Search tips
Search criteria

Results 1-25 (1183924)

Clipboard (0)

Related Articles

1.  Biosynthesis of UDP-glucuronic acid and UDP-galacturonic acid in Bacillus cereus subsp. cytotoxis NVH 391–98 
The FEBS journal  2011;279(1):100-112.
The food borne pathogen, Bacillus cereus, produces uronic acid-containing glycans that are secreted in a shielding biofilm environment, and certain alkaliphilic Bacillus deposit uronate-glycan polymers in the cell wall when adapting to alkaline environments. The source of these acidic sugars is unknown, and here we have described the functional identification of an operon in B. cerues subsp. cytotoxis NVH 391–98 that comprises genes involved in the synthesis of UDP-uronic acids in Bacillus spp. Within the operon, a UDP-glucose 6-dehydrognease (UGlcDH) converts UDP-glucose in the presence of NAD+ to UDP-glucuronic acid and NADH, and a UDP-GlcA 4-epimerase (UGlcAE) converts UDP-glucuronic acid to UDP-galacturonic acid. Interestingly, in vitro both enzymes can utilize the TDP-sugar forms as well, albeit at lower catalytic efficiency. Unlike most of the very few bacterial 4-epimerases that have been characterized, which are promiscuous, the B. cereus UGlcAE enzyme is very specific and cannot use UDP-Glc, UDP-GlcNAc, UDP-GlcNAcA or UDP-Xyl as substrates. Size exclusion chromatography suggests that UGlcAE is active as a monomer, unlike the dimeric form of plant enzymes; the Bacillus UGlcDH is also found as a monomer. Phylogenic analysis further suggests that the Bacillus UGlcAE may have evolved separately from other bacterial and plant epimerases. Our results provide insight into the formation and function of uronic acid-containing glycans in the lifecycle of B. cereus and related species containing homologous operons as well as the basis to determine the importance of these acidic glycans. We also discuss the ability to target UGlcAE as a drug candidate.
PMCID: PMC3240692  PMID: 22023070
Bacillus; hexuronic acid; UDP-glucuronic acid; UDP-galacturonic acid; biofilm; alkalinity
2.  Analysis of the Nse3/MAGE-Binding Domain of the Nse4/EID Family Proteins 
PLoS ONE  2012;7(4):e35813.
The Nse1, Nse3 and Nse4 proteins form a tight sub-complex of the large SMC5-6 protein complex. hNSE3/MAGEG1, the mammalian ortholog of Nse3, is the founding member of the MAGE (melanoma-associated antigen) protein family and the Nse4 kleisin subunit is related to the EID (E1A-like inhibitor of differentiation) family of proteins. We have recently shown that human MAGE proteins can interact with NSE4/EID proteins through their characteristic conserved hydrophobic pocket.
Methodology/Principal Findings
Using mutagenesis and protein-protein interaction analyses, we have identified a new Nse3/MAGE-binding domain (NMBD) of the Nse4/EID proteins. This short domain is located next to the Nse4 N-terminal kleisin motif and is conserved in all NSE4/EID proteins. The central amino acid residues of the human NSE4b/EID3 domain were essential for its binding to hNSE3/MAGEG1 in yeast two-hybrid assays suggesting they form the core of the binding domain. PEPSCAN ELISA measurements of the MAGEC2 binding affinity to EID2 mutant peptides showed that similar core residues contribute to the EID2-MAGEC2 interaction. In addition, the N-terminal extension of the EID2 binding domain took part in the EID2-MAGEC2 interaction. Finally, docking and molecular dynamic simulations enabled us to generate a structure model for EID2-MAGEC2. Combination of our experimental data and the structure modeling showed how the core helical region of the NSE4/EID domain binds into the conserved pocket characteristic of the MAGE protein family.
We have identified a new Nse4/EID conserved domain and characterized its binding to Nse3/MAGE proteins. The conservation and binding of the interacting surfaces suggest tight co-evolution of both Nse4/EID and Nse3/MAGE protein families.
PMCID: PMC3335016  PMID: 22536443
3.  Interactions between the Nse3 and Nse4 Components of the SMC5-6 Complex Identify Evolutionarily Conserved Interactions between MAGE and EID Families 
PLoS ONE  2011;6(2):e17270.
The SMC5-6 protein complex is involved in the cellular response to DNA damage. It is composed of 6–8 polypeptides, of which Nse1, Nse3 and Nse4 form a tight sub-complex. MAGEG1, the mammalian ortholog of Nse3, is the founding member of the MAGE (melanoma-associated antigen) protein family and Nse4 is related to the EID (E1A-like inhibitor of differentiation) family of transcriptional repressors.
Methodology/Principal Findings
Using site-directed mutagenesis, protein-protein interaction analyses and molecular modelling, we have identified a conserved hydrophobic surface on the C-terminal domain of Nse3 that interacts with Nse4 and identified residues in its N-terminal domain that are essential for interaction with Nse1. We show that these interactions are conserved in the human orthologs. Furthermore, interaction of MAGEG1, the mammalian ortholog of Nse3, with NSE4b, one of the mammalian orthologs of Nse4, results in transcriptional co-activation of the nuclear receptor, steroidogenic factor 1 (SF1). In an examination of the evolutionary conservation of the Nse3-Nse4 interactions, we find that several MAGE proteins can interact with at least one of the NSE4/EID proteins.
We have found that, despite the evolutionary diversification of the MAGE family, the characteristic hydrophobic surface shared by all MAGE proteins from yeast to humans mediates its binding to NSE4/EID proteins. Our work provides new insights into the interactions, evolution and functions of the enigmatic MAGE proteins.
PMCID: PMC3045436  PMID: 21364888
4.  Phylogenetic analysis of pectin-related gene families in Physcomitrella patens and nine other plant species yields evolutionary insights into cell walls 
BMC Plant Biology  2014;14:79.
Pectins are acidic sugar-containing polysaccharides that are universally conserved components of the primary cell walls of plants and modulate both tip and diffuse cell growth. However, many of their specific functions and the evolution of the genes responsible for producing and modifying them are incompletely understood. The moss Physcomitrella patens is emerging as a powerful model system for the study of plant cell walls. To identify deeply conserved pectin-related genes in Physcomitrella, we generated phylogenetic trees for 16 pectin-related gene families using sequences from ten plant genomes and analyzed the evolutionary relationships within these families.
Contrary to our initial hypothesis that a single ancestral gene was present for each pectin-related gene family in the common ancestor of land plants, five of the 16 gene families, including homogalacturonan galacturonosyltransferases, polygalacturonases, pectin methylesterases, homogalacturonan methyltransferases, and pectate lyase-like proteins, show evidence of multiple members in the early land plant that gave rise to the mosses and vascular plants. Seven of the gene families, the UDP-rhamnose synthases, UDP-glucuronic acid epimerases, homogalacturonan galacturonosyltransferase-like proteins, β-1,4-galactan β-1,4-galactosyltransferases, rhamnogalacturonan II xylosyltransferases, and pectin acetylesterases appear to have had a single member in the common ancestor of land plants. We detected no Physcomitrella members in the xylogalacturonan xylosyltransferase, rhamnogalacturonan I arabinosyltransferase, pectin methylesterase inhibitor, or polygalacturonase inhibitor protein families.
Several gene families related to the production and modification of pectins in plants appear to have multiple members that are conserved as far back as the common ancestor of mosses and vascular plants. The presence of multiple members of these families even before the divergence of other important cell wall-related genes, such as cellulose synthases, suggests a more complex role than previously suspected for pectins in the evolution of land plants. The presence of relatively small pectin-related gene families in Physcomitrella as compared to Arabidopsis makes it an attractive target for analysis of the functions of pectins in cell walls. In contrast, the absence of genes in Physcomitrella for some families suggests that certain pectin modifications, such as homogalacturonan xylosylation, arose later during land plant evolution.
PMCID: PMC4108027  PMID: 24666997
Plant cell wall; Pectin; Physcomitrella patens; Arabidopsis thaliana; Phylogeny; Evolution
5.  The UlaG protein family defines novel structural and functional motifs grafted on an ancient RNase fold 
Bacterial populations are highly successful at colonizing new habitats and adapting to changing environmental conditions, partly due to their capacity to evolve novel virulence and metabolic pathways in response to stress conditions and to shuffle them by horizontal gene transfer (HGT). A common theme in the evolution of new functions consists of gene duplication followed by functional divergence. UlaG, a unique manganese-dependent metallo-β-lactamase (MBL) enzyme involved in L-ascorbate metabolism by commensal and symbiotic enterobacteria, provides a model for the study of the emergence of new catalytic activities from the modification of an ancient fold. Furthermore, UlaG is the founding member of the so-called UlaG-like (UlaGL) protein family, a recently established and poorly characterized family comprising divalent (and perhaps trivalent) metal-binding MBLs that catalyze transformations on phosphorylated sugars and nucleotides.
Here we combined protein structure-guided and sequence-only molecular phylogenetic analyses to dissect the molecular evolution of UlaG and to study its phylogenomic distribution, its relatedness with present-day UlaGL protein sequences and functional conservation. Phylogenetic analyses indicate that UlaGL sequences are present in Bacteria and Archaea, with bona fide orthologs found mainly in mammalian and plant-associated Gram-negative and Gram-positive bacteria. The incongruence between the UlaGL tree and known species trees indicates exchange by HGT and suggests that the UlaGL-encoding genes provided a growth advantage under changing conditions. Our search for more distantly related protein sequences aided by structural homology has uncovered that UlaGL sequences have a common evolutionary origin with present-day RNA processing and metabolizing MBL enzymes widespread in Bacteria, Archaea, and Eukarya. This observation suggests an ancient origin for the UlaGL family within the broader trunk of the MBL superfamily by duplication, neofunctionalization and fixation.
Our results suggest that the forerunner of UlaG was present as an RNA metabolizing enzyme in the last common ancestor, and that the modern descendants of that ancestral gene have a wide phylogenetic distribution and functional roles. We propose that the UlaGL family evolved new metabolic roles among bacterial and possibly archeal phyla in the setting of a close association with metazoans, such as in the mammalian gastrointestinal tract or in animal and plant pathogens, as well as in environmental settings. Accordingly, the major evolutionary forces shaping the UlaGL family include vertical inheritance and lineage-specific duplication and acquisition of novel metabolic functions, followed by HGT and numerous lineage-specific gene loss events.
PMCID: PMC3219644  PMID: 21943130
6.  Phenotypic landscape inference reveals multiple evolutionary paths to C4 photosynthesis 
eLife  2013;2:e00961.
C4 photosynthesis has independently evolved from the ancestral C3 pathway in at least 60 plant lineages, but, as with other complex traits, how it evolved is unclear. Here we show that the polyphyletic appearance of C4 photosynthesis is associated with diverse and flexible evolutionary paths that group into four major trajectories. We conducted a meta-analysis of 18 lineages containing species that use C3, C4, or intermediate C3–C4 forms of photosynthesis to parameterise a 16-dimensional phenotypic landscape. We then developed and experimentally verified a novel Bayesian approach based on a hidden Markov model that predicts how the C4 phenotype evolved. The alternative evolutionary histories underlying the appearance of C4 photosynthesis were determined by ancestral lineage and initial phenotypic alterations unrelated to photosynthesis. We conclude that the order of C4 trait acquisition is flexible and driven by non-photosynthetic drivers. This flexibility will have facilitated the convergent evolution of this complex trait.
eLife digest
Plants rely on carbon for their growth and survival: in a process called photosynthesis, they use energy from sunlight to convert carbon dioxide and water into carbohydrates and oxygen gas. The chemical reactions that make up photosynthesis are powered by a chain of enzymes, and plants must ensure that these enzymes—which are in the leaves of the plant—are supplied with enough carbon dioxide and water. Carbon dioxide from the atmosphere enters plants through pores in their leaves, but water must be carried up the plant from the roots.
The type of photosynthesis used by about 90% of flowering plant species—including tomatoes and rice—is called C3 photosynthesis. The first step in this process begins with an enzyme called RuBisCO, which reacts with carbon dioxide and a substance called RuBP to form molecules that contain three carbon atoms (hence the name C3 photosynthesis).
In a hot climate, however, a plant can lose a lot of water through the pores in its leaves: closing these pores allows the plant to retain water, but this also reduces the supply of carbon dioxide. Under these circumstances this causes problems because RuBisCO uses oxygen to break down RuBP, instead of creating sugars, when carbon dioxide is not readily available. To prevent this process, which wastes a lot of energy and resources, some plants—including maize, sugar cane and many other agricultural staples—have evolved an alternative process called C4 photosynthesis. Although it is more complex than C3 photosynthesis, and required many changes to be made to the structure of leaves, C4 photosynthesis has evolved on more than 60 different occasions.
In C4 plants, the mesophyll—the region that is associated with the capture of carbon dioxide by RuBisCO in C3 plants—contains high levels of an alternative enzyme called PEPC that converts carbon dioxide molecules into an acid that contains four carbon atoms. To avoid carbon dioxide being captured by both enzymes, C4 plants evolved to relocate RuBisCO from the mesophyll to a second set of cells in an airtight structure known as the bundle sheath. The four-carbon acids produced by PEPC diffuse to the cells in the bundle sheath, where they are broken down into carbon dioxide molecules, and photosynthesis then proceeds as normal. This process allows photosynthesis to continue when the level of carbon dioxide in the leave is low because the plant has closed its pores to retain water.
Since C4 plants grow faster than C3 plants, and also require less water, plant biologists would like to introduce certain C4 traits into C3 crop plants. To help with this process, Williams, Johnston et al. have used computational methods to explore how C4 photosynthesis evolved from ancestral C3 plants. This involved investigating the prevalence of 16 traits that are common to C4 plants in a total of 73 species that undergo C3 or C4 photosynthesis (including 37 species that possess characteristics of both C3 and C4).
Williams, Johnston et al. then went on to produce a new mathematical model that represents evolutionary processes as pathways across a multi-dimensional “landscape”. The model shows that traits can be acquired in various orders, and that C4 photosynthesis evolved through a number of independent pathways. Some traits that evolved early in the transitions to C4 photosynthesis influenced how evolution proceeded, providing “foundations” upon which further changes evolved.
Interestingly, the structure of the leaf itself appeared to change before any of the photosynthetic enzymes changed. This led Williams, Johnston et al. to conclude that climate change—in particular, the declines in carbon dioxide levels that occurred in prehistoric times—was probably not responsible for the original evolution of C4 photosynthesis. Nevertheless, these results could help with efforts to adapt important C3 crop plants to on-going changes in our climate.
PMCID: PMC3786385  PMID: 24082995
convergent evolution; C4 photosynthesis; Bayesian model; Other
7.  UDP-Galactose 4′-Epimerase Activities toward UDP-Gal and UDP-GalNAc Play Different Roles in the Development of Drosophila melanogaster 
PLoS Genetics  2012;8(5):e1002721.
In both humans and Drosophila melanogaster, UDP-galactose 4′-epimerase (GALE) catalyzes two distinct reactions, interconverting UDP-galactose (UDP-gal) and UDP-glucose (UDP-glc) in the final step of the Leloir pathway of galactose metabolism, and also interconverting UDP-N-acetylgalactosamine (UDP-galNAc) and UDP-N-acetylglucosamine (UDP-glcNAc). All four of these UDP-sugars serve as vital substrates for glycosylation in metazoans. Partial loss of GALE in humans results in the spectrum disorder epimerase deficiency galactosemia; partial loss of GALE in Drosophila melanogaster also results in galactose-sensitivity, and complete loss in Drosophila is embryonic lethal. However, whether these outcomes in both humans and flies result from loss of one GALE activity, the other, or both has remained unknown. To address this question, we uncoupled the two activities in a Drosophila model, effectively replacing the endogenous dGALE with prokaryotic transgenes, one of which (Escherichia coli GALE) efficiently interconverts only UDP-gal/UDP-glc, and the other of which (Plesiomonas shigelloides wbgU) efficiently interconverts only UDP-galNAc/UDP-glcNAc. Our results demonstrate that both UDP-gal and UDP-galNAc activities of dGALE are required for Drosophila survival, although distinct roles for each activity can be seen in specific windows of developmental time or in response to a galactose challenge. By extension, these data also suggest that both activities might play distinct and essential roles in humans.
Author Summary
In this manuscript we apply a fruit fly model to explore the relative contributions of each of two different activities attributed to a single enzyme—UDP-galactose 4′-epimerase (GALE); partial impairment of human GALE results in the potentially severe metabolic disorder epimerase deficiency galactosemia. One GALE activity involves interconverting UDP-galactose and UDP-glucose in the Leloir pathway of galactose metabolism; the other activity involves interconverting UDP-N-acetylgalactosamine and UDP-N-acetylglucosamine. We have previously demonstrated that complete loss of GALE is embryonic lethal in fruit flies, but it was unclear which GALE activity loss was responsible for the outcome. Using genetically modified fruit flies, we were able to remove or give back each GALE activity individually at different times in development and observe the consequences. Our results demonstrate that both GALE activities are essential, although they play different roles at different times in development. These results provide insight into the normal functions of GALE and also have implications for diagnosis and intervention in epimerase deficiency galactosemia.
PMCID: PMC3359975  PMID: 22654673
8.  Identification of a novel pentatricopeptide repeat subfamily with a C-terminal domain of bacterial origin acquired via ancient horizontal gene transfer 
BMC Research Notes  2013;6:525.
Pentatricopeptide repeat (PPR) proteins are a large family of sequence-specific RNA binding proteins involved in organelle RNA metabolism. Very little is known about the origin and evolution of these proteins, particularly outside of plants. Here, we report the identification of a novel subfamily of PPR proteins not found in plants and explore their evolution.
We identified a novel subfamily of PPR proteins, which all contain a C-terminal tRNA guanine methyltransferase (TGM) domain, suggesting a predicted function not previously associated with PPR proteins. This group of proteins, which we have named the PPR-TGM subfamily, is found in distantly related eukaryotic lineages including cellular slime moulds, entamoebae, algae and diatoms, but appears to be the first PPR subfamily absent from plants. Each PPR-TGM protein identified is predicted to have different subcellular locations, thus we propose that these proteins have roles in tRNA metabolism in all subcellular locations, not just organelles. We demonstrate that the TGM domain is not only similar to bacterial TGM proteins, but that it is most similar to chlamydial TGMs in particular, despite the absence of PPR proteins in bacteria. Based on our data, we postulate that this subfamily of PPR proteins evolved from a TGM-encoding gene of a member of the Chlamydiae, which was obtained via ancient prokaryote-to-eukaryote horizontal gene transfer. Following its acquisition, the N-terminus of the encoded TGM protein must have been extended to include PPR motifs, possibly to confer additional functions to the protein, giving rise to the PPR-TGM subfamily.
The identification of a unique PPR subfamily which originated from the Chlamydiae group of bacteria offers novel insight into the origin and evolution of PPR proteins not previously considered. It also provides further understanding into their roles in non-organellar RNA metabolism.
PMCID: PMC4029402  PMID: 24321137
Pentatricopeptide repeat proteins; tRNA methyltransferase; PPR-TGM protein; Horizontal gene transfer; CCCH zinc finger
9.  Enzymatic Synthesis of TDP-deoxysugars 
Methods in enzymology  2009;459:521-544.
Many biologically active bacterial natural products contain highly modified deoxysugar residues that are often critical for the activity of the parent compounds. Most of these deoxysugars are secondary metabolites that are biosynthesized in the form of nucleotide diphosphate (NDP) sugars prior to their transfer to natural product aglycones by glycosyltransferases. Over the past decade, many biosynthetic pathways that lead to the formation of these unusual sugars have been unraveled, and the mechanisms of many key enzymatic transformations involved in these pathways have been elucidated. However, obtaining workable quantities of NDP-deoxysugars for in vitro studies is often a difficult task. This limitation has hindered an in-depth investigation of the substrate specificity of deoxysugar biosynthetic enzymes, many of which are promiscuous with respect to their NDP-sugar substrates and are, thus, potentially useful catalysts for natural product glycoengineering. Presented in this review are procedures for the enzymatic synthesis and purification of a variety of NDP-deoxysugars, including some early intermediates in NDP-deoxysugar biosynthetic pathways, and highly modified NDP-deoxysugars that are late intermediates in their respective biosynthetic pathways. The procedures described herein could be used as general guidelines for the development of specific protocols for the synthesis of other NDP-deoxysugars.
PMCID: PMC2776076  PMID: 19362653
10.  Unique genes in plants: specificities and conserved features throughout evolution 
Plant genomes contain a high proportion of duplicated genes as a result of numerous whole, segmental and local duplications. These duplications lead up to the formation of gene families, which are the usual material for many evolutionary studies. However, all characterized genomes include single-copy (unique) genes that have not received much attention. Unlike gene duplication, gene loss is not an unspecific mechanism but is rather influenced by a functional selection. In this context, we have established and used stringent criteria in order to identify suitable sets of unique genes present in plant proteomes. Comparisons of unique genes in the green phylum were used to characterize the gene and protein features exhibited by both conserved and species-specific unique genes.
We identified the unique genes within both A. thaliana and O. sativa genomes and classified them according to the number of homologs in the alternative species: none (U{1:0}), one (U{1:1}) or several (U{1:m}). Regardless of the species, all the genes in these groups present some conserved characteristics, such as small average protein size and abnormal intron number. In order to understand the origin and function of unique genes, we further characterized the U{1:1} gene pairs. The possible involvement of sequence convergence in the creation of U{1:1} pairs was discarded due to the frequent conservation of intron positions. Furthermore, an orthology relationship between the two members of each U{1:1} pair was strongly supported by a high conservation in the protein sizes and transcription levels. Within the promoter of the unique conserved genes, we found a number of TATA and TELO boxes that specifically differed from their mean number in the whole genome. Many unique genes have been conserved as unique through evolution from the green alga Ostreococcus lucimarinus to higher plants. Plant unique genes may also have homologs in bacteria and we showed a link between the targeting towards plastids of proteins encoded by plant nuclear unique genes and their homology with a bacterial protein.
Many of the A. thaliana and O. sativa unique genes are conserved in plants for which the ancestor diverged at least 725 million years ago (MYA). Half of these genes are also present in other eukaryotic and/or prokaryotic species. Thus, our results indicate that (i) a strong negative selection pressure has conserved a number of genes as unique in genomes throughout evolution, (ii) most unique genes are subjected to a low divergence rate, (iii) they have some features observed in housekeeping genes but for most of them there is no functional annotation and (iv) they may have an ancient origin involving a possible gene transfer from ancestral chloroplasts or bacteria to the plant nucleus.
PMCID: PMC2576244  PMID: 18847470
11.  Serum neuron-specific enolase as predictor of outcome in comatose cardiac-arrest survivors: a prospective cohort study 
The prediction of neurological outcome in comatose patients after cardiac arrest has major ethical and socioeconomic implications. The purpose of this study was to assess the capability of serum neuron-specific enolase (NSE), a biomarker of hypoxic brain damage, to predict death or vegetative state in comatose cardiac-arrest survivors.
We conducted a prospective observational cohort study in one university hospital and one general hospital Intensive Care Unit (ICU). All consecutive patients who suffered cardiac arrest and were subsequently admitted from June 2007 to February 2009 were considered for inclusion in the study. Patients who died or awoke within the first 48 hours of admission were excluded from the analysis. Patients were followed for 3 months or until death after cardiopulmonary resuscitation. The Cerebral Performance Categories scale (CPC) was used as the outcome measure; a CPC of 4-5 was regarded as a poor outcome, and a CPC of 1-3 a good outcome. Measurement of serum NSE was performed at 24 h and at 72 h after the time of cardiac arrest using an enzyme immunoassay. Clinicians were blinded to NSE results.
Ninety-seven patients were included. All patients were actively supported during the first days following cardiac arrest. Sixty-five patients (67%) underwent cooling after resuscitation. At 3 months 72 (74%) patients had a poor outcome (CPC 4-5) and 25 (26%) a good outcome (CPC 1-3). The median and Interquartile Range [IQR] levels of NSE at 24 h and at 72 h were significantly higher in patients with poor outcomes: NSE at 24 h: 59.4 ng/mL [37-106] versus 28.8 ng/mL [18-41] (p < 0.0001); and NSE at 72 h: 129.5 ng/mL [40-247] versus 15.7 ng/mL [12-19] (p < 0.0001). The Receiver Operator Characteristics (ROC) curve for poor outcome for the highest observed NSE value for each patient determined a cut-off value for NSE of 97 ng/mL to predict a poor neurological outcome with a specificity of 100% [95% CI = 87-100] and a sensitivity of 49% [95% CI = 37-60]. However, an approach based on a combination of SSEPs, NSE and clinical-EEG tests allowed to increase the number of patients (63/72 (88%)) identified as having a poor outcome and for whom intensive treatment could be regarded as futile.
NSE levels measured early in the course of patient care for those who remained comatose after cardiac arrest were significantly higher in patients with outcomes of death or vegetative state. In addition, we provide a cut-off value for NSE (> 97 ng/mL) with 100% positive predictive value of poor outcome. Nevertheless, for decisions concerning the continuation of treatment in this setting, we emphasize that an approach based on a combination of SSEPs, NSE and clinical EEG would be more accurate for identifying patients with a poor neurological outcome.
PMCID: PMC3161948  PMID: 21824428
12.  Haplotype analysis of sucrose synthase gene family in three Saccharum species 
BMC Genomics  2013;14:314.
Sugarcane is an economically important crop contributing about 80% and 40% to the world sugar and ethanol production, respectively. The complicated genetics consequential to its complex polyploid genome, however, have impeded efforts to improve sugar yield and related important agronomic traits. Modern sugarcane cultivars are complex hybrids derived mainly from crosses among its progenitor species, S. officinarum and S. spontanuem, and to a lesser degree, S. robustom. Atypical of higher plants, sugarcane stores its photoassimilates as sucrose rather than as starch in its parenchymous stalk cells. In the sugar biosynthesis pathway, sucrose synthase (SuSy, UDP-glucose: D-fructose 2-a-D-glucosyltransferase, EC is a key enzyme in the regulation of sucrose accumulation and partitioning by catalyzing the reversible conversion of sucrose and UDP into UDP-glucose and fructose. However, little is known about the sugarcane SuSy gene family members and hence no definitive studies have been reported regarding allelic diversity of SuSy gene families in Saccharum species.
We identified and characterized a total of five sucrose synthase genes in the three sugarcane progenitor species through gene annotation and PCR haplotype analysis by analyzing 70 to 119 PCR fragments amplified from intron-containing target regions. We detected all but one (i.e. ScSuSy5) of ScSuSy transcripts in five tissue types of three Saccharum species. The average SNP frequency was one SNP per 108 bp, 81 bp, and 72 bp in S. officinarum, S. robustom, and S. spontanuem respectively. The average shared SNP is 15 between S. officinarum and S. robustom, 7 between S. officinarum and S. spontanuem , and 11 between S. robustom and S. spontanuem. We identified 27, 35, and 32 haplotypes from the five ScSuSy genes in S. officinarum, S. robustom, and S. spontanuem respectively. Also, 12, 11, and 9 protein sequences were translated from the haplotypes in S. officinarum, S. robustom, S. spontanuem, respectively. Phylogenetic analysis showed three separate clusters composed of SbSuSy1 and SbSuSy2, SbSuSy3 and SbSuSy5, and SbSuSy4.
The five members of the SuSy gene family evolved before the divergence of the genera in the tribe Andropogoneae at least 12 MYA. Each ScSuSy gene showed at least one non-synonymous substitution in SNP haplotypes. The SNP frequency is the lowest in S. officinarum, intermediate in S. robustum, and the highest in S. spontaneum, which may reflect the timing of the two rounds of whole genome duplication in these octoploids. The higher rate of shared SNP frequency between S. officinarum and S. robustum than between S. officinarum and in S. spontaneum confirmed that the speciation event separating S. officinarum and S. robustum occurred after their common ancestor diverged from S. spontaneum. The SNP and haplotype frequencies in three Saccharum species provide fundamental information for designing strategies to sequence these autopolyploid genomes.
PMCID: PMC3668173  PMID: 23663250
Sucrose synthase; Haplotype; Single nucleotide polymorphisms; Saccharum officinarum; Saccharum spontaneum; Saccharum robustum
13.  A gene horizontally transferred from bacteria protects arthropods from host plant cyanide poisoning 
eLife  2014;3:e02365.
Cyanogenic glucosides are among the most widespread defense chemicals of plants. Upon plant tissue disruption, these glucosides are hydrolyzed to a reactive hydroxynitrile that releases toxic hydrogen cyanide (HCN). Yet many mite and lepidopteran species can thrive on plants defended by cyanogenic glucosides. The nature of the enzyme known to detoxify HCN to β-cyanoalanine in arthropods has remained enigmatic. Here we identify this enzyme by transcriptome analysis and functional expression. Phylogenetic analysis showed that the gene is a member of the cysteine synthase family horizontally transferred from bacteria to phytophagous mites and Lepidoptera. The recombinant mite enzyme had both β-cyanoalanine synthase and cysteine synthase activity but enzyme kinetics showed that cyanide detoxification activity was strongly favored. Our results therefore suggest that an ancient horizontal transfer of a gene originally involved in sulfur amino acid biosynthesis in bacteria was co-opted by herbivorous arthropods to detoxify plant produced cyanide.
eLife digest
Hydrogen cyanide is a poison that is deadly for most forms of life. Also known as prussic acid, it has killed countless humans throughout history in accidents and during the Holocaust. Hydrogen cyanide is also used by plants to defend themselves against insects and other herbivorous animals.
Many plants produce chemicals called cyanogenic glycosides that can be converted into hydrogen cyanide when the plant is eaten. This is an ancient and efficient defense against all sorts of herbivores, including humans. For instance, cassava is a key source of food in sub-Saharan Africa and South America, but it contains cyanogenic glucosides and is highly toxic if eaten in unprocessed form. However, some insects and mites can thrive on cyanogenic plants, often to the extent of becoming pests on these plants.
Certain moths, such as burnet moths, have gone further and now depend on cyanogenic glucosides for their own defenses against predators such as birds. How these mites and insects are capable of fending off cyanide toxicity has long remained a mystery.
Now Wybouw et al. have identified a mite enzyme that detoxifies hydrogen cyanide to produce a compound called beta-cyanoalanine. Remarkably, the DNA that encodes this enzyme did not evolve in animals but originally belonged to a bacterium. Wybouw et al. show that the gene was transferred to the genome of the spider mite Tetranychus urticae perhaps a few hundred million years ago. An equivalent gene was also found in moths and butterflies, which explains why these insects can thrive on plants that produce hydrogen cyanide.
This lateral gene transfer from bacteria to animals is a remarkable coalition of two kingdoms against another, and illustrates a new aspect of the chemical warfare between plants and animals. This study also increases our awareness of the importance of laterally transferred genes in the genomes of higher organisms.
PMCID: PMC4011162  PMID: 24843024
lateral gene transfer; cyanogenesis; phytophagy; Tetranychus urticae; other
14.  Neuronal markers are expressed in human gliomas and NSE knockdown sensitizes glioblastoma cells to radiotherapy and temozolomide 
BMC Cancer  2011;11:524.
Expression of neuronal elements has been identified in various glial tumors, and glioblastomas (GBMs) with neuronal differentiation patterns have reportedly been associated with longer survival. However, the neuronal class III β-tubulin has been linked to increasing malignancy in astrocytomas. Thus, the significance of neuronal markers in gliomas is not established.
The expressions of class III β-tubulin, neurofilament protein (NFP), microtubule-associated protein 2 (MAP2) and neuron-specific enolase (NSE) were investigated in five GBM cell lines and two GBM biopsies with immunocytochemistry and Western blot. Moreover, the expression levels were quantified by real-time qPCR under different culture conditions. Following NSE siRNA treatment we used Electric cell-substrate impedance sensing (ECIS) to monitor cell growth and migration and MTS assays to study viability after irradiation and temozolomide treatment. Finally, we quantitated NSE expression in a series of human glioma biopsies with immunohistochemistry using a morphometry software, and collected survival data for the corresponding patients. The biopsies were then grouped according to expression in two halves which were compared by survival analysis.
Immunocytochemistry and Western blotting showed that all markers except NFP were expressed both in GBM cell lines and biopsies. Notably, qPCR demonstrated that NSE was upregulated in cellular stress conditions, such as serum-starvation and hypoxia, while we found no uniform pattern for the other markers. NSE knockdown reduced the migration of glioma cells, sensitized them to hypoxia, radio- and chemotherapy. Furthermore, we found that GBM patients in the group with the highest NSE expression lived significantly shorter than patients in the low-expression group.
Neuronal markers are aberrantly expressed in human GBMs, and NSE is consistently upregulated in different cellular stress conditions. Knockdown of NSE reduces the migration of GBM cells and sensitizes them to hypoxia, radiotherapy and chemotherapy. In addition, GBM patients with high NSE expression had significantly shorter survival than patients with low NSE expression. Collectively, these data suggest a role for NSE in the adaption to cellular stress, such as during treatment.
PMCID: PMC3259117  PMID: 22185371
15.  Streptophyte algae and the origin of embryophytes 
Annals of Botany  2009;103(7):999-1004.
Land plants (embryophytes) evolved from streptophyte green algae, a small group of freshwater algae ranging from scaly, unicellular flagellates (Mesostigma) to complex, filamentous thalli with branching, cell differentiation and apical growth (Charales). Streptophyte algae and embryophytes form the division Streptophyta, whereas the remaining green algae are classified as Chlorophyta. The Charales (stoneworts) are often considered to be sister to land plants, suggesting progressive evolution towards cellular complexity within streptophyte green algae. Many cellular (e.g. phragmoplast, plasmodesmata, hexameric cellulose synthase, structure of flagellated cells, oogamous sexual reproduction with zygote retention) and physiological characters (e.g. type of photorespiration, phytochrome system) originated within streptophyte algae.
Recent Progress
Phylogenetic studies have demonstrated that Mesostigma (flagellate) and Chlorokybus (sarcinoid) form the earliest divergence within streptophytes, as sister to all other Streptophyta including embryophytes. The question whether Charales, Coleochaetales or Zygnematales are the sister to embryophytes is still (or, again) hotly debated. Projects to study genome evolution within streptophytes including protein families and polyadenylation signals have been initiated. In agreement with morphological and physiological features, many molecular traits believed to be specific for embryophytes have been shown to predate the Chlorophyta/Streptophyta split, or to have originated within streptophyte algae. Molecular phylogenies and the fossil record allow a detailed reconstruction of the early evolutionary events that led to the origin of true land plants, and shaped the current diversity and ecology of streptophyte green algae and their embryophyte descendants.
The Streptophyta/Chlorophyta divergence correlates with a remarkably conservative preference for freshwater/marine habitats, and the early freshwater adaptation of streptophyte algae was a major advantage for the earliest land plants, even before the origin of the embryo and the sporophyte generation. The complete genomes of a few key streptophyte algae taxa will be required for a better understanding of the colonization of terrestrial habitats by streptophytes.
PMCID: PMC2707909  PMID: 19273476
Chlorophyta; Streptophyta; Embryophyta; Charales; Coleochaetales; Zygnematales; viridiplant phylogeny; land plants; genome evolution; freshwater adaptation; sporophyte origin; diversification; extinction
16.  Phylogenetic analysis, structural evolution and functional divergence of the 12-oxo-phytodienoate acid reductase gene family in plants 
The 12-oxo-phytodienoic acid reductases (OPRs) are enzymes that catalyze the reduction of double-bonds in α, β-unsaturated aldehydes or ketones and are part of the octadecanoid pathway that converts linolenic acid to jasmonic acid. In plants, OPRs belong to the old yellow enzyme family and form multigene families. Although discoveries about this family in Arabidopsis and other species have been reported in some studies, the evolution and function of multiple OPRs in plants are not clearly understood.
A comparative genomic analysis was performed to investigate the phylogenetic relationship, structural evolution and functional divergence among OPR paralogues in plants. In total, 74 OPR genes were identified from 11 species representing the 6 major green plant lineages: green algae, mosses, lycophytes, gymnosperms, monocots and dicots. Phylogenetic analysis showed that seven well-conserved subfamilies exist in plants. All OPR genes from green algae were clustered into a single subfamily, while those from land plants fell into six other subfamilies, suggesting that the events leading to the expansion of the OPR family occurred in land plants. Further analysis revealed that lineage-specific expansion, especially by tandem duplication, contributed to the current OPR subfamilies in land plants after divergence from aquatic plants. Interestingly, exon/intron structure analysis showed that the gene structures of OPR paralogues exhibits diversity in intron number and length, while the intron positions and phase were highly conserved across different lineage species. These observations together with the phylogenetic tree revealed that successive single intron loss, as well as indels within introns, occurred during the process of structural evolution of OPR paralogues. Functional divergence analysis revealed that altered functional constraints have occurred at specific amino acid positions after diversification of the paralogues. Most notably, significant functional divergence was also found in all pairs, except for the II/IV, II/V and V/VI pairs. Strikingly, analysis of the site-specific profiles established by posterior probability revealed that the positive-selection sites and/or critical amino acid residues for functional divergence are mainly distributed in α-helices and substrate binding loop (SBL), indicating the functional importance of these regions for this protein family.
This study highlights the molecular evolution of the OPR gene family in all plant lineages and indicates critical amino acid residues likely relevant for the distinct functional properties of the paralogues. Further experimental verification of these findings may provide valuable information on the OPRs' biochemical and physiological functions.
PMCID: PMC2688005  PMID: 19416520
17.  Improved use of a public good selects for the evolution of undifferentiated multicellularity 
eLife  2013;2:e00367.
We do not know how or why multicellularity evolved. We used the budding yeast, Saccharomyces cerevisiae, to ask whether nutrients that must be digested extracellularly select for the evolution of undifferentiated multicellularity. Because yeast use invertase to hydrolyze sucrose extracellularly and import the resulting monosaccharides, single cells cannot grow at low cell and sucrose concentrations. Three engineered strategies overcame this problem: forming multicellular clumps, importing sucrose before hydrolysis, and increasing invertase expression. We evolved populations in low sucrose to ask which strategy they would adopt. Of 12 successful clones, 11 formed multicellular clumps through incomplete cell separation, 10 increased invertase expression, none imported sucrose, and 11 increased hexose transporter expression, a strategy we had not engineered. Identifying causal mutations revealed genes and pathways, which frequently contributed to the evolved phenotype. Our study shows that combining rational design with experimental evolution can help evaluate hypotheses about evolutionary strategies.
eLife digest
Life first appeared on Earth more than 3 billion years ago in the form of single-celled microorganisms. The diverse array of complex life forms that we see today evolved from these humble beginnings, but it is not clear what triggered the evolution of multicellular organisms from single cells.
One of the simplest multicellular eukaryotes is the yeast, Saccharomyces cerevisiae—a fungus that has been used for centuries in baking and brewing and, more recently, as a model organism in molecular biology. Yeast cells feed on sugar (sucrose), but are unable to absorb it directly from their surroundings. Instead they secrete an enzyme called invertase, which breaks down the sucrose into simpler components that cells can take up with the help of sugar transporters.
However, single yeast cells living in a low-sucrose environment face a problem: most of the simple sugars that they produce diffuse out of reach. To overcome this difficulty, the cells could form multicellular clumps, which would enable each cell to consume the sugars that drift away from its neighbours. Alternatively, the cells could increase their production of invertase, or they could begin to take up sucrose directly.
Using genetic engineering, Koschwanez et al. produced three strains of yeast, each with one of these traits, and confirmed that all three strategies do indeed help fungi to grow in low sucrose. But could any of these traits evolve spontaneously? To test this possibility, Koschwanez et al. introduced wild-type yeast cells into a low-sucrose environment and studied any populations of cells that managed to survive. Of 12 that did, 11 had acquired the ability to form multicellular clumps, while 10 had increased their expression of invertase. Surprisingly, none had evolved the ability to import sucrose. However, 11 of the populations that survived also displayed an adaptation that the researchers had not predicted beforehand: they all expressed higher levels of the sugar transporters that take up sucrose breakdown products.
The work of Koschwanez et al. suggests that the benefits of being able to share invertase and, therefore, simple sugars, may have driven the evolution of multicellularity in ancient organisms. Moreover, their use of rational design (engineered mutations) combined with experimental evolution (allowing colonies to grow under selection pressure and studying the strategies that they adopt) offers a new approach to studying evolution in the lab.
PMCID: PMC3614033  PMID: 23577233
Multicellularity; Experimental evolution; Evolution of cooperation; S. cerevisiae
18.  Correlation of Brain Biomarker Neuron Specific Enolase (NSE) with Degree of Disability and Neurological Worsening in Cerebrovascular Stroke 
Stroke is the third major cause of death and foremost cause of disability worldwide. Cerebrovascular stroke remains largely a clinical diagnosis. The use of biomarkers in diagnosing stroke and assessing prognosis is an emerging and rapidly evolving field. The study aimed to investigate the predictive value of neurobiochemical marker of brain damage (neuron-specific enolase [NSE]) with respect to degree of disability at the time of admission and neurological worsening in acute ischemic stroke patients. We investigated 150 patients with cerebrovascular stroke who were admitted within 72 h of onset of stroke in the Department of Neurology at SAIMS. Venous blood samples were taken after admission and NSE was analyzed by solid enzyme linked immunosorbent assay using Analyzer and microplate reader from Biored: Code 680. In all patients, the neurological status was evaluated by a standardized neurological examination and the National Institutes of Health Stroke Scale on admission and on day 7. Serum NSE concentration was found to significantly correlate with both degree of disability and neurological worsening in acute ischemic stroke cases in the present study. The maximum serum NSE level within 72 h of admission was significantly higher in patients with greater degree of disability at the time of admission. Serum NSE levels were also found to be significantly elevated in patients with bad neurological outcome. Our study showed that serum NSE has high predictive value for determining severity and early neurobehavioral outcome after acute stroke.
PMCID: PMC3358374  PMID: 23542317
Ischemic stroke; Neuron specific enolase (NSE); National Institute of Health Stroke Scale (NIHSS); Degree of disability; Neurological worsening
19.  Algal MIPs, high diversity and conserved motifs 
Major intrinsic proteins (MIPs) also named aquaporins form channels facilitating the passive transport of water and other small polar molecules across membranes. MIPs are particularly abundant and diverse in terrestrial plants but little is known about their evolutionary history. In an attempt to investigate the origin of the plant MIP subfamilies, genomes of chlorophyte algae, the sister group of charophyte algae and land plants, were searched for MIP encoding genes.
A total of 22 MIPs were identified in the nine analysed genomes and phylogenetic analyses classified them into seven subfamilies. Two of these, Plasma membrane Intrinsic Proteins (PIPs) and GlpF-like Intrinsic Proteins (GIPs), are also present in land plants and divergence dating support a common origin of these algal and land plant MIPs, predating the evolution of terrestrial plants. The subfamilies unique to algae were named MIPA to MIPE to facilitate the use of a common nomenclature for plant MIPs reflecting phylogenetically stable groups. All of the investigated genomes contained at least one MIP gene but only a few species encoded MIPs belonging to more than one subfamily.
Our results suggest that at least two of the seven subfamilies found in land plants were present already in an algal ancestor. The total variation of MIPs and the number of different subfamilies in chlorophyte algae is likely to be even higher than that found in land plants. Our analyses indicate that genetic exchanges between several of the algal subfamilies have occurred. The PIP1 and PIP2 groups and the Ca2+ gating appear to be specific to land plants whereas the pH gating is a more ancient characteristic shared by all PIPs. Further studies are needed to discern the function of the algal specific subfamilies MIPA-E and to fully understand the evolutionary relationship of algal and terrestrial plant MIPs.
PMCID: PMC3111385  PMID: 21510875
20.  Evolution of plant senescence 
Senescence is integral to the flowering plant life-cycle. Senescence-like processes occur also in non-angiosperm land plants, algae and photosynthetic prokaryotes. Increasing numbers of genes have been assigned functions in the regulation and execution of angiosperm senescence. At the same time there has been a large expansion in the number and taxonomic spread of plant sequences in the genome databases. The present paper uses these resources to make a study of the evolutionary origins of angiosperm senescence based on a survey of the distribution, across plant and microbial taxa, and expression of senescence-related genes.
Phylogeny analyses were carried out on protein sequences corresponding to genes with demonstrated functions in angiosperm senescence. They include proteins involved in chlorophyll catabolism and its control, homeoprotein transcription factors, metabolite transporters, enzymes and regulators of carotenoid metabolism and of anthocyanin biosynthesis. Evolutionary timelines for the origins and functions of particular genes were inferred from the taxonomic distribution of sequences homologous to those of angiosperm senescence-related proteins. Turnover of the light energy transduction apparatus is the most ancient element in the senescence syndrome. By contrast, the association of phenylpropanoid metabolism with senescence, and integration of senescence with development and adaptation mediated by transcription factors, are relatively recent innovations of land plants. An extended range of senescence-related genes of Arabidopsis was profiled for coexpression patterns and developmental relationships and revealed a clear carotenoid metabolism grouping, coordinated expression of genes for anthocyanin and flavonoid enzymes and regulators and a cluster pattern of genes for chlorophyll catabolism consistent with functional and evolutionary features of the pathway.
The expression and phylogenetic characteristics of senescence-related genes allow a framework to be constructed of decisive events in the evolution of the senescence syndrome of modern land-plants. Combining phylogenetic, comparative sequence, gene expression and morphogenetic information leads to the conclusion that biochemical, cellular, integrative and adaptive systems were progressively added to the ancient primary core process of senescence as the evolving plant encountered new environmental and developmental contexts.
PMCID: PMC2716323  PMID: 19602260
21.  Identification of an l-Rhamnose Synthetic Pathway in Two Nucleocytoplasmic Large DNA Viruses▿  
Journal of Virology  2010;84(17):8829-8838.
Nucleocytoplasmic large DNA viruses (NCLDVs) are characterized by large genomes that often encode proteins not commonly found in viruses. Two species in this group are Acanthocystis turfacea chlorella virus 1 (ATCV-1) (family Phycodnaviridae, genus Chlorovirus) and Acanthamoeba polyphaga mimivirus (family Mimiviridae), commonly known as mimivirus. ATCV-1 and other chlorovirus members encode enzymes involved in the synthesis and glycosylation of their structural proteins. In this study, we identified and characterized three enzymes responsible for the synthesis of the sugar l-rhamnose: two UDP-d-glucose 4,6-dehydratases (UGDs) encoded by ATCV-1 and mimivirus and a bifunctional UDP-4-keto-6-deoxy-d-glucose epimerase/reductase (UGER) from mimivirus. Phylogenetic analysis indicated that ATCV-1 probably acquired its UGD gene via a recent horizontal gene transfer (HGT) from a green algal host, while an earlier HGT event involving the complete pathway (UGD and UGER) probably occurred between a protozoan ancestor and mimivirus. While ATCV-1 lacks an epimerase/reductase gene, its Chlorella host may encode this enzyme. Both UGDs and UGER are expressed as late genes, which is consistent with their role in posttranslational modification of capsid proteins. The data in this study provide additional support for the hypothesis that chloroviruses, and maybe mimivirus, encode most, if not all, of the glycosylation machinery involved in the synthesis of specific glycan structures essential for virus replication and infection.
PMCID: PMC2918987  PMID: 20538863
22.  The cellulose synthase superfamily in fully sequenced plants and algae 
BMC Plant Biology  2009;9:99.
The cellulose synthase superfamily has been classified into nine cellulose synthase-like (Csl) families and one cellulose synthase (CesA) family. The Csl families have been proposed to be involved in the synthesis of the backbones of hemicelluloses of plant cell walls. With 17 plant and algal genomes fully sequenced, we sought to conduct a genome-wide and systematic investigation of this superfamily through in-depth phylogenetic analyses.
A single-copy gene is found in the six chlorophyte green algae, which is most closely related to the CslA and CslC families that are present in the seven land plants investigated in our analyses. Six proteins from poplar, grape and sorghum form a distinct family (CslJ), providing further support for the conclusions from two recent studies. CslB/E/G/H/J families have evolved significantly more rapidly than their widely distributed relatives, and tend to have intragenomic duplications, in particular in the grape genome.
Our data suggest that the CslA and CslC families originated through an ancient gene duplication event in land plants. We speculate that the single-copy Csl gene in green algae may encode a mannan synthase. We confirm that the rest of the Csl families have a different evolutionary origin than CslA and CslC, and have proposed a model for the divergence order among them. Our study provides new insights about the evolution of this important gene family in plants.
PMCID: PMC3091534  PMID: 19646250
23.  Evolutionary Origins of the Eukaryotic Shikimate Pathway: Gene Fusions, Horizontal Gene Transfer, and Endosymbiotic Replacements†  
Eukaryotic Cell  2006;5(9):1517-1531.
Currently the shikimate pathway is reported as a metabolic feature of prokaryotes, ascomycete fungi, apicomplexans, and plants. The plant shikimate pathway enzymes have similarities to prokaryote homologues and are largely active in chloroplasts, suggesting ancestry from the plastid progenitor genome. Toxoplasma gondii, which also possesses an alga-derived plastid organelle, encodes a shikimate pathway with similarities to ascomycete genes, including a five-enzyme pentafunctional arom. These data suggests that the shikimate pathway and the pentafunctional arom either had an ancient origin in the eukaryotes or was conveyed by eukaryote-to-eukaryote horizontal gene transfer (HGT). We expand sampling and analyses of the shikimate pathway genes to include the oomycetes, ciliates, diatoms, basidiomycetes, zygomycetes, and the green and red algae. Sequencing of cDNA from Tetrahymena thermophila confirmed the presence of a pentafused arom, as in fungi and T. gondii. Phylogenies and taxon distribution suggest that the arom gene fusion event may be an ancient eukaryotic innovation. Conversely, the Plantae lineage (represented here by both Viridaeplantae and the red algae) acquired different prokaryotic genes for all seven steps of the shikimate pathway. Two of the phylogenies suggest a derivation of the Plantae genes from the cyanobacterial plastid progenitor genome, but if the full Plantae pathway was originally of cyanobacterial origin, then the five other shikimate pathway genes were obtained from a minimum of two other eubacterial genomes. Thus, the phylogenies demonstrate both separate HGTs and shared derived HGTs within the Plantae clade either by primary HGT transfer or secondarily via the plastid progenitor genome. The shared derived characters support the holophyly of the Plantae lineage and a single ancestral primary plastid endosymbiosis. Our analyses also pinpoints a minimum of 50 gene/domain loss events, demonstrating that loss and replacement events have been an important process in eukaryote genome evolution.
PMCID: PMC1563581  PMID: 16963634
24.  Multiple Inter-Kingdom Horizontal Gene Transfers in the Evolution of the Phosphoenolpyruvate Carboxylase Gene Family 
PLoS ONE  2012;7(12):e51159.
Pepcase is a gene encoding phosphoenolpyruvate carboxylase that exists in bacteria, archaea and plants,playing an important role in plant metabolism and development. Most plants have two or more pepcase genes belonging to two gene sub-families, while only one gene exists in other organisms. Previous research categorized one plant pepcase gene as plant-type pepcase (PTPC) while the other as bacteria-type pepcase (BTPC) because of its similarity with the pepcase gene found in bacteria. Phylogenetic reconstruction showed that PTPC is the ancestral lineage of plant pepcase, and that all bacteria, protistpepcase and BTPC in plants are derived from a lineage of pepcase closely related with PTPC in algae. However, their phylogeny contradicts the species tree and traditional chronology of organism evolution. Because the diversification of bacteria occurred much earlier than the origin of plants, presumably all bacterialpepcase derived from the ancestral PTPC of algal plants after divergingfrom the ancestor of vascular plant PTPC. To solve this contradiction, we reconstructed the phylogeny of pepcase gene family. Our result showed that both PTPC and BTPC are derived from an ancestral lineage of gamma-proteobacteriapepcases, possibly via an ancient inter-kingdom horizontal gene transfer (HGT) from bacteria to the eukaryotic common ancestor of plants, protists and cellular slime mold. Our phylogenetic analysis also found 48other pepcase genes originated from inter-kingdom HGTs. These results imply that inter-kingdom HGTs played important roles in the evolution of the pepcase gene family and furthermore that HGTsare a more frequent evolutionary event than previouslythought.
PMCID: PMC3521007  PMID: 23251445
25.  Evolution of land plant genes encoding L-Ala-D/L-Glu epimerases (AEEs) via horizontal gene transfer and positive selection 
BMC Plant Biology  2013;13:34.
The L-Ala-D/L-Glu epimerases (AEEs), a subgroup of the enolase superfamily, catalyze the epimerization of L-Ala-D/L-Glu and other dipeptides in bacteria and contribute to the metabolism of the murein peptide of peptidoglycan. Although lacking in peptidoglycan, land plants possess AEE genes that show high similarity to those in bacteria.
Similarity searches revealed that the AEE gene is ubiquitous in land plants, from bryophytas to angiosperms. However, other eukaryotes, including green and red algae, do not contain genes encoding proteins with an L-Ala-D/L-Glu_epimerase domain. Homologs of land plant AEE genes were found to only be present in prokaryotes, especially in bacteria. Phylogenetic analysis revealed that the land plant AEE genes formed a monophyletic group with some bacterial homologs. In addition, land plant AEE proteins showed the highest similarity with these bacterial homologs and shared motifs only conserved in land plant and these bacterial AEEs. Integrated information on the taxonomic distribution, phylogenetic relationships and sequence similarity of the AEE proteins revealed that the land plant AEE genes were acquired from bacteria through an ancient horizontal gene transfer (HGT) event. Further evidence revealed that land plant AEE genes had undergone positive selection and formed the main characteristics of exon/intron structures through gaining some introns during the initially evolutionary period in the ancestor of land plants.
The results of this study clearly demonstrated that the ancestor of land plants acquired an AEE gene from bacteria via an ancient HGT event. Other findings illustrated that adaptive evolution through positive selection has contributed to the functional adaptation and fixation of this gene in land plants.
PMCID: PMC3605383  PMID: 23452519
Land plants; L-Ala-D/L-Glu epimerase; Horizontal gene transfer; Bacteria

Results 1-25 (1183924)