PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (610024)

Clipboard (0)
None

Related Articles

1.  Distinct metabolic effects following short-term exposure of different high-fat diets in male and female mice 
Endocrine journal  2014;61(5):457-470.
Obesity-associated hepatic lipid accumulation and chronic low-grade inflammation lead to metabolic defects. Saturated fatty acids (SFA) are a risk factor for, whereas unsaturated fatty acids (UFA) are thought to be protective against, developing metabolic diseases. Sex differences exist in the regulation of metabolism. We tested the hypothesis that diets high in SFA, mono-UFA (MUFA), or poly-UFA (PUFA) had early, sex-distinct effects that differentially contribute to long-term metabolic disturbance such as fatty liver and insulin resistance. Metabolic changes including body and fat mass, circulating leptin and glucose levels, plasma lipid profile, hepatic lipid accumulation, expression levels of genes related to lipid metabolism and low-grade inflammation, and tissue insulin sensitivity were compared between male and female mice fed with a low-fat chow, or high-fat SFA, MUFA, or PUFA for a short period of four days. SFA and MUFA males increased adiposity associated with increased liver lipid accumulation and rapid activation of inflammation in adipose and muscle tissues, whereas PUFA males did not show lipid accumulation or tissue inflammation compared to chow males. All SFA and UFA males displayed tissue insulin resistance. In contrast, female high-fat diet groups had normal liver lipid content and maintained tissue insulin sensitivity without showing tissue inflammation. Therefore, sex differences existed during early phase of development of metabolic dysfunction. The beneficial effects of PUFA, but not MUFA, were corroborated in protection of obesity, hyperlipidemia, fatty liver, and low-grade inflammation. The benefit of MUFA and PUFA in maintaining tissue insulin sensitivity in males, however, was questioned.
PMCID: PMC4045093  PMID: 24646677
sex difference; de novo lipogenesis; β-oxidation; insulin sensitivity; low-grade inflammation
2.  The lipogenic transcription factor ChREBP dissociates hepatic steatosis from insulin resistance in mice and humans 
The Journal of Clinical Investigation  2012;122(6):2176-2194.
Nonalcoholic fatty liver disease (NAFLD) is associated with all features of the metabolic syndrome. Although deposition of excess triglycerides within liver cells, a hallmark of NAFLD, is associated with a loss of insulin sensitivity, it is not clear which cellular abnormality arises first. We have explored this in mice overexpressing carbohydrate responsive element–binding protein (ChREBP). On a standard diet, mice overexpressing ChREBP remained insulin sensitive, despite increased expression of genes involved in lipogenesis/fatty acid esterification and resultant hepatic steatosis (simple fatty liver). Lipidomic analysis revealed that the steatosis was associated with increased accumulation of monounsaturated fatty acids (MUFAs). In primary cultures of mouse hepatocytes, ChREBP overexpression induced expression of stearoyl-CoA desaturase 1 (Scd1), the enzyme responsible for the conversion of saturated fatty acids (SFAs) into MUFAs. SFA impairment of insulin-responsive Akt phosphorylation was therefore rescued by the elevation of Scd1 levels upon ChREBP overexpression, whereas pharmacological or shRNA-mediated reduction of Scd1 activity decreased the beneficial effect of ChREBP on Akt phosphorylation. Importantly, ChREBP-overexpressing mice fed a high-fat diet showed normal insulin levels and improved insulin signaling and glucose tolerance compared with controls, despite having greater hepatic steatosis. Finally, ChREBP expression in liver biopsies from patients with nonalcoholic steatohepatitis was increased when steatosis was greater than 50% and decreased in the presence of severe insulin resistance. Together, these results demonstrate that increased ChREBP can dissociate hepatic steatosis from insulin resistance, with beneficial effects on both glucose and lipid metabolism.
doi:10.1172/JCI41636
PMCID: PMC3366390  PMID: 22546860
3.  Comparative Evaluation of Whole Body and Hepatic Insulin Resistance Using Indices from Oral Glucose Tolerance Test in Morbidly Obese Subjects with Nonalcoholic Fatty Liver Disease 
Journal of Obesity  2010;2010:741521.
Nonalcoholic Fatty Liver Disease (NAFLD) is the hepatic manifestation of metabolic syndrome and is a marker of Insulin Resistance (IR). Euglycemic-hyperinsulinemic clamp is the gold standard for measuring whole body IR (hepatic + peripheral IR). However, it is an invasive and expensive procedure. Homeostasis Model Assessment Index for Insulin Sensitivity (HOMA-IS), Quantitative Insulin Sensitivity Check Index (QUICKI) for hepatic IR and Insulin Sensitivity Index (ISI0,120), and Whole Body Insulin Sensitivity Index (WBISI) for whole body IR are the indices calculated after Oral Glucose Tolerance Test (OGTT). We used these indices as noninvasive methods of IR (inverse of insulin sensitivity) estimation and compared hepatic/peripheral components of whole body IR in NAFLD. Methods. 113 morbidly obese, nondiabetic subjects who underwent gastric bypass surgery and intraoperative liver biopsy were included in the study. OGTT was performed preoperatively and the indices were calculated. Subjects were divided into closely matched groups as normal, fatty liver (FL) and Non-Alcoholic Steatohepatitis (NASH) based on histology. Results. Whole body IR was significantly higher in both FL and NASH groups (NAFLD) as compared to Normal, while hepatic IR was higher only in NASH from Normal. Conclusions. FL is a manifestation of peripheral IR but not hepatic IR.
doi:10.1155/2010/741521
PMCID: PMC2925212  PMID: 20798875
4.  Effects of insulin resistance and hepatic lipid accumulation on hepatic mRNA expression levels of apoB, MTP and L-FABP in non-alcoholic fatty liver disease 
Non-alcoholic fatty liver disease (NAFLD) is considered a hepatic manifestation of metabolic syndrome, which is known to be associated with insulin resistance (IR). NAFLD occurs when the rate of hepatic fatty acid uptake from plasma and de novo fatty acid synthesis is greater than the rate of fatty acid oxidation and excretion as very low-density lipoprotein (VLDL). To estimate the effects of IR on hepatic lipid excretion, mRNA expression levels of genes involved in VLDL assembly were analyzed in NAFLD liver. Twenty-two histologically proven NAFLD patients and 10 healthy control subjects were enrolled in this study. mRNA was extracted from liver biopsy samples and real-time PCR was performed to quantify the expression levels of apolipoprotein B (apoB), microsomal triglyceride transfer protein (MTP) and liver fatty-acid binding protein (L-FABP). Hepatic expression levels of the genes were compared between NAFLD patients and control subjects. In NAFLD patients, we also examined correlations between expression levels of the genes and metabolic factors, including IR, and the extent of obesity and hepatic lipid accumulation. Hepatic expression levels of apoB, MTP and L-FABP were significantly up-regulated in NAFLD patients compared to control subjects. The expression levels of MTP were correlated with those of apoB, but not with those of L-FABP. In the NAFLD liver, the expression levels of MTP were significantly reduced in patients with HOMA-IR >2.5. In addition, a significant reduction in MTP expression was observed in livers with advanced steatosis. Enhanced expression of genes involved in VLDL assembly may be promoted to release excess lipid from NAFLD livers. However, the progression of IR and hepatic steatosis may attenuate this compensatory process.
doi:10.3892/etm.2011.328
PMCID: PMC3440820  PMID: 22977624
apolipoprotein B; fatty-acid binding protein; homeostasis model assessment of insulin resistance; microsomal triglyceride transfer protein; non-alcoholic fatty liver disease; very low-density lipoprotein
5.  Enhancement of Muscle Mitochondrial Oxidative Capacity and Alterations in Insulin Action Are Lipid Species Dependent 
Diabetes  2009;58(11):2547-2554.
OBJECTIVE
Medium-chain fatty acids (MCFAs) have been reported to be less obesogenic than long-chain fatty acids (LCFAs); however, relatively little is known regarding their effect on insulin action. Here, we examined the tissue-specific effects of MCFAs on lipid metabolism and insulin action.
RESEARCH DESIGN AND METHODS
C57BL6/J mice and Wistar rats were fed either a low-fat control diet or high-fat diets rich in MCFAs or LCFAs for 4–5 weeks, and markers of mitochondrial oxidative capacity, lipid levels, and insulin action were measured.
RESULTS
Mice fed the MCFA diet displayed reduced adiposity and better glucose tolerance than LCFA-fed animals. In skeletal muscle, triglyceride levels were increased by the LCFA diet (77%, P < 0.01) but remained at low-fat diet control levels in the MCFA-fed animals. The LCFA diet increased (20–50%, P < 0.05) markers of mitochondrial metabolism in muscle compared with low-fat diet–fed controls; however; the increase in oxidative capacity was substantially greater in MCFA-fed animals (50–140% versus low-fat–fed controls, P < 0.01). The MCFA diet induced a greater accumulation of liver triglycerides than the LCFA diet, likely due to an upregulation of several lipogenic enzymes. In rats, isocaloric feeding of MCFA or LCFA high-fat diets induced hepatic insulin resistance to a similar degree; however, insulin action was preserved at the level of low-fat diet–fed controls in muscle and adipose from MCFA-fed animals.
CONCLUSIONS
MCFAs reduce adiposity and preserve insulin action in muscle and adipose, despite inducing steatosis and insulin resistance in the liver. Dietary supplementation with MCFAs may therefore be beneficial for preventing obesity and peripheral insulin resistance.
doi:10.2337/db09-0784
PMCID: PMC2768163  PMID: 19720794
6.  Liver, Muscle and Adipose Tissue Insulin Action is Directly Related to Intrahepatic Triglyceride Content in Obese Subjects 
Gastroenterology  2008;134(5):1369-1375.
Background & Aims
Nonalcoholic fatty liver disease is associated with insulin resistance and diabetes. The purpose of this study was to determine the relationship between intrahepatic triglyceride (IHTG) content and insulin action in liver (suppression of glucose dioduction), skeletal muscle (stimulation of glucose uptake) and adipose tissue (suppression of lipolysis) in non-diabetic, obese subjects.
Methods
A euglycemic-hyperinsulinemic clamp procedure and stable isotopically labeled tracer infusions were used to assess insulin action, and magnetic resonance spectroscopy was used to determine IHTG content, in 42 non-diabetic, obese subjects (BMI 36±4 kg/m2) who had a wide range of IHTG content (1%−46%).
Results
Hepatic insulin sensitivity, assessed as a function of glucose production rate and plasma insulin concentration, was inversely correlated with IHTG content (r=−0.599; P<0.001). The ability of insulin to suppress the release of fatty acids from adipose tissue and to stimulate glucose uptake by skeletal muscle were also inversely correlated with IHTG content (adipose tissue: r=−0.590; P<0.001; skeletal muscle: r=−0.656; P<0.001). Multivariate linear regression analyses found that IHTG content was the best predictor of insulin action in liver, skeletal muscle and adipose tissue, independent of BMI and percent body fat, and accounted for 34%, 42%, and 44% of the variability in these tissues, respectively (P< 0.001 for each model).
Conclusions
These results demonstrate that progressive increases in IHTG content are associated with progressive impairment of insulin action in liver, skeletal muscle and adipose tissue in non-diabetic, obese subjects. Therefore, NAFLD should be considered part of a multi-organ system derangement in insulin sensitivity.
doi:10.1053/j.gastro.2008.01.07
PMCID: PMC2629391  PMID: 18355813
7.  Mitochondrial dysfunction precedes insulin resistance and hepatic steatosis and contributes to the natural history of non-alcoholic fatty liver disease in an obese rodent model 
Journal of hepatology  2010;52(5):727-736.
Background & Aims
In this study, we sought to determine the temporal relationship between hepatic mitochondrial dysfunction, hepatic steatosis and insulin resistance, and to examine their potential role in the natural progression of non-alcoholic fatty liver disease (NAFLD) utilising a sedentary, hyperphagic, obese, Otsuka Long–Evans Tokushima Fatty (OLETF) rat model.
Methods
OLETF rats and their non-hyperphagic control Long–Evans Tokushima Otsuka (LETO) rats were sacrificed at 5, 8, 13, 20, and 40 weeks of age (n = 6–8 per group).
Results
At 5 weeks of age, serum insulin and glucose and hepatic triglyceride (TG) concentrations did not differ between animal groups; however, OLETF animals displayed significant (p < 0.01) hepatic mitochondrial dysfunction as measured by reduced hepatic carnitine palmitoyl-CoA transferase-1 activity, fatty acid oxidation, and cytochrome c protein content compared with LETO rats. Hepatic TG levels were significantly elevated by 8 weeks of age, and insulin resistance developed by 13 weeks in the OLETF rats. NAFLD progressively worsened to include hepatocyte ballooning, perivenular fibrosis, 2.5-fold increase in serum ALT, hepatic mitochondrial ultrastructural abnormalities, and increased hepatic oxidative stress in the OLETF animals at later ages. Measures of hepatic mitochondrial content and function including β-hydroxyacyl-CoA dehydrogenase activity, citrate synthase activity, and immunofluorescence staining for mitochondrial carbamoyl phosphate synthetase-1, progressively worsened and were significantly reduced at 40 weeks in OLETF rats compared to LETO animals.
Conclusions
Our study documents that hepatic mitochondrial dysfunction precedes the development of NAFLD and insulin resistance in the OLETF rats. This evidence suggests that progressive mitochondrial dysfunction contributes to the natural history of obesity-associated NAFLD.
doi:10.1016/j.jhep.2009.11.030
PMCID: PMC3070177  PMID: 20347174
Non-alcoholic fatty liver disease; Fatty acid oxidation; Mitochondrial dysfunction; OLETF rat
8.  Metformin Ameliorates Hepatic Steatosis and Inflammation without Altering Adipose Phenotype in Diet-Induced Obesity 
PLoS ONE  2014;9(3):e91111.
Non-alcoholic fatty liver disease (NAFLD) is closely associated with obesity and insulin resistance. To better understand the pathophysiology of obesity-associated NAFLD, the present study examined the involvement of liver and adipose tissues in metformin actions on reducing hepatic steatosis and inflammation during obesity. C57BL/6J mice were fed a high-fat diet (HFD) for 12 weeks to induce obesity-associated NAFLD and treated with metformin (150 mg/kg/d) orally for the last four weeks of HFD feeding. Compared with HFD-fed control mice, metformin-treated mice showed improvement in both glucose tolerance and insulin sensitivity. Also, metformin treatment caused a significant decrease in liver weight, but not adiposity. As indicated by histological changes, metformin treatment decreased hepatic steatosis, but not the size of adipocytes. In addition, metformin treatment caused an increase in the phosphorylation of liver AMP-activated protein kinase (AMPK), which was accompanied by an increase in the phosphorylation of liver acetyl-CoA carboxylase and decreases in the phosphorylation of liver c-Jun N-terminal kinase 1 (JNK1) and in the mRNA levels of lipogenic enzymes and proinflammatory cytokines. However, metformin treatment did not significantly alter adipose tissue AMPK phosphorylation and inflammatory responses. In cultured hepatocytes, metformin treatment increased AMPK phosphorylation and decreased fat deposition and inflammatory responses. Additionally, in bone marrow-derived macrophages, metformin treatment partially blunted the effects of lipopolysaccharide on inducing the phosphorylation of JNK1 and nuclear factor kappa B (NF-κB) p65 and on increasing the mRNA levels of proinflammatory cytokines. Taken together, these results suggest that metformin protects against obesity-associated NAFLD largely through direct effects on decreasing hepatocyte fat deposition and on inhibiting inflammatory responses in both hepatocytes and macrophages.
doi:10.1371/journal.pone.0091111
PMCID: PMC3956460  PMID: 24638078
9.  Membrane Synthesis, Specific Lipid Requirements, and Localized Lipid Composition Changes Associated with a Positive-Strand RNA Virus RNA Replication Protein 
Journal of Virology  2003;77(23):12819-12828.
Multifunctional RNA replication protein 1a of brome mosaic virus (BMV), a positive-strand RNA virus, localizes to the cytoplasmic face of endoplasmic reticulum (ER) membranes and induces ER lumenal spherules in which viral RNA synthesis occurs. We previously showed that BMV RNA replication in yeast is severely inhibited prior to negative-strand RNA synthesis by a single-amino-acid substitution in the ole1w allele of yeast Δ9 fatty acid (FA) desaturase, which converts saturated FAs (SFAs) to unsaturated FAs (UFAs). Here we further define the relationships between 1a, membrane lipid composition, and RNA synthesis. We show that 1a expression increases total membrane lipids in wild-type (wt) yeast by 25 to 33%, consistent with recent results indicating that the numerous 1a-induced spherules are enveloped by invaginations of the outer ER membrane. 1a did not alter total membrane lipid composition in wt or ole1w yeast, but the ole1w mutation selectively depleted 18-carbon, monounsaturated (18:1) FA chains and increased 16:0 SFA chains, reducing the UFA-to-SFA ratio from ∼2.5 to ∼1.5. Thus, ole1w inhibition of RNA replication was correlated with decreased levels of UFA, membrane fluidity, and plasticity. The ole1w mutation did not alter 1a-induced membrane synthesis, 1a localization to the perinuclear ER, or colocalization of BMV 2a polymerase, nor did it block spherule formation. Moreover, BMV RNA replication templates were still recovered from cell lysates in a 1a-induced, 1a- and membrane-associated, and nuclease-resistant but detergent-susceptible state consistent with spherules. However, unlike nearby ER membranes, the membranes surrounding spherules in ole1w cells were not distinctively stained with osmium tetroxide, which interacts specifically with UFA double bonds. Thus, in ole1w cells, spherule-associated membranes were locally depleted in UFAs. This localized UFA depletion helps to explain why BMV RNA replication is more sensitive than cell growth to reduced UFA levels. The results imply that 1a preferentially interacts with one or more types of membrane lipids.
doi:10.1128/JVI.77.23.12819-12828.2003
PMCID: PMC262592  PMID: 14610203
10.  Postprandial triglyceride-rich lipoproteins induce hepatic insulin resistance in HepG2 cells independently of their receptor-mediated cellular uptake 
Highlights
► The pathophysiological link between NAFLD and hepatic insulin resistance is unknown. ► We studied the effect of postprandial lipoproteins on hepatic insulin sensitivity. ► Postprandial lipoproteins cause liver steatosis and hepatic insulin resistance. ► We characterize the underlying molecular mechanisms. ► Postprandial lipoproteins are a link between NAFLD and hepatic insulin resistance.
Non-alcoholic fatty liver disease (NAFLD) is associated with hepatic insulin resistance with the molecular basis of this association being not well understood. Here we studied the effect of hepatic triglyceride accumulation induced by postprandial triglyceride-rich lipoproteins (TGRL) on hepatic insulin sensitivity in HepG2 cells. Incubation of HepG2 cells with purified TGRL particles induced hepatocellular triglyceride accumulation paralleled by diminished insulin-stimulated glycogen content and glycogen synthase activity. Accordingly, insulin-induced inhibition of glycogen synthase phosphorylation as well as insulin-induced GSK-3 and AKT phosphorylation were reduced by TGRL. The effects of TGRL were dependent on the presence of apolipoproteins and more pronounced for denser TGRL. Moreover, TGRL effects required the presence of heparan sulfate-proteoglycans on the cell membrane and lipase activity but were independent of the cellular uptake of TGRL particles by receptors of the LDL receptor family. We suggest postprandial lipemia to be an important factor in the pathogenesis of NAFLD.
doi:10.1016/j.mce.2011.06.008
PMCID: PMC3167371  PMID: 21704120
BMI, body mass index; DAPI, 4′,6-diamidino-2-phenylindole; DMEM, dulbeccos minimal essential media; FCS, fetal calf serum; GS, glycogen synthase; GSK-3, glycogen synthase kinase 3; HL, hepatic lipase; HOMA-IR, homeostasis model assessment of insulin resistance; HSPG, heparan sulfate proteoglycans; LPL, lipoprotein lipase; LRP, LDL-receptor-related protein; NAFLD, non-alcoholic fatty liver disease; PBS, phosphate buffered saline; RAP, receptor-associated protein; ROS, reactive oxygen species; Sf, Svedberg flotation rate; TGRL, triglyceride-rich lipoproteins; THL, tetrahydrolipstatin; Glucose metabolism; Hepatic insulin resistance; Insulin signaling; Liver steatosis; Postprandial lipemia
11.  Obstructive Sleep Apnea and Non-Alcoholic Fatty Liver Disease: Is the Liver Another Target? 
Obstructive sleep apnea (OSA) is recurrent obstruction of the upper airway during sleep leading to intermittent hypoxia (IH). OSA has been associated with all components of the metabolic syndrome as well as with non-alcoholic fatty liver disease (NAFLD). NAFLD is a common condition ranging in severity from uncomplicated hepatic steatosis to steatohepatitis (NASH), liver fibrosis, and cirrhosis. The gold standard for the diagnosis and staging of NAFLD is liver biopsy. Obesity and insulin resistance lead to liver steatosis, but the causes of the progression to NASH are not known. Emerging evidence suggests that OSA may play a role in the progression of hepatic steatosis and the development of NASH. Several cross-sectional studies showed that the severity of IH in patients with OSA predicted the severity of NAFLD on liver biopsy. However, neither prospective nor interventional studies with continuous positive airway pressure treatment have been performed. Studies in a mouse model showed that IH causes triglyceride accumulation in the liver and liver injury as well as hepatic inflammation. The mouse model provided insight in the pathogenesis of liver injury showing that (1) IH accelerates the progression of hepatic steatosis by inducing adipose tissue lipolysis and increasing free fatty acids (FFA) flux into the liver; (2) IH up-regulates lipid biosynthetic pathways in the liver; (3) IH induces oxidative stress in the liver; (4) IH up-regulates hypoxia inducible factor 1 alpha and possibly HIF-2 alpha, which may increase hepatic steatosis and induce liver inflammation and fibrosis. However, the role of FFA and different transcription factors in the pathogenesis of IH-induced NAFLD is yet to be established. Thus, multiple lines of evidence suggest that IH of OSA may contribute to the progression of NAFLD but definitive clinical studies and experiments in the mouse model have yet to be done.
doi:10.3389/fneur.2012.00149
PMCID: PMC3473309  PMID: 23087670
sleep apnea; intermittent hypoxia; non-alcoholic fatty liver disease; non-alcoholic steatohepatitis
12.  Reversal of diet-induced hepatic steatosis and hepatic insulin resistance by antisense oligonucleotide inhibitors of acetyl-CoA carboxylases 1 and 2 
Journal of Clinical Investigation  2006;116(3):817-824.
Hepatic steatosis is a core feature of the metabolic syndrome and type 2 diabetes and leads to hepatic insulin resistance. Malonyl-CoA, generated by acetyl-CoA carboxylases 1 and 2 (Acc1 and Acc2), is a key regulator of both mitochondrial fatty acid oxidation and fat synthesis. We used a diet-induced rat model of nonalcoholic fatty liver disease (NAFLD) and hepatic insulin resistance to explore the impact of suppressing Acc1, Acc2, or both Acc1 and Acc2 on hepatic lipid levels and insulin sensitivity. While suppression of Acc1 or Acc2 expression with antisense oligonucleotides (ASOs) increased fat oxidation in rat hepatocytes, suppression of both enzymes with a single ASO was significantly more effective in promoting fat oxidation. Suppression of Acc1 also inhibited lipogenesis whereas Acc2 reduction had no effect on lipogenesis. In rats with NAFLD, suppression of both enzymes with a single ASO was required to significantly reduce hepatic malonyl-CoA levels in vivo, lower hepatic lipids (long-chain acyl-CoAs, diacylglycerol, and triglycerides), and improve hepatic insulin sensitivity. Plasma ketones were significantly elevated compared with controls in the fed state but not in the fasting state, indicating that lowering Acc1 and -2 expression increases hepatic fat oxidation specifically in the fed state. These studies suggest that pharmacological inhibition of Acc1 and -2 may be a novel approach in the treatment of NAFLD and hepatic insulin resistance.
doi:10.1172/JCI27300
PMCID: PMC1366503  PMID: 16485039
13.  The Role of Patatin-Like Phospholipase Domain-Containing 3 on Lipid-induced Hepatic Steatosis and Insulin Resistance in Rats 
Hepatology (Baltimore, Md.)  2013;57(5):1763-1772.
Genome wide array studies have associated the Patatin-like Phospholipase Domain-containing 3 (PNPLA3) gene polymorphisms with hepatic steatosis. However, it is unclear whether PNPLA3 functions as a lipase or a lipogenic enzyme and whether PNPLA3 is involved in the pathogenesis of hepatic insulin resistance. To address these questions we treated high-fat-fed rats with specific antisense oligonucleotides to decrease hepatic and adipose pnpla3 expression. Reducing pnpla3 expression prevented hepatic steatosis, which could be attributed to decreased fatty acid esterification measured by the incorporation of [U-13C]-palmitate into hepatic triglyceride. While the precursors for phosphatidic acid (PA) [long-chain fatty acyl-CoAs and lysophosphatidic acid (LPA)] were not decreased, we did observe an ~20% reduction in the hepatic PA content, ~35% reduction in PA / LPA ratio, and ~60–70% reduction in transacylation activity at the level of acyl-CoA:1-acylglycerol-sn-3-phosphate acyltransferase. These changes were associated with an ~50% reduction in hepatic diacylglycerol (DAG) content, an ~80% reduction in hepatic protein kinase Cε activation, and increased hepatic insulin sensitivity, as reflected by a twofold greater suppression of endogenous glucose production during the hyperinsulinemic-euglycemic clamp. Finally, in humans, hepatic PNPLA3 mRNA expression was strongly correlated with hepatic triglyceride and DAG content, supporting a potential lipogenic role of PNPLA3 in humans. Taken together these data suggest that PNPLA3 may function primarily in a lipogenic capacity and inhibition of PNPLA3 may be a novel therapeutic approach for treatment of NAFLD associated hepatic insulin resistance.
doi:10.1002/hep.26170
PMCID: PMC3597437  PMID: 23175050
Esterification; Diacylglycerol; High Fat Diet; Nonalcoholic Fatty Liver Disease; Antisense Oligonucleotide
14.  Role of Patatin-Like Phospholipase Domain-Containing 3 on Lipid-Induced Hepatic Steatosis and Insulin Resistance in Rats 
Hepatology (Baltimore, Md.)  2013;57(5):1763-1772.
Genome-wide array studies have associated the patatin-like phospholipase domain-containing 3 (PNPLA3) gene polymorphisms with hepatic steatosis. However, it is unclear whether PNPLA3 functions as a lipase or a lipogenic enzyme and whether PNPLA3 is involved in the pathogenesis of hepatic insulin resistance. To address these questions we treated high-fat-fed rats with specific antisense oligonucleotides to decrease hepatic and adipose pnpla3 expression. Reducing pnpla3 expression prevented hepatic steatosis, which could be attributed to decreased fatty acid esterification measured by the incorporation of [U-13C]-palmitate into hepatic triglyceride. While the precursors for phosphatidic acid (PA) (long-chain fatty acyl-CoAs and lysophosphatidic acid [LPA]) were not decreased, we did observe an ∼20% reduction in the hepatic PA content, ∼35% reduction in the PA/LPA ratio, and ∼60%-70% reduction in transacylation activity at the level of acyl-CoA:1-acylglycerol-sn-3-phosphate acyltransferase. These changes were associated with an ∼50% reduction in hepatic diacylglycerol (DAG) content, an ∼80% reduction in hepatic protein kinase Cε activation, and increased hepatic insulin sensitivity, as reflected by a 2-fold greater suppression of endogenous glucose production during the hyperinsulinemic-euglycemic clamp. Finally, in humans, hepatic PNPLA3 messenger RNA (mRNA) expression was strongly correlated with hepatic triglyceride and DAG content, supporting a potential lipogenic role of PNPLA3 in humans. Conclusion: PNPLA3 may function primarily in a lipogenic capacity and inhibition of PNPLA3 may be a novel therapeutic approach for treatment of nonalcoholic fatty liver disease-associated hepatic insulin resistance. ((Hepatology 2013;57:1763-1772))
doi:10.1002/hep.26170
PMCID: PMC3597437  PMID: 23175050
15.  Limited Effect of Dietary Saturated Fat on Plasma Saturated Fat in the Context of a Low Carbohydrate Diet 
Lipids  2010;45(10):947-962.
We recently showed that a hypocaloric carbohydrate restricted diet (CRD) had two striking effects: (1) a reduction in plasma saturated fatty acids (SFA) despite higher intake than a low fat diet, and (2) a decrease in inflammation despite a significant increase in arachidonic acid (ARA). Here we extend these findings in 8 weight stable men who were fed two 6-week CRD (12%en carbohydrate) varying in quality of fat. One CRD emphasized SFA (CRD-SFA, 86 g/d SFA) and the other, unsaturated fat (CRD-UFA, 47 g SFA/d). All foods were provided to subjects. Both CRD decreased serum triacylglycerol (TAG) and insulin, and increased LDL-C particle size. The CRD-UFA significantly decreased plasma TAG SFA (27.48 ± 2.89 mol%) compared to baseline (31.06 ± 4.26 mol%). Plasma TAG SFA, however, remained unchanged in the CRD-SFA (33.14 ± 3.49 mol%) despite a doubling in SFA intake. Both CRD significantly reduced plasma palmitoleic acid (16:1n-7) indicating decreased de novo lipogenesis. CRD-SFA significantly increased plasma phospholipid ARA content, while CRD-UFA significantly increased EPA and DHA. Urine 8-iso PGF2α, a free radical-catalyzed product of ARA, was significantly lower than baseline following CRD-UFA (−32%). There was a significant inverse correlation between changes in urine 8-iso PGF2α and PL ARA on both CRD (r = −0.82 CRD-SFA; r = −0.62 CRD-UFA). These findings are consistent with the concept that dietary saturated fat is efficiently metabolized in the presence of low carbohydrate, and that a CRD results in better preservation of plasma ARA.
doi:10.1007/s11745-010-3467-3
PMCID: PMC2974193  PMID: 20820932
Saturated fat; Palmitic acid; Palmitoleic acid; Plasma fatty acid composition; Ketogenic diet; Omega-3 eggs; Metabolic syndrome; Insulin sensitivity; Controlled human feeding study; EPA; DHA; LDL/HDL ratio
16.  Fructose as a key player in the development of fatty liver disease 
We aimed to investigate whether increased consumption of fructose is linked to the increased prevalence of fatty liver. The prevalence of nonalcoholic steatohepatitis (NASH) is 3% and 20% in nonobese and obese subjects, respectively. Obesity is a low-grade chronic inflammatory condition and obesity-related cytokines such as interleukin-6, adiponectin, leptin, and tumor necrosis factor-α may play important roles in the development of nonalcoholic fatty liver disease (NAFLD). Additionally, the prevalence of NASH associated with both cirrhosis and hepatocellular carcinoma was reported to be high among patients with type 2 diabetes with or without obesity. Our research group previously showed that consumption of fructose is associated with adverse alterations of plasma lipid profiles and metabolic changes in mice, the American Lifestyle-Induced Obesity Syndrome model, which included consumption of a high-fructose corn syrup in amounts relevant to that consumed by some Americans. The observation reinforces the concerns about the role of fructose in the obesity epidemic. Increased availability of fructose (e.g., high-fructose corn syrup) increases not only abnormal glucose flux but also fructose metabolism in the hepatocyte. Thus, the anatomic position of the liver places it in a strategic buffering position for absorbed carbohydrates and amino acids. Fructose was previously accepted as a beneficial dietary component because it does not stimulate insulin secretion. However, since insulin signaling plays an important role in central mechanisms of NAFLD, this property of fructose may be undesirable. Fructose has a selective hepatic metabolism, and provokes a hepatic stress response involving activation of c-Jun N-terminal kinases and subsequent reduced hepatic insulin signaling. As high fat diet alone produces obesity, insulin resistance, and some degree of fatty liver with minimal inflammation and no fibrosis, the fast food diet which includes fructose and fats produces a gene expression signature of increased hepatic fibrosis, inflammation, endoplasmic reticulum stress and lipoapoptosis. Hepatic de novo lipogenesis (fatty acid and triglyceride synthesis) is increased in patients with NAFLD. Stable-isotope studies showed that increased de novo lipogenesis (DNL) in patients with NAFLD contributed to fat accumulation in the liver and the development of NAFLD. Specifically, DNL was responsible for 26% of accumulated hepatic triglycerides and 15%-23% of secreted very low-density lipoprotein triglycerides in patients with NAFLD compared to an estimated less than 5% DNL in healthy subjects and 10% DNL in obese people with hyperinsulinemia. In conclusion, understanding the underlying causes of NAFLD forms the basis for rational preventive and treatment strategies of this major form of chronic liver disease.
doi:10.3748/wjg.v19.i8.1166
PMCID: PMC3587472  PMID: 23482247
Nonalcoholic; Fatty liver; Diabetes; Insulin resistance; Cytokines; Obesity; Fructose
17.  CD14 upregulation as a distinct feature of non-alcoholic fatty liver disease after pancreatoduodenectomy 
World Journal of Hepatology  2013;5(4):189-195.
AIM: To investigate the pathogenesis of non-alcoholic fatty liver disease (NAFLD) after pancreatoduodenectomy (PD).
METHODS: A cohort of 82 patients who underwent PD at Okayama University Hospital between 2003 and 2009 was enrolled and the clinicopathological features were compared between patients with and without NAFLD after PD. Computed tomography (CT) images were evaluated every 6 mo after PD for follow-up. Hepatic steatosis was diagnosed on CT when hepatic attenuation values were 40 Hounsfield units. Liver biopsy was performed for 4 of 30 patients with NAFLD after PD who consented to undergo biopsies. To compare NAFLD after PD with NAFLD associated with metabolic syndrome, liver samples were obtained from 10 patients with NAFLD associated with metabolic syndrome [fatty liver, n = 5; non-alcoholic steatohepatitis (NASH), n = 5] by percutaneous ultrasonography-guided liver biopsy. Double-fluorescence immunohistochemistry was applied to examine CD14 expression as a marker of lipopolysaccharide (LPS)-sensitized macrophage cells (Kupffer cells) in liver biopsy specimens.
RESULTS: The incidence of postoperative NAFLD was 36.6% (30/82). Univariate analysis identified cancer of the pancreatic head, sex, diameter of the main pancreatic duct, and dissection of the nerve plexus as factors associated with the development of NAFLD after PD. Those patients who developed NAFLD after PD demonstrated significantly decreased levels of serum albumin, total protein, cholesterol and triglycerides compared to patients without NAFLD after PD, but no glucose intolerance or insulin resistance. Liver biopsy was performed in four patients with NAFLD after PD. All four patients showed moderate-to-severe steatosis and NASH was diagnosed in two. Numbers of cells positive for CD68 (a marker of Kupffer cells) and CD14 (a marker of LPS-sensitized Kupffer cells) were counted in all biopsy specimens. The number of CD68+ cells in specimens of NAFLD after PD was significantly increased from that in specimens of NAFLD associated with metabolic syndrome specimens, which indicated the presence of significantly more Kupffer cells in NAFLD after PD than in NAFLD associated with metabolic syndrome. Similarly, more CD14+ cells, namely, LPS-sensitized Kupffer cells, were observed in NAFLD after PD than in NAFLD associated with metabolic syndrome. Regarding NASH, more CD68+ cells and CD14+ cells were observed in NASH after PD specimens than in NASH associated with metabolic syndrome. This showed that more Kupffer cells and more LPS-sensitized Kupffer cells were present in NASH after PD than in NASH associated with metabolic syndrome. These observations suggest that after PD, Kupffer cells and LPS-sensitized Kupffer cells were significantly upregulated, not only in NASH, but also in simple fatty liver.
CONCLUSION: NAFLD after PD is characterized by both malnutrition and the up-regulation of CD14 on Kupffer cells. Gut-derived endotoxin appears central to the development of NAFLD after PD.
doi:10.4254/wjh.v5.i4.189
PMCID: PMC3648650  PMID: 23671723
Non-alcoholic fatty liver disease; Pancreatoduodenectomy; CD14; Endotoxin; Kupffer cells
18.  Mechanisms of hepatic triglyceride accumulation in non-alcoholic fatty liver disease 
Journal of Gastroenterology  2013;48(4):434-441.
Non-alcoholic fatty liver disease (NAFLD) is characterized by hepatic lipid accumulation in the absence of excess alcohol intake. NAFLD is the most common chronic liver disease, and ongoing research efforts are focused on understanding the underlying pathobiology of hepatic steatosis with the anticipation that these efforts will identify novel therapeutic targets. Under physiological conditions, the low steady-state triglyceride concentrations in the liver are attributable to a precise balance between acquisition by uptake of non-esterified fatty acids from the plasma and by de novo lipogenesis, versus triglyceride disposal by fatty acid oxidation and by the secretion of triglyceride-rich lipoproteins. In NAFLD patients, insulin resistance leads to hepatic steatosis by multiple mechanisms. Greater uptake rates of plasma non-esterified fatty acids are attributable to increased release from an expanded mass of adipose tissue as a consequence of diminished insulin responsiveness. Hyperinsulinemia promotes the transcriptional upregulation of genes that promote de novo lipogenesis in the liver. Increased hepatic lipid accumulation is not offset by fatty acid oxidation or by increased secretion rates of triglyceride-rich lipoproteins. This review discusses the molecular mechanisms by which hepatic triglyceride homeostasis is achieved under normal conditions, as well as the metabolic alterations that occur in the setting of insulin resistance and contribute to the pathogenesis of NAFLD.
doi:10.1007/s00535-013-0758-5
PMCID: PMC3633701  PMID: 23397118
Insulin resistance; Fatty acid; Lipid metabolism
19.  Ethnic Differences in Hepatic Steatosis: An insulin resistance paradox? 
Hepatology (Baltimore, Md.)  2009;49(3):791-801.
Non-alcoholic fatty liver disease (NAFLD) is a burgeoning problem. We have previously shown that Hispanics were at greater risk for NAFLD than African-Americans despite a similar prevalence of risk factors between these groups. We have performed the largest, population-based study to date (n=2,170) utilizing proton magnetic resonance (MR) spectroscopy, dual-energy x-ray absorptiometry, and multi-slice abdominal MR imaging to determine the contribution of body fat distribution to the differing prevalence of hepatic steatosis in the three major U.S. ethnic groups (African-American, Hispanic, Caucasian). Despite controlling for age and total adiposity, African-Americans had less intraperitoneal (IP) fat and more lower extremity (LE) fat than their Hispanic and Caucasian counterparts. The differences in hepatic triglyceride content (HTGC) between these groups remained after controlling for total, abdominal subcutaneous, and LE adiposity; however, controlling for IP fat nearly abolished the differences in HTGC, indicating a close association between IP and liver fat regardless of ethnicity. Despite the lower levels of IP and liver fat in African-Americans, their prevalence of insulin resistance was similar to Hispanics, who had the highest levels of IP and liver fat. Furthermore, insulin levels and HOMAIR values were highest and serum triglyceride levels were lowest among African-Americans after controlling for IP fat. In conclusion, IP fat is linked to HTGC, irrespective of ethnicity. The differing prevalence of hepatic steatosis between these groups was associated with similar differences in visceral adiposity. The metabolic response to obesity and insulin resistance differs in African-Americans when compared to either Hispanics or Caucasians: African-Americans appear to be more resistant to both the accretion of triglyceride in the abdominal visceral compartment (adipose tissue and liver) and hypertriglyceridemia associated with insulin resistance.
doi:10.1002/hep.22726
PMCID: PMC2675577  PMID: 19105205
fatty liver; ethnic groups; African-Americans; Hispanic Americans; obesity; body fat distribution; abdominal fat; intra-abdominal fat; abdominal subcutaneous fat; adiposity; insulin resistance; dyslipidemia; hypertriglyceridemia; metabolic syndrome X
20.  Mechanisms of Hepatic Triglyceride Accumulation in Nonalcoholic Fatty Liver Disease 
Journal of gastroenterology  2013;48(4):434-441.
Nonalcoholic fatty liver disease (NAFLD) is characterized by hepatic lipid accumulation in the absence of excess alcohol intake. NAFLD is the most common chronic liver disease, and ongoing research efforts are focused on understanding the underlying pathobiology of hepatic steatosis with the anticipation that these efforts will identify novel therapeutic targets. Under physiological conditions, the low steady-state triglyceride concentrations in the liver are attributable to a precise balance between acquisition by uptake of non-esterified fatty acids from the plasma and by de novo lipogenesis, versus triglyceride disposal by fatty acid oxidation and by the secretion of triglyceride-rich lipoproteins. In NAFLD patients, insulin resistance leads to hepatic steatosis by multiple mechanisms. Greater uptake rates of plasma non-esterified fatty acids are attributable to increased release from an expanded mass of adipose tissue as a consequence of diminished insulin responsiveness. Hyperinsulinemia promotes the transcriptional upregulation of genes that promote de novo lipogenesis in the liver. Increased hepatic lipid accumulation is not offset by fatty acid oxidation or by increased secretion rates of triglyceride-rich lipoproteins. This review discusses the molecular mechanisms by which hepatic triglyceride homeostasis is achieved under normal conditions, as well as the metabolic alterations that occur in the setting of insulin resistance and contribute to the pathogenesis of NAFLD.
doi:10.1007/s00535-013-0758-5
PMCID: PMC3633701  PMID: 23397118
Insulin resistance; fatty acid; lipid metabolism
21.  Liver fatty acid composition in mice with or without nonalcoholic fatty liver disease 
Background
Nonalcoholic fatty liver disease (NAFLD) is one of the most frequent causes of abnormal liver function. Because fatty acids can damage biological membranes, fatty acid accumulation in the liver may be partially responsible for the functional and morphological changes that are observed in nonalcoholic liver disease. The aim of this study was to use gas chromatography-mass spectrometry to evaluate the fatty acid composition of an experimental mouse model of NAFLD induced by high-fat feed and CCl4 and to assess the association between liver fatty acid accumulation and NAFLD. C57BL/6J mice were given high-fat feed for six consecutive weeks to develop experimental NAFLD. Meanwhile, these mice were given subcutaneous injections of a 40% CCl4-vegetable oil mixture twice per week.
Results
A pathological examination found that NAFLD had developed in the C57BL/6J mice. High-fat feed and CCl4 led to significant increases in C14:0, C16:0, C18:0 and C20:3 (P < 0.01), and decreases in C15:0, C18:1, C18:2 and C18:3 (P < 0.01) in the mouse liver. The treatment also led to an increase in SFA and decreases in other fatty acids (UFA, PUFA and MUFA). An increase in the ratio of product/precursor n-6 (C20:4/C18:2) and n-3 ([C20:5+C22:6]/C18:3) and a decrease in the ratio of n-6/n-3 (C20:4/[C20:5+C22:6]) were also observed.
Conclusion
These data are consistent with the hypothesis that fatty acids are deranged in mice with non-alcoholic fatty liver injury induced by high-fat feed and CCl4, which may be involved in its pathogenesis and/or progression via an unclear mechanism.
doi:10.1186/1476-511X-10-234
PMCID: PMC3254603  PMID: 22165986
Fatty acid; Nonalcoholic fatty liver disease; Mouse; High-fat feed; Carbon tetrachloride
22.  Liver fat accumulation is associated with reduced hepatic insulin extraction and beta cell dysfunction in healthy older individuals 
Background
There is a well-established association between type 2 diabetes and non-alcoholic fatty liver disease (NAFLD) secondary to excess accumulation of intrahepatic lipid (IHL), but the mechanistic basis for this association is unclear. Emerging evidence suggests that in addition to being associated with insulin resistance, NAFLD may be associated with relative beta-cell dysfunction. We sought to determine the influence of liver fat on hepatic insulin extraction and indices of beta-cell function in a cohort of apparently healthy older white adults.
Methods
We performed a cross-sectional analysis of 70 healthy participants in the Hertfordshire Physical Activity Trial (39 males, age 71.3 ± 2.4 years) who underwent oral glucose tolerance testing with glucose, insulin and C-Peptide levels measured every 30 minutes over two hours. The areas under the concentration curve for glucose, insulin and C-Peptide were used to quantify hepatic insulin extraction (HIE), the insulinogenic index (IGI), the C-Peptide increment (CGI), the Disposition Index (DI) and Adaptation Index (AI). Visceral fat was quantified with magnetic resonance (MR) imaging and IHL with MR spectroscopy. Insulin sensitivity was measured with the Oral Glucose Insulin Sensitivity (OGIS) model.
Results
29 of 70 participants (41%) exceeded our arbitrary threshold for NAFLD, i.e. IHL >5.5%. Compared to those with normal IHL, those with NAFLD had higher weight, BMI, waist and MR visceral fat, with lower insulin sensitivity and hepatic insulin extraction. Alcohol consumption, age, HbA1c and alanine aminotransferase (ALT) levels were similar in both groups. Insulin and C-Peptide excursions after oral glucose loading were higher in the NAFLD group, but the CGI and AI were significantly lower, indicating a relative defect in beta-cell function that is only apparent when C-Peptide is measured and when dynamic changes in glucose levels and also insulin sensitivity are taken into account. There was no difference in IGI or DI between the groups.
Conclusions
Although increased IHL was associated with greater insulin secretion, modelled parameters suggested relative beta-cell dysfunction with NAFLD in apparently healthy older adults, which may be obscured by reduced hepatic insulin extraction. Further studies quantifying pancreatic fat content directly and its influence on beta cell function are warranted.
Trial registration
ISRCTN60986572
doi:10.1186/1758-5996-6-43
PMCID: PMC3974597  PMID: 24669786
Adaptation index; Beta cell dysfunction; C-peptide-genic index; Disposition index; Hepatic insulin extraction; Insulinogenic index; Intrahepatic lipid; Non-alcoholic fatty liver disease
23.  Liver and Muscle in Morbid Obesity: The Interplay of Fatty Liver and Insulin Resistance 
PLoS ONE  2012;7(2):e31738.
Introduction
Nonalcoholic fatty liver disease (NAFLD) can be seen as a manifestation of overnutrition. The muscle is a central player in the adaptation to energy overload, and there is an association between fatty-muscle and -liver. We aimed to correlate muscle morphology, mitochondrial function and insulin signaling with NAFLD severity in morbid obese patients.
Methods
Liver and deltoid muscle biopsies were collected during bariatric surgery in NAFLD patients. NAFLD Activity Score and Younossi's classification for nonalcoholic steatohepatitis (NASH) were applied to liver histology. Muscle evaluation included morphology studies, respiratory chain complex I to IV enzyme assays, and analysis of the insulin signaling cascade. A healthy lean control group was included for muscle morphology and mitochondrial function analyses.
Results
Fifty one NAFLD patients were included of whom 43% had NASH. Intramyocellular lipids (IMCL) were associated with the presence of NASH (OR 12.5, p<0.001), progressive hepatic inflammation (p = 0.029) and fibrosis severity (p = 0.010). There was a trend to an association between IMCL and decreased Akt phosphorylation (p = 0.059), despite no association with insulin resistance. In turn, hepatic steatosis (p = 0.015) and inflammation (p = 0.013) were associated with decreased Akt phosphoryation. Citrate synthase activity was lower in obese patients (p = 0.047) whereas complex I (p = 0.040) and III (p = 0.036) activities were higher, compared with controls. Finally, in obese patients, complex I activity increased with progressive steatosis (p = 0.049) and with a trend with fibrosis severity (p = 0.056).
Conclusions
In morbid obese patients, presence of IMCL associates with NASH and advanced fibrosis. Muscle mitochondrial dysfunction does not appear to be a major driving force contributing to muscle fat accumulation, insulin resistance or liver disease. Importantly, insulin resistance in muscle might occur at a late point in the insulin signaling cascade and be associated with IMCL and NAFLD severity.
doi:10.1371/journal.pone.0031738
PMCID: PMC3281005  PMID: 22359625
24.  Adiponectin, a key adipokine in obesity related liver diseases 
Non-alcoholic fatty liver disease (NAFLD) comprising hepatic steatosis, non-alcoholic steatohepatitis (NASH), and progressive liver fibrosis is considered the most common liver disease in western countries. Fatty liver is more prevalent in overweight than normal-weight people and liver fat positively correlates with hepatic insulin resistance. Hepatic steatosis is regarded as a benign stage of NAFLD but may progress to NASH in a subgroup of patients. Besides liver biopsy no diagnostic tools to identify patients with NASH are available, and no effective treatment has been established. Visceral obesity is a main risk factor for NAFLD and inappropriate storage of triglycerides in adipocytes and higher concentrations of free fatty acids may add to increased hepatic lipid storage, insulin resistance, and progressive liver damage. Most of the adipose tissue-derived proteins are elevated in obesity and may contribute to systemic inflammation and liver damage. Adiponectin is highly abundant in human serum but its levels are reduced in obesity and are even lower in patients with hepatic steatosis or NASH. Adiponectin antagonizes excess lipid storage in the liver and protects from inflammation and fibrosis. This review aims to give a short survey on NAFLD and the hepatoprotective effects of adiponectin.
doi:10.3748/wjg.v17.i23.2801
PMCID: PMC3120939  PMID: 21734787
Hepatic steatosis; Non-alcoholic steatohepatitis; Adiponectin; Obesity; Adipose tissue
25.  Effects of resveratrol in experimental and clinical non-alcoholic fatty liver disease 
World Journal of Hepatology  2014;6(4):188-198.
The prevalence of obesity and related conditions like non-alcoholic fatty liver disease (NAFLD) is increasing worldwide and therapeutic options are limited. Alternative treatment options are therefore intensively sought after. An interesting candidate is the natural polyphenol resveratrol (RSV) that activates adenosinmonophosphate-activated protein kinase (AMPK) and silent information regulation-2 homolog 1 (SIRT1). In addition, RSV has known anti-oxidant and anti-inflammatory effects. Here, we review the current evidence for RSV-mediated effects on NAFLD and address the different aspects of NAFLD and non-alcoholic steatohepatitis (NASH) pathogenesis with respect to free fatty acid (FFA) flux from adipose tissue, hepatic de novo lipogenesis, inadequate FFA β-oxidation and additional intra- and extrahepatic inflammatory and oxidant hits. We review the in vivo evidence from animal studies and clinical trials. The abundance of animal studies reports a decrease in hepatic triglyceride accumulation, liver weight and a general improvement in histological fatty liver changes, along with a reduction in circulating insulin, glucose and lipid levels. Some studies document AMPK or SIRT1 activation, and modulation of relevant markers of hepatic lipogenesis, inflammation and oxidation status. However, AMPK/SIRT1-independent actions are also likely. Clinical trials are scarce and have primarily been performed with a focus on overweight/obese participants without a focus on NAFLD/NASH and histological liver changes. Future clinical studies with appropriate design are needed to clarify the true impact of RSV treatment in NAFLD/NASH patients.
doi:10.4254/wjh.v6.i4.188
PMCID: PMC4009474  PMID: 24799987
Non-alcoholic fatty liver disease; Non-alcoholic steatohepatitis; Steatosis; Resveratrol; AMP-activated protein kinase; Silent information regulation-2 homolog 1; Anti-oxidants; Anti-inflammatory agents; Animal studies; Clinical trial

Results 1-25 (610024)