PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (667313)

Clipboard (0)
None

Related Articles

1.  Role of parathyroid hormone therapy in reversing radiation-induced nonunion and normalization of radiomorphometrics in a murine mandibular model of distraction osteogenesis 
Head & neck  2013;35(12):1732-1737.
Background
The use of mandibular distraction osteogenesis (MDO) for tissue replacement after oncologic resection or for defects caused by osteoradionecrosis has been described but, in fact, has seen limited clinical utility. Previous laboratory work has shown that radiation (XRT) causes decreased union formation, decreased cellularity, and decreased mineral density in an animal model of MDO. Our global hypothesis is that radiation-induced bone damage is partly driven by the pathologic depletion of both the number and function of osteogenic cells. Parathyroid hormone (PTH) is a U.S. Food and Drug Administration-approved anabolic hormonal therapy that has demonstrated efficacy for increasing bone mineral density for the treatment of osteoporosis. We postulate that intermittent systemic administration of PTH will serve as an anabolic stimulant to cellular function that will act to reverse radiation-induced damage and enhance bone regeneration in a murine mandibular model of DO.
Methods
A total of 20 isogenic male Lewis rats were randomly assigned into 3 groups. Group 1 (XRT-DO, n = 7) and group 2 (XRT-DO-PTH, n = 5) received a human bioequivalent dose of 70 Gy fractionated over 5 days. All groups including group 3 (DO, n = 8) underwent a left unilateral mandibular osteotomy with bilateral external fixator placement. Four days later, mandibular DO was performed at a rate of 0.3 mm every 12 hours to reach a maximum gap of 5.1 mm. Group 2 was injected PTH (60 μg/kg) subcutaneously daily for 3 weeks following the start of MDO. On postoperative day 41, all left hemimandibles were harvested. Micro-CT at 45-μm voxel size was performed and radiomorphometrics parameters of bone mineralization were generated. Union quality was evaluated on a 4-point qualitative grading scale. Radiomorphometric data were analyzed using 1-way ANOVA, and union quality assessment was analyzed via the Mann–Whitney test. Statistical significance was considered at p ≤ .05.
Results
Groups 1 and 2 appropriately demonstrated clinical signs of radiation-induced stress ranging from alopecia to mucositis. Union quality was significantly higher in PTH-treated XRT-DO animals, compared with XRT-DO group animals (p = .02). Mineralization metrics, including bone volume fraction (BVF) and bone mineral density (BMD), also showed statistically significant improvement. The groups that were treated with PTH showed no statistical differences in union or radiomorphometrics when compared with DO in nonradiated animals.
Conclusion
We have successfully demonstrated the therapeutic efficacy of PTH to stimulate and enhance bone regeneration in our irradiated murine mandibular model of DO. Our investigation effectively resulted in statistically significant increases in BMD, BVF, and clinical unions in PTH-treated mandibles. PTH demonstrates immense potential to treat clinical pathologies where remediation of bone regeneration is essential.
doi:10.1002/hed.23216
PMCID: PMC4160101  PMID: 23335324
parathyroid hormone; distraction osteogenesis; radiation; mandible; mineral density
2.  Effects of Low Dose Parathyroid Hormone on Bone Mass, Turnover, and Ectopic Osteoinduction in a Rat Model for Chronic Alcohol Abuse 
Bone  2008;42(4):695-701.
Parathyroid hormone (PTH) is used clinically in osteoporotic patients to increase bone mass by enhancing bone formation. PTH therapy is not uniformly effective at all skeletal sites and “lifestyle” factors may further modulate the skeletal response to PTH. Alcohol may represent one of those factors. Chronic alcohol abuse is associated with osteoporosis and impaired fracture healing. Therefore, the present study investigated the effects of alcohol on the bone anabolic response to a dose of PTH similar to a human therapeutic dose 1) during normal cancellous and cortical bone growth and turnover, and 2) in a model of demineralized allogeneic bone matrix (DABM)-induced osteoinduction. Three-month-old male Sprague Dawley rats were fed the Lieber-DeCarli liquid diet with 35% of the calories derived from ethanol. The controls were pair-fed an alcohol-free isocaloric diet containing maltose-dextran. Following adaptation to the liquid diets, the rats were implanted subcutaneously with DABM cylinders prepared from cortical bone of rats fed normal chow. The rats were subsequently treated daily with PTH (1 μg/kg/d sc, 5d/wk) or vehicle and measurements on bone and DABM implants performed 6 w later. Total bone mass was evaluated on the day of necropsy using DXA. Tibiae were processed for histomorphometry. Bone mass and architecture in tibial diaphysis and DABM implants was evaluated by μCT. PTH treatment increased whole body bone mineral content (BMC) and bone mineral density (BMD). The hormone also increased bone formation and bone area/tissue area in the proximal tibial metaphysis. In contrast, PTH treatment had no effect on periosteal bone formation and minimal effects on DABM-induced osteoinduction. Alcohol consumption decreased whole body BMC. Alcohol also decreased cancellous as well as cortical bone formation and bone mass in tibia and impaired DABM-mediated osteoinduction. There was no interaction between PTH treatment and alcohol consumption for any of the endpoints evaluated. Our results indicate that the bone anabolic response to a therapeutic dose of PTH in the rat is largely confined to cancellous bone. In contrast, alcohol consumption inhibits bone formation at all sites. Furthermore, alcohol inhibits osteoinduction and reduces periosteal and cancellous bone formation, irrespective of therapeutic PTH administration. Based on the animal model, our findings suggest that alcohol consumption could impair the beneficial effects of PTH therapy in osteoporosis.
doi:10.1016/j.bone.2007.12.221
PMCID: PMC2891981  PMID: 18295560
3.  Non-invasive monitoring of BMP-2 retention and bone formation in composites for bone tissue engineering using SPECT/CT and scintillation probes 
Non-invasive imaging can provide essential information for the optimization of new drug delivery-based bone regeneration strategies to repair damaged or impaired bone tissue. This study investigates the applicability of nuclear medicine and radiological techniques to monitor growth factor retention profiles and subsequent effects on bone formation. Recombinant human bone morphogenetic protein-2 (BMP-2, 6.5 μg/scaffold) was incorporated into a sustained release vehicle consisting of poly(lactic-co-glycolic acid) microspheres embedded in a poly(propylene fumarate) scaffold surrounded by a gelatin hydrogel and implanted subcutaneously and in 5-mm segmental femoral defects in 9 rats for a period of 56 days. To determine the pharmacokinetic profile, BMP-2 was radiolabeled with 125I and the local retention of 125I-BMP-2 was measured by single photon emission computed tomography (SPECT), scintillation probes and ex vivo scintillation analysis. Bone formation was monitored by micro-computed tomography (μCT). The scaffolds released BMP-2 in a sustained fashion over the 56-day implantation period. A good correlation between the SPECT and scintillation probe measurements was found and there were no significant differences between the non-invasive and ex-vivo counting method after 8 weeks of follow up. SPECT analysis of the total body and thyroid counts showed a limited accumulation of 125I within the body. Ectopic bone formation was induced in the scaffolds and the femur defects healed completely. In vivo μCT imaging detected the first signs of bone formation at days 14 and 28 for the orthotopic and ectopic implants, respectively, and provided a detailed profile of the bone formation rate. Overall, this study clearly demonstrates the benefit of applying non-invasive techniques in drug delivery-based bone regeneration strategies by providing detailed and reliable profiles of the growth factor retention and bone formation at different implantation sites in a limited number of animals.
doi:10.1016/j.jconrel.2008.11.023
PMCID: PMC3974410  PMID: 19105972
Drug delivery; Controlled release; Bone morphogenetic protein-2; Single photon emission computed; tomography; Scintillation probes; Micro-computed tomography
4.  A Differential Effect of Bone Morphogenetic Protein-2 and Vascular Endothelial Growth Factor Release Timing on Osteogenesis at Ectopic and Orthotopic Sites in a Large-Animal Model 
Tissue Engineering. Part A  2012;18(19-20):2052-2062.
In bone tissue engineering, growth factors are widely used. Bone morphogenetic proteins (BMPs) and vascular endothelial growth factor (VEGF) are the most well-known regulators of osteogenesis and angiogenesis. We investigated whether the timing of dual release of VEGF and BMP-2 influences the amount of bone formation in a large-animal model. Poly(lactic-co-glycolic acid) (PLGA) microparticles (MPs) were loaded with BMP-2 or VEGF to create sustained-release profiles, and rapidly degrading gelatin was loaded with either growth factor for fast-release profiles. To study in vivo osteogenicity, the two delivery vehicles were combined with biphasic calcium phosphate (BCP) scaffolds and implanted in 10 Beagle dogs for 9 weeks, at both ectopic (paraspinal muscles) and orthotopic sites (critical-size ulnar defect). The 9 ectopic groups contained combined or single BMP/VEGF dosage, in sustained- or fast-release profiles. In the ulnae of 8 dogs, fast VEGF and sustained BMP-2 were applied to one leg, and the other received the opposite release profiles. The two remaining dogs received bilateral control scaffolds. Bone growth dynamics was analyzed by fluorochrome injection at weeks 3, 5, and 7. Postoperative and posteuthanization X-rays of the ulnar implants were taken. After 9 weeks of implantation, bone quantity and bone growth dynamics were studied by histology, histomorphometry, and fluorescence microscopy. The release of the growth factors resulted in both enhanced orthotopic and ectopic bone formation. Bone formation started before 3 weeks and continued beyond 7 weeks. The ectopic BMP-2 fast groups showed significantly more bone compared to sustained release, independent of the VEGF profile. The ulna implants revealed no significant differences in the amount of bone formed. This study shows that timing of BMP-2 release largely determines speed and amount of ectopic bone formation independent of VEGF release. Furthermore, at the orthotopic site, no significant effect on bone formation was found from a timed release of growth factors, implicating that timed-release effects are location dependent.
doi:10.1089/ten.tea.2011.0560
PMCID: PMC3463278  PMID: 22563713
5.  PTH Induces Differentiation of Mesenchymal Stem Cells by Enhancing BMP Signaling 
Parathyroid hormone (PTH) stimulates bone remodeling and induces differentiation of bone marrow mesenchymal stromal/stem cells (MSCs) by orchestrating activities of local factors such as bone morphogenetic proteins (BMPs). The activity and specificity of different BMP ligands are controlled by various extracellular antagonists that prevent binding of BMPs to their receptors. Low-density lipoprotein receptor-related protein 6 (LRP6) has been shown to interact with both the PTH and BMP extracellular signaling pathways by forming a complex with PTH1R and sharing common antagonists with BMPs. We hypothesized that PTH-enhanced differentiation of MSCs into the osteoblast lineage through enhancement of BMP signaling occurs by modifying the extracellular antagonist network via LRP6. In vitro studies using multiple cell lines, including Sca-1+CD45−CD11b− MSCs showed that a single injection of PTH enhanced phosphorylation of Smad1 and could also antagonize the inhibitory effect of noggin. PTH treatment induced endocytosis of a PTH1R/LRP6 complex and resulted in enhancement of phosphorylation of Smad1 that was abrogated by deletion of PTH1R, β-arrestin, or chlorpromazine. Deletion of LRP6 alone lead to enhancement of pSmad1 levels that could not be further increased with PTH treatment. Finally, knockdown of LRP6 increased the exposure of endogenous cell-surface BMPRII significantly in C2C12 cells and PTH treatment significantly enhanced cell surface binding of 125I-BMP2 in a dose- and time-dependent manner, implying that LRP6 organizes an extracellular network of BMP antagonists that prevent access of BMPs to BMP receptors. In vivo studies in C57BL/6J mice and of transplanted GFP-labeled Sca-1+CD45−CD11b− MSCs into bone marrow cavity of Rag2−/− immunodeficient mice showed PTH-enhanced phosphorylation of Smad1 and increased commitment of MSCs to osteoblast lineage, respectively. These data demonstrate that PTH-enhancement of MSCs differentiation to the osteoblast lineage occurs through a PTH and LRP6 dependent pathway by endocytosis of LRP6/PTH1R complex, allowing enhancement of BMP signaling.
doi:10.1002/jbmr.1663
PMCID: PMC3423493  PMID: 22589223
PARATHYROID HORMONE; BONE MORPHOGENETIC PROTEINS; DIFFERENTIATION; MESENCHYMAL STEM CELLS; LOW-DENSITY LIPOPROTEIN RECEPTOR-RELATED PROTEIN 6
6.  Modulation of Stromal Cell-Derived Factor-1/CXC Chemokine Receptor 4 Axis Enhances rhBMP-2-Induced Ectopic Bone Formation 
Tissue Engineering. Part A  2012;18(7-8):860-869.
Enhancement of in vivo mobilization and homing of endogenous mesenchymal stem cells (MSCs) to an injury site is an innovative strategy for improvement of bone tissue engineering and repair. The present study was designed to determine whether mobilization by AMD3100 and/or local homing by delivery of stromal cell-derived factor-1 (SDF-1) enhances recombinant human bone morphogenetic protein-2 (rhBMP-2) induced ectopic bone formation in an established rat model. Rats received an injection of either saline or AMD3100 treatment 1 h before harvesting of bone marrow for in vitro colony-forming unit-fibroblasts (CFU-F) culture or the in vivo subcutaneous implantation of absorbable collagen sponges (ACSs) loaded with saline, recombinant human bone morphogenetic protein-2 (rhBMP-2), SDF-1, or the combination of SDF-1 and rhBMP-2. AMD3100 treatment resulted in a significant decrease in CFU-F number, compared with saline, which confirmed that a single systemic AMD3100 treatment rapidly mobilized MSCs from the bone marrow. At 28 and 56 days, bone formation in the explanted ACS was assessed by microcomputed tomography (μCT) and histology. At 28 days, AMD3100 and/or SDF-1 had no statistically significant effect on bone volume (BV) or bone mineral content (BMC), but histology revealed more active bone formation with treatment of AMD3100, loading of SDF-1, or the combination of both AMD3100 and SDF-1, compared with saline-treated rhBMP-2 loaded ACS. At 56 days, the addition of AMD3100 treatment, loading of SDF-1, or the combination of both resulted in a statistically significant stimulatory effect on BV and BMC, compared with the saline-treated rhBMP-2 loaded ACS. Histology of the 56-day ACS were consistent with the μCT analysis, exhibiting more mature and mineralized bone formation with AMD3100 treatment, SDF-1 loading, or the combination of both, compared with the saline-treated rhBMP-2 loaded ACS. The present study is the first that provides evidence of the efficacy of AMD3100 and SDF-1 treatment to stimulate trafficking of MSCs to an ectopic implant site, in order to ultimately enhance rhBMP-2 induced long-term bone formation.
doi:10.1089/ten.tea.2011.0187
PMCID: PMC3313617  PMID: 22035136
7.  Modifications in Bone Matrix of Estrogen-Deficient Rats Treated with Intermittent PTH 
BioMed Research International  2015;2015:454162.
Bone matrix dictates strength, elasticity, and stiffness to the bone. Intermittent parathyroid hormone (iPTH), a bone-forming treatment, is widely used as a therapy for osteoporosis. We investigate whether low doses of intermittent PTH (1-34) change the profile of organic components in the bone matrix after 30 days of treatment. Forty 6-month-old female Wistar rats underwent ovariectomy and after 3 months received low doses of iPTH administered for 30 days: daily at 0.3 µg/kg/day (PTH03) or 5 µg/kg/day (PTH5); or 3 times per week at 0.25 µg/kg/day (PTH025). After euthanasia, distal femora were processed for bone histomorphometry, histochemistry for collagen and glycosaminoglycans, biochemical quantification of sulfated glycosaminoglycans, and hyaluronan by ELISA and TUNEL staining. Whole tibiae were used to estimate the bone mineral density (BMD). Histomorphometric analysis showed that PTH5 increased cancellous bone volume by 6% over vehicle-treated rats. In addition, PTH5 and PTH03 increased cortical thickness by 21% and 20%, respectively. Tibial BMD increased in PTH5-treated rats and this group exhibited lower levels of chondroitin sulfate; on the other hand, hyaluronan expression was increased. Hormonal administration in the PTH5 group led to decreased collagen maturity. Further, TUNEL-positive osteocytes were decreased in the cortical compartment of PTH5 whereas administration of PTH025 increased the osteocyte death. Our findings suggest that daily injections of PTH at low doses alter the pattern of organic components from the bone matrix, favoring the increase of bone mass.
doi:10.1155/2015/454162
PMCID: PMC4324816
8.  Daily Parathyroid Hormone 1-34 Replacement Therapy for Hypoparathyroidism Induces Marked Changes in Bone Turnover and Structure 
Journal of Bone and Mineral Research  2012;27(8):1811-1820.
Parathyroid hormone (PTH) has variable actions on bone. Chronically increased PTH is catabolic leading to osteoporosis, yet intermittent administration is anabolic and increases bone mass. PTH deficiency is associated with decreased bone remodeling and increased bone mass. However, the effects of PTH replacement therapy on bone in hypoparathyroidism are not well known. We discontinued calcitriol therapy and treated five hypoparathyroid subjects (2 adults and 3 adolescents) with synthetic human PTH 1-34 (hPTH 1-34), injected 2-3 times daily for 18 months, with doses individualized to maintain serum calcium at 1.9-2.25 mmol/L. Biochemical markers and bone density (BMD) were assessed every 6 months; iliac-crest biopsies were performed before and after 1 year of treatment. hPTH 1-34 therapy significantly increased bone markers to supranormal levels. Histomorphometry revealed that treatment dramatically increased cancellous bone volume and trabecular number and decreased trabecular separation. Changes in trabecular width were variable, suggesting that the increase in trabecular number was due to the observed intratrabecular tunneling. Cortical width remained unchanged, however, hPTH 1-34 treatment increased cortical porosity. Cancellous bone remodeling was also stimulated, inducing significant changes in osteoid, mineralizing surface, and bone formation rate. Similar changes were seen in endocortical and intracortical remodeling. BMD Z-scores were unchanged at the spine and femoral neck. Total hip Z-scores increased, however, total body BMD Z-scores decreased during the first 6 months of treatment and then stabilized, remaining significantly decreased compared to baseline. Radial Z-scores also decreased with treatment; this was most pronounced in the growing adolescent. Daily hPTH 1-34 therapy for hypoparathyroidism stimulated bone turnover, increased bone volume, and altered bone structure in the iliac crest. These findings suggest that treatment with hPTH 1-34 in hypoparathyroid adults and adolescents has varying effects in the different skeletal compartments, leading to an increase in trabecular bone and an apparent trabecularization of cortical bone.
doi:10.1002/jbmr.1627
PMCID: PMC3399961  PMID: 22492501
9.  Effect of Autologous Bone Marrow Stromal Cell Seeding and Bone Morphogenetic Protein-2 Delivery on Ectopic Bone Formation in a Microsphere/Poly(Propylene Fumarate) Composite 
Tissue Engineering. Part A  2008;15(3):587-594.
A biodegradable microsphere/scaffold composite based on the synthetic polymer poly(propylene fumarate) (PPF) holds promise as a scaffold for cell growth and sustained delivery vehicle for growth factors for bone regeneration. The objective of the current work was to investigate the in vitro release and in vivo bone forming capacity of this microsphere/scaffold composite containing bone morphogenetic protein-2 (BMP-2) in combination with autologous bone marrow stromal cells (BMSCs) in a goat ectopic implantation model. Three composites consisting of 0, 0.08, or 8 μg BMP-2 per mg of poly(lactic-co-glycolic acid) microspheres, embedded in a porous PPF scaffold, were combined with either plasma (no cells) or culture-expanded BMSCs. PPF scaffolds impregnated with a BMP-2 solution and combined with BMSCs as well as empty PPF scaffolds were also tested. The eight different composites were implanted subcutaneously in the dorsal thoracolumbar area of goats. Incorporation of BMP-2–loaded microspheres in the PPF scaffold resulted in a more sustained in vitro release with a lower burst phase, as compared to BMP-2–impregnated scaffolds. Histological analysis after 9 weeks of implantation showed bone formation in the pores of 11/16 composites containing 8 μg/mg BMP-2–loaded microspheres with no significant difference between composites with or without BMSCs (6/8 and 5/8, respectively). Bone formation was also observed in 1/8 of the BMP-2–impregnated scaffolds. No bone formation was observed in the other conditions. Overall, this study shows the feasibility of bone induction by BMP-2 release from microspheres/scaffold composites.
doi:10.1089/ten.tea.2007.0376
PMCID: PMC2810278  PMID: 18925831
10.  Bone morphogenetic protein-2 converts the differentiation pathway of C2C12 myoblasts into the osteoblast lineage [published erratum appears in J Cell Biol 1995 Feb;128(4):following 713] 
The Journal of Cell Biology  1994;127(6):1755-1766.
The implantation of bone morphogenetic protein (BMP) into muscular tissues induces ectopic bone formation at the site of implantation. To investigate the mechanism underlying this process, we examined whether recombinant bone morphogenetic protein-2 (BMP-2) converts the differentiation pathway of the clonal myoblastic cell line, C2C12, into that of osteoblast lineage. Incubating the cells with 300 ng/ml of BMP- 2 for 6 d almost completely inhibited the formation of the multinucleated myotubes expressing troponin T and myosin heavy chain, and induced the appearance of numerous alkaline phosphatase (ALP)- positive cells. BMP-2 dose dependently induced ALP activity, parathyroid hormone (PTH)-dependent 3',5'-cAMP production, and osteocalcin production at concentrations above 100 ng/ml. The concentration of BMP-2 required to induce these osteoblastic phenotypes was the same as that required to almost completely inhibit myotube formation. Incubating primary muscle cells with 300 ng/ml of BMP-2 for 6 d also inhibited myotube formation, whereas induced ALP activity and osteocalcin production. Incubation with 300 ng/ml of BMP-2 suppressed the expression of mRNA for muscle creatine kinase within 6 h, whereas it induced mRNA expression for ALP, PTH/PTH-related protein (PTHrP) receptors, and osteocalcin within 24-48 h. BMP-2 completely inhibited the expression of myogenin mRNA by day 3. By day 3, BMP-2 also inhibited the expression of MyoD mRNA, but it was transiently stimulated 12 h after exposure to BMP-2. Expression of Id-1 mRNA was greatly stimulated by BMP-2. When C2C12 cells pretreated with BMP-2 for 6 d were transferred to a colony assay system in the absence of BMP-2, more than 84% of the colonies generated became troponin T-positive and ALP activity disappeared. TGF-beta 1 also inhibited myotube formation in C2C12 cells, and suppressed the expression of myogenin and MyoD mRNAs without inducing that of Id-1 mRNA. However, no osteoblastic phenotype was induced by TGF-beta 1 in C2C12 cells. TGF-beta 1 potentiated the inhibitory effect of BMP-2 on myotube formation, whereas TGF-beta 1 reduced ALP activity and osteocalcin production induced by BMP-2 in C2C12 cells. These results indicate that BMP-2 specifically converts the differentiation pathway of C2C12 myoblasts into that of osteoblast lineage cells, but that the conversion is not heritable.
PMCID: PMC2120318  PMID: 7798324
11.  Role of paraoxonase-1 in bone anabolic effects of parathyroid hormone in hyperlipidemic mice 
Hyperlipidemia blunts anabolic effects of intermittent parathyroid hormone (PTH) on cortical bone, and the responsiveness to PTH are restored in part by oral administration of the antioxidant ApoA-I mimetic peptide, D-4F. To evaluate the mechanism of this rescue, mice overexpressing the high-density lipoprotein-associated antioxidant enzyme, paraoxonase 1 (Ldlr-/-PON1tg) were generated, and daily PTH injections were administered to Ldlr-/-PON1tg and to littermate Ldlr-/- mice. Expression of bone regulatory genes was determined by realtime RT-qPCR, and cortical bone parameters of the femoral bones by micro-computed tomographic analyses. PTH-treated Ldlr-/-PON1tg mice had significantly greater expression of PTH receptor (PTH1R), activating transcription factor (ATF4), and osteoprotegerin (OPG) in femoral cortical bone, as well as significantly greater bone mineral content, thickness, and area in femoral diaphyses compared with untreated Ldlr-/-PON1tg mice. In contrast, in control mice (Ldlr-/-) without PON1 overexpression, PTH treatment did not induce these markers. Calvarial bone of PTH-treated Ldlr-/-PON1tg mice also had significantly greater expression of osteoblastic differentiation marker genes as well as BMP-2-target and Wnt-target genes. Untreated Ldlr-/-PON1tg mice had significantly greater expression of PTHR1 than untreated Ldlr-/- mice, whereas sclerostin expression was reduced. In femoral cortical bones expression levels of transcription factors, FoxO1 and ATF4, were also elevated in Ldlr-/-PON1tg mice, suggesting enhancement of cellular protection against oxidants. These findings suggest that PON1 restores responsiveness to PTH through effects on oxidant stress, PTH receptor expression, and/or Wnt signaling.
doi:10.1016/j.bbrc.2012.12.114
PMCID: PMC3563775  PMID: 23291186
hyperlipidemia; oxidant stress; intermittent; parathyroid hormone; paraoxonase-1
12.  Parathyroid hormone reverses radiation induced hypovascularity in a murine model of distraction osteogenesis 
Bone  2013;56(1):9-15.
Background
Radiation treatment results in a severe diminution of osseous vascularity. Intermittent parathyroid hormone (PTH) has been shown to have an anabolic effect on osteogenesis, though its impact on angiogenesis remains unknown. In this murine model of distraction osteogenesis, we hypothesize that radiation treatment will result in a diminution of vascularity in the distracted regenerate and that delivery of intermittent systemic PTH will promote angiogenesis and reverse radiation induced hypovascularity.
Materials and methods
Nineteen Lewis rats were divided into three groups. All groups underwent distraction of the left mandible. Two groups received radiation treatment to the left mandible prior to distraction, and one of these groups was treated with intermittent subcutaneous PTH (60 μg/kg, once daily) beginning on the first day of distraction for a total duration of 21 days. One group underwent mandibular distraction alone, without radiation. After consolidation, the rats were perfused and imaged with micro-CT angiography and quantitative vascular analysis was performed.
Results
Radiation treatment resulted in a severe diminution of osseous vascularity in the distracted regenerate. In irradiated mandibles undergoing distraction osteogenesis, treatment with intermittent PTH resulted in significant increases in vessel volume fraction, vessel thickness, vessel number, degree of anisotropy, and a significant decrease in vessel separation (p < 0.05). No significant difference in quantitative vascularity existed between the group that was irradiated, distracted and treated with PTH and the group that underwent distraction osteogenesis without radiation treatment.
Conclusions
We quantitatively demonstrate that radiation treatment results in a significant depletion of osseous vascularity, and that intermittent administration of PTH reverses radiation induced hypovascularity in the murine mandible undergoing distraction osteogenesis. While the precise mechanism of PTH-induced angiogenesis remains to be elucidated, this report adds a key component to the pleotropic effect of intermittent PTH on bone formation and further supports the potential use of PTH to enhance osseous regeneration in the irradiated mandible.
doi:10.1016/j.bone.2013.04.022
PMCID: PMC3758112  PMID: 23643680
Parathyroid hormone; angiogenesis; distraction osteogenesis; radiation; mandible
13.  PTH promotes allograft integration in a calvarial bone defect 
Molecular pharmaceutics  2013;10(12):4462-4471.
Allografts may be useful in craniofacial bone repair, although they often fail to integrate with the host bone. We hypothesized that intermittent administration of parathyroid hormone (PTH) would enhance mesenchymal stem cell recruitment and differentiation, resulting in allograft osseointegration in cranial membranous bones.
Calvarial bone defects were created in transgenic mice, in which luciferase is expressed under the control of the osteocalcin promoter. The mice were given implants of allografts with or without daily PTH treatment. Bioluminescence imaging (BLI) was performed to monitor host osteprogenitor differentiation at the implantation site. Bone formation was evaluated with the aid of fluorescence imaging (FLI) and micro–computed tomography (μCT) as well as histological analyses. Reverse transcription polymerase chain reaction (RT-PCR) was performed to evaluate the expression of key osteogenic and angiogenic genes.
Osteoprogenitor differentiation, as detected by BLI, in mice treated with an allograft implant and PTH was over 2-fold higher than those in mice treated with an allograft implant without PTH. FLI also demonstrated that the bone mineralization process in PTH-treated allografts was significantly higher than that in untreated allografts. The μCT scans revealed a significant increase in bone formation in Allograft + PTH–treated mice comparing to Allograft + PBS treated mice. The osteogenic genes osteocalcin (Oc/Bglap) and integrin binding sialoprotein (Ibsp) were upregulated in the Allograft + PTH–treated animals.
In summary, PTH treatment enhances osteoprogenitor differentiation and augments bone formation around structural allografts. The precise mechanism is not clear, but we show that infiltration pattern of mast cells, associated with the formation of fibrotic tissue, in the defect site is significantly affected by the PTH treatment.
doi:10.1021/mp400292p
PMCID: PMC3902084  PMID: 24131143
Parathyroid Hormone; endogenous stem cells; osteogenesis; allograft; calvarial bone repair
14.  Synthetic scaffold coating with adeno-associated virus encoding BMP2 to promote endogenous bone repair 
Cell and Tissue Research  2011;347(3):575-588.
Biomaterial scaffolds functionalized to stimulate endogenous repair mechanisms via the incorporation of osteogenic cues offer a potential alternative to bone grafting for the treatment of large bone defects. We first quantified the ability of a self-complementary adeno-associated viral vector encoding bone morphogenetic protein 2 (scAAV2.5-BMP2) to enhance human stem cell osteogenic differentiation in vitro. In two-dimensional culture, scAAV2.5-BMP2-transduced human mesenchymal stem cells (hMSCs) displayed significant increases in BMP2 production and alkaline phosphatase activity compared with controls. hMSCs and human amniotic-fluid-derived stem cells (hAFS cells) seeded on scAAV2.5-BMP2-coated three-dimensional porous polymer Poly(ε-caprolactone) (PCL) scaffolds also displayed significant increases in BMP2 production compared with controls during 12 weeks of culture, although only hMSC-seeded scaffolds displayed significantly increased mineral formation. PCL scaffolds coated with scAAV2.5-BMP2 were implanted into critically sized immunocompromised rat femoral defects, both with or without pre-seeding of hMSCs, representing ex vivo and in vivo gene therapy treatments, respectively. After 12 weeks, defects treated with acellular scAAV2.5-BMP2-coated scaffolds displayed increased bony bridging and had significantly higher bone ingrowth and mechanical properties compared with controls, whereas defects treated with scAAV2.5-BMP2 scaffolds pre-seeded with hMSCs failed to display significant differences relative to controls. When pooled, defect treatment with scAAV2.5-BMP2-coated scaffolds, both with or without inclusion of pre-seeded hMSCs, led to significant increases in defect mineral formation at all time points and increased mechanical properties compared with controls. This study thus presents a novel acellular bone-graft-free endogenous repair therapy for orthotopic tissue-engineered bone regeneration.
doi:10.1007/s00441-011-1197-3
PMCID: PMC3221920  PMID: 21695398
Synthetic scaffold; Large bone defect; Self-complementary adeno-associated virus (scAAV); Bone morphogenetic protein-2 (BMP2); Stem cells; Human
15.  Role of Parathyroid Hormone in the Mechanosensitivity of Fracture Healing 
The mechanical environment at a fracture site can influence the course of healing. Intermittent parathyroid hormone (PTH) has been shown to accelerate fracture healing. Intact bone models show that mechanical loading and PTH have a synergistic beneficial effect on osteogenesis. We hypothesized that PTH and mechanical loading would have a similar synergistic effect on fracture healing. Eighty mice underwent surgical osteotomy and intramedullary nailing of the tibia. The mice were divided into four groups: one underwent daily loading, one received daily subcutaneous PTH injections (30 µg/kg/day), one received both loading and PTH, and a control group received sham loading and vehicle injection. Daily loading was applied to the ends of the tibia with an external loading device for 2 weeks. Fracture healing was assessed by microcomputed tomography, histology, and biomechanical testing. The group with both loading and PTH had increased osteoblast and osteoclast activity and was the only group with a significantly larger callus mineral density and bone volume fraction. The PTH only group had significantly more osteoid in the callus compared to the control group, indicating enhanced early osteoblast activity. This group also had a significantly higher bone mineral content and total bone volume compared to controls. The group that received loading as the only intervention had significantly greater osteoclast activity versus controls. The contribution of loading and PTH administration to the fracture healing cascade indicates a synergistic effect. This finding may be of potential clinical utility when weight bearing is utilized to stimulate lower extremity fracture healing.
doi:10.1002/jor.20427
PMCID: PMC2948234  PMID: 17568439
parathyroid hormone; fracture healing; mouse tibia; in vivo mechanical loading; microcomputed tomography; mechanosensitivity
16.  Contributions of Parathyroid Hormone (PTH)/PTH-Related Peptide Receptor Signaling Pathways to the Anabolic Effect of PTH on Bone 
Bone  2007;40(6):1453-1461.
PTH regulates osteoblastic function by activating PTH/PTHrP receptors (PTH1Rs), which trigger several signaling pathways in parallel, including cAMP/protein kinase A (PKA) and, via both phospholipase-C (PLC)-dependent and PLC-independent mechanisms, protein kinase C (PKC). These signaling functions have been mapped to distinct domains within PTH(1–34), but their roles in mediating the anabolic effect of intermittent PTH in vivo are unclear. We compared the anabolic effects in mice of hPTH(1–34) with those of two analogs having restricted patterns of PTH1R signaling. [G1,R19]hPTH(1–28) lacks the 29–34 domain of hPTH(1–34) needed for PLC-independent PKC activation, incorporates a Gly1 mutation that prevents PLC activation, and stimulates only cAMP/PKA signaling. [G1,R19]hPTH(1–34) retains the 29–34 domain and activates both cAMP/PKA and PLC-independent PKC.
Human PTH(1–34) (40 μg/kg), [G1,R19]hPTH(1–34) (120 μg/kg), and [G1,R19]hPTH(1–28) (800 μg/kg), at doses equipotent in elevating blood cAMP at 10 min and cAMP-dependent gene expression in bone at 6 h after s.c. injection, were administered to 10 week old female C57BL/6J mice 5 days/week for 4 weeks. Acute blood cAMP responses, retested after 4 weeks, were not reduced by the preceding PTH treatment. The three PTH peptides induced equivalent increases in distal femoral bone mineral density (BMD), and, by microCT analysis, distal femoral and vertebral bone volume and trabecular thickness and mid-femoral cortical endosteal apposition. [G1,R19]hPTH(1–34) and hPTH(1–34) increased distal femoral BMD more rapidly and augmented total-body BMD and bone volume of proximal tibial trabeculi to a greater extent than did [G1,R19]hPTH(1–28),.
We conclude that cAMP/PKA signaling is the dominant mechanism for the anabolic actions of PTH in trabecular bone and PLC-independent PKC signaling, attributable to the PTH(29–34) sequence, appears to accelerate the trabecular response and augment BMD at some skeletal sites. PTH1R PLC signaling pathway is not required for an anabolic effect of intermittent PTH(1–34) on bone.
doi:10.1016/j.bone.2007.02.001
PMCID: PMC1976286  PMID: 17376756
bone formation; PTH/PTHrP Receptor; blood cAMP; Bone densitometry; Bone QCT
17.  Additive Effects of Mechanical Marrow Ablation and PTH Treatment on de Novo Bone Formation in Mature Adult Rats  
Cells  2012;1(4):1168-1181.
Mechanical ablation of bone marrow in young rats induces rapid but transient bone growth, which can be enhanced and maintained for three weeks by the administration of parathyroid hormone (PTH). Additionally, marrow ablation, followed by PTH treatment for three months leads to increased cortical thickness. In this study, we sought to determine whether PTH enhances bone formation after marrow ablation in aged rats. Aged rats underwent unilateral femoral marrow ablation and treatment with PTH or vehicle for four weeks. Both femurs from each rat were analyzed by X-ray and pQCT, then analyzed either by microCT, histology or biomechanical testing. Marrow ablation alone induced transient bone formation of low abundance that persisted over four weeks, while marrow ablation followed by PTH induced bone formation of high abundance that also persisted over four weeks. Our data confirms that the osteo-inducive effect of marrow ablation and the additive effect of marrow ablation, followed by PTH, occurs in aged rats. Our observations open new avenues of investigations in the field of tissue regeneration. Local marrow ablation, in conjunction with an anabolic agent, might provide a new platform for rapid site-directed bone growth in areas of high bone loss, such as in the hip and wrist, which are subject to fracture.
doi:10.3390/cells1041168
PMCID: PMC3901151  PMID: 24710549
PTH; mechanical marrow ablation; bone engineering; aging; site-directed bone formation
18.  Enhanced Control of In Vivo Bone Formation with Surface Functionalized Alginate Microbeads Incorporating Heparin and Human Bone Morphogenetic Protein-2 
Tissue Engineering. Part A  2012;19(3-4):350-359.
In this study, we tested the hypothesis that a surface functionalization delivery platform incorporating heparin onto strontium alginate microbeads surfaces would convert this “naive carriers” into “mini-reservoirs” for localized in vivo delivery of recombinant human bone morphogenetic protein-2 (rhBMP-2) that will induce functional bone regeneration. In vitro evaluation confirmed that (1) heparin incorporation could immobilize and prolong rhBMP-2 release for approximately 3 weeks; (2) a significant decrease (p<0.01) in rhBMP-2 burst release is attainable depending on initial protein load; and (3) rhBMP-2 released from surface functionalized microbeads retained bioactivity and stimulated higher alkaline phosphatase activity in cultured C2C12 cells when compared with daily administration of fresh bolus rhBMP-2. Subsequently, surface functionalized microbeads were used for in vivo delivery of rhBMP-2 at local sites of posterolateral spinal fusion surgery in rats. The microbeads were loaded into the pores of medical-grade polyepsilone caprolactone-tricalcium phosphate scaffolds before implantation. Results revealed robust bone formation and a biomechanically solid fusion after 6 weeks. When compared with a control group consisting of an equivalent amount of rhBMP-2 that was directly adsorbed onto bare-surfaced microbeads with no heparin, a 5.3-fold increase in bone volume fraction and a 2.6-fold increase in bending stiffness (flexion/extension) were observed. When compared with collagen sponge carriers of rhBMP-2, a 1.5-fold and a 1.3-fold increase in bone volume fraction and bending stiffness were observed, respectively. More importantly, 3D micro-computed tomography images enabled the visualization of a well-contained newly formed bone at ipsilateral implant sites with surface functionalized rhBMP-2 delivery. This was absent with collagen sponge carriers where newly formed bone tissue was poorly contained and crossed over the posterior midline to contralateral implants. These findings are important because of complications with current rhBMP-2 delivery method, including excessive, uncontrolled bone formation.
doi:10.1089/ten.tea.2012.0274
PMCID: PMC3542875  PMID: 22894570
19.  SDF-1 Enhances Wound Healing of Critical-Sized Calvarial Defects beyond Self-Repair Capacity 
PLoS ONE  2014;9(5):e97035.
Host blood circulating stem cells are an important cell source that participates in the repair of damaged tissues. The clinical challenge is how to improve the recruitment of circulating stem cells into the local wound area and enhance tissue regeneration. Stromal-derived factor-1 (SDF-1) has been shown to be a potent chemoattractant of blood circulating stem cells into the local wound microenvironment. In order to investigate effects of SDF-1 on bone development and the repair of a large bone defect beyond host self-repair capacity, the BMP-induced subcutaneous ectopic bone formation and calvarial critical-sized defect murine models were used in this preclinical study. A dose escalation of SDF-1 were loaded into collagen scaffolds containing BMP, VEGF, or PDGF, and implanted into subcutaneous sites at mouse dorsa or calvarial critical-sized bone defects for 2 and 4 weeks. The harvested biopsies were examined by microCT and histology. The results demonstrated that while SDF-1 had no effect in the ectopic bone model in promoting de novo osteogenesis, however, in the orthotopic bone model of the critical-sized defects, SDF-1 enhanced calvarial critical-sized bone defect healing similar to VEGF, and PDGF. These results suggest that SDF-1 plays a role in the repair of large critical-sized defect where more cells are needed while not impacting de novo bone formation, which may be associated with the functions of SDF-1 on circulating stem cell recruitment and angiogenesis.
doi:10.1371/journal.pone.0097035
PMCID: PMC4011888  PMID: 24800841
20.  Intermittently Administered Parathyroid Hormone [1–34] Promotes Tendon-Bone Healing in a Rat Model 
The objective of this study was to investigate whether intermittent administration of parathyroid hormone [1–34] (PTH[1–34]) promotes tendon-bone healing after anterior cruciate ligament (ACL) reconstruction in vivo. A rat model of ACL reconstruction with autograft was established at the left hind leg. Every day, injections of 60 μg PTH[1–34]/kg subcutaneously were given to the PTH group rats (n = 10) for four weeks, and the controls (n = 10) received saline. The tendon-bone healing process was evaluated by micro-CT, biomechanical test, histological and immunohistochemical analyses. The effects of PTH[1–34] on serum chemistry, bone microarchitecture and expression of the PTH receptor (PTH1R) and osteocalcin were determined. Administration of PTH[1–34] significantly increased serum levels of calcium, alkaline phosphatase (AP), osteocalcin and tartrate-resistant acid phosphatase (TRAP). The expression of PTH1R on both osteocytes and chondrocyte-like cells at the tendon-bone interface was increased in the PTH group. PTH[1–34] also enhanced the thickness and microarchitecture of trabecular bone according to the micro-CT analysis. The results imply that systematically intermittent administration of PTH[1–34] promotes tendon-bone healing at an early stage via up-regulated PTH1R. This method may enable a new strategy for the promotion of tendon-bone healing after ACL reconstruction.
doi:10.3390/ijms151017366
PMCID: PMC4227167  PMID: 25268612
parathyroid hormone; anterior cruciate ligament reconstruction; tendon-bone healing
21.  Osteogenic Protein-1 for Long Bone Nonunion 
Executive Summary
Objective
To assess the efficacy of osteogenic protein-1 (OP-1) for long bone nonunion.
Clinical Need
Although most fractures heal within a normal period, about 5% to 10% do not heal and are classified as delayed or nonunion fractures. Nonunion and segmental bone loss after fracture, reconstructive surgery, or lesion excision can present complex orthopedic problems, and the multiple surgical procedures often needed are associated with patient morbidity and reduced quality of life.
Many factors contribute to the pathogenesis of a delayed union or nonunion fractures, including deficiencies of calcium, vitamin D, or vitamin C, and side effects of medications such as anticoagulants, steroids, some anti-inflammatory drugs, and radiation. It has been shown that smoking interferes with bone repair in several ways.
Incidence of Nonunion and Delayed Union Cases
An estimated 5% to 10% of fractures do not heal properly and go on to delayed union or nonunion. If this overall estimate of incidence were applied to the Ontario population1, the estimated number of delayed union or nonunion in the province would be between 3,863 and 7,725.
Treatment of Nonunion Cases
The treatment of nonunion cases is a challenge to orthopedic surgeons. However, the basic principle behind treatment is to provide both mechanical and biological support to the nonunion site.
Fracture stabilization and immobilization is frequently used with the other treatment modalities that provide biological support to the fractured bone. Biological support includes materials that could be served as a source of osteogenic cells (osteogenesis), a stimulator of mesenchymal cells (osteoinduction), or a scaffold-like structure (osteoconduction).
The capacity to heal a fracture is a latent potential of the stromal stem cells, which synthesize new bone. This process has been defined as osteogenesis. Activation of the stem cells to initiate osteogenic response and to differentiate into bone-forming osteoblasts is called osteoinduction. These 2 properties accelerate the rate of fracture healing or reactivate the ineffective healing process. Osteoconduction occurs when passive structures facilitate the migration of osteoprogenitor cells, the perivascular tissue, and capillaries into these structures.
Bone Grafts and Bone Graft Substitutes
Bone graft and bone graft substitutes have one or more of the following components:
Undifferentiated stem cells
Growth factors
Structural lattice
Undifferentiated stem cells are unspecialized, multipotential cells that can differentiate into a variety of specialized cells. They can also replicate themselves. The role of stem cells is to maintain and repair the tissue in which they are residing. A single stem cell can generate all cell types of that tissue. Bone marrow is a source of at least 2 kinds of stem cells. Hematopoietic stem cells that form all types of blood cells, and bone marrow stromal stem cells that have osteogenic properties and can generate bone, cartilage, and fibrous tissue.
Bone marrow has been used to stimulate bone formation in bone defects and cases of nonunion fractures. Bone marrow can be aspirated from the iliac crest and injected percutaneously with fluoroscopic guidance into the site of the nonunion fracture. The effectiveness of this technique depends on the number and activity of stem cells in the aspirated bone marrow. It may be possible to increase the proliferation and speed differentiation of stem cells by exposing them to growth factor or by combining them with collagen.
Many growth factors and cytokines induced in response to injury are believed to have a considerable role in the process of repair. Of the many bone growth factors studied, bone morphogenetics (BMPs) have generated the greatest attention because of their osteoinductive potential. The BMPs that have been most widely studied for their ability to induce bone regeneration in humans include BMP-2 and BMP-7 (osteogenic protein). Human osteogenic protein-1 (OP-1) has been cloned and produced with recombinant technology and is free from the risk of infection or allergic reaction.
The structural lattice is osteoconductive; it supports the ingrowth of developing capillaries and perivascular tissues. Three distinct groups of structural lattice have been identified: collagen, calcium sulphate, and calcium phosphate. These materials can be used to replace a lost segment of bone.
Grafts Used for Nonunion
Autologous bone graft is generally considered the gold standard and the best material for grafting because it contains several elements that are critical in promoting bone formation, including osteoprogenitor cells, the matrix, and bone morphogenetic proteins. The osteoconductive property of cancellous autograft is related to the porosity of bone. The highly porous, scaffold-like structure of the graft allows host osteoblasts and host osteoprogenitor cells to migrate easily into the area of the defect and to begin regeneration of bone. Sources of cancellous bone are the iliac crest, the distal femur, the greater trochanter, and the proximal tibia. However, harvesting the autologous bone graft is associated with postoperative pain at the donor site, potential injury to the surrounding arteries, nerves, and tissues, and the risk of infection. Thus the development of synthetic materials with osteoconductive and osteoinductive properties that can eliminate the need for harvesting has become a major goal of orthopedic research.
Allograft is the graft of tissue between individuals who are of the same species but are of a disparate genotype. Allograft has osteoconductive and limited osteoinductive properties. Demineralized bone matrix (DBM) is human cortical and cancellous allograft. These products are prepared by acid extraction of allograft bone, resulting in the loss of most of the mineralized component while collagen and noncollagenous proteins, including growth factors, are retained. Figures 1 to 5 demonstrate the osteogenic, osteoinduction, and osteoconduction properties of autologous bone graft, allograft, OP-1, bone graft substitutes, and bone marrow.
Autologous Bone Graft
Osteogenic Protein-1
Allograft bone and Demineralized Bone Matrix
Bone Graft Substitutes
Autologous Bone Marrow Graft
New Technology Being Reviewed: Osteogenic Protein-1
Health Canada issued a Class IV licence for OP-1 in June 2004 (licence number 36320). The manufacturer of OP-1 is Stryker Biotech (Hapkinton, MA).
The United States Food and Drug Administration (FDA) issued a humanitarian device exemption for the application of the OP-1 implant as an “alternative to autograft in recalcitrant long bone nonunions where use of autograft is unfeasible and alternative treatments have failed.” Regulatory agencies in Europe, Australia, and New Zealand have permitted the use of this implant in specific cases, such as in tibial nonunions, or in more general cases, such as in long bone nonunions.
According to the manufacturer, OP-1 is indicated for the treatment of long bone nonunions. It is contraindicated in the patient has a hypersensitivity to the active substance or collagen, and it should not be applied at the site of a resected tumour that is at or near the defect or fracture. Finally, it should not be used in patients who are skeletally immature (< 18 years of age), or if there is no radiological evidence of closure of epiphysis.
Review Strategy
Objective
To summarize the safety profile and effectiveness of OP-1 in the treatment of cases of long bone nonunion and bone defects
To compare the effectiveness and cost effectiveness of OP-1 in the treatment of long bone nonunions and bone defects with the alternative technologies, particularly the gold standard autologous bone graft.
Literature Search
International Network of Agencies for Health Technology Assessments (INAHTA), the Cochrane Database of Systematic Reviews and the CCTR (formerly Cochrane Controlled Trials Register) were searched for health technology assessments. MEDLINE, EMBASE, Medline In Process and Other Non-Indexed Citations were searched from January 1, 1996 to January 27, 2004 for studies on OP-1. The search was limited to English-language articles and human studies. The search yielded 47 citations. Three studies met inclusion criteria (2 RCTs and 1 Ontario-based study presented at an international conference.
Summary of Findings
Friedlaender et al. conducted a prospective, randomized, partially blinded clinical trial on the treatment tibial nonunions with OP-1. Tibial nonunions were chosen for this study because of their high frequency, challenging treatment requirements, and substantial morbidity. All of the nonunions were at least 9 months old and had shown no progress toward healing over the previous 3 months. The patients were randomized to receive either treatment with autologous bone grafting or treatment with OP-1 in a type-1 collagen carrier. Both groups received reduction and fixation with an intramedullary rod. Table 1 summarizes the clinical outcomes of this study.
Outcomes in a Randomized Clinical Trial on Tibial Nonunions: Osteogenic Protein-1 versus Autologous Bone Grafting
Clinical success was defined as full weight-bearing, loss of severe pain at the fracture site on weight-bearing, and no further surgical treatment to enhance fracture repair.
The results of this study demonstrated that recombinant OP-1 is associated with substantial clinical and radiographic success for the treatment of tibial nonunions when used with intramedullary rod fixation. No adverse event related to sensitization was reported. Five per cent of the patients in the OP-1 group had circulating antibodies against type 1 collagen. Only 10% of the patients had a low level of anti-OP-1 antibodies, and all effects were transient. Furthermore, the success rate with the OP-1 implant was comparable with those achieved with autograft at 9 and 24 months follow-up. Eighty-two per cent of patients were successful at 24 months follow-up in both groups.
Statistically significant increased blood loss in the group treated with the autograft was observed (P = .049). Patients treated with autograft had longer operation and hospitalization times. All patients in the autograft group had pain at the donor site after surgery, and more than 80% judged their postoperative pain as moderate or severe. At their 6-month visit, 20% of the patients in the autograft group had persistent pain, mild or moderate in nature, at the donor site. This number fell to 13% at 12 months.
All patients in each of the groups had at least 1 adverse event that wasn’t serious, such as fever, nausea and vomiting, leg edema, discomfort, and bruising at the operative site. The incidence of these events was similar in both groups. Serious adverse events were observed in 44% of both groups, none of which were considered related to the OP-1 implant or autograft.
On the basis of this data, the FDA issued a humanitarian device exemption for the application of OP-1 implant as an alternative to autograft in recalcitrant long bone nonunions when the use of autograft is unfeasible and alternative treatments have failed.
Study on Fibular Defects
Geesink et al. investigated the osteogenic activity of OP-1 by assessing its value in bridging fibular defects made at the time of tibial osteotomy for varus or valgus deformity of the knee. This study had 2 phases and included 12 patients in each phase. Each phase included 12 patients (6 in each group). Patients in the first phase received either DBM or were left untreated. Patients in the second phase received either OP-1 on collagen type-1 or collagen type-1 alone.
Radiological and Dual Energy X-ray Absorptiometry (DEXA) evaluation showed that in patients in whom the defect was left untreated, no formation of bone occurred. At 12 months follow-up, new bone formation with bridging occurred in 4 of the 6 patients in DMB group, and 5 of the 6 patients in OP-1 group. One patient in OP-1 group did not show any evidence of new bone formation at any point during the study.
Ontario Pilot Study
A prospective pilot study was conducted in Ontario, Canada to investigate the safety and efficacy of OP-1 for the treatment of recalcitrant long bone nonunions. The study looked at 15 patients with complex, recalcitrant, long bone nonunions whose previous treatment had failed. The investigators concluded that this bone graft substitute appears to be safe and effective in providing sufficient biological stimulation in difficult to treat nonunions. Results of a more complete study on 70 patients are ready for publication. According to the principal investigator, OP-1 was 90% effective in inducing bone formation and bone healing in this sample.
Alternative Technologies
The Medical Advisory Secretariat conducted a literature search from January 1, 2000 to February 28, 2005 to identify studies on nonunions/bone defects that had been treated with alternative technologies. A review of these studies showed that, in addition to the gold standard autologous bone marrow grafting, bone allografts, demineralized bone matrices, bone graft substitutes, and autologous bone marrow have been used for treatment of nonunions and bone defects. These studies were categorized according to the osteoinductive, osteoconductive, and osteogenesis properties of the technologies studied.
A review of these studies showed that bone allografts have been used mostly in various reconstruction procedures to restore the defect after excavating a bone lesion. Two studies investigated the effectiveness of DBM in healing fracture nonunions. Calcium phosphate and calcium sulphate have been used mostly for repair of bone defects.
Several investigators have looked at the use of autologous bone marrow for treatment of long bone nonunions. The results of these studies show that method of percutaneous bone marrow grafting is highly effective in the treatment of long bone nonunions. In a total of 301 fractures across all studies, 268 (89%) healed with a mean healing time of 2.5 to 8 months. This healing time as derived from these case series is less than the timing of the primary end point in Friedlaender’s study (9 months). Table 2 summarizes the results of these studies. Table 2 summarizes the results of these studies.
Studies that used Percutaneous Bone Marrow Grafting for Treatment of Nonunions
Economic Analysis
Based on annual estimated incidence of long-bone nonunion of 3,863 - 7,725, the annual hospitalization costs associated with this condition is between $21.2 and $42.3 million based on a unit cost of $5,477 per hospital separation. When utilized, the device, a single vial of OP-1, is approximately $5,000 and if adopted universally in Ontario, the total device costs would be in the range of $19.3 - $38.6 million annually. The physician fee for harvest, insertion of bone, or OP-1 is $193 and is $193 for autologous bone marrow transplantation. Total annual physician costs are expected to be in the range of from $0.7 million to $1.3 million per year. Expenditures associated with long-bone nonunion are unlikely to increase since incidence of long-bone nonunion is unlikely to change in the future. However, the rate of uptake of OP-1 could have a significant impact on costs if the uptake were large.
The use of OP-1 and autologous bone marrow transplantation may offset pain medication costs compared with those associated with autologous bone harvest given that the former procedures do not involve the pain associated with the bone harvest site. However, given that this pain is normally not permanent, the overall offset is likely to be small. There are likely to be smaller OHIP costs associated with OP-1 than bone-harvest procedures given that only 1, rather than 2, incisions are needed when comparing the former with the latter procedure. This offset could amount to between $0.3 million to $0.7 million annually.
No data on the cost-effectiveness of OP-1 is available.
PMCID: PMC3382627  PMID: 23074475
22.  Parathyroid Hormone Applications in the Craniofacial Skeleton 
Journal of Dental Research  2013;92(1):18-25.
Parathyroid hormone (PTH) is known for its ability to ‘build’ bone, with research in this area centered on its use as an osteoporosis therapeutic. Recent interest has developed regarding its potential for regenerative applications such as fracture healing and osseous defects of the oral cavity. Many years of investigation using murine gene-targeted models substantiate a role for signaling at the PTH/PTH-related protein (PTHrP) receptor (PPR) in intramembranous bone formation in the craniofacial region as well as in tooth development. Pre-clinical studies clearly support a positive role of intermittent PTH administration in craniofacial bones and in fracture healing and implant integration. A few human clinical studies have shown favorable responses with teriparatide (the biologically active fragment of PTH) administration. Favorable outcomes have emerged with teriparatide administration in patients with osteonecrosis of the jaw (ONJ). New delivery strategies are in development to optimize targeted application of PTH and to help maximize local approaches. The promising host-modulating potential of PTH requires more information to further its effectiveness for craniofacial regeneration and osseous wound-healing, including a better delineation of cellular targets, temporal effects of PTH action, and improved approaches for local/targeted delivery of PTH.
doi:10.1177/0022034512464779
PMCID: PMC3521450  PMID: 23071071
anabolic; bone; osseointegration; osteonecrosis; osteoblast; teriparatide
23.  β-Arrestin2 Regulates the Differential Response of Cortical and Trabecular Bone to Intermittent PTH in Female Mice 
Cytoplasmic arrestins regulate PTH signaling in vitro. We show that female β-arrestin2-/- mice have decreased bone mass and altered bone architecture. The effects of intermittent PTH administration on bone microarchitecture differed in β-arrestin2-/- and wildtype mice. These data indicate that arrestin-mediated regulation of intracellular signaling contributes to the differential effects of PTH at endosteal and periosteal bone surfaces.
Introduction: The effects of PTH differ at endosteal and periosteal surfaces, suggesting that PTH activity in these compartments may depend on some yet unidentified mechanism(s) of regulation. The action of PTH in bone is mediated primarily by intracellular cAMP, and the cytoplasmic molecule β-arrestin2 plays a central role in this signaling regulation. Thus, we hypothesized that arrestins would modulate the effects of PTH on bone in vivo.
Materials and Methods: We used pDXA, μCT, histomorphometry, and serum markers of bone turnover to assess the skeletal response to intermittent PTH (0, 20, 40, or 80 μg/kg/day) in adult female mice null for β-arrestin2 (β-arr2-/-) and wildtype (WT) littermates (7-11/group).
Results and Conclusions: β-arr2-/- mice had significantly lower total body BMD, trabecular bone volume fraction (BV/TV), and femoral cross-sectional area compared with WT. In WT females, PTH increased total body BMD, trabecular bone parameters, and cortical thickness, with a trend toward decreased midfemoral medullary area. In β-arr2-/- mice, PTH not only improved total body BMD, trabecular bone architecture, and cortical thickness, but also dose-dependently increased femoral cross-sectional area and medullary area. Histomorphometry showed that PTH-stimulated periosteal bone formation was 2-fold higher in β-arr2-/- compared with WT. Osteocalcin levels were significantly lower in β-arr2-/- mice, but increased dose-dependently with PTH in both β-arr2-/- and WT. In contrast, whereas the resorption marker TRACP5B increased dose-dependently in WT, 20-80 μg/kg/day of PTH was equipotent with regard to stimulation of TRACP5B in β-arr2-/-. In summary, β-arrestin2 plays an important role in bone mass acquisition and remodeling. In estrogen-replete female mice, the ability of intermittent PTH to stimulate periosteal bone apposition and endosteal resorption is inhibited by arrestins. We therefore infer that arrestin-mediated regulation of intracellular signaling contributes to the differential effects of PTH on cancellous and cortical bone.
doi:10.1359/JBMR.041204
PMCID: PMC1586119  PMID: 15765183
β-arrestin; PTH; knockout; bone architecture; bone remodeling
24.  Reindeer bone extract can heal the critical-size rat femur defect 
International Orthopaedics  2010;35(4):615-622.
Bone extract from reindeer induces new ectopic bone formation (BF) in muscle pouches, but its feasibility in experimental bone lesions has not been evaluated. We investigated the effects of implants, containing 2, 5, 15, 20 or 50 mg of reindeer bone extract in a collagen carrier, on the healing of 8-mm femur defects in 78 rats. We used 30 µg of recombinant human bone morphogenetic protein-2 (rhBMP-2) in a collagen carrier, collagen and untreated defects as controls. Bone healing was evaluated with radiographs, peripheral quantitative computed tomography (pQCT), biomechanics and histology. In comparison with empty defects, the groups receiving bone extracts showed more BF at three weeks and had better bone union (BU), larger mean cross-sectional bone area at the defect site in groups receiving higher doses of extract, showed greater torsional stiffness of the bones and higher maximum breaking load of bones at six weeks. In comparison to all other groups, in the rhBMP-2 group, BF and BU were best at the three- and six-week follow-up, bone area was largest and mechanical test results were best. Although rhBMP-2 is superior for new bone regeneration, native reindeer bone extract is also effective in the six-week follow-up period.
doi:10.1007/s00264-010-1034-4
PMCID: PMC3066333  PMID: 20454894
25.  Pulsatile Release of Parathyroid Hormone from an Implantable Delivery System 
Biomaterials  2007;28(28):4124-4131.
Intermittent (pulsatile) administration of parathyroid hormone (PTH) is known to improve bone micro-architecture, mineral density and strength. Therefore, daily injection of PTH has been clinically used for the treatment of osteoporosis. However, this regimen of administration is not convenient and is not a favorable choice of patients. In this study, an implantable delivery system has been developed to achieve pulsatile release of PTH. A well-defined cylindrical device was first fabricated with a biodegradable polymer, poly(lactic acid) (PLLA), using a reverse solid free form fabrication technique. Three-component polyanhydrides composed of sebacic acid, 1,3-bis(p-carboxyphenoxy) propane and poly(ethylene glycol) were synthesized and used as isolation layers. The polyanhydride isolation layers and PTH-loaded alginate layers were then stacked alternately within the delivery device. The gap between the stacked PTH-releasing core and the device frame was filled with PLLA to seal. Multi-pulse PTH release was achieved using the implantable device. The lag time between two adjacent pulses were modulated by the composition and the film thickness of the polyanhydride. The released PTH was demonstrated to be biologically active using an in vitro assay. Timed sequential release of multiple drugs has also been demonstrated. The implantable device holds promise for both systemic and local therapies.
doi:10.1016/j.biomaterials.2007.05.034
PMCID: PMC2048537  PMID: 17576005

Results 1-25 (667313)