PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (1399434)

Clipboard (0)
None

Related Articles

1.  Dynamics of Genome Rearrangement in Bacterial Populations 
PLoS Genetics  2008;4(7):e1000128.
Genome structure variation has profound impacts on phenotype in organisms ranging from microbes to humans, yet little is known about how natural selection acts on genome arrangement. Pathogenic bacteria such as Yersinia pestis, which causes bubonic and pneumonic plague, often exhibit a high degree of genomic rearrangement. The recent availability of several Yersinia genomes offers an unprecedented opportunity to study the evolution of genome structure and arrangement. We introduce a set of statistical methods to study patterns of rearrangement in circular chromosomes and apply them to the Yersinia. We constructed a multiple alignment of eight Yersinia genomes using Mauve software to identify 78 conserved segments that are internally free from genome rearrangement. Based on the alignment, we applied Bayesian statistical methods to infer the phylogenetic inversion history of Yersinia. The sampling of genome arrangement reconstructions contains seven parsimonious tree topologies, each having different histories of 79 inversions. Topologies with a greater number of inversions also exist, but were sampled less frequently. The inversion phylogenies agree with results suggested by SNP patterns. We then analyzed reconstructed inversion histories to identify patterns of rearrangement. We confirm an over-representation of “symmetric inversions”—inversions with endpoints that are equally distant from the origin of chromosomal replication. Ancestral genome arrangements demonstrate moderate preference for replichore balance in Yersinia. We found that all inversions are shorter than expected under a neutral model, whereas inversions acting within a single replichore are much shorter than expected. We also found evidence for a canonical configuration of the origin and terminus of replication. Finally, breakpoint reuse analysis reveals that inversions with endpoints proximal to the origin of DNA replication are nearly three times more frequent. Our findings represent the first characterization of genome arrangement evolution in a bacterial population evolving outside laboratory conditions. Insight into the process of genomic rearrangement may further the understanding of pathogen population dynamics and selection on the architecture of circular bacterial chromosomes.
Author Summary
Whole-genome sequencing has revealed that organisms exhibit extreme variability in chromosome structure. One common type of chromosome structure variation is genome arrangement variation: changes in the ordering of genes on the chromosome. Not only do we find differences in genome arrangement across species, but in some organisms, members of the same species have radically different genome arrangements. We studied the evolution of genome arrangement in pathogenic bacteria from the genus Yersinia. The Yersinia exhibit substantial variation in genome arrangement both within and across species. We reconstructed the history of genome rearrangement by inversion in a group of eight Yersinia, and we statistically quantified the forces shaping their genome arrangement evolution. In particular, we discovered an excess of rearrangement activity near the origin of chromosomal replication and found evidence for a preferred configuration for the relative orientations of the origin and terminus of replication. We also found real inversions to be significantly shorter than expected. Finally, we discovered that no single reconstruction of inversion history is parsimonious with respect to the total number of inversion mutations, but on average, reconstructed genome arrangements favor “balanced” genomes—where the replication origin is positioned opposite the terminus on the circular chromosome.
doi:10.1371/journal.pgen.1000128
PMCID: PMC2483231  PMID: 18650965
2.  Molecular characterization of ring chromosome 18 by low-coverage next generation sequencing 
BMC Medical Genetics  2015;16:57.
Background
Ring chromosomes are one category of structurally abnormal chromosomes that can lead to severe growth retardation and other clinical defects. Traditionally, their diagnosis and characterization has largely relied on conventional cytogenetics and fluorescence in situ hybridization, array-based comparative genomic hybridization and single nucleotide polymorphism array-based comparative genomic hybridization. However, these methods are ineffectively at characterizing the ring chromosome structure and only offer a low resolution mapping of breakpoints. Here, we applied whole-genome low-coverage paired-end next generation sequencing (NGS) to two suspected cases of ring chromosome 18 (r(18)) and characterized the ring structure including the chromosome dosage changes and the breakpoint junction.
Methods
The breakpoints and chromosome copy number variations (CNVs) of r(18) were characterized by whole-genome low-coverage paired-end NGS. We confirmed the dosage change by single nucleotide polymorphisms array, and validated the junction site regions using PCR followed by Sanger sequencing.
Results
We successfully and fully characterized the r(18) in two cases by NGS. We mapped the breakpoints with a high resolution and identified all CNVs in both cases. We analyzed the breakpoint regions and discovered two breakpoints located within repetitive sequence regions, and two near the repetitive sequence regions. One of the breakpoints in case 2 was located within the gene METTL4, while the other breakpoints were intergenic.
Conclusions
We demonstrated that whole-genome low-coverage paired-end NGS can be used directly to map breakpoints with a high molecular resolution and detect all CNVs on r(18). This approach will provide new insights into the genotype-phenotype correlations on r(18) and the underlying mechanism of ring chromosomes formation. Our results also demonstrate that this can be a powerful approach for the diagnosis and characterization of ring chromosomes in the clinic.
Electronic supplementary material
The online version of this article (doi:10.1186/s12881-015-0206-x) contains supplementary material, which is available to authorized users.
doi:10.1186/s12881-015-0206-x
PMCID: PMC4557216  PMID: 26224010
Ring chromosome; Breakpoint; Next generation sequencing
3.  PeSV-Fisher: Identification of Somatic and Non-Somatic Structural Variants Using Next Generation Sequencing Data 
PLoS ONE  2013;8(5):e63377.
Next-generation sequencing technologies expedited research to develop efficient computational tools for the identification of structural variants (SVs) and their use to study human diseases. As deeper data is obtained, the existence of higher complexity SVs in some genomes becomes more evident, but the detection and definition of most of these complex rearrangements is still in its infancy. The full characterization of SVs is a key aspect for discovering their biological implications. Here we present a pipeline (PeSV-Fisher) for the detection of deletions, gains, intra- and inter-chromosomal translocations, and inversions, at very reasonable computational costs. We further provide comprehensive information on co-localization of SVs in the genome, a crucial aspect for studying their biological consequences. The algorithm uses a combination of methods based on paired-reads and read-depth strategies. PeSV-Fisher has been designed with the aim to facilitate identification of somatic variation, and, as such, it is capable of analysing two or more samples simultaneously, producing a list of non-shared variants between samples. We tested PeSV-Fisher on available sequencing data, and compared its behaviour to that of frequently deployed tools (BreakDancer and VariationHunter). We have also tested this algorithm on our own sequencing data, obtained from a tumour and a normal blood sample of a patient with chronic lymphocytic leukaemia, on which we have also validated the results by targeted re-sequencing of different kinds of predictions. This allowed us to determine confidence parameters that influence the reliability of breakpoint predictions.
Availability
PeSV-Fisher is available at http://gd.crg.eu/tools.
doi:10.1371/journal.pone.0063377
PMCID: PMC3660373  PMID: 23704902
4.  Sequencing technologies and genome sequencing 
Journal of Applied Genetics  2011;52(4):413-435.
The high-throughput - next generation sequencing (HT-NGS) technologies are currently the hottest topic in the field of human and animals genomics researches, which can produce over 100 times more data compared to the most sophisticated capillary sequencers based on the Sanger method. With the ongoing developments of high throughput sequencing machines and advancement of modern bioinformatics tools at unprecedented pace, the target goal of sequencing individual genomes of living organism at a cost of $1,000 each is seemed to be realistically feasible in the near future. In the relatively short time frame since 2005, the HT-NGS technologies are revolutionizing the human and animal genome researches by analysis of chromatin immunoprecipitation coupled to DNA microarray (ChIP-chip) or sequencing (ChIP-seq), RNA sequencing (RNA-seq), whole genome genotyping, genome wide structural variation, de novo assembling and re-assembling of genome, mutation detection and carrier screening, detection of inherited disorders and complex human diseases, DNA library preparation, paired ends and genomic captures, sequencing of mitochondrial genome and personal genomics. In this review, we addressed the important features of HT-NGS like, first generation DNA sequencers, birth of HT-NGS, second generation HT-NGS platforms, third generation HT-NGS platforms: including single molecule Heliscope™, SMRT™ and RNAP sequencers, Nanopore, Archon Genomics X PRIZE foundation, comparison of second and third HT-NGS platforms, applications, advances and future perspectives of sequencing technologies on human and animal genome research.
doi:10.1007/s13353-011-0057-x
PMCID: PMC3189340  PMID: 21698376
CHIP-chip; Chip-seq; De novo assembling; High-throughput next generation sequencing; Personal genomics; Re-sequencing; RNA-seq
5.  ClipCrop: a tool for detecting structural variations with single-base resolution using soft-clipping information 
BMC Bioinformatics  2011;12(Suppl 14):S7.
Background
Structural variations (SVs) change the structure of the genome and are therefore the causes of various diseases. Next-generation sequencing allows us to obtain a multitude of sequence data, some of which can be used to infer the position of SVs.
Methods
We developed a new method and implementation named ClipCrop for detecting SVs with single-base resolution using soft-clipping information. A soft-clipped sequence is an unmatched fragment in a partially mapped read. To assess the performance of ClipCrop with other SV-detecting tools, we generated various patterns of simulation data – SV lengths, read lengths, and the depth of coverage of short reads – with insertions, deletions, tandem duplications, inversions and single nucleotide alterations in a human chromosome. For comparison, we selected BreakDancer, CNVnator and Pindel, each of which adopts a different approach to detect SVs, e.g. discordant pair approach, depth of coverage approach and split read approach, respectively.
Results
Our method outperformed BreakDancer and CNVnator in both discovering rate and call accuracy in any type of SV. Pindel offered a similar performance as our method, but our method crucially outperformed for detecting small duplications. From our experiments, ClipCrop infer reliable SVs for the data set with more than 50 bases read lengths and 20x depth of coverage, both of which are reasonable values in current NGS data set.
Conclusions
ClipCrop can detect SVs with higher discovering rate and call accuracy than any other tool in our simulation data set.
doi:10.1186/1471-2105-12-S14-S7
PMCID: PMC3287472  PMID: 22373054
6.  U87MG Decoded: The Genomic Sequence of a Cytogenetically Aberrant Human Cancer Cell Line 
PLoS Genetics  2010;6(1):e1000832.
U87MG is a commonly studied grade IV glioma cell line that has been analyzed in at least 1,700 publications over four decades. In order to comprehensively characterize the genome of this cell line and to serve as a model of broad cancer genome sequencing, we have generated greater than 30× genomic sequence coverage using a novel 50-base mate paired strategy with a 1.4kb mean insert library. A total of 1,014,984,286 mate-end and 120,691,623 single-end two-base encoded reads were generated from five slides. All data were aligned using a custom designed tool called BFAST, allowing optimal color space read alignment and accurate identification of DNA variants. The aligned sequence reads and mate-pair information identified 35 interchromosomal translocation events, 1,315 structural variations (>100 bp), 191,743 small (<21 bp) insertions and deletions (indels), and 2,384,470 single nucleotide variations (SNVs). Among these observations, the known homozygous mutation in PTEN was robustly identified, and genes involved in cell adhesion were overrepresented in the mutated gene list. Data were compared to 219,187 heterozygous single nucleotide polymorphisms assayed by Illumina 1M Duo genotyping array to assess accuracy: 93.83% of all SNPs were reliably detected at filtering thresholds that yield greater than 99.99% sequence accuracy. Protein coding sequences were disrupted predominantly in this cancer cell line due to small indels, large deletions, and translocations. In total, 512 genes were homozygously mutated, including 154 by SNVs, 178 by small indels, 145 by large microdeletions, and 35 by interchromosomal translocations to reveal a highly mutated cell line genome. Of the small homozygously mutated variants, 8 SNVs and 99 indels were novel events not present in dbSNP. These data demonstrate that routine generation of broad cancer genome sequence is possible outside of genome centers. The sequence analysis of U87MG provides an unparalleled level of mutational resolution compared to any cell line to date.
Author Summary
Glioblastoma has a particularly dismal prognosis with median survival time of less than fifteen months. Here, we describe the broad genome sequencing of U87MG, a commonly used and thus well-studied glioblastoma cell line. One of the major features of the U87MG genome is the large number of chromosomal abnormalities, which can be typical of cancer cell lines and primary cancers. The systematic, thorough, and accurate mutational analysis of the U87MG genome comprehensively identifies different classes of genetic mutations including single-nucleotide variations (SNVs), insertions/deletions (indels), and translocations. We found 2,384,470 SNVs, 191,743 small indels, and 1,314 large structural variations. Known gene models were used to predict the effect of these mutations on protein-coding sequence. Mutational analysis revealed 512 genes homozygously mutated, including 154 by SNVs, 178 by small indels, 145 by large microdeletions, and up to 35 by interchromosomal translocations. The major mutational mechanisms in this brain cancer cell line are small indels and large structural variations. The genomic landscape of U87MG is revealed to be much more complex than previously thought based on lower resolution techniques. This mutational analysis serves as a resource for past and future studies on U87MG, informing them with a thorough description of its mutational state.
doi:10.1371/journal.pgen.1000832
PMCID: PMC2813426  PMID: 20126413
7.  An integrative framework for the identification of double minute chromosomes using next generation sequencing data 
BMC Genetics  2015;16(Suppl 2):S1.
Background
Double minute chromosomes are circular fragments of DNA whose presence is associated with the onset of certain cancers. Double minutes are lethal, as they are highly amplified and typically contain oncogenes. Locating double minutes can supplement the process of cancer diagnosis, and it can help to identify therapeutic targets. However, there is currently a dearth of computational methods available to identify double minutes. We propose a computational framework for the idenfication of double minute chromosomes using next-generation sequencing data. Our framework integrates predictions from algorithms that detect DNA copy number variants, and it also integrates predictions from algorithms that locate genomic structural variants. This information is used by a graph-based algorithm to predict the presence of double minute chromosomes.
Results
Using a previously published copy number variant algorithm and two structural variation prediction algorithms, we implemented our framework and tested it on a dataset consisting of simulated double minute chromosomes. Our approach uncovered double minutes with high accuracy, demonstrating its plausibility.
Conclusions
Although we only tested the framework with three programs (RDXplorer, BreakDancer, Delly), it can be extended to incorporate results from programs that 1) detect amplified copy number and from programs that 2) detect genomic structural variants like deletions, translocations, inversions, and tandem repeats.
The software that implements the framework can be accessed here: https://github.com/mhayes20/DMFinder
doi:10.1186/1471-2156-16-S2-S1
PMCID: PMC4423570  PMID: 25953282
amplicon; double minute; next generation sequencing
8.  A High-Resolution Map of Arabidopsis Recombinant Inbred Lines by Whole-Genome Exon Array Hybridization 
PLoS Genetics  2006;2(9):e144.
Recombinant populations were the basis for Mendel's first genetic experiments and continue to be key to the study of genes, heredity, and genetic variation today. Genotyping several hundred thousand loci in a single assay by hybridizing genomic DNA to oligonucleotide arrays provides a powerful technique to improve precision linkage mapping. The genotypes of two accessions of Arabidopsis were compared by using a 400,000 feature exon-specific oligonucleotide array. Around 16,000 single feature polymorphisms (SFPs) were detected in ~8,000 of the ~26,000 genes represented on the array. Allelic variation at these loci was measured in a recombinant inbred line population, which defined the location of 815 recombination breakpoints. The genetic linkage map had a total length of 422.5 cM, with 676 informative SFP markers representing intervals of ~0.6 cM. One hundred fifteen single gene intervals were identified. Recombination rate, SFP distribution, and segregation in this population are not uniform. Many genomic regions show a clustering of recombination events including significant hot spots. The precise haplotype structure of the recombinant population was defined with unprecedented accuracy and resolution. The resulting linkage map allows further refinement of the hundreds of quantitative trait loci identified in this well-studied population. Highly variable recombination rates along each chromosome and extensive segregation distortion were observed in the population.
Synopsis
A goal of many genetic studies is to discover the underlying genetic condition (the genotype) of a specific physical manifestation in an organism (the phenotype), such as diabetes in humans or leaf rust in cultivated wheat. A limitation to making such discoveries is the ability to resolve genotype. Gene arrays carry representations of the genome, called features, at high-density on a surface the size of a thumbnail. In this study, microarrays designed to measure gene expression were used to detect DNA sequence polymorphisms. DNA from two different Arabidopsis strains was hybridized to arrays representing nearly the entire coding region of the genome. Differences in hybridization intensity indicated differences in DNA sequence. The sequence differences, termed single feature polymorphisms, were then assayed in a population of 100 plants derived through inbreeding the progeny from the two parental strains. The precise location of the genetic recombination breakpoints was defined for each line. As a result, Singer et al. were able to generate one of the first very high-resolution genotyping data sets in a multicellular organism that allowed the construction of a high-resolution genetic map of Arabidopsis. This map will greatly facilitate attempts to make definitive associations between genotypes and phenotypes.
doi:10.1371/journal.pgen.0020144
PMCID: PMC1564425  PMID: 17044735
9.  High throughput sequencing in mice: a platform comparison identifies a preponderance of cryptic SNPs 
BMC Genomics  2009;10:379.
Background
Allelic variation is the cornerstone of genetically determined differences in gene expression, gene product structure, physiology, and behavior. However, allelic variation, particularly cryptic (unknown or not annotated) variation, is problematic for follow up analyses. Polymorphisms result in a high incidence of false positive and false negative results in hybridization based analyses and hinder the identification of the true variation underlying genetically determined differences in physiology and behavior. Given the proliferation of mouse genetic models (e.g., knockout models, selectively bred lines, heterogeneous stocks derived from standard inbred strains and wild mice) and the wealth of gene expression microarray and phenotypic studies using genetic models, the impact of naturally-occurring polymorphisms on these data is critical. With the advent of next-generation, high-throughput sequencing, we are now in a position to determine to what extent polymorphisms are currently cryptic in such models and their impact on downstream analyses.
Results
We sequenced the two most commonly used inbred mouse strains, DBA/2J and C57BL/6J, across a region of chromosome 1 (171.6 – 174.6 megabases) using two next generation high-throughput sequencing platforms: Applied Biosystems (SOLiD) and Illumina (Genome Analyzer). Using the same templates on both platforms, we compared realignments and single nucleotide polymorphism (SNP) detection with an 80 fold average read depth across platforms and samples. While public datasets currently annotate 4,527 SNPs between the two strains in this interval, thorough high-throughput sequencing identified a total of 11,824 SNPs in the interval, including 7,663 new SNPs. Furthermore, we confirmed 40 missense SNPs and discovered 36 new missense SNPs.
Conclusion
Comparisons utilizing even two of the best characterized mouse genetic models, DBA/2J and C57BL/6J, indicate that more than half of naturally-occurring SNPs remain cryptic. The magnitude of this problem is compounded when using more divergent or poorly annotated genetic models. This warrants full genomic sequencing of the mouse strains used as genetic models.
doi:10.1186/1471-2164-10-379
PMCID: PMC2743714  PMID: 19686600
10.  Evaluation of Paired-End Sequencing Strategies for Detection of Genome Rearrangements in Cancer 
PLoS Computational Biology  2008;4(4):e1000051.
Paired-end sequencing is emerging as a key technique for assessing genome rearrangements and structural variation on a genome-wide scale. This technique is particularly useful for detecting copy-neutral rearrangements, such as inversions and translocations, which are common in cancer and can produce novel fusion genes. We address the question of how much sequencing is required to detect rearrangement breakpoints and to localize them precisely using both theoretical models and simulation. We derive a formula for the probability that a fusion gene exists in a cancer genome given a collection of paired-end sequences from this genome. We use this formula to compute fusion gene probabilities in several breast cancer samples, and we find that we are able to accurately predict fusion genes in these samples with a relatively small number of fragments of large size. We further demonstrate how the ability to detect fusion genes depends on the distribution of gene lengths, and we evaluate how different parameters of a sequencing strategy impact breakpoint detection, breakpoint localization, and fusion gene detection, even in the presence of errors that suggest false rearrangements. These results will be useful in calibrating future cancer sequencing efforts, particularly large-scale studies of many cancer genomes that are enabled by next-generation sequencing technologies.
Author Summary
Cancer is driven by genomic mutations that can range from single nucleotide changes to chromosomal aberrations that rearrange large pieces of DNA. Often, these chromosomal aberrations disrupt a gene sequence, and even fuse the sequences of two genes, producing a “fusion gene.” Fusion genes have been identified as key participants in the development of several types of cancer. Using genome-sequencing technology it is now possible to identify chromosomal aberrations genome-wide and at high resolution. In this paper, we address the question of how much sequencing is required to detect a chromosomal aberration and to determine the location of the aberration precisely enough to identify if a fusion gene is created by this aberration. We derive a mathematical formula that accurately predicts a number of fusion genes in a breast cancer sequencing study. We also demonstrate how the ability to detect chromosomal aberrations and fusion genes depends on both the size of the fusion gene and the parameters of the genome sequencing strategy that is used. These results will be useful in calibrating future cancer sequencing efforts, especially those using next-generation sequencing technologies.
doi:10.1371/journal.pcbi.1000051
PMCID: PMC2278375  PMID: 18404202
11.  Next-generation VariationHunter: combinatorial algorithms for transposon insertion discovery 
Bioinformatics  2010;26(12):i350-i357.
Recent years have witnessed an increase in research activity for the detection of structural variants (SVs) and their association to human disease. The advent of next-generation sequencing technologies make it possible to extend the scope of structural variation studies to a point previously unimaginable as exemplified by the 1000 Genomes Project. Although various computational methods have been described for the detection of SVs, no such algorithm is yet fully capable of discovering transposon insertions, a very important class of SVs to the study of human evolution and disease. In this article, we provide a complete and novel formulation to discover both loci and classes of transposons inserted into genomes sequenced with high-throughput sequencing technologies. In addition, we also present ‘conflict resolution’ improvements to our earlier combinatorial SV detection algorithm (VariationHunter) by taking the diploid nature of the human genome into consideration. We test our algorithms with simulated data from the Venter genome (HuRef) and are able to discover >85% of transposon insertion events with precision of >90%. We also demonstrate that our conflict resolution algorithm (denoted as VariationHunter-CR) outperforms current state of the art (such as original VariationHunter, BreakDancer and MoDIL) algorithms when tested on the genome of the Yoruba African individual (NA18507).
Availability: The implementation of algorithm is available at http://compbio.cs.sfu.ca/strvar.htm.
Contact: eee@gs.washington.edu; cenk@cs.sfu.ca
Supplementary information: Supplementary data are available at Bioinformatics online.
doi:10.1093/bioinformatics/btq216
PMCID: PMC2881400  PMID: 20529927
12.  REDHORSE-REcombination and Double crossover detection in Haploid Organisms using next-geneRation SEquencing data 
BMC Genomics  2015;16(1):133.
Background
Next-generation sequencing technology provides a means to study genetic exchange at a higher resolution than was possible using earlier technologies. However, this improvement presents challenges as the alignments of next generation sequence data to a reference genome cannot be directly used as input to existing detection algorithms, which instead typically use multiple sequence alignments as input. We therefore designed a software suite called REDHORSE that uses genomic alignments, extracts genetic markers, and generates multiple sequence alignments that can be used as input to existing recombination detection algorithms. In addition, REDHORSE implements a custom recombination detection algorithm that makes use of sequence information and genomic positions to accurately detect crossovers. REDHORSE is a portable and platform independent suite that provides efficient analysis of genetic crosses based on Next-generation sequencing data.
Results
We demonstrated the utility of REDHORSE using simulated data and real Next-generation sequencing data. The simulated dataset mimicked recombination between two known haploid parental strains and allowed comparison of detected break points against known true break points to assess performance of recombination detection algorithms. A newly generated NGS dataset from a genetic cross of Toxoplasma gondii allowed us to demonstrate our pipeline. REDHORSE successfully extracted the relevant genetic markers and was able to transform the read alignments from NGS to the genome to generate multiple sequence alignments. Recombination detection algorithm in REDHORSE was able to detect conventional crossovers and double crossovers typically associated with gene conversions whilst filtering out artifacts that might have been introduced during sequencing or alignment. REDHORSE outperformed other commonly used recombination detection algorithms in finding conventional crossovers. In addition, REDHORSE was the only algorithm that was able to detect double crossovers.
Conclusion
REDHORSE is an efficient analytical pipeline that serves as a bridge between genomic alignments and existing recombination detection algorithms. Moreover, REDHORSE is equipped with a recombination detection algorithm specifically designed for Next-generation sequencing data. REDHORSE is portable, platform independent Java based utility that provides efficient analysis of genetic crosses based on Next-generation sequencing data. REDHORSE is available at http://redhorse.sourceforge.net/.
Electronic supplementary material
The online version of this article (doi:10.1186/s12864-015-1309-7) contains supplementary material, which is available to authorized users.
doi:10.1186/s12864-015-1309-7
PMCID: PMC4348101  PMID: 25766039
Next-generation sequencing; Recombination detection; Conventional crossovers; Double crossovers; Haploid genome; Toxoplasma gondii; Multiple sequence alignments; Single nucleotide variations; Merged allele file and allele extraction
13.  HapFABIA: Identification of very short segments of identity by descent characterized by rare variants in large sequencing data 
Nucleic Acids Research  2013;41(22):e202.
Identity by descent (IBD) can be reliably detected for long shared DNA segments, which are found in related individuals. However, many studies contain cohorts of unrelated individuals that share only short IBD segments. New sequencing technologies facilitate identification of short IBD segments through rare variants, which convey more information on IBD than common variants. Current IBD detection methods, however, are not designed to use rare variants for the detection of short IBD segments. Short IBD segments reveal genetic structures at high resolution. Therefore, they can help to improve imputation and phasing, to increase genotyping accuracy for low-coverage sequencing and to increase the power of association studies. Since short IBD segments are further assumed to be old, they can shed light on the evolutionary history of humans. We propose HapFABIA, a computational method that applies biclustering to identify very short IBD segments characterized by rare variants. HapFABIA is designed to detect short IBD segments in genotype data that were obtained from next-generation sequencing, but can also be applied to DNA microarray data. Especially in next-generation sequencing data, HapFABIA exploits rare variants for IBD detection. HapFABIA significantly outperformed competing algorithms at detecting short IBD segments on artificial and simulated data with rare variants. HapFABIA identified 160 588 different short IBD segments characterized by rare variants with a median length of 23 kb (mean 24 kb) in data for chromosome 1 of the 1000 Genomes Project. These short IBD segments contain 752 000 single nucleotide variants (SNVs), which account for 39% of the rare variants and 23.5% of all variants. The vast majority—152 000 IBD segments—are shared by Africans, while only 19 000 and 11 000 are shared by Europeans and Asians, respectively. IBD segments that match the Denisova or the Neandertal genome are found significantly more often in Asians and Europeans but also, in some cases exclusively, in Africans. The lengths of IBD segments and their sharing between continental populations indicate that many short IBD segments from chromosome 1 existed before humans migrated out of Africa. Thus, rare variants that tag these short IBD segments predate human migration from Africa. The software package HapFABIA is available from Bioconductor. All data sets, result files and programs for data simulation, preprocessing and evaluation are supplied at http://www.bioinf.jku.at/research/short-IBD.
doi:10.1093/nar/gkt1013
PMCID: PMC3905877  PMID: 24174545
14.  Detection of identity by descent using next-generation whole genome sequencing data 
BMC Bioinformatics  2012;13:121.
Background
Identity by descent (IBD) has played a fundamental role in the discovery of genetic loci underlying human diseases. Both pedigree-based and population-based linkage analyses rely on estimating recent IBD, and evidence of ancient IBD can be used to detect population structure in genetic association studies. Various methods for detecting IBD, including those implemented in the soft- ware programs fastIBD and GERMLINE, have been developed in the past several years using population genotype data from microarray platforms. Now, next-generation DNA sequencing data is becoming increasingly available, enabling the comprehensive analysis of genomes, in- cluding identifying rare variants. These sequencing data may provide an opportunity to detect IBD with higher resolution than previously possible, potentially enabling the detection of disease causing loci that were previously undetectable with sparser genetic data.
Results
Here, we investigate how different levels of variant coverage in sequencing and microarray genotype data influences the resolution at which IBD can be detected. This includes microarray genotype data from the WTCCC study, denser genotype data from the HapMap Project, low coverage sequencing data from the 1000 Genomes Project, and deep coverage complete genome data from our own projects. With high power (78%), we can detect segments of length 0.4 cM or larger using fastIBD and GERMLINE in sequencing data. This compares to similar power to detect segments of length 1.0 cM or higher with microarray genotype data. We find that GERMLINE has slightly higher power than fastIBD for detecting IBD segments using sequencing data, but also has a much higher false positive rate.
Conclusion
We further quantify the effect of variant density, conditional on genetic map length, on the power to resolve IBD segments. These investigations into IBD resolution may help guide the design of future next generation sequencing studies that utilize IBD, including family-based association studies, association studies in admixed populations, and homozygosity mapping studies.
doi:10.1186/1471-2105-13-121
PMCID: PMC3403908  PMID: 22672699
15.  Directional genomic hybridization for chromosomal inversion discovery and detection 
Chromosome Research  2013;21(2):165-174.
Chromosomal rearrangements are a source of structural variation within the genome that figure prominently in human disease, where the importance of translocations and deletions is well recognized. In principle, inversions—reversals in the orientation of DNA sequences within a chromosome—should have similar detrimental potential. However, the study of inversions has been hampered by traditional approaches used for their detection, which are not particularly robust. Even with significant advances in whole genome approaches, changes in the absolute orientation of DNA remain difficult to detect routinely. Consequently, our understanding of inversions is still surprisingly limited, as is our appreciation for their frequency and involvement in human disease. Here, we introduce the directional genomic hybridization methodology of chromatid painting—a whole new way of looking at structural features of the genome—that can be employed with high resolution on a cell-by-cell basis, and demonstrate its basic capabilities for genome-wide discovery and targeted detection of inversions. Bioinformatics enabled development of sequence- and strand-specific directional probe sets, which when coupled with single-stranded hybridization, greatly improved the resolution and ease of inversion detection. We highlight examples of the far-ranging applicability of this cytogenomics-based approach, which include confirmation of the alignment of the human genome database and evidence that individuals themselves share similar sequence directionality, as well as use in comparative and evolutionary studies for any species whose genome has been sequenced. In addition to applications related to basic mechanistic studies, the information obtainable with strand-specific hybridization strategies may ultimately enable novel gene discovery, thereby benefitting the diagnosis and treatment of a variety of human disease states and disorders including cancer, autism, and idiopathic infertility.
Electronic supplementary material
The online version of this article (doi:10.1007/s10577-013-9345-0) contains supplementary material, which is available to authorized users.
doi:10.1007/s10577-013-9345-0
PMCID: PMC3627024  PMID: 23572395
chromatid painting; chromosomal inversions; Strand-specific hybridization
16.  Detection and characterization of novel sequence insertions using paired-end next-generation sequencing 
Bioinformatics  2010;26(10):1277-1283.
Motivation: In the past few years, human genome structural variation discovery has enjoyed increased attention from the genomics research community. Many studies were published to characterize short insertions, deletions, duplications and inversions, and associate copy number variants (CNVs) with disease. Detection of new sequence insertions requires sequence data, however, the ‘detectable’ sequence length with read-pair analysis is limited by the insert size. Thus, longer sequence insertions that contribute to our genetic makeup are not extensively researched.
Results: We present NovelSeq: a computational framework to discover the content and location of long novel sequence insertions using paired-end sequencing data generated by the next-generation sequencing platforms. Our framework can be built as part of a general sequence analysis pipeline to discover multiple types of genetic variation (SNPs, structural variation, etc.), thus it requires significantly less-computational resources than de novo sequence assembly. We apply our methods to detect novel sequence insertions in the genome of an anonymous donor and validate our results by comparing with the insertions discovered in the same genome using various sources of sequence data.
Availability: The implementation of the NovelSeq pipeline is available at http://compbio.cs.sfu.ca/strvar.htm
Contact:eee@gs.washington.edu; cenk@cs.sfu.ca
doi:10.1093/bioinformatics/btq152
PMCID: PMC2865866  PMID: 20385726
17.  Characterising chromosome rearrangements: recent technical advances in molecular cytogenetics 
Heredity  2011;108(1):75-85.
Genomic rearrangements can result in losses, amplifications, translocations and inversions of DNA fragments thereby modifying genome architecture, and potentially having clinical consequences. Many genomic disorders caused by structural variation have initially been uncovered by early cytogenetic methods. The last decade has seen significant progression in molecular cytogenetic techniques, allowing rapid and precise detection of structural rearrangements on a whole-genome scale. The high resolution attainable with these recently developed techniques has also uncovered the role of structural variants in normal genetic variation alongside single-nucleotide polymorphisms (SNPs). We describe how array-based comparative genomic hybridisation, SNP arrays, array painting and next-generation sequencing analytical methods (read depth, read pair and split read) allow the extensive characterisation of chromosome rearrangements in human genomes.
doi:10.1038/hdy.2011.100
PMCID: PMC3238113  PMID: 22086080
array-CGH; array painting; breakpoint mapping; copy-number variant; next-generation sequencing; structural variant
18.  Massively Parallel Sequencing Approaches for Characterization of Structural Variation 
The emergence of next-generation sequencing (NGS) technologies offers an incredible opportunity to comprehensively study DNA sequence variation in human genomes. Commercially available platforms from Roche (454), Illumina (Genome Analyzer and Hiseq 2000), and Applied Biosystems (SOLiD) have the capability to completely sequence individual genomes to high levels of coverage. NGS data is particularly advantageous for the study of structural variation (SV) because it offers the sensitivity to detect variants of various sizes and types, as well as the precision to characterize their breakpoints at base pair resolution. In this chapter, we present methods and software algorithms that have been developed to detect SVs and copy number changes using massively parallel sequencing data. We describe visualization and de novo assembly strategies for characterizing SV breakpoints and removing false positives.
doi:10.1007/978-1-61779-507-7_18
PMCID: PMC3679911  PMID: 22228022
Next-generation sequencing; Paired-end sequencing; 454; Illumina; Solexa; Abi solid; Insertions; Deletions; Duplications; Inversions; Translocations; Indels; Copy number variants
19.  Genome Wide Distributions and Functional Characterization of Copy Number Variations between Chinese and Western Pigs 
PLoS ONE  2015;10(7):e0131522.
Copy number variations (CNVs) refer to large insertions, deletions and duplications in the genomic structure ranging from one thousand to several million bases in size. Since the development of next generation sequencing technology, several methods have been well built for detection of copy number variations with high credibility and accuracy. Evidence has shown that CNV occurring in gene region could lead to phenotypic changes due to the alteration in gene structure and dosage. However, it still remains unexplored whether CNVs underlie the phenotypic differences between Chinese and Western domestic pigs. Based on the read-depth methods, we investigated copy number variations using 49 individuals derived from both Chinese and Western pig breeds. A total of 3,131 copy number variation regions (CNVRs) were identified with an average size of 13.4 Kb in all individuals during domestication, harboring 1,363 genes. Among them, 129 and 147 CNVRs were Chinese and Western pig specific, respectively. Gene functional enrichments revealed that these CNVRs contribute to strong disease resistance and high prolificacy in Chinese domestic pigs, but strong muscle tissue development in Western domestic pigs. This finding is strongly consistent with the morphologic characteristics of Chinese and Western pigs, indicating that these group-specific CNVRs might have been preserved by artificial selection for the favored phenotypes during independent domestication of Chinese and Western pigs. In this study, we built high-resolution CNV maps in several domestic pig breeds and discovered the group specific CNVs by comparing Chinese and Western pigs, which could provide new insight into genomic variations during pigs’ independent domestication, and facilitate further functional studies of CNV-associated genes.
doi:10.1371/journal.pone.0131522
PMCID: PMC4496047  PMID: 26154170
20.  WaveCNV: allele-specific copy number alterations in primary tumors and xenograft models from next-generation sequencing 
Bioinformatics  2013;30(6):768-774.
Motivation: Copy number variations (CNVs) are a major source of genomic variability and are especially significant in cancer. Until recently microarray technologies have been used to characterize CNVs in genomes. However, advances in next-generation sequencing technology offer significant opportunities to deduce copy number directly from genome sequencing data. Unfortunately cancer genomes differ from normal genomes in several aspects that make them far less amenable to copy number detection. For example, cancer genomes are often aneuploid and an admixture of diploid/non-tumor cell fractions. Also patient-derived xenograft models can be laden with mouse contamination that strongly affects accurate assignment of copy number. Hence, there is a need to develop analytical tools that can take into account cancer-specific parameters for detecting CNVs directly from genome sequencing data.
Results: We have developed WaveCNV, a software package to identify copy number alterations by detecting breakpoints of CNVs using translation-invariant discrete wavelet transforms and assign digitized copy numbers to each event using next-generation sequencing data. We also assign alleles specifying the chromosomal ratio following duplication/loss. We verified copy number calls using both microarray (correlation coefficient 0.97) and quantitative polymerase chain reaction (correlation coefficient 0.94) and found them to be highly concordant. We demonstrate its utility in pancreatic primary and xenograft sequencing data.
Availability and implementation: Source code and executables are available at https://github.com/WaveCNV. The segmentation algorithm is implemented in MATLAB, and copy number assignment is implemented Perl.
Contact: lakshmi.muthuswamy@gmail.com
Supplementary information: Supplementary data are available at Bioinformatics online.
doi:10.1093/bioinformatics/btt611
PMCID: PMC3957071  PMID: 24192544
21.  BreakDancer: An algorithm for high resolution mapping of genomic structural variation 
Nature methods  2009;6(9):677-681.
Detection and characterization of genomic structural variation are important for understanding the landscape of genetic variation in human populations and in complex diseases such as cancer. Recent studies demonstrate the feasibility of detecting structural variation using next-generation, short-insert, paired-end sequencing reads. However, the utility of these reads is not entirely clear, nor are the analysis methods under which accurate detection can be achieved. The algorithm BreakDancer predicts a wide variety of structural variants including indels, inversions, and translocations. We examined BreakDancer's performance in simulation, comparison with other methods, analysis of an acute myeloid leukemia sample, and the 1,000 Genomes trio individuals. We found that it substantially improved the detection of small and intermediate size indels from 10 bp to 1 Mbp that are difficult to detect via a single conventional approach.
doi:10.1038/nmeth.1363
PMCID: PMC3661775  PMID: 19668202
22.  Characterization of Human Chromosomal Material Exchange with Regard to the Chromosome Translocations Using Next-Generation Sequencing Data 
Genome Biology and Evolution  2014;6(11):3015-3024.
As an important subtype of structural variations, chromosomal translocation is associated with various diseases, especially cancers, by disrupting gene structures and functions. Traditional methods for identifying translocations are time consuming and have limited resolutions. Recently, a few studies have employed next-generation sequencing (NGS) technology for characterizing chromosomal translocations on human genome, obtaining high-throughput results with high resolutions. However, these studies are mainly focused on mechanism-specific or site-specific translocation mapping. In this study, we conducted a comprehensive genome-wide analysis on the characterization of human chromosomal material exchange with regard to the chromosome translocations. Using NGS data of 1,481 subjects from the 1000 Genomes Project, we identified 15,349,092 translocated DNA fragment pairs, ranging from 65 to 1,886 bp and with an average size of approximately 102 bp. On average, each individual genome carried about 10,364 pairs, covering approximately 0.069% of the genome. We identified 16 translocation hot regions, among which two regions did not contain repetitive fragments. Results of our study overlapped with a majority of previous results, containing approximately 79% of approximately 2,340 translocations characterized in three available translocation databases. In addition, our study identified five novel potential recurrent chromosomal material exchange regions with greater than 20% detection rates. Our results will be helpful for an accurate characterization of translocations in human genomes, and contribute as a resource for future studies of the roles of translocations in human disease etiology and mechanisms.
doi:10.1093/gbe/evu234
PMCID: PMC4255766  PMID: 25349267
chromosomal translocation; next-generation sequencing; recurrent translocation; structural variation
23.  Inference of Population Structure using Dense Haplotype Data 
PLoS Genetics  2012;8(1):e1002453.
The advent of genome-wide dense variation data provides an opportunity to investigate ancestry in unprecedented detail, but presents new statistical challenges. We propose a novel inference framework that aims to efficiently capture information on population structure provided by patterns of haplotype similarity. Each individual in a sample is considered in turn as a recipient, whose chromosomes are reconstructed using chunks of DNA donated by the other individuals. Results of this “chromosome painting” can be summarized as a “coancestry matrix,” which directly reveals key information about ancestral relationships among individuals. If markers are viewed as independent, we show that this matrix almost completely captures the information used by both standard Principal Components Analysis (PCA) and model-based approaches such as STRUCTURE in a unified manner. Furthermore, when markers are in linkage disequilibrium, the matrix combines information across successive markers to increase the ability to discern fine-scale population structure using PCA. In parallel, we have developed an efficient model-based approach to identify discrete populations using this matrix, which offers advantages over PCA in terms of interpretability and over existing clustering algorithms in terms of speed, number of separable populations, and sensitivity to subtle population structure. We analyse Human Genome Diversity Panel data for 938 individuals and 641,000 markers, and we identify 226 populations reflecting differences on continental, regional, local, and family scales. We present multiple lines of evidence that, while many methods capture similar information among strongly differentiated groups, more subtle population structure in human populations is consistently present at a much finer level than currently available geographic labels and is only captured by the haplotype-based approach. The software used for this article, ChromoPainter and fineSTRUCTURE, is available from http://www.paintmychromosomes.com/.
Author Summary
The first step in almost every genetic analysis is to establish how sample members are related to each other. High relatedness between individuals can arise if they share a small number of recent ancestors, e.g. if they are distant cousins or a larger number of more distant ones, e.g. if their ancestors come from the same region. The most popular methods for investigating these relationships analyse successive markers independently, simply adding the information they provide. This works well for studies involving hundreds of markers scattered around the genome but is less appropriate now that entire genomes can be sequenced. We describe a “chromosome painting” approach to characterising shared ancestry that takes into account the fact that DNA is transmitted from generation to generation as a linear molecule in chromosomes. We show that the approach increases resolution relative to previous techniques, allowing differences in ancestry profiles among individuals to be resolved at the finest scales yet. We provide mathematical, statistical, and graphical machinery to exploit this new information and to characterize relationships at continental, regional, local, and family scales.
doi:10.1371/journal.pgen.1002453
PMCID: PMC3266881  PMID: 22291602
24.  Huvariome: a web server resource of whole genome next-generation sequencing allelic frequencies to aid in pathological candidate gene selection 
Background
Next generation sequencing provides clinical research scientists with direct read out of innumerable variants, including personal, pathological and common benign variants. The aim of resequencing studies is to determine the candidate pathogenic variants from individual genomes, or from family-based or tumor/normal genome comparisons. Whilst the use of appropriate controls within the experimental design will minimize the number of false positive variations selected, this number can be reduced further with the use of high quality whole genome reference data to minimize false positives variants prior to candidate gene selection. In addition the use of platform related sequencing error models can help in the recovery of ambiguous genotypes from lower coverage data.
Description
We have developed a whole genome database of human genetic variations, Huvariome, determined by whole genome deep sequencing data with high coverage and low error rates. The database was designed to be sequencing technology independent but is currently populated with 165 individual whole genomes consisting of small pedigrees and matched tumor/normal samples sequenced with the Complete Genomics sequencing platform. Common variants have been determined for a Benelux population cohort and represented as genotypes alongside the results of two sets of control data (73 of the 165 genomes), Huvariome Core which comprises 31 healthy individuals from the Benelux region, and Diversity Panel consisting of 46 healthy individuals representing 10 different populations and 21 samples in three Pedigrees. Users can query the database by gene or position via a web interface and the results are displayed as the frequency of the variations as detected in the datasets. We demonstrate that Huvariome can provide accurate reference allele frequencies to disambiguate sequencing inconsistencies produced in resequencing experiments. Huvariome has been used to support the selection of candidate cardiomyopathy related genes which have a homozygous genotype in the reference cohorts. This database allows the users to see which selected variants are common variants (> 5% minor allele frequency) in the Huvariome core samples, thus aiding in the selection of potentially pathogenic variants by filtering out common variants that are not listed in one of the other public genomic variation databases. The no-call rate and the accuracy of allele calling in Huvariome provides the user with the possibility of identifying platform dependent errors associated with specific regions of the human genome.
Conclusion
Huvariome is a simple to use resource for validation of resequencing results obtained by NGS experiments. The high sequence coverage and low error rates provide scientists with the ability to remove false positive results from pedigree studies. Results are returned via a web interface that displays location-based genetic variation frequency, impact on protein function, association with known genetic variations and a quality score of the variation base derived from Huvariome Core and the Diversity Panel data. These results may be used to identify and prioritize rare variants that, for example, might be disease relevant. In testing the accuracy of the Huvariome database, alleles of a selection of ambiguously called coding single nucleotide variants were successfully predicted in all cases. Data protection of individuals is ensured by restricted access to patient derived genomes from the host institution which is relevant for future molecular diagnostics.
doi:10.1186/2043-9113-2-19
PMCID: PMC3549785  PMID: 23164068
Medical genetics; Medical genomics; Whole genome sequencing; Allele frequency; Cardiomyopathy
25.  Combined examination of sequence and copy number variations in human deafness genes improves diagnosis for cases of genetic deafness 
Background
Copy number variations (CNVs) are the major type of structural variation in the human genome, and are more common than DNA sequence variations in populations. CNVs are important factors for human genetic and phenotypic diversity. Many CNVs have been associated with either resistance to diseases or identified as the cause of diseases. Currently little is known about the role of CNVs in causing deafness. CNVs are currently not analyzed by conventional genetic analysis methods to study deafness. Here we detected both DNA sequence variations and CNVs affecting 80 genes known to be required for normal hearing.
Methods
Coding regions of the deafness genes were captured by a hybridization-based method and processed through the standard next-generation sequencing (NGS) protocol using the Illumina platform. Samples hybridized together in the same reaction were analyzed to obtain CNVs. A read depth based method was used to measure CNVs at the resolution of a single exon. Results were validated by the quantitative PCR (qPCR) based method.
Results
Among 79 sporadic cases clinically diagnosed with sensorineural hearing loss, we identified previously-reported disease-causing sequence mutations in 16 cases. In addition, we identified a total of 97 CNVs (72 CNV gains and 25 CNV losses) in 27 deafness genes. The CNVs included homozygous deletions which may directly give rise to deleterious effects on protein functions known to be essential for hearing, as well as heterozygous deletions and CNV gains compounded with sequence mutations in deafness genes that could potentially harm gene functions.
Conclusions
We studied how CNVs in known deafness genes may result in deafness. Data provided here served as a basis to explain how CNVs disrupt normal functions of deafness genes. These results may significantly expand our understanding about how various types of genetic mutations cause deafness in humans.
doi:10.1186/1472-6815-14-9
PMCID: PMC4194081  PMID: 25342930
Genetic deafness; Copy number variations; Sequence mutations; Next-generation sequencing; Deafness gene panel; Hearing

Results 1-25 (1399434)