transcriptomics and epigenomics. This strategy is likely to be helpful in identifying relevant and recurrent pathophysiological hallmarks thereby elucidating our limited understanding of liver cancer. Beside tumor heterogeneity, progress in translational oncology is challenged by the amount of biological information and considerable “noise” in the data obtained from different NGS platforms. Nevertheless, the following review aims to provide an overview of the current status of next-generation approaches in liver cancer, and outline the prospects of these technologies in diagnosis, patient classification, and prediction of outcome. Further, the potential of NGS to identify novel applications for concept clinical trials and to accelerate the development of new cancer therapies will be summarized.
doi:10.3390/biology1020383
PMCID: PMC3674503  PMID: 23750322
Hepatocellular carcinoma (HCC); Next-generation sequencing (NGS); personalized medicine; integrative genomics
14.  Next-Generation Sequencing: Application in Liver Cancer—Past, Present and Future? 
Biology  2012;1(2):383-394.
Hepatocellular Carcinoma (HCC) is the third most deadly malignancy worldwide characterized by phenotypic and molecular heterogeneity. In the past two decades, advances in genomic analyses have formed a comprehensive understanding of different underlying pathobiological layers resulting in hepatocarcinogenesis. More recently, improvements of sophisticated next-generation sequencing (NGS) technologies have enabled complete and cost-efficient analyses of cancer genomes at a single nucleotide resolution and advanced into valuable tools in translational medicine. Although the use of NGS in human liver cancer is still in its infancy, great promise rests in the systematic integration of different molecular analyses obtained by these methodologies, i.e., genomics, transcriptomics and epigenomics. This strategy is likely to be helpful in identifying relevant and recurrent pathophysiological hallmarks thereby elucidating our limited understanding of liver cancer. Beside tumor heterogeneity, progress in translational oncology is challenged by the amount of biological information and considerable “noise” in the data obtained from different NGS platforms. Nevertheless, the following review aims to provide an overview of the current status of next-generation approaches in liver cancer, and outline the prospects of these technologies in diagnosis, patient classification, and prediction of outcome. Further, the potential of NGS to identify novel applications for concept clinical trials and to accelerate the development of new cancer therapies will be summarized.
doi:10.3390/biology1020383
PMCID: PMC3674503  PMID: 23750322
Hepatocellular carcinoma (HCC); Next-generation sequencing (NGS); personalized medicine; integrative genomics
15.  Distinct Epigenomic Features in End-Stage Failing Human Hearts 
Circulation  2011;124(22):2411-2422.
Background
The epigenome refers to marks on the genome, including DNA methylation and histone modifications, that regulate the expression of underlying genes. A consistent profile of gene expression changes in end-stage cardiomyopathy led us to hypothesize that distinct global patterns of the epigenome may also exist.
Methods and Results
We constructed genome-wide maps of DNA methylation and histone-3 lysine-36 trimethylation (H3K36me3) enrichment for cardiomyopathic and normal human hearts. More than 506 Mb sequences per library were generated by high-throughput sequencing, allowing us to assign methylation scores to ≈28 million CG dinucleotides in the human genome. DNA methylation was significantly different in promoter CpG islands, intragenic CpG islands, gene bodies, and H3K36me3-enriched regions of the genome. DNA methylation differences were present in promoters of upregulated genes but not downregulated genes. H3K36me3 enrichment itself was also significantly different in coding regions of the genome. Specifically, abundance of RNA transcripts encoded by the DUX4 locus correlated to differential DNA methylation and H3K36me3 enrichment. In vitro, Dux gene expression was responsive to a specific inhibitor of DNA methyltransferase, and Dux siRNA knockdown led to reduced cell viability.
Conclusions
Distinct epigenomic patterns exist in important DNA elements of the cardiac genome in human end-stage cardiomyopathy. The epigenome may control the expression of local or distal genes with critical functions in myocardial stress response. If epigenomic patterns track with disease progression, assays for the epigenome may be useful for assessing prognosis in heart failure. Further studies are needed to determine whether and how the epigenome contributes to the development of cardiomyopathy.
doi:10.1161/CIRCULATIONAHA.111.040071
PMCID: PMC3634158  PMID: 22025602
genes; genome-wide analysis; genomics; heart failure
16.  Multilayer-omics analyses of human cancers: exploration of biomarkers and drug targets based on the activities of the International Human Epigenome Consortium 
Epigenetic alterations consisting mainly of DNA methylation alterations and histone modification alterations are frequently observed in cancers associated with chronic inflammation and/or persistent infection with viruses or other pathogenic microorganisms, or with cigarette smoking. Accumulating evidence suggests that alterations of DNA methylation are involved even in the early and precancerous stages. On the other hand, in patients with cancers, aberrant DNA methylation is frequently associated with tumor aggressiveness and poor patient outcome. Recently, epigenome alterations have been attracting a great deal of attention from researchers who are focusing on not only cancers but also neuronal, immune and metabolic disorders. In order to accurately identify disease-specific epigenome profiles that could be potentially applicable for disease prevention, diagnosis and therapy, strict comparison with standard epigenome profiles of normal tissues is indispensable. However, epigenome mechanisms show heterogeneity among tissues and cell lineages. Therefore, it is not easy to obtain a comprehensive picture of standard epigenome profiles of normal tissues. In 2010, the International Human Epigenome Consortium (IHEC) was established to coordinate the production of reference maps of human epigenomes for key cellular states. In order to gain substantial coverage of the human epigenome, the IHEC has set an ambitious goal to decipher at least 1000 epigenomes within the next 7–10 years. We consider that pathway analysis using genes showing multilayer-omics abnormalities, including genome, epigenome, transcriptome, proteome and metabolome abnormalities, may be useful for elucidating the molecular background of pathogenesis and for exploring possible therapeutic targets for each disease.
doi:10.3389/fgene.2014.00024
PMCID: PMC3924033  PMID: 24592273
epigenetics; epigenome; DNA methylation; International Human Epigenome Consortium (IHEC); multilayer/integrated disease omics analyses
17.  Emerging patterns of epigenomic variation 
Trends in genetics : TIG  2011;27(6):242-250.
Fuelled by new sequencing technologies, epigenome mapping projects are revealing epigenomic variation at all levels of biological complexity, from species to cells. Comparisons of methylation profiles among species reveal evolutionary conservation of gene body methylation patterns, pointing to the fundamental role of epigenomes in gene regulation. At the human population level, epigenomic changes provide footprints of the effects of genomic variants within the vast non-protein coding fraction of the genome while comparisons of the epigenomes of parents and their offspring point to quantitative epigenomic parent-of-origin effects confounding classical Mendelian genetics. At the organismal level, comparisons of epigenomes from diverse cell types provide insights into cellular differentiation. Finally, comparisons of epigenomes from monozygotic twins help dissect genetic and environmental influences on human phenotypes and longitudinal comparisons reveal aging-associated epigenomic drift. The development of new bioinformatic frameworks for comparative epigenome analysis is putting epigenome maps within reach of researchers across a wide spectrum of biological disciplines.
doi:10.1016/j.tig.2011.03.001
PMCID: PMC3104125  PMID: 21507501
18.  Epigenomics of Hypertension 
Seminars in nephrology  2013;33(4):392-399.
Multiple genes and pathways are involved in the pathogenesis of hypertension. Epigenomic studies of hypertension are beginning to emerge and hold great promise of providing novel insights into the mechanisms underlying hypertension. Epigenetic marks or mediators including DNA methylation, histone modifications, and non-coding RNA can be studied at a genome or near-genome scale using epigenomic approaches. At the single gene level, several studies have identified changes in epigenetic modifications in genes expressed in the kidney that correlate with the development of hypertension. Systematic analysis and integration of epigenetic marks at the genome scale, demonstration of cellular and physiological roles of specific epigenetic modifications, and investigation of inheritance are among the major challenges and opportunities for future epigenomic and epigenetic studies of hypertension.
Essential hypertension is a multifactorial disease involving multiple genetic and environmental factors and mediated by alterations in multiple biological pathways. Because the non-genetic mechanisms may involve epigenetic modifications, epigenomics is one of the latest concepts and approaches brought to bear on hypertension research. In this article, we summarize briefly the concepts and techniques for epigenomics, discuss the rationale for applying epigenomic approaches to study hypertension, and review the current state of this research area.
doi:10.1016/j.semnephrol.2013.05.011
PMCID: PMC3777799  PMID: 24011581
19.  Genome-Wide Alteration of Histone H3K9 Acetylation Pattern in Mouse Offspring Prenatally Exposed to Arsenic 
PLoS ONE  2013;8(2):e53478.
Chronic exposure to arsenic in drinking water, especially in utero or perinatal exposure, can initiate neurological and cognitive dysfunction, as well as memory impairment. Several epidemiological studies have demonstrated cognitive and learning deficits in children with early exposure to low to moderate levels of arsenic, but pathogenic mechanisms or etiology for these deficits are poorly understood. Since in vivo studies show a role for histone acetylation in cognitive performance and memory formation, we examined if prenatal exposure to arsenic causes changes in the epigenomic landscape. We exposed C57Bl6/J mice to 100 μg/L arsenic in the drinking water starting 1 week before conception till birth and applied chromatin immunoprecipitation followed by high-throughput massive parallel sequencing (ChIP-seq) to evaluate H3K9 acetylation pattern in the offspring of exposed and control mice. Arsenic exposure during embryonic life caused global hypo-acetylation at H3K9 and changes in functional annotation with highly significant representation of Krüppel associated box (KRAB) transcription factors in brain samples from exposed pups. We also found that arsenic exposure of adult mice impaired spatial and episodic memory, as well as fear conditioning performance. This is the first study to demonstrate: a) genome wide changes in H3K9 acetylation pattern in an offspring prenatally exposed to arsenic, and b) a connection between moderate arsenic exposure and cognitive impairment in adult mice. The results also emphasize the applicability of Next Generation Sequencing methodology in studies aiming to reveal the role of environmental factors, other than dietary restriction, in developmental reprogramming through histone modifications during embryonic development.
doi:10.1371/journal.pone.0053478
PMCID: PMC3566160  PMID: 23405071
20.  The Epigenomics of Embryonic Stem Cell Differentiation 
Embryonic stem cells (ESCs) possess an open and highly dynamic chromatin landscape, which underlies their plasticity and ultimately maintains ESC pluripotency. The ESC epigenome must not only maintain the transcription of pluripotency-associated genes but must also, through gene priming, facilitate rapid and cell type-specific activation of developmental genes upon lineage commitment. Trans-generational inheritance ensures that the ESC chromatin state is stably transmitted from one generation to the next; yet at the same time, epigenetic marks are highly dynamic, reversible and responsive to extracellular cues. Once committed to differentiation, the ESC epigenome is remodeled and resolves into a more compact chromatin state. A thorough understanding of the role of chromatin modifiers in ESC fate and differentiation will be important if they are to be used for therapeutic purposes.
Recent technical advances, particularly in next-generation sequencing technologies, have provided a genome-scale view of epigenetic marks and chromatin modifiers. More affordable and faster sequencing platforms have led to a comprehensive characterization of the ESC epigenome and epigenomes of differentiated cell types. In this review, we summarize and discuss the recent progress that has highlighted the central role of histone modifications, histone variants, DNA methylation and chromatin modifiers in ESC pluripotency and ESC fate. We provide a detailed and comprehensive discussion of genome-wide studies that are pertinent to our understanding of mammalian development.
doi:10.7150/ijbs.7998
PMCID: PMC3858586  PMID: 24339734
Epigenomics; chromatin; embryonic stem cells; differentiation
21.  Deciphering the Epigenetic Code: An Overview of DNA Methylation Analysis Methods 
Antioxidants & Redox Signaling  2013;18(15):1972-1986.
Abstract
Significance: Methylation of cytosine in DNA is linked with gene regulation, and this has profound implications in development, normal biology, and disease conditions in many eukaryotic organisms. A wide range of methods and approaches exist for its identification, quantification, and mapping within the genome. While the earliest approaches were nonspecific and were at best useful for quantification of total methylated cytosines in the chunk of DNA, this field has seen considerable progress and development over the past decades. Recent Advances: Methods for DNA methylation analysis differ in their coverage and sensitivity, and the method of choice depends on the intended application and desired level of information. Potential results include global methyl cytosine content, degree of methylation at specific loci, or genome-wide methylation maps. Introduction of more advanced approaches to DNA methylation analysis, such as microarray platforms and massively parallel sequencing, has brought us closer to unveiling the whole methylome. Critical Issues: Sensitive quantification of DNA methylation from degraded and minute quantities of DNA and high-throughput DNA methylation mapping of single cells still remain a challenge. Future Directions: Developments in DNA sequencing technologies as well as the methods for identification and mapping of 5-hydroxymethylcytosine are expected to augment our current understanding of epigenomics. Here we present an overview of methodologies available for DNA methylation analysis with special focus on recent developments in genome-wide and high-throughput methods. While the application focus relates to cancer research, the methods are equally relevant to broader issues of epigenetics and redox science in this special forum. Antioxid. Redox Signal. 18, 1972–1986.
doi:10.1089/ars.2012.4923
PMCID: PMC3624772  PMID: 23121567
22.  Applying Next Generation Sequencing Technologies in a Core Facility Environment 
Journal of Biomolecular Techniques : JBT  2010;21(3 Suppl):S73-S74.
CF-21
New DNA sequencing technologies presents an exceptional opportunity for novel and creative applications with the potential for breakthrough discoveries. To support such research efforts, the Cornell University Life Sciences Core Laboratories Center has implemented the Illumina Solexa Genome Analyzer IIx and the Roche 454 Genome Sequencer FLX platforms as academic core facility shared research resources. We have established sample handling methods, wikiLIMS tools and informatics analysis pipelines in support of these new technologies. Our DNA sequencing and genotyping core laboratory provides sample preparation and data generation services and in collaboration with the microarrays and informatics core facilities, provides both project consultation and analysis support for a wide range of possible applications, including de novo or reference based genome assembly, detection of genetic variation, transcriptome sequencing, small RNA profiling, and genome-wide epigenomic measurements of protein-nucleic interactions. Implementation of next generation sequencing platforms as shared resources with multi-disciplinary core facility support enables cost effective access and broad based use of these technologies.
PMCID: PMC2918155
23.  In silico analysis identifies novel restriction enzyme combinations that expand reduced representation bisulfite sequencing CpG coverage 
BMC Research Notes  2014;7(1):534.
Background
Epigenetics is the study of gene expression changes that are not caused by changes in the deoxyribonucleic acid (DNA) sequence. DNA methylation is an epigenetic mark occurring in C–phosphate–G sites (CpGs) that leads to local or regional gene expression changes. Reduced-representation bisulfite sequencing (RRBS) is a technique that is used to ascertain the DNA methylation of millions of CpGs at single-nucleotide resolution. The genomic coverage of RRBS is given by the restriction enzyme combination used during the library preparation and the throughput capacity of the next-generation sequencer, which is used to read the generated libraries. The four-nucleotide cutters, MspI and TaqαI, are restriction enzymes commonly used in RRBS that, when combined, achieve ~12% genomic coverage. The increase in throughput of next-generation sequencers allows for novel combinations of restriction enzymes that provide higher CpG coverage.
Results
We performed a near-neighbor analysis of the four nucleotide sequences most frequently found within 50 nt of all genomic CpGs. This resulted in the identification of seven methylation-insensitive restriction enzymes (AluI, BfaI, HaeIII, HpyCH4V, MluCI, MseI, and MspI) that shared similar restriction conditions suitable for RRBS library preparation. We report that the use of two or three enzyme combinations increases the theoretical epigenome coverage to almost half of the human genome.
Conclusions
We provide the enzyme combinations that are more likely to increase the CpG coverage in human, rat, and mouse genomes.
Electronic supplementary material
The online version of this article (doi:10.1186/1756-0500-7-534) contains supplementary material, which is available to authorized users.
doi:10.1186/1756-0500-7-534
PMCID: PMC4141122  PMID: 25127888
RRBS; DNA methylation; Epigenetics; Restriction enzyme; Next-generation sequencing
24.  The salt-responsive transcriptome of chickpea roots and nodules via deepSuperSAGE 
BMC Plant Biology  2011;11:31.
Background
The combination of high-throughput transcript profiling and next-generation sequencing technologies is a prerequisite for genome-wide comprehensive transcriptome analysis. Our recent innovation of deepSuperSAGE is based on an advanced SuperSAGE protocol and its combination with massively parallel pyrosequencing on Roche's 454 sequencing platform. As a demonstration of the power of this combination, we have chosen the salt stress transcriptomes of roots and nodules of the third most important legume crop chickpea (Cicer arietinum L.). While our report is more technology-oriented, it nevertheless addresses a major world-wide problem for crops generally: high salinity. Together with low temperatures and water stress, high salinity is responsible for crop losses of millions of tons of various legume (and other) crops. Continuously deteriorating environmental conditions will combine with salinity stress to further compromise crop yields. As a good example for such stress-exposed crop plants, we started to characterize salt stress responses of chickpeas on the transcriptome level.
Results
We used deepSuperSAGE to detect early global transcriptome changes in salt-stressed chickpea. The salt stress responses of 86,919 transcripts representing 17,918 unique 26 bp deepSuperSAGE tags (UniTags) from roots of the salt-tolerant variety INRAT-93 two hours after treatment with 25 mM NaCl were characterized. Additionally, the expression of 57,281 transcripts representing 13,115 UniTags was monitored in nodules of the same plants. From a total of 144,200 analyzed 26 bp tags in roots and nodules together, 21,401 unique transcripts were identified. Of these, only 363 and 106 specific transcripts, respectively, were commonly up- or down-regulated (>3.0-fold) under salt stress in both organs, witnessing a differential organ-specific response to stress.
Profiting from recent pioneer works on massive cDNA sequencing in chickpea, more than 9,400 UniTags were able to be linked to UniProt entries. Additionally, gene ontology (GO) categories over-representation analysis enabled to filter out enriched biological processes among the differentially expressed UniTags. Subsequently, the gathered information was further cross-checked with stress-related pathways.
From several filtered pathways, here we focus exemplarily on transcripts associated with the generation and scavenging of reactive oxygen species (ROS), as well as on transcripts involved in Na+ homeostasis. Although both processes are already very well characterized in other plants, the information generated in the present work is of high value. Information on expression profiles and sequence similarity for several hundreds of transcripts of potential interest is now available.
Conclusions
This report demonstrates, that the combination of the high-throughput transcriptome profiling technology SuperSAGE with one of the next-generation sequencing platforms allows deep insights into the first molecular reactions of a plant exposed to salinity. Cross validation with recent reports enriched the information about the salt stress dynamics of more than 9,000 chickpea ESTs, and enlarged their pool of alternative transcripts isoforms.
As an example for the high resolution of the employed technology that we coin deepSuperSAGE, we demonstrate that ROS-scavenging and -generating pathways undergo strong global transcriptome changes in chickpea roots and nodules already 2 hours after onset of moderate salt stress (25 mM NaCl). Additionally, a set of more than 15 candidate transcripts are proposed to be potential components of the salt overly sensitive (SOS) pathway in chickpea.
Newly identified transcript isoforms are potential targets for breeding novel cultivars with high salinity tolerance. We demonstrate that these targets can be integrated into breeding schemes by micro-arrays and RT-PCR assays downstream of the generation of 26 bp tags by SuperSAGE.
doi:10.1186/1471-2229-11-31
PMCID: PMC3045889  PMID: 21320317
25.  Application of Genotyping-by-Sequencing on Semiconductor Sequencing Platforms: A Comparison of Genetic and Reference-Based Marker Ordering in Barley 
PLoS ONE  2013;8(10):e76925.
The rapid development of next-generation sequencing platforms has enabled the use of sequencing for routine genotyping across a range of genetics studies and breeding applications. Genotyping-by-sequencing (GBS), a low-cost, reduced representation sequencing method, is becoming a common approach for whole-genome marker profiling in many species. With quickly developing sequencing technologies, adapting current GBS methodologies to new platforms will leverage these advancements for future studies. To test new semiconductor sequencing platforms for GBS, we genotyped a barley recombinant inbred line (RIL) population. Based on a previous GBS approach, we designed bar code and adapter sets for the Ion Torrent platforms. Four sets of 24-plex libraries were constructed consisting of 94 RILs and the two parents and sequenced on two Ion platforms. In parallel, a 96-plex library of the same RILs was sequenced on the Illumina HiSeq 2000. We applied two different computational pipelines to analyze sequencing data; the reference-independent TASSEL pipeline and a reference-based pipeline using SAMtools. Sequence contigs positioned on the integrated physical and genetic map were used for read mapping and variant calling. We found high agreement in genotype calls between the different platforms and high concordance between genetic and reference-based marker order. There was, however, paucity in the number of SNP that were jointly discovered by the different pipelines indicating a strong effect of alignment and filtering parameters on SNP discovery. We show the utility of the current barley genome assembly as a framework for developing very low-cost genetic maps, facilitating high resolution genetic mapping and negating the need for developing de novo genetic maps for future studies in barley. Through demonstration of GBS on semiconductor sequencing platforms, we conclude that the GBS approach is amenable to a range of platforms and can easily be modified as new sequencing technologies, analysis tools and genomic resources develop.
doi:10.1371/journal.pone.0076925
PMCID: PMC3789676  PMID: 24098570

Results 1-25 (790967)